Informed search algorithms
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Review: General search

function GENERAL-SEARCH( problem, QUEUING-FN) returns a solution, or failure

nodes < MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))
loop do
if nodes is empty then return failure
node < REMOVE-FRONT(nodes)
if GOAL-TEST[problem] applied to STATE(node) succeeds then return node
nodes <+ QUEUING-FN(nodes, EXPAND(node, OPERATORS[problem]))
end

A strategy is defined by picking the order of node expansion
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Best-first search

ldea: use an evaluation function for each node

— estimate of “desirability”

= Expand most desirable unexpanded node

Implementation:

(QUEUEINGE'N = insert successors in decreasing order of desirability

Special cases:
greedy search
A* search
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Straight-line distance
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Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to goal

E.g., hsip(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal
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Greedy search example
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Properties of greedy search
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Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,
lasi — Neamt — lasi — Neamt —
Complete in finite space with repeated-state checking

Time?? O(b"), but a good heuristic can give dramatic improvement
Space?? O(b")—keeps all nodes in memory

Optimal?? No
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A* search

|dea: avoid expanding paths that are already expensive
Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost to goal from n
f(n) = estimated total cost of path through n to goal

A* search uses an admaissible heuristic
i.e., h(n) < h*(n) where h*(n) is the true cost from n.

E.g., hsip(n) never overestimates the actual road distance

Theorem: A" search is optimal
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A" search example

N 366
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Optimality of A* (standard proof)

Suppose some suboptimal goal G5 has been generated and is in the
queue. Let n be an unexpanded node on a shortest path to an optimal
goal GG1.

Start

N N

f(GQ) = g<G2> since h(GQ) =0
> g(Gq) since (9 is suboptimal
> f(n) since h is admissible
Since f(Gy) > f(n), A" will never select G5 for expansion
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Optimality of A* (more useful)

Lemma: A* expands nodes in order of increasing f value

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour ¢ has all nodes with f = f;, where f; < f;1
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Properties of A*

Complete?? Yes, unless there are infinitely many nodes with f < f(G)

Time?? Exponential in [relative error in h x length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f;; 1 until f; is finished
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Proof of lemma: Pathmax

For some admissible heuristics, f may decrease along a path

E.g., suppose n' is a successor of n

n g=5 h=4 =9

n’ g=6 h'=2 =8

But this throws away information!
f(n) =9 = true cost of a path through n is > 9
Hence true cost of a path through n'is > 9 also

Pathmax modification to A*:
Instead of f(n') = g(n') + h(n'), use f(n') = max(g(n')+ h(n'), f(n))

With pathmax, f is always nondecreasing along any path
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Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State
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Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

hi(S) =77 7
ho(S) =27 243+3+2+4+2+0+2 = 18
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Dominance

If ho(n) > hi(n) for all n (both admissible)
then ho dominates hy and is better for search

Typical search costs:

d =14 IDS = 3,473,941 nodes
A*(h1) = 539 nodes
A*(hs) = 113 nodes

d =14 IDS = too many nodes
A*(hy) = 39,135 nodes
A*(hs) = 1,641 nodes
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Relaxed problems

Admissible heuristics can be derived from the ezact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then hi(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then hy(n) gives the shortest solution

For TSP: let path be any structure that connects all cities
—> minimum spanning tree heuristic
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Iterative improvement algorithms

In many optimization problems, path is irrelevant;
the goal state itself is the solution

Then state space = set of “complete” configurations;
find optimal configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., n-queens

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it

Constant space, suitable for online as well as offline search
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Example: Travelling Salesperson Problem

Find the shortest tour that visits each city exactly once

9 ®
Ve
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Example: n-queens

Put n queens on an n X n board with no two queens on the same
row, column, or diagonal
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Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function HiLL-CLIMBING( problem) returns a solution state
inputs: problem, a problem
local variables: current, a node
next, a node

current < MAKE-NODE(INITIAL-STATE[problem])

loop do
next<— a highest-valued successor of current
if VALUE[next] < VALUE[current] then return current
current <— next

end
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Hill-climbing contd.

Problem: depending on initial state, can get stuck on local maxima

global maximum

value

local maximum

states
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Simulated annealing

|dea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function SIMULATED- ANNEALING( problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node

next, a node
T, a “temperature” controlling the probability of downward steps

current < MAKE-NODE(INITIAL-STATE[problem])
for t+ 1 to oo do
T+ schedule][t]
if 7=0 then return current
next <+ a randomly selected successor of current
AFE«+ VALUE[next] - VALUE[current]
if AFE > 0 then current <+ next

else current < next only with probability AT
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Properties of simulated annealing

At fixed “temperature” 1', state occupation probability reaches
Boltzman distribution

p(gj) = e kT

T decreased slowly enough = always reach best state

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.
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