
Constraint Satisfaction Problems

Chapter 3, Section 7 and Chapter 4, Section 4.4

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 1

Outline

} CSP examples

} General search applied to CSPs

} Backtracking

} Forward checking

} Heuristics for CSPs

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 2

Constraint satisfaction problems (CSPs)

Standard search problem:

state is a \black box"|any old data structure

that supports goal test, eval, successor

CSP:
state is de�ned by variables Vi with values from domain Di

goal test is a set of constraints specifying

allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power

than standard search algorithms

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 3

Example: 4-Queens as a CSP

Assume one queen in each column. Which row does each one go in?

Variables Q1, Q2, Q3, Q4

Domains Di = f1; 2; 3; 4g

Constraints

Qi 6= Qj (cannot be in same row)

jQi �Qjj 6= ji� jj (or same diagonal) 1Q = 1 2Q = 3

Translate each constraint into set of allowable values for its variables

E.g., values for (Q1; Q2) are (1; 3) (1; 4) (2; 4) (3; 1) (4; 1) (4; 2)

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 4

Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

1Q Q2

Q3 Q4

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 5

Example: Cryptarithmetic

Variables

D E M N O R S Y

Domains

f0; 1; 2; 3; 4; 5; 6; 7; 8; 9g

S E N D

+ M O R E

M O N E Y

Constraints

M 6= 0, S 6= 0 (unary constraints)

Y = D +E or Y = D + E � 10, etc.

D 6= E, D 6=M , D 6= N , etc.

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 6

Example: Map coloring

Color a map so that no adjacant countries have the same color

Variables

Countries Ci

Domains

fRed;Blue;Greeng

Constraints

C1 6= C2, C1 6= C5, etc.

1C 2C

3C

C5

C6 4C

Constraint graph:

1C 2C

3C

C5

C6

4C

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 7

Real-world CSPs

Assignment problems

e.g., who teaches what class

Timetabling problems

e.g., which class is o�ered when and where?

Hardware con�guration

Spreadsheets

Transportation scheduling

Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 8

Applying standard search

Let's start with the straightforward, dumb approach, then �x it

States are de�ned by the values assigned so far

Initial state: all variables unassigned

Operators: assign a value to an unassigned variable

Goal test: all variables assigned, no constraints violated

Notice that this is the same for all CSPs!

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 9

Implementation

CSP state keeps track of which variables have values so far

Each variable has a domain and a current value

datatype CSP-State

components: Unassigned, a list of variables not yet assigned

Assigned, a list of variables that have values

datatype CSP-Var

components: Name, for i/o purposes

Domain, a list of possible values

Value, current value (if any)

Constraints can be represented

explicitly as sets of allowable values, or

implicitly by a function that tests for satisfaction of the constraint

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 10

Standard search applied to map-coloring

UNASSIGNED

ASSIGNED

C1 C2 C3

UNASSIGNED

ASSIGNED

C2 C3

C1 = RED

UNASSIGNED

ASSIGNED

UNASSIGNED

ASSIGNED

C1 C3

C2 = BLUE

C1 C2

C3 = GREEN

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 11

Complexity of the dumb approach

Max. depth of space m = ??

Depth of solution state d = ??

Search algorithm to use??

Branching factor b = ??

This can be improved dramatically by noting the following:

1) Order of assignment is irrelevant, hence many paths are equivalent

2) Adding assignments cannot correct a violated constraint

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 12

Complexity of the dumb approach

Max. depth of space m = ?? n (number of variables)

Depth of solution state d = ?? n (all vars assigned)

Search algorithm to use?? depth-�rst

Branching factor b = ?? �ijDij (at top of tree)

This can be improved dramatically by noting the following:

1) Order of assignment is irrelevant so many paths are equivalent

2) Adding assignments cannot correct a violated constraint

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 13

Backtracking search

Use depth-�rst search, but

1) �x the order of assignment,) b = jDij

(can be done in the Successors function)

2) check for constraint violations

The constraint violation check can be implemented in two ways:

1) modify Successors to assign only values that

are allowed, given the values already assigned

or 2) check constraints are satis�ed before expanding a state

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n � 15

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 14

Forward checking

Idea: Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

Simpli�ed map-coloring example:

red blue green

C1
C2

C3
C4

C5

1C

2C

3C

C5
4C

Can solve n-queens up to n � 30

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 15

.
.

.

p
�

�
�

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 16

.
.

.

p
�

�
�

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 17

.
.

.

p
�

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 18

Heuristics for CSPs

More intelligent decisions on

which value to choose for each variable

which variable to assign next

Given C1=Red, C2=Green, choose C3= ??

.

Given C1=Red, C2=Green, what next??

.

1C 2C

3C

C5

C6 4C

Can solve n-queens for n � 1000

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 19

Heuristics for CSPs

More intelligent decisions on

which value to choose for each variable

which variable to assign next

Given C1=Red, C2=Green, choose C3= ??

C3=Green: least-constraining-value

Given C1=Red, C2=Green, what next??

C5: most-constrained-variable

1C 2C

3C

C5

C6 4C

Can solve n-queens for n � 1000

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 20

Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with

\complete" states, i.e., all variables assigned

To apply to CSPs:

allow states with unsatis�ed constraints

operators reassign variable values

Variable selection: randomly select any con
icted variable

min-con
icts heuristic:

choose value that violates the fewest constraints

i.e., hillclimb with h(n) = total number of violated constraints

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 21

Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

h = 5 h = 2 h = 0

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 22

Performance of min-con
icts

Given random initial state, can solve n-queens in almost constant time

for arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP

except in a narrow range of the ratio

R =
number of constraints

number of variables

R

CPU
time

critical
 ratio

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 23

Tree-structured CSPs

C

A
B D

E

F

Theorem: if the constraint graph has no loops, the CSP can be solved

in O(njDj2) time

Compare to general CSPs, where worst-case time is O(jDjn)

This property also applies to logical and probabilistic reasoning:

an important example of the relation between syntactic restrictions and

complexity of reasoning.

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 24

Algorithm for tree-structured CSPs

Basic step is called �ltering:

Filter(Vi; Vj)

removes values of Vi that are inconsistent with ALL values of Vj

Filtering example:
iV jV

allowed pairs:
 < 1, 1 >
 < 3, 2 >
 < 3, 3 >

remove 2 from

domain of iV

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 25

Algorithm contd.

C

A
B D

E

F

1) Order nodes breadth-�rst starting from any leaf:

CA B D E F

2) For j = n to 1, apply Filter(Vi; Vj) where Vi is a parent of Vj

3) For j = 1 to n, pick legal value for Vj given parent value

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 26

Summary

CSPs are a special kind of problem:

states de�ned by values of a �xed set of variables

goal test de�ned by constraints on variable values

Backtracking = depth-�rst search with

1) �xed variable order

2) only legal successors

Forward checking prevents assignments that guarantee later failure

Variable ordering and value selection heuristics help signi�cantly

Iterative min-con
icts is usually e�ective in practice

Tree-structured CSPs can always be solved very e�ciently

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 3, Section 7 and Chapter 4, Section 4.4 27

