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1. Introduction
Models with multi-dimensional long short-term memory (MDLSTM) layers have achieved state-of-the art results on handwritten text recognition tasks.
Multi-directional MDLSTM layers have an unbeaten ability to capture the complete context in all directions, but this limits the possibilities for
parallelization. We develop methods to create efficient MDLSTM-based models for NHR:
1) Example-packing: a new method that eliminates computational waste resulting from padding, 2) A technique to optimize parallelization using
convolutions with grouping, 3) A method for parallelization across GPUs for variable-length example batches.

2. Model Structure
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3. What are 2D-MDLSTMs?
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4. Efficient MDLSTM computation by convolution
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5. Example packing
Packing example (schematic) Word-strips (skewed) packing

6. Example packing - details
• Every row is filled greedily up to the maximum width
• Examples within a row must share same height, but different rows

are allowed to have different heights
• Packing/unpacking done in pairs:

– packing: receives a list and outputs a tensor
– unpacking receives a tensor and ouptus a list

• Packing done before every MDLSTM layer, unpacking after it
• Major gains especially in word-based handwriting recognition setting

(due to large variance in word lengths)

7. Recognition Performance

Comparison to literature results on IAM lines.

validation test
System WER CER WER CER
Leaky LP Cell [4,20,100], dropout 33.9 9.8 40.8 12.9

+ Vocabulary and LM 15.5 6.4 15.9 6.6
Pham et.al (2014), no dropout 36.5 10.4 43.9 14.4

+ Vocabulary and LM 12.1 4.2 15.9 6.3
Pham et.al (2014), dropout 27.3 7.4 35.1 10.8

+ Vocabulary and LM 11.2 3.7 13.6 5.1
Voigtlaender et.al (2016) 7.1 2.4 9.3 3.5

Effect of language model
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8. Speedup of example packing
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Memory and time usage for models with and with-
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GPU memory usage.

9. Conclusions
• Example packing gives major speedup, factor 6.6 on words, on top

of speedup by other techniques

• Performance system comparable to similar state-of-the-art systems

• Makes it feasible to use computationally expensive MDLSTMs within
standard deep learning frameworks
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Source Code
https://github.com/gwenniger/multi-hare (To be released soon after

ICDAR)

https://github.com/gwenniger/multi-hare

