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Abstract

Graphs are a powerful and versatile tool useful in various
subfields of science and engineering. In many applications,
for example, in pattern recognition and computer vision, it is
required to measure the similarity of objects. When graphs
are used for the representation of structured objects, then
the problem of measuring object similarity turns into the
problem of computing the similarity of graphs, which is also
known as graph matching. In this paper, similarity measures
on graphs and related algorithms will be reviewed. Applica-
tions of graph matching will be demonstrated giving exam-
ples from the fields of pattern recognition and computer vi-
sion. Also recent theoretical work showing various relations
between different similarity measures will be discussed.

1 Introduction

Graphs are a general and powerful data structure for the rep-
resentation of objects and concepts. In a graph represen-
tation, the nodes typically represent objects or parts of ob-
jects, while the edges describe relations between objects or
object parts. Graphs have some interesting invariance prop-
erties. For instance, if a graph, which is drawn on paper,
is translated, rotated, or transformed into its mirror image,
it is still the same graph in the mathematical sense. These
invariance properties, as well as the fact that graphs are well-
suited to model objects in terms of parts and their relations,
make them very attractive for various applications.

In applications such as pattern recognition and computer
vision, object similarity is an important issue. Given a
database of known objects and a query, the task is to re-
trieve one or several objects from the database that are simi-
lar to the query. If graphs are used for object representation
this problem turns into determining the similarity of graphs,
which is generally referred to as graph matching.

Standard concepts in graph matching include graph iso-
morphism, subgraph isomorphism, and maximum common

subgraph. However, in real world applications we can’t al-
ways expect a perfect match between the input and one of
the graphs in the database. Therefore, what is needed is
an algorithm for error-tolerant matching, or equivalently, a
method that computes a measure of similarity between two
given graphs. In this paper we review recent work in the area
of graph matching. Basic concepts are introduced in Section
2. Then in Section 3 theoretical foundations of graph match-
ing are presented. Various algorithms for graph matching
are introduced in Section 4. Applications are described in
Section 5, and a discussion and conclusions are given in Sec-
tion 6.

2 Basic Conceptsin Graph Matching

In this paper we consider directed and labeled graphs, which
are sometimes synonymously referred to as (attributed) rela-
tional graphs, or relational structures. Such a graph consists
of a finite number of nodes, or vertices, and a finite num-
ber of directed edges. A finite number of labels are usually
associated to the nodes and edges. (Labels are also called at-
tributes sometimes.) If we delete some nodes from a graph
g, together with their incident edges, we obtain a subgraph
g’ C g. A graph isomorphism from a graph g to a graph
g’ is a bijective mapping from the nodes of g to the nodes
of ¢’ that preserves all labels and the structure of the edges.
Similarly, a subgraph isomorphism from g to ¢’ is an iso-
morphism from ¢ to a subgraph of ¢’. Another important
concept in graph matching is maximum common subgraph.
A maximum common subgraph of two graphs, g and ¢’, isa
graph ¢g” that is a subgraph of both g and ¢’ and has, among
all possible subgraphs of g and ¢’, the maximum number of
nodes. Notice that the maximum common subgraph of two
graphs is usually not unique.

Graph isomorphism is a useful concept to find out if two
objects are the same, up to invariance properties inherent
to the underlying graph representation. Similarly, subgraph
isomorphism can be used to find out if one object is part



of another object, or if one object is present in a group of
objects. Maximum common subgraph can be used to mea-
sure the similarity of objects even if there exists no graph or
subgraph isomorphism between the corresponding graphs.
Clearly, the larger the maximum common subgraph of two
graphs is, the greater is their similarity.

Real world objects are usually affected by noise such that
the graph representation of identical objects may not exactly
match. Therefore it is necessary to integrate some degree of
error tolerance into the graph matching process. A powerful
alternative to maximum common subgraph computation is
error-tolerant graph matching using graph edit distance. In
its most general form, a graph edit operation is either a dele-
tion, insertion, or substitution (i.e. label change). Edit oper-
ations can be applied to nodes as well as to edges. The edit
distance of two graphs, g and ¢’, is defined as the shortest
sequence of edit operations that transform g into ¢’. Ob-
viously, the shorter this sequence is the more similar are
the two graphs. Thus edit distance is suitable to measure
the similarity of graphs. The sequence of edit operations
that transform g into ¢’ implies an error-correcting mapping
from the nodes of g to the nodes of ¢'.

In practical applications, some edit operations may have
more importance than others. Hence, very often costs are as-
signed to the individual edit operations. Typically the more
likely an edit operation is to occur the smaller is its cost. An
assignment of costs to the individual edit operations is often
called a cost function. Given a set of edit operations together
with their costs, graph edit distance computation in its most
general form means to find a sequence of edit operations that
transform, with minimum cost, one of the given graphs into
the other.

Actually, graph isomorphism, subgraph isomorphism,
and maximum common subgraph detection are all special
instances of graph edit distance computation under spe-
cial cost functions [7]. Also the well-known problem of
weighted graph matching [2, 50] can be regarded a special
case of graph edit distance. Algorithms for graph matching,
including graph edit distance computation, will be discussed
in Section 4 of this paper. For a more formal treatment of
the concepts introduced in this section see [5].

3 Theoretical Foundations

Relationships between error-tolerant graph matching using
graph edit distance and the well-known concept of maxi-
mum common subgraph were studied recently [4]. The main
result of this paper is that, for a particular class of cost func-
tions, maximum common subgraph and graph edit distance
computation are equivalent to each other. In particular, the
maximum common subgraph ¢" of two graphs, ¢ and ¢/,
and their edit distance, d(g, ¢'), are related with each other

through the simple equation

d(g,9') =gl + |g'| = 2|¢"| 1

where |g|,|¢’| and |g"'| denote the number of nodes of g, ¢’
and ¢, respectively.

Hence any algorithm for maximum common subgraph com-
putation can be used for graph edit distance computation and
vice versa, as long as the cost function satisfies the condi-
tions stated in [4].

In close relation with this result, a new graph similarity
measure, 6(gi, g2), based on the maximum common sub-
graph was proposed in [6]:
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In this equation mes(g, ¢') denotes the maximum common
subgraph of g and ¢’ and |g| stands for the number of nodes
of g, similarly to eq.(1). This similarity measure is a metric.
Thus it may be useful for applications where properties such
as reflexivity or triangular inequality are desired.

An in-depth study of the influence of the underlying cost
function on graph edit distance computation was presented
in [7]. The main result of this study is that, for any cost
function, there exist infinitely many other, equivalent cost
functions that lead to the same optimal sequence of edit op-
erations for transforming two given graphs into each other.
Moreover, given the edit distance d(g, g") under one partic-
ular cost function, the edit distance d’(g, g') under any other
cost function from the same equivalence class is just a linear
function of d(g, ¢g'). From the practical point of view, this
result tells us that any particular graph matching algorithm
designed for a special cost function can be used for infinitely
many other cost functions as well, i.e., all other cost func-
tions from the same equivalence class.

A novel concept, the minimum common supergraph of
two graphs, was recently introduced [8]. A supergraph g of
two graphs, ¢’ and ¢”, is a graph that contains both ¢’ and
g"" as subgraphs. The minimum common supergraph of ¢’
and ¢” is a graph that is a supergraph of both ¢’ and ¢"’ and
has, among all those supergraphs, the minimum number of
nodes. It has been shown that the computation of the mini-
mum common supergraph can be solved through computa-
tion of the maximum common subgraph. Similarly to eq.
(1) there is a relation between the minimum common super-
graph of two graphs and their edit distance [8]. While max-
imum common subgraph can be regarded a kind of intersec-
tion operator on graphs, minimum common supergraph can
be interpreted as graph union. This observation may be an
interesting starting point for investigating graph operators
with algebraic properties.



4 Graph Matching Algorithms

All results presented in the previous section of this paper
are independent of the algorithm that is actually used for
graph matching. A wide spectrum of graph matching al-
gorithms with different characteristics have become avail-
able meanwhile. The standard algorithm for graph and sub-
graph isomorphism detection is the one by Ullman [49].
Maximum common subgraph detection has been addressed
in [17, 23, 34]. Classical methods for error-tolerant graph
matching can be found in [14, 42, 43, 48, 55]. Most of these
algorithms are particular versions of the A* search proce-
dure, i.e., they rely on some kind of tree search incorporat-
ing various heuristic lookahead techniques in order to prune
the search space.

These methods are guaranteed to find the optimal solu-
tion but require exponential time and space due to the NP-
completeness of the problem. Suboptimal, or approximative
methods, on the other hand, are polynomially bounded in
the number of computation steps but may fail to find the
optimal solution. For example, in [10, 54] probabilistic re-
laxation schemes are described. Other approaches are based
on neural networks such as the Hopfield network [15] or
the Kohonen map [57]. Also genetic algorithms have been
proposed recently [12, 52]. In [51] an approximate method
based on maximum flow is introduced. However, all of
these approximate methods may get tracked in local minima
and miss the optimal solution. Approaches to the weighted
graph matching problem using Eigenvalues and linear pro-
gramming, have been proposed in [50] and [2], respectively.
As a special case, the matching of trees has been addressed
in a series of papers recently [9, 33, 35, 53].

In the remainder of this section we briefly review three
optimal graph matching methods that were proposed re-
cently. In [27, 29] a new method is described for match-
ing a graph g against a database of model graphs g1, ..., g»
in order to find the model g; with the smallest edit distance
d(g, g:) to g. The basic assumption is that the models in the
database are not completely dissimilar. Instead, it is sup-
posed that there are graphs s}s that occur simultaneously
as subgraphs in several of the g;s, or multiple times in the
same g;. Under a naive procedure, we will match g sequen-
tially with each of the g}s. However, because of common
subgraphs s; shared by several models g;, the s;s will be
matched with g multiple times. This clearly implies some
redundancy.

In the approach described in [27, 29] the model graphs
91,--.,9n are preprocessed generating a symbolic data
structure, called network of models. This network is a com-
pact representation of the models in the sense that multiple
occurrences of the same subgraph s; are represented only
once. Consequently, such subgraphs will be matched only
once with the input. Hence the computational effort will be
reduced. A further enhancement of the computational effi-

ciency of the method is achieved by a lookahead procedure.
This lookahead procedure returns an estimation of the future
matching cost. It is precise and can be efficiently computed
based on the network. In [27, 32] the same procedure is ap-
plied not to graph edit distance computation, but subgraph
and graph isomorphism detection.

In [27, 31] an even faster algorithm for graph and sub-
graph isomorphism detection was described. It is based on
an intensive preprocessing step in which a database of model
graphs is converted into a decision tree. At run time, the in-
put graph is classified by the decision tree and all model
graphs for which there exists a subgraph isomorphism from
the input are detected. If we neglect the time needed for pre-
processing, the computational complexity of the new sub-
graph isomorphism algorithm is only quadratic in the num-
ber of input graph vertices. In particular, it is independent of
the number of model graphs and the number of edges in any
of the graphs. However, the decision tree that is constructed
in the preprocessing step is of exponential size in terms of
the number of vertices of the model graphs. The actual im-
plementation described by the authors is able to cope with a
single graph in the database of up to 22 nodes, or up to 30
models in the database consisting of up to 11 nodes each.

Recently the decision tree method was extended from
exact graph and subgraph isomorphism detection to error-
tolerant graph matching [30]. Actually, there are different
possible approaches. In one approach, error correction is
considered at the time of the creation of the decision tree.
That is, for each model graph a set of distorted copies are
created and compiled into the decision tree. The number of
distorted copies depends on the maximal admissible error.
At runtime, the decision tree is used to classify the unknown
input graph in the same way as in case of exact subgraph iso-
morphism detection. The time complexity of this procedure
at run time is only quadratic in the number of input graph
nodes. However, the size of the decision tree is exponential
in the number of vertices of the model graphs and in the de-
gree of distortion that is to be considered. Therefore, this
approach is limited to (very) small graphs.

In the second approach, the error corrections are con-
sidered at run time only. That is, the decision tree for a
set of model graphs does not incorporate any information
about possible errors. Hence, the decision tree compilation
step is identical to the original preprocessing step and, con-
sequently, the size of the decision tree is exponential only
in the size of the model graphs. At run time, a set of dis-
torted copies of the input graph are constructed such that
all possible error corrections up to a certain error threshold
are considered. Each graph in this set is then classified by
the decision tree. The run time complexity of this method
is O(9n2(?+1)) where n is the number of nodes in the input
graph and 4} is a threshold that defines the maximum number
of admissible edit operations.



)

¥ @ ua
3.4) (5,6)
5]

1: X-digunct-left 4: Y-overlaps-above

2: Y-overlaps-above 5: X-digunct-left

3: X-includes 6: Y-touches-isincluded
Figure 1:

a) an image where the objects are represented through their
bounding boxes
b) graph representation of a)

5 Applications

A large number of applications of graph matching have been
described in the literature. One of the earliest was in the field
of chemical structure analysis [40]. More recently, graph
matching has been applied to case-based reasoning [3, 36],
machine learning [11, 16, 28], planning [41], semantic net-
works [13], conceptual graph [26], and monitoring of com-
puter networks [47]. Furthermore it was used in the con-
text of visual languages and programming by graph transfor-
mations [37, 39]. Numerous applications from the areas of
pattern recognition and machine vision have been reported.
They include recognition of graphical symbols [21, 22],
character recognition [25, 38], shape analysis [9, 24, 35],
three-dimensional object recognition [56], and others.

In the rest of this section we briefly sketch an application
of graph matching to image and video indexing [44, 45].
The system under consideration is based on indexing by
qualitative spatial relationships. For this purpose, the rela-
tional calculus proposed in [1] has been extended into two
dimensions. Any object of interest in an image is repre-
sented by its bounding box, which is described, in turn, by
a node in the underlying graph representation. The spatial
relations between two objects are left-of, touches, overlaps,
includes a.s.0. There are 13 relations in both the x- and y-
direction, resulting in a total of 169 possible relations be-
tween two different objects in an image. Each graph rep-
resenting an image is fully connected, i.e., there is an edge
between any pair of nodes. An example of this kind of graph
representation is shown in Fig. 1.

The transformation of the images in the database into
their graph representation is accomplished in a semi-
automatic fashion, where only the first frame of a video clip
needs full manual processing. Once all objects of interest
have been manually extracted and labeled in the first image,
an automatic tracking procedure is started, which is based
on the assumption that objects change only slightly from one
image to the next. Retrieval of images from the database is
by pictorial example. Given a query image, the user interac-
tively defines the bounding boxes of the objects of interest

and labels them on the screen. This information can be eas-
ily converted into the corresponding graph representation.

Given the graph representation of the query and the im-
ages in the database, the task of image retrieval is cast as a
graph matching problem. Various matching paradigms, in-
cluding maximum common subgraph detection, have been
implemented. In the context of the considered application,
the maximum common subgraph between the query Q and
an image | in the database is particularly interesting as it
represents the largest collection of objects present in Q and
I that have compatible labels and maintain the same spatial
relations to each other in both images.

Standard algorithms for maximum common subgraph
detection are based on maximal cliques [23, 34] and tree
search [17]. In the system under consideration, an exten-
sion of the decision tree based subgraph isomorphism de-
tection algorithm proposed in [31] was adopted. This algo-
rithm converts, in an off-line phase, the image database into
a decision tree. Given a query graph, the time needed to tra-
verse the decision tree is O(2"n3), where n is the number
of nodes in the query graph. (Notice that the time complex-
ity is independent of the size of the database.) Obviously,
the complexity of this procedure is significantly higher than
O(n?), which is needed for subgraph isomorphism detection
[31], indicating that maximum common subgraph detection
is a task more complicated than subgraph isomorphism de-
tection. Nevertheless, the O(2"n3) complexity favourably
compares with O(L(nm)™), which is needed by the method
described in [23] (where L is the number of graphs in the
database and m is the number of nodes of a graph in the
database). A potential drawback of the proposed algorithm
for maximum common subgraph detection is the space com-
plexity, which is exponential in the size of the database. But
there are pruning strategies available for cutting down the
space requirements [45].

The proposed graph matching procedures have been
tested on a real video database [44]. The clips in this
database vary in length from 4 to 20 seconds, and contain
between 12 and 19 objects each. The shortest clip contains
71 changes to object relationships, while the longest has 402
changes. Table 1 shows the time (in milliseconds) required
for the maximum common subgraph decision tree algorithm
to search a database of 10 clips with a total of 5956 images.
For the purpose of comparison, not only the time needed
by the new decision tree procedure, but also the time re-
quired by Ullman’s algorithm [49], and an A* procedure for
subgraph isomorphism detection is recorded. The numbers
given in the table are values averaged over several queries
containing between 4 and 11 nodes each. From Table 1, the
high execution speed of the new decision tree based maxi-
mum common subgraph procedure becomes evident. On the
other hand we must remember the large space requirements
of this method. Nevertheless, the method seems applicable
to real world problems. For more details and further experi-



| Algorithm | Mean [ Minimum | Maximum | o |

Ullman 393.2 252 607 113.1
A*-based 617.1 | 362 861 178.2
Decision 16.6 6 23 6.5
tree based

MCS

Table 1: Performance evaluation of different graph matching
algorithms

ments the reader is refereed to [45].

An extension of the decision tree based subgraph match-
ing procedure to the case where the query consists of a
whole sequence of images is described in [46].

6 Discussion and Conclusions

In this paper we have reviewed recent developments in graph
matching. It can be concluded that graphs are a versatile and
flexible representation formalism suitable for a wide range
of problems in intelligent information processing, including
the areas of pattern recognition and computer vision. A wide
spectrum of graph matching algorithms have become avail-
able meanwhile. They range from deterministic approaches,
suitable for finding optimal solutions to problems involving
graphs with a limited number of nodes and edges, to approx-
imate methods that are applicable to large-scale problems.

The graph matching algorithms reviewed in this paper
are very general. In fact, there are no problem dependent
assumptions included. The nodes and edges of a graph may
represent anything, and there are no restrictions on the node
and edge labels. The distortion model used in graph edit
distance computation includes the deletion, insertion, and
substitution of both nodes and edges. Hence it is powerful
enough to model any type of error that may be introduced to
a graph.

Adapting a graph matching algorithm to a particular task
requires the solution of two concrete problems. First, a suit-
able graph representation of the objects of the problem do-
main has to be found. Secondly, appropriate error correc-
tion, i.e. edit operations together with their costs, have to be
defined. For the solution of both problems, domain specific
knowledge must be utilized whenever it is meaningful.

There are a number of open problems in graph match-
ing that deserve further research. It is conjectured that there
are many applications in pattern recognition and computer
vision where the full representational power of graphs may
not be needed. Restricting the focus on special subclasses
of graphs may result in more efficient matching procedures.
For example, restricted classes of graphs, where the iso-
morphism can be solved in polynomial time, have been re-
ported in [58]; see also the references in this paper. Addi-

tional classes of graphs have been discovered recently. In
[18, 20] so-called ordered graphs have been investigated.
It was shown that the isomorphism problem for ordered
graphs can be solved in O(nm) time, where n and m rep-
resent the number of edges of the two graphs. A special
form of subgraph isomorphism for these graphs has been
considered in [19]. Under the assumption that the degree
of some distinguished vertices is preserved under the sub-
graph isomorphism mapping, it was shown that the subgraph
isomorphism problem is solvable in quadratic time as well.
This clearly demonstrates that restricting the focus on spe-
cial subclasses of graphs may lead to more efficient match-
ing procedures. Most of the works referenced here were mo-
tivated by graph theoretical considerations. In future work
it will be interesting to search for other special classes of
graphs with a lower matching complexity from a more ap-
plication oriented point of view, paying particular attention
to classes of graphs that are relevant to pattern recognition
and computer vision.

Other promising areas of future research include the au-
tomatic inference of edit costs from a set of sample graphs,
and the combination of optimal and approximate graph
matching methods.
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