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Abstract

Gesture Recognition is a research area that has received much attention in
the last decade. The Hidden Markov Model(HMM) has been extensively
used for it. As a sidetrack, research in unsupervised gesture recognition and
segmentation have received increasingly much interest.

Our research is motivated by the strongly related problems of segmen-
tation, unsupervised structure discovery, incremental gesture learning and
HMM distance computation. Those problems have in common that they
all benefit from if not rely on some form of simplification of a HMM or set
of HMMs. We introduce two new and complementary approaches for the
simplification and structural analysis of Hidden Markov Models (HMMs).
The first approach consists of segmenting HMMs into structural parts. To
this end we introduce a new algorithm that uses the information provided by
the HMM Transition Matrix to find structural groups of states in the HMM
corresponding to Cycles and Trajectories. The second approach consists of
directly compressing and Merging HMMs based on the model parameters.
This is effectuated by the implementation of a direct HMM compression
and merging algorithm, that exploits the spatial information of a Gaussian
Mixture Model HMM (GMM-HMM) to find groups of states suitable to be
merged.

Our structural analysis algorithm was tested with a segmentation task on
database of nine gestures recorded with the Xsens posture tracking system.
A big HMM is trained for a sequence containing multiple gestures, and
state groups extracted by the algorithm are used to segment the data. The
extracted groups gave significant better performance on the segmentation
task than a baseline method using only single states. This shows extracted
groups contain relevant information, and can be useful for classification or
data segmentation.

We tested our second approach with the Interactplay Dataset, a hand
gesture database of 3D hand trajectories. The tests established the success
of the compression and merging algorithms, by comparison to the best
results achieved with direct training on the original data. We also compared
with the existing method for compression and merging, which works by re-
sampling data from the models followed by training of a new model on the
sampled data. Our algorithm was superior for HMM compression, but gave
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worse results for direct merging than could be achieved by data re-sampling
merging.

The contributions of this thesis are threefold: (1) it contributes to
segmentation and unsupervised structure discovery research by proposing
a new algorithm that performs HMM analysis and HMM segmentation. (2)
it contributes to incremental gesture recognition and distributed frameworks
by introducing new methods for the direct compression and merging of
HMMs. (3) it gives a good overview of current research in unsupervised
gesture recognition. The three new algorithms introduced promise to be
useful to new and existing applications.

Keywords : Gesture Recognition, Hiddeon Markov Models (HMMs),
Human Computer Interaction (HCI) , Model Compression and Merging,
Gaussian Mixture Model Clustering (GMM-Clustering), Incremental Ges-
ture Recognition, Unsupervised Learning
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Chapter 1

Introduction

Gesture recognition has been extensively studied over the last decade in
the AI community. Good overviews are given in [32, 37, 46, 51].Gesture
Recognition has many applications for the improvement of human computer
interaction (HCI) [22, 25], as well as facilitating easier interaction with
robots, particularly providing more efficient ways to instruct them about
specific movements and actions [10, 9]. Another important application sub-
domain is sign-language understanding [42, 30], which can be combined
with machine translation methods to greatly improve the means of deaf
people to communicate in a natural way using their sign language. With
the introduction of mouse gestures for internet browsers, gesture recognition
has recently also found its application to the mass market, similar to the
way this has previously happened with speech recognition.

An important problem for gesture recognition, is the extraction of
appropriate features to code the gestures [39, 51]. Ideally one would
know the precise posture of the subject performing the gesture, which is
unambiguously given by the complete set of joint angles between all limbs.
However, such complete posture information is very hard to obtain, and
is furthermore not completely necessary for most applications. Therefore
researchers often resort to simpler posture models, that try to measure for
example only the position of the hands, head and torso. Colored clothing
and markers can help to simplify the the visual recognition and tracking
task that must be performed to retrieve the posture information. Another
alternative is to use mounted sensor systems such as the Xsens system, that
measure posture information directly using gyroscopes. Some researchers
try to extract full posture information based on only visual information
and without the help of markers or colored clothing, a nice example of this
is the system that was developed at Boston University by Prof. Sclaroff
and colleages [29]. For some forms of gesture recognition, particularly sign
language recognition, the detailed information about the hand postures is
essential as well [11]. In this cases, positional information is often combined
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12 CHAPTER 1. INTRODUCTION

with features extracted from the sub-frames in the video belonging to the
hands. Our research was not particularly concerned with the details of low-
level feature extraction, but much more with the learning methods required
to do gesture recognition based on the recorded gestures. Initially we
experimented with visual feature extraction methods, using simple tracking
methods for 2-d and 3-d tracking, based on the mean shift algorithm. Later
we decided to use the Xsens system, which provides much richer and more
robust posture information than can be achieved straightforward by visual
methods.

Gesture recognition may be generalized as the recognition of time-
spatial sequences, and is in that frame identical to speech recognition,
except that the spatial features that make up the signal are different. It
is therefore no surprise that this research could profit from well established
methods, initially developed for speech recognition. Gesture recognition has
to deal with variance over different demonstrations of the same gesture, both
spatially and temporally. A gesture, or parts of it, can be executed slightly
faster or slower. Similarly, parts of the gesture may be executed differently
in the sense of being scaled or moved over different demonstrations. In
either case their will always be a fair amount of difference between different
demonstrations of the same gesture, even though the essential dynamics
of the gesture remain the same. The recognition method must be robust
enough to deal with such variation.

The central tool for speech recognition is the Hidden Markov Model
(HMM) [38]. This tool proved to be very appropriate for gesture recognition
and motion analysis as well, and has been extensively used for those
tasks over the last decade. One of the main strengths of Hidden Markov
Model is its ability to effectively model both the temporal and spatial
characteristics of a gesture, as well as the variance that can be observed over
different demonstrations. Application of HMMs to clustering and automatic
segmentation is more recent [12, 52, 28, 47]. Hierarchical Hidden Markov
Models [15] (HHMMs) and HMM distance metrics combined with clustering
methods play an important role in this research.

While gesture recognition has been extensively studied, there exist still
many problems when building models for multiple users when the gesture
data is not completely segmented. When gesture models are build for
different users in parallel and we want to integrate those models efficiently,
special model merging methods are required. Similarly, when we build a
model from gesture examples that actually contain multiple (sub-)gestures,
it is helpful if we can segment the model into parts corresponding to the
different (sub-)gestures. We thus consider the closely related problems
of simplifying complex HMMs and analyzing their structure, as well as
compressing and merging HMMs. We take two different approaches. Our
first approach focuses on the analysis and simplification of HMMs by
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splitting them into different parts. The second approach we take is to
compress and merge HMMs as a whole, effectively reducing the amount
of states and forming simpler models.

In our first approach we analyze and use the structure within a classical
HMM directly to segment its states into meaningful groups. In the second
approach we perform compression and merging of HMMs, based on the usage
of spatial information to find groups of states that can be combined.

This master thesis is organized as follows. In the first part, spanning
chapters 2-4 we introduce the theoretical foundations for our research. In the
second part, spanning chapters 5-8 we discuss our new research on Hidden
Markov Model structure analyses and compression. We first discuss Machine
Learning in general in the following chapter, followed by a discussion of Time
Sequence Learning in the third Chapter. In this chapter we also thoroughly
cover HMMs, which form the backbone for the domain of our research. In
chapter four we discuss the state of the art in research on unsupervised
gesture segmentation and clustering. Then in chapter five our first new
method for HMM structure analysis is introduced, followed by our second
method that tackles HMM compression and merging which is covered in
chapter six. In chapter 7 we give a comparison between the two approaches.
We end with the conclusion in the last chapter.
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Chapter 2

Time Sequence Learning

Gesture recognition, segmentation, compression and merging are all cases
of the general problem of Machine Learning. Machine Learning [35, 48]
is concerned with the problem of making generalizations and deriving new
information from information in the form of data. It is implemented by
learning algorithms. There are two general forms of machine learning, one
called Supervised learning which builds on labeled data, and another called
Unsupervised learning or clustering which attempts to derive information
from unlabeled data. Time Sequence learning is the more specific problem
we are dealing with. It is distinguished from general machine learning by
the temporal component, which means that training examples consist of an
ordered sequence of data points rather than just one data point. As such
time sequence learning covers still a broad class of learning problems, most
prominently speech recognition, video classification and gesture recognition.
Time Sequence learning relies on both supervised learning and unsupervised
learning. In its simplest form gesture models are directly trained on
labeled and segmented training sets. However in more difficult cases
labeling and segmentation may be at least partly part of the problem,
thus requiring unsupervised or semi-supervised forms of learning to find
the best segmentation points and labels for the unlabeled data. In the last
decade time sequence learning has received a great boost, as well established
techniques from Natural Language processing (NLP) started being applied
to other domains. The Hidden Markov Model (HMM) is one of the most used
and successful tools in NLP, and has proven to be particularly powerful in its
application to speech recognition. Combined with N-gram Language models
it offers a very strong framework for building speech recognition systems.
But it is a useful tool for language understanding systems in general, as
shown by its equally successful application to handwriting recognition [20]
and sign language understanding [42].
We will now discuss supervised learning and unsupervised learning in
general, followed by a detailed discussion of HMMs and associated learning
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16 CHAPTER 2. TIME SEQUENCE LEARNING

algorithms, which are particularly important for the problem of gesture
recognition. We end the chapter by a short discussion of alternative methods
that can be used to replace HMMs.

2.1 Supervised Learning

The sub-field of supervised learning has received most research attention
in the past and is best understood. In supervised learning, a training set
of hand-labeled examples is provided to a learning algorithm, which then
produces a classification function that is able to classify new examples based
on information from the training data. The classification function gains
its strength by generalizing over the observed training data. This requires
assuming restrictions on the form of possible relations between attributes of
the training examples, and the class of those examples. Those restrictions
can be more or less explicit in the learning algorithm, but are always there.
The restrictions are characterized by a Hypothesis Space, which is the set of
possible relations between the data attributes and class type Exactly those
restrictions allows the learning algorithm to extract more information from
the training set than just the set of examples itself.

2.2 Unsupervised Learning

While supervised learning has been quite successful and knows many
applications, in many cases the scheme were a trainer has to generate input
in the form of long sets of labeled examples is not feasible or at least not
very attractive. Unsupervised learning, were no explicitly labeled data is
required is an attractive alternative. Unsupervised learning in its purest
form takes a dataset and then uses the information in the data to form
a (possibly hierarchical) grouping of the examples. The grouping puts
together examples that are similar by some similarity measure. Many
clustering schemes are parametric, and thus require some structural form
of the grouping, by this restriction providing the way to generalize beyond
the data.
Other clustering algorithms have no explicit parameters, but through the
distance measure they use and the ways to group the data they allow,
still introduce constraints on the possible ways of clustering data. A good
clustering function exhibits certain properties. First scale invariance implies
that a scaling of all distances between all examples in the dataset does
not change the clustering of the dataset. Second, richness implies that for
every possible partition p of the data d, a set of distances Dist between the
examples can be constructed so that the clustering function returns p when
given d and Dist. Finally, consistency implies that if the distances within
clusters are decreased and the distances between points in different clusters
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expanded, the obtained result remains the same. It has been proven by
Kleinberg [26] that for more than two examples, only two of those properties
can be satisfied simultaneously by a clustering function. Thus the intuitive
idea that we have to make some assumptions about the structure of the
data to generalize beyond it or extract more information from it, holds for
unsupervised learning as much as for supervised learning.

2.2.1 Semi-supervised Learning

While purely supervised learning is one extreme and clustering the other
extreme in the domain of machine learning, much work lies between those
two extremes. In reinforcement learning, training information is still given,
but rather than providing labels for states (examples) directly feedback is
given much more indirectly in the form of observed state transitions and
rewards received by the learner upon the execution of certain actions in
certain states. In partially supervised learning, first some labeled data
is provided to form an initial classification function. Then using this
classification function, unlabeled data is labeled, and if this is done with
sufficient confidence the newly labeled data is incorporated into the training
set. Then based on the expanded training set, a new classification function
is learned. This form of bootstrapping-learning has been shown to often
improve the performance over using only the labeled set, despite the fact
that automatically labeling examples introduces uncertainty about the
correctness of the labels in the training data.

2.2.2 Expectation Maximization

Another common scenario within the domain of machine learning is that
some information is available in the examples but also some information is
hidden. The assumed form of the hidden information introduces restrictions
on the set of allowable complete data. Given this restrictions and the
observed incomplete data, it is then possible to find the most likely complete
data given the incomplete data. This can be formulated more generally
using terminology from statistics, as the problem of finding the most likely a
posteriori hypothesis given initial information about the domain in the form
of the Model Prior in combination with the observed data. Finding such a
MAP (Maximum A Posteriori) hypothesis is often not directly solvable, but
can be tackled by iterative algorithms such as the Expectation-Maximization
algorithm (EM-algorithm) [13, 34]. The EM-algorithm iterates over an E-
step in which the incomplete data is ’completed’ by providing the best values
for the hidden attributes based on the current model. This is followed
by the M-step in which the model parameters are re-estimated, effectively
maximizing Model likelihood given the new complete data as generated in
the preceding E-step. The EM-algorithm is widely used in its has many
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variants (see [33]). It forms the core of modern speech recognition and
statistical machine translation.

2.3 Relevance to our Project

Our original research is concerned with gesture recognition. In the simplest
form, gesture recognition requires the learning of gesture models and then
the mapping of unlabeled gesture sequences to the best fitting learned
models. We started from this most simple model, but gradually became
more interested in unsupervised gesture learning, gesture segmentation and
gesture model merging. All those problems have in common, that they
make weaker assumptions about the nature of the information that is used
to learn the gesture models, and as such can be more suitable for real
applications, in which most available data will be unlabeled. Merging
and compression of learned models are special kinds of Machine Learning,
that are central to our research. Structural analysis of learned models is
another closely related topic, that is equally important to our work. Our
model merging algorithm relies on a higher-order form of the popular K-
means algorithm, which in turn is a special simpler case of the general EM-
algorithm. The models we merge or analyze themselves are trained using
the Baum-Welch algorithm, which is also a special form of EM, tailored to
Hidden Markov Models (HMMs). Our project in its final form is really a
machine learning project, using Baum-Welch training, K-means clustering,
Monte Carlo Model-sampling and Dynamic Programming as central tools.
Baum-Welch Training, which is a special case of the general EM-algorithm
is discussed in the next section, as are different dynamic programming
algorithms used with HMMs. K-means clustering and Monte Carlo Model-
sampling are discussed in light of our new algorithms in the second part of
this thesis.

2.4 Hidden Markov Models

Hidden Markov Models encode both spatial and temporal properties of
time sequences. Spatial properties are modeled by means of probability
distributions over the discrete or continuous outputs of the states in the
model. Gestures and meaningful movement sequences can be reduced to
ordered sequences of positions or joint angles. Certain positions in space or
joint-space are visited in a certain sequence and this makes up the gesture.
Those typical position sequences can be further abstracted as sequences of
states, with every state associated to certain prototypical positions. This
is exactly the view taken in HMMs. To encode the prototypical position
associated with every state and the amount of expectable deviation from
it, Gaussian Models or Gaussian Mixture Models are very suitable. They
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model the expected point (the Mean) to be observed at the state, as well as
the variance from that point (given by the Covariance Matrix). Temporal
behavior may be reduced to the typical state sequences one expects to
observe for a certain gesture. In the HMM this is coded by assigning
probabilities to the different possible transitions from every state to every
other state including itself. These probabilities, so called transition chance,
are compactly stored in a Transition Matrix for the HMM. To recap,
the combination of states with state transition chances and state output
distributions allows HMMs to adequately model the structure of many time-
spatial phenomena.

HMMs have several big advantages over the alternatives that can be used
for sequence learning. First of all they are conceptually simple and their
behavior can be directly understood from the model parameters. Secondly
their exists an efficient and well understood learning algorithm to customize
them to the data they must predict, namely the Expectation-Maximization
(EM) Algorithm. Two other important problems in Sequence Learning
for recognition are the computation of model likelihood given a certain
observation sequence and finding the best hidden state sequence given
an observation sequence and the HMM. The Forward Algorithm offers an
efficient solution to the first problem, and the Viterbi Algorithm effectively
solves the second. All these algorithms rely on dynamic programming,
exploiting the Markov properties of the model, and having low polynomial
complexities. The Forward and Viterbi Algorithm both have complexity
O(n2 * l) with for n the number of states and for l the sequence length,
while the Viterbi Algorithm has complexity ... Alternative Algorithm for
Sequence Leaning

2.4.1 Formal Description HMMs

A Markov process is a stochastic process with the property that the output
generated by the process only depends on a limited amount of history,
i.e. only the previous state for discrete first order Markov processes. A
discrete first order Markov model is a model consisting of states, state
transitions and emissions, with the state transitions and emissions being
only dependent on the current state. A Hidden Markov Model (HMM)
is double stochastic process of which one part is not directly observable.
The states in a HMM can be only be indirectly viewed through a sequence
of observations produced by the second stochastic process, that produces
observations from the (hidden) states. A HMM

λ(T,O, π) (2.1)

with N states is specified by a transition matrix T , an output distribution
O and an initial state distribution π. T specifies for every state pair Si, Sj
the probability of going from Si to Sj P (Sj |Si) = aij with ∀i

∑N
j=1 aij = 1.

The initial state distribution π assigns a probability πi to starting in each
state 1 ≤ i ≤ N with

∑N
i=1 πi = 1. Finally, the output distribution O
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specifies how output is generated in every state and can be either a discrete
(i.e. multinomial) distribution or continuous output distribution, typically
a Gaussian Mixture Model. In the case of a continuous output distribution
modeled by a mixture of Gaussians, the output distribution is given by
a set of mean vectors µ and covariance matrices Σ specifying all mixture
components as well as a mixmatrix m that specifies the weights of the
different mixture components. A Gaussian Mixture Model HMM (GMM-
HMM)

λ(T, µ,Σ,m, π) (2.2)

is thus completely specified by its parameters T for transitions, µ,Σ,m for
Gaussian output distributions and π for the initial state distribution.

2.4.2 The Three basic problems for HMMs

Following Rabiner [38] there are three basic problems that must be solved
to use HMMs in real-world applications, those are:
Problem 1: Given the observation sequence O = O1O2...OT and the
model π , how to efficiently compute te likelihood P (O|λ of the observation
sequence given the model ?
Problem 2: Given the observation sequence and the model, how to
determine the most likely state sequence Q = q1q2..qT ?
Problem 3: How to adjust the model parameters λ to maximize the chance
of the observations P (O|λ), in order to find the best model for them ?

Solution to Problem 1

The probability of the observation sequence O given the model λ is given by
summing the joint probability of state sequence and observation sequence
over all state sequences:

P (O|λ) =
∑
allQ

P (O|Q,λ)P (Q|λ) (2.3)

=
∑

q1,q2,...,qT

πq1bq1(O1)aq1q2bq2(O2)...aqT−1qT
bqT

(OT )

In this form however, the calculation requires on the order of 2T × NT

calculations. There is an efficient way to compute P (O|λ) using dynamic
programming, exploiting the Markov property of state transitions in the
HMM. Consider the forward variable

αt(j) = P (O1O2...OT , qt = Si|λ) (2.4)

in other words the chance of observations 1 to T plus state Si at time t given
the model λ. Define bj(Oi) to be the chance on observation i in state j, aij
the transition chance of going from state i to state j, and πi the prior chance



2.4. HIDDEN MARKOV MODELS 21

for state i. By induction we can solve αt(j), as follows:
1) Initialization:

α1(i) = πibi(O1) 1 ≤ i ≤ N (2.5)

2) Induction:

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Ot+1) 1 ≤ t ≤ T − 1

1 ≤ j ≤ N (2.6)

3) Termination:

P (O|λ) =
N∑
i−1

αT (i) (2.7)

Solution to Problem 2

The second problem involves finding the best state sequenceQ = {q1, q2, ..., qT }
for the given observation sequence O = {O1, O2, ..., OT } . We introduce a
new quantity δt(j) which is most likely state sequence that generates the
first t observations and ends in state i:

δt(j) = maxqq,q2,..,qt−1P (q1q2...qt = i, O1O2...Ot|λ) (2.8)

Induction gives:

δt+1(j) = (maxiδt(i)aij)bj(Ot+1) (2.9)

To retrieve the best state sequence, we need to keep the argument that
maximizes (2.9). We do this by keeping an array of pointers ψt(j) storing
for every state j and time t the previous state St−1 that gave the most likely
path into state j at time t. The complete procedure for finding the best
state sequence, called the Viterbi Algorithm is then as follows:

1) Initialization:

δ1(j) = πibi(O1) 1 ≤ i ≤ N (2.10)
ψ1(i) = 0 (2.11)

2) Induction:

δt(j)max1≤i≤N δt−1(i)aij)bj(Ot) 2 ≤ t ≤ T
1 ≤ j ≤ N (2.12)

ψt(j) = argmax1≤i≤N (δt−1(i)aij) 2 ≤ t ≤ T
1 ≤ j ≤ N (2.13)

3) Termination:

p∗ = max1≤i≤N [δT (i)]
p∗T = argmax1≤i≤N [δT (i)] (2.14)

4)Path backtracking :

q∗t = ψt+1(qt+1) t = T − 1, T − 2, ..., 1 (2.15)
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Solution to Problem 3

The final and most difficult problem involves the adaptation of model
parameters λ to best explain the observations, formally to maximize P (O|λ).
There exists no closed form solution to this maximization, but an iterative
solution called the Baum-Welch algorithm, which is basically a variant of
the general EM-algorithm exists. For this algorithm we first need another
probability value, given by a backward variable βt(i) defined as

βt(i) = P (Ot+1Ot+2...OT |qt = Si, λ) (2.16)

the probability of the partial observation sequence starting at t+1 and going
to the end, given state Si at time t and the model λ. Again βt(j) can be
solved by induction, as follows:
1) Initialization:

βT (i) = 1, 1 ≤ i ≤ N (2.17)

2) Induction:

βT (i) =
N∑
j=1

aijbjOt+1)βt+1(j)t = T − 1, T − 2, ..., 1, 1 ≤ j ≤ N (2.18)

Another variable we need is ξt(i, j), defined as the probability of being
in state Si at time t and in state Sj at time t + 1, given the observation
sequence and the model:

ξt(i, j) = P (qt = Si, qt+1 = Sj |O, λ) (2.19)

Using the definitions of forward and backward variables we can write ξt(i, j)
in the form:

ξt(i, j) =
αi(t)aijβj(Ot+1)βt+1(j)

P (O|λ)

=
αi(t)aijβj(Ot+1)βt+1(j)∑N

i=1

∑N
j=1 αi(t)aijβj(Ot+1)βt+1(j)

(2.20)

(2.21)

The numerator in the term is P (qt = Si, qt+1 = Sj , O|λ) so that division by
P (O|λ) gives the desired probability measure. Now define

γt(i) = P (qt = Si|O, λ) (2.22)

the probability of being in state Si at time t, given the observation sequence
and the model. Using the forward and backward variables this can be
expressed as:

γt(i) =
αt(i)βt(i)
P (O|λ

=
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

(2.23)

Now γt(i) can be related to ξt(i, j), by summing over j:

γt(i) =
N∑
j=1

ξt(i, j) (2.24)
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The expected number of transitions from a state Si and the expected number
of transitions from Si to a particular state Sj can next be computed by
summing γt(i) and ξt(i) respectively over the time t:

T−1∑
t=1

γt(i) = expected number of transitions from Si (2.25)

T−1∑
t=1

ξt(i, j) = expected number of transitions from Si to Sj (2.26)

Using the above formulas a set of re-estimation formulas for the
parameters of an HMM can be derived:

πj = expected number of times in state Si at time (t = 1) = γi(i) (2.27)

aij =
expected number of transitions from Si to Sj
expected number of transitions from Si to Sj

=
∑T−1
t=1 γt(i)∑T−1
t=1 ξt(i, j)

(2.28)

Those formulas reestimate the state priors and transition chances. Re-
estimation of the mixture components requires us to first define one more
variable: Define

ζt(j, k) =

[
αt(j)βt(j)∑N
j=1 αt(j)βt(j)

][
cjkN(Ot, µjk,Σjk∑M

M=1 cjmN(Ot, µjm,Σjm

]
(2.29)

the probability of being in state j at time t with the kth mixture component
accounting for Ot. Here cjk is the prior chance for the kth mixture
component and N(Ot, µjk,Σjk) is the probability given to the observations
by the kth mixture component. Now using ζt(j, k) we can finally also give
the re-estimation formulas for the mixture components:

cjk =
∑T
t=1 γt(j, k)∑T

t=1

∑M
k=1 γt(j, k)

(2.30)

µjk =
∑T
t=1 γt(j, k)Ot∑T
t=1 γt(j, k)

(2.31)

Σjk =
∑T
t=1 γt(j, k)(Ot − µjk)(Ot − µjk)′∑T

t=1 γt(j, k)
(2.32)

(2.33)

with the prime in the denoting vector transpose in (2.33).
Using the above formulas the iterative model adaptation is performed in

two steps.
E-Step:First for every state the expected numbers of transitions are
computed as well as the expected number of activations of every mixture
component of the state.
M-Step: Next using those counts/expectations, the formulas are used to
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recompute the new model parameters, maximizing the likelihood of the
model given the new observations.

We finally note that this re-estimation procedure can be derived directly
by maximizing Baum’s auxilary function

Q(λ, λ) =
∑
Q

P (Q|O, λ)log[P (O,Q|λ)] (2.34)

over λ using Lagrange multipliers. Alternatively, the model parameters
can be optimized with gradient techniques giving similar results.

2.4.3 HMM Model Merging and Compression by Data re-
sampling

The easiest way to merge two HMMs into one model, is to generate new
data D by sampling from both models and then training a new model on D
with standard Baum-Welch training. Similarly, the easiest way to compress
a HMM is to re-sample data from the model and then train a new simpler
model on the sampled data.

The GMM-HMM Sampling Method

We now describe a sampling method that takes a GMM-HMM and generates
a sequence of T states and T observations. This sampling method is used
in re-sampling based merging and compression, but also in the computation
of sample-based HMM distance metrics. The sampling method starts by
selecting the initial state S0, mapping a random number to one of the states
with chances corresponding to the prior state distribution π. Then from
state Sn a next state Sn+1 is randomly chosen according to the the transition
chances of going from state Sn to the other states, which are stored in the
Transition Matrix. This is repeated until a sequence of T states has been
sampled. The next step is to generate T observations for the T sampled
states. To do this, for every sampled state first a mixture component must be
sampled with for every component a chance equal to the mixture component
weight divided by the total component weight in the state. These weights
are taken from the mixmatrix m of the GMM-HMM. As a last step for
every sampled mixture component an actual output is sampled from the
Multivariate Gaussian distribution of that component.

2.5 Alternative Solutions

There exist some interesting alternatives to HMMs for sequence learning,
most prominently Recurrent Neural networks. The problem with neural
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networks however is that there are no efficient learning algorithms, so
convergence is very slow. For recurrent neural network this problem becomes
even bigger. Recently Echo State Networks (ESNs) [21] has been proposed
as a special alternative that is well suitable for sequence learning, and does
not suffer from the normal drawbacks of recurrent neural networks, since it
only trains the connections to the final outputs and all other connections
are randomly set and kept that way. ESNs are very similar in functioning
to Support vector Machines. They first perform an complex nonlinear
transformation on the data, and then apply regression to find the best
mapping from this new space to the outputs. The non-linear transformation
is performed by the reservoir which is a large set of randomly connected
states containing cycles. The amount of states in the reservoir is relatively
large, so that in a way its representational power is much greater than is
necessary to represent all the inputs, and this has the advantage that there
is a high chance that the inputs can be separated in a linear way in the new
high-dimensional space spanned by the reservoir. There exist some other
reservoir methods that are very similar in philosophy as ESNs, a complete
overview of such methods is given in [31].

Echo state Networks are resolving some of the drawbacks of neural
networks, but not all. They are still almost as hard to analyze as recurrent
neural networks, and they still generalize just as poorly also. Principal
Component Analysis is a tool that can give some insight in the structure of
neural networks and how it encodes the concepts it learns, but this remains
a very difficult process, and so often the networks are just used as a black
box. .
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Chapter 3

The state of the Art in
Unsupervised Gesture
Recognition and Clustering

There are currently different approaches towards Unsupervised gesture
recognition, segmentation and clustering. We will review the important
recent works in this domain, that are most relevant to our own research.
Those are:
1.Incremental, Hierarchical Clustering and learning of a HMM tree
2.Clustering and compression of small HMMs to discover symbolic structure
3.Training of sparse HMMs with a new Entropic Prior Baum-Welch variant
4.Hierarchical Hidden Markov Models
5.Hierarchical Hidden Markov Models combined with Bayesian Model
Adaptation
6.Simple Segmental Clustering
7.Hidden Markov Model Induction by Bayesian Model Merging

Other significant extensions to the standard HMM include the Parametrized
HMM (PHMM) [50], Variable-length HMM (VHMM) [16], Coupled HMM
(CHMM) [4], Input-Output HMM (IOHMM) [3], Factorial HMM [17] and
HMM Decision Trees (HMDT) [23].

3.1 Incremental HMM Clustering

The first approach towards unsupervised gesture learning is to train HMMs
for gesture data that is recorded spread out over time. The idea of this
approach is to learn models incrementally, merge models that are very
similar, and this way form a tree structure of models. This idea is introduced
in Incremental on-line hierarchical clustering of whole body motion patterns
[28] by Kulic et.al, and in this paper is used for the learning of motion

27
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pattern primitives, which can be used for both motion recognition and
motion generation.

The algorithm for the incremental Clustering and Grouping of Observa-
tion sequences starts from a new observation sequence and a Hierarchical
tree of observations and associated HMMs, and ends with an adapted tree
that is adapted to include the new observation.

After a new observation sequence is received, a new HMM is trained
for it. The Akaike Information Cirterion (AIC) is used [7] to find the best
HMM structure. The trained model is compared with a tree of other models
and placed in the deepest tree node that has sufficient similarity with it.
Kullback divergence between two HMMs is the used similarity measure.
This distance can not be computed analytically, but it can be approximated
as

D(λ1, λ2) =
1
T

[logP (O(2)|λ1)− logP (O(2)|λ2)] (3.1)

where O(2) is an observation sequence generated by λ2 and T is the length
of the observation sequence. Since this is not symmetric, the average of two
intra HMM distances is used to form a symmetric distance

Ds =
D(λ1, λ2) +D(λ2, λ1)

2
(3.2)

When a new HMM is added to a cluster, a clustering procedure is invoked
on that cluster. Complete link clustering is used to perform the clustering,
and a minimum number of cluster elements as well as a maximum within-
cluster distance are used to see if a sub-cluster should be formed for the
cluster.

For every newly formed cluster, a new group is created containing the
within cluster elements. Every group has an associated group HMM, which
is trained on its associated group elements.

Motion Generation

The group HMMs for the formed tree nodes constitute motion primitive
abstractions. Motion trajectories are formed from the group HMMs by the
Monte-Carlo like averaging method of Takano. Since motion generation is
outside the scope of our research, we refer to Takano, 2006 [45] and the
original paper [28] for more details.

Results

The Algorithm developed by Kulic. et.al was tested on a motion pattern
database containing 9 different human motion observation sequences ob-
tained through a motion capture system. Their experiments showed that the
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resulting tree is partly dependent on the data presentation order, especially
with a low cutoff factor Kcutoff , that causes new groups to form more
quickly. However, they also showed that the leaf nodes of the resulting
tree structure represent the correct segmentation/clustering, regardless of
the presentation order. Periodical application of a tree correction algorithm
is thus suggested as a way to reposition leaf nodes to the correct branch.

3.2 Data Segmentation by clustering small HMMs

The second approach towards discovering structure in long unlabeled gesture
data streams is through data partitioning and training of many small
models followed by clustering. This approach is explored by Wang et.al
in ”Unsupervised Analysis of Human Gestures” [47]. We will now discuss
their approach stepwise.

First the data stream is split into many small parts. Wang et.al exploit
the fact that a type change of human movement usually causes dips in
velocity or abrupt changes in movement direction. The local minima of
velocity and local maxima of change in direction are therefore used as
segmentation points in their research.

Second, after the data has been partitioned, for every part a HMM model
is trained. Then, the set of HMM models of all parts is clustered using
hierarchical clustering in combination with a HMM distance metric. In
this step all models that are very similar will be put close together in the
generated clustering, and can then be considered to be different instances of
the model. Similar enough models are then merged, and the merged models
are denoted by a symbol.

Now that all parts from the original data stream are labeled with
the symbol of their small HMM or merged HMM, we have a higher level
description of the data in terms of a symbol sequence. As fourth step then,
this symbol sequence is further compressed by finding frequent subsequences
in it with an algorithm called COMPRESSIVE [47] which finds the structure
within symbol sequences in a Hierarchical way. The final higher-order
symbol sequence can give a good description of the data in terms of abstract
types. In combination with the symbol data-ranges in the original data, it
can also be effectively used for data segmentation.

Wang et.al test their system with an experiment on musical conduction,
were a conducting gesture sequence is segmented and then the structure is
found. The used sequence contains 5 basic beat-patterns The 8 minutes
record they used was partitioned into 163 segments, and for each segment a
5-state Gaussian HMM was trained. After application of COMPRESSIVE
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on the clustered HMMs, a set of patterns was extracted, that shows close
resemblance to the original primitives. This proves the success of their
approach in segmenting continuous human gestures.

3.3 Training of sparse HMMs with a new Entropic
Prior Baum-Welch variant

In ”Learning concise models of human activity from ambient video via
a structure-inducing M-step estimator” [5] M. Brand introduces a new
prior and associated maximum a posteriori (MAP) estimator that can
be understood as an exact formulation of minimal description length for
Bayesian point estimation. The prior provides a method for structure
discovery in data and is used to learn a world model from coarse image
representations. The theory takes the form of a continuous-output hidden
Markov model (HMM). The learning algorithm exploits the entropic prior
for fast, simultaneous estimation of model structure and parameters. In
contrast to conventionally trained HMMs, entropically trained models are
so concise and highly structured that they are interpretable, and can be
automatically converted into a flowchart of activities. .

3.3.1 Entropic Prior

Entropic estimation favors parameter values as far as possible from their ini-
tial random values. The corresponding prior should imply that parameters
which do not reduce uncertainty are improbable.

The used prior is conjugate to the used multinomial distribution,
meaning the resulting posterior probability distribution s in the same
mathematical family of functions as the multinomial. With scarce evidence
the entropic distribution favors stronger odds (parameter values near the
extrema), but with increasing evidence converges to ”fair” odds for the
parameters and is therefore consistent. The opposite behavior is obtained
from a Dirichlet prior, which favors weaker odds when data is scarce.

3.3.2 MAP estimator

As a next step, Brand derives a MAP estimator for the entropic prior.
Manipulation of the negative log posterior probability of data plus model,
which is minimized by the algorithm, allows for understanding the MAP
estimator in terms of entropy. The log posterior can be rewritten as:

H(θ) +D(ω||θ) +H(ω) (3.3)

which is the sum of parameter entropy, cross entropy between data and
parameters and data entropy. When data entropy is fixed, the MAP estimate
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minimizes the sum of the parameter entropy and the cross-entropy between
the parameters and the datas sufficient statistics. Equivalently, it minimizes
coding length. Brand shows also how the model can be simplified, such that
the data’s sufficient statistics change and H(ω) declines as well.

3.3.3 Entropic HMM training

In entropic estimation of HMM transition probabilities, the normal E-step of
the Baum-Welch algorithm is followed, calculating the probability mass for
each transition to be used as evidence. For the M-step, the MAP estimator
computes new parameter values from a vector of evidence for each kind of
transition out of a single state.
In recursive estimation (e.g., EM), the entropic estimator drives weakly
supported parameters toward zero, concentrating evidence on surviving
parameters until their estimates converge to near the ML estimate, at which
point the algorithm terminates.

Brand shows in [6] that remaining HMM parameters close to zero can be
deleted with no loss of probability. Trimming bumps the model out of a local
probability maximum and allows further training in a lower-dimensional and
possibly smoother parameter subspace. A similar test licenses state deletion.

3.3.4 Results

The Entropic HMM training algorithm was tested on half an hour video
of ambient office activity, using stripe and blob features extracted from
the foreground pixels to model the human subject. The HMM model
produced by Entropic HMM training has a very strong structure and is
readable as a flowchart of office activities. This is in strong contrast with
the model generated by normal Baum-Welch training, which fails to discover
a structured model (see Figure ??).

3.4 Hierarchical Hidden Markov Models

In ”The Hierarchical Hidden Markov Model: Analysis and Applications”
[15], Fine et.al introduce a recursive hierarchical generalization of hidden
Markov models. The work was motivated by complex multi-scale structure
appearing in natural sequences such as language, handwriting and speech.
It has already found its application to Information Extraction in the domain
of biomedical articles [41] as well.
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Figure 3.1: An illustration of an HMM of four levels. Gray and black edges
respectively denote vertical and horizontal transitions. Dashed thin edges
denote (forced) returns from the end state of each level to the level’s parent
state. For simplicity, the production states are omitted from the figure.

3.4.1 Model description

Hierarchical Hidden Markov Models(HHMMs) generalize the standard
HMMs by making each of the hidden states an autonomous probabilistic
model on its own, that is, each state is an HHMM as well. Therefore, the
states of an HHMM emit sequences rather than a single symbol. An HHMM
generates sequences by a recursive activation of one of the sub-states of a
state. This process of recursive activations ends when we reach a special
state which we term a pro- duction state. The production states are the
only states which actually emit output symbols through the usual HMM
state output mechanism: an output symbol emitted in a production state is
chosen according to a probability distribution over the set of output symbols.
A HHMM has two kind of state transitions. Horizontal transitions move
from one state to another state at the same level, vertical transitions move
control to another (typically deeper) level in the hierarchy. Each level in
the hierarchy has a terminal state, which returns control to the parent state
that activated the level. Generation of the observation sequence completes
when the control of all recursive activations is returned to the root state.
Figure 3.1 shows a HHMM with four layers.
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3.4.2 Inference and Learning

Similar as for normal HMMs, for HHMMs three fundamental problems arise
in applications that use HHMMs :
1. Calculating the likelihood of a sequence
2. Finding the most probable state sequence
3. Estimating the parameters of a model
Solutions for the above problems are more complex for HHMMs as for normal
HMMs, but the ideas are the same, only they are now generalized for the
hierarchical case. The algorithms used rely on dynamic programming for
computing the probabilities and determining the model parameters, just as
is the case for normal HMMs. Computational Complexity therefore remains
acceptable as well. Computing the likelihood of a sequence and finding the
most probable state sequence both have a complexity of O(N ×T 3), with N
the total number of states and T the length of the observation sequence.

3.4.3 Applications

Fine et.al describe two applications of HHMM. In the first application
they construct a hierarchical representation of natural English text. They
compared a shallow HHMM consisting of two levels, with an unbalanced
HHMM of three levels with a variable number of sub-states for the internal
states and production states at all levels. After training on 500 sentences
of classical English stories, the shallow HMM much resembled the normal
HMM trained on the same data. The unbalanced HHMM in contrast
revealed strong structure in the model. Different sub-states had strongly
varying distributions, and accounted for different hardly overlapping sets
of strings. Furthermore, a multi-scale behavior was found. The deepest
production states produced sequences corresponding roughly to phonetic
units, while the second layer produced frequent words. The top layer had a
output distribution corresponding to the sentence scale.
In the second application HHMMs were used to perform unsupervised
learning of cursive handwriting. Based on a dynamic coding scheme by
Singer et.al [40], they trained HHMMs for different words. Then as a
next step they applied generalized Viterbi algorithm to perform a multi-
scale segmentation of the motor control sequences for those words. In
this way ’natural’ units constituting the sequences are extracted. This has
advantages over manual construction of such units, namely not requiring
manual segmentation and taking temporal interaction into account .
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3.5 Hierarchical Hidden Markov Models combined
with Bayesian Model Adaptation

In ”Unsupervised Discovery of Multilevel Statistical Video Structures using
Hierarchical Hidden Markov Models” [52] Xie et.al combine HHMMs
with a Bayesian method for model adaptation to perform a completely
unsupervised structure discovery on and segmentation of soccer video. They
use a version of the general Markov Chain Monte Carlo (MCMC) [1]
method to perform the optimization of the model structure. Their algorithm
automatically finds descriptions of high level structures, and furthermore
performs slightly better than a supervised HMM approach that exploits
domain knowledge.

3.6 Simple Segmental Clustering

In ”Unsupervised Clustering of Ambulatory Audio and Video” [12] Clarkson
and Pentland introduce a very simple yet effective way of incrementally
clustering video data based on a variation of the Segmental K-Means
Algorithm [38].

Data of a person performing normal daily activities in the city at daytime
were recorded using a mounted camera and microphone. To find only
obvious events and prevent sensitivity to minor fluctuations in the data,
crude audio and visual Features were extracted.

The Segmental K-means clustering procedure they used is as follows:

1. Given: N , the number of models, T the number of samples allocated to a
state, S, the number of states per model, f the expected rate of class changes.

2. Initialization: Select N segments of the time series each of length T ∗S, spaced
approximately l/f apart. Initialize each of the N models with a segment,
using linear state segmentation.

3. Segmentation: Compile the N current models into a fully-connected gram-
mar. A nonzero transition connects the final state of every model to the initial
state of every model. Using this network,re-segment the cluster membership
for each model.

4. Training: Estimate the new model parameters using the Forward-Backward
algorithm on the segments from step 3. Iterate on the current segmentation
until the models converge and then go back to step 3 to re-segment. Repeat
steps 3 and 4 until the segmentation converges.

By varying the number of models T the time series can be modeled at
different time scales. To capture the hierarchical structure of events, which
can not be modeled by just changing T , the authors used the activation of
HMMs trained with a small T as features for higher order HMMs that model
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scenes. The system was tested by comparing the most likely derived models
with a hand-made ground truth of scene labels.

3.7 Hidden Markov Model Induction by Bayesian
Model Merging

The work by Stolcke and Omohunro on HMM merging [43, 44] describes a
technique for learning both the number of states and the topology of Hidden
Markov Models from examples. Their approach is based on the idea of first
simply storing examples, then merging their corresponding specific models
to form complex and generalizing models as more data becomes available.
The theoretical foundation of their research is that the posterior probability
P (M |X) of the model M given the observed data X and the prior P (M)
should be maximized. This posterior can be defined using Bayes Law as:

P (M |X) =
P (M)P (X|M)

P (X)
(3.4)

Therefore the most likely model MMAP is:

MMAP = arg maxM
P (M)P (X|M)

P (X)
= arg maxMP (M)P (X|M)(= P (M,X))(3.5)

This implies that often a different model may be preferable, if this gives
an increase in the prior, while giving no or only a smaller decrease in the
conditional probability of the data given the model. Indeed, the intuitive
function of the Prior is to assign more likelihood to simpler models, with
a smaller amount of states and transitions. The maximization in (3.5) is
equivalent to minimizing

−logP (M,X) = −logP (M)− logP (X|M) (3.6)

This in turn can be interpreted as minimizing the description length of the
data X plus the underlying coding model M , with −logP (M,X) being the
optimal coding length of the model under the prior, whereas −logP (X|M)
corresponds to the optimal code for the data using M as a probabilistic
model. therefore finding the Bayes optimum for the model is homologous to
finding the Minimal Description Length (MDL) optimum.

3.7.1 Model Priors

A HMM can be described in two stages, first specifying the model structure
and next the parameter values given this structure. Therefore a model prior
P (M) can be written as:

P (M) = P (MS)P (θM |PS) (3.7)
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with P (MS) giving the Prior for the model structure and P (MS)P (θM |PS)
the probability of the parameters given the chosen structure. The approach
of the authors is to compose a prior for both the structure and the
parameters of a HMM as a product of independent priors for transitions and
emissions of states along with a global factor. The global prior for a model
then becomes a product of priors for the state and the global prior. While
this independence assumption about the parameters of different states is a
simplification, it should not introduce a systematic bias towards a particular
model structure. The big advantage it gives however, is that it greatly
simplifies the computation of global model posteriors, which forms the core
of the merging approach.

The authors introduce a global priorλ that determines the amount of
weight given to the data and consequently the amount of generalization
performed by the algorithm. Taking the logarithm of P(M,X) they obtain

logP (M,X) = logP (M) + logP (X|M)

as the quantity to be maximized. This can be modified by a prior weight λ
to get:

λlogP (M) + logP (X|M) (3.8)

with the effect of assigning more weight to the model prior for bigger λ
thus increasing the amount of generalization, or more weight to the data for
smaller λ thereby limiting the amount of generalization.

3.7.2 Parameter Priors

We now discuss the priors used for the individual parameters of emissions
and state transitions. For discrete output HMMS, model parameters
can be described entirely as parameters for a collection of multinomial
distributions. Therefore priors for such distributions can be used as priors
for discrete HMM parameters. In the multinomial representation transitions
correspond to finite probabilistic choices for next states and similarly
emissions correspond to choices among output symbols. Let n be the number
of choices in a multinomial and θ = (θ1, ..., θn) be the parameters associated
with those choices. A standard prior for multinomials, used by the authors
is the Dirichlet Distribution:

P (θ) =
1

B(α1, ..., αn)

n∏
i=1

θαi−1
i (3.9)

Here αi, ..., αn are the prior weights: the the prior expectation of θi is αi
α0

with
αo =

∑
i αi the total prior weight. The normalizing constant B(α1, ..., αn)
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is the n-dimensional Beta function

B(α1, ..., αn) =
Γ(α1)...Γ(αn)

Γ(α1) + ...+ Γ(αn)
(3.10)

with

Γ(z) =
∫ ∞

0
tz−1e−t dt (3.11)

being the Gamma function, which is an extension of the factorial function to
real and complex numbers. The Dirichlet Prior expresses the bias towards
certain choices in the multinomial distribution, by choosing αi increasingly
bigger than 1, an increasing bias towards the i-th choice in the multinomial
is expressed. Another way to formulate this, is that for αi > 1 the prior adds
αi− 1 virtual samples of choice i to the likelihood expression. The Dirichlet
Prior has the advantage of mathematical simplicity. It is a conjugate prior
meaning that it has the same functional form as the likelihood function of
the multinomial for which it is defined. As a result the posterior, which is
the integral over the product of the multinomial and the prior, has a closed
form solution. By using independent priors for all parameters based on the
Dirichlet Distribution, the posterior for a given model structure can then be
effectively computed in closed form as well.

3.7.3 The Algorithm

The HMM merging process starts with the most specific model consistent
with the training data and generalizes by successively merging states. The
choice of states to merge and the moment to stop the merging process are
both guided by a Bayesian posterior probability. The Algorithm then is as
follows:

Best-first merging(batch version)
A. Build the initial, maximum-likelihood model M0 from the dataset X.
B. Let i := 0.Loop:

1.Compute a set of candidate merges K among the states of model Mi.
2.For each candidate kεK compute the merged model
k(Mi), and its posterior probability P (k(Mi)|X).
3. Let k∗ be the merge that maximizes P (k(Mi)|X). Then let Mi+1 := k∗(Mi).
4. If P (Mi+1|X) < P (Mi|X), break the loop
5. Let i := i+ 1

The number of Potential merges |K| is the main determining factor for
the computational cost of the merge algorithm. Since |K| = O(|Q|2) ,
with |Q| the number of states, and since |Q| grows linearly with the total
size of the samples processed at a time, the batch version is only feasible
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for small amounts of data. As an alternative to batch merging, a very
similar incremental version of the merging algorithm is proposed as well.
This algorithm contains an extra loop to incorporate new data samples into
the new model, after which the merging loop is executed until convergence
as in the batch version. The incremental algorithm has the advantage of
not requiring all samples at once. The division of the data into small
samples makes the computational cost linear in the total data size instead of
quadratic as is the case for the batch version. This makes it a good solution
for bigger amounts of data.

3.7.4 Evaluation

The merge algorithm was compared with the Baum-Welch method of
estimating fixed-size models. In principle Baum-Welch only finds parameter
values and no model structure, but by pruning transitions with very low
values it can be used to derive model structure as well, which is the approach
taken by the authors. The algorithms were tested in three different scenarios.
In the first scenario, simple artificial languages and artificial training samples
were used to provide a proof of concept for the method. The target model,
that defines the language is used to sample a set of examples, and next those
samples are used to train a model using the merge algorithm or standard
Baum-Welch. The trained models are evaluated in three ways. The first
evaluation score is the Kullback-Divergence between the target model and
the trained model. If the trained model and target model assign equal
probabilities to the same samples the Kullback-Divergence is small. When
the probabilities they assign are more dissimilar, the Kullback-divergence
becomes bigger, meaning the models are more different. The second score
measures what fraction of samples generated from the target model can be
parsed by the trained model, which in information extraction terms can be
seen as a kind of ”Recall”. The third score measures the opposite: what
fraction of samples generated by the trained model are parsable by the
target model. This score is a kind of ”Precision” measure. Results showed
that the merging procedure was successful in finding the target model,
whereas Baum-Welch training produced inconsistent results that were highly
dependent on the initial parameter settings.

In the second scenario, the algorithm was tested on the TIMIT (Texas
Instruments - MIT) database of hand-labeled speech samples. This database
contains acoustic data segmented by words and aligned with discrete labels
from an alphabet of 62 phones. In the experiments the acoustic data was
ignored, and the database was used as a collection of string samples over a
discrete alphabet. In the tests, models were trained on the training portion
of the data and then generalization was tested on the testing part of the
data. To overcome problems with zero probabilities assigned to samples,
a mixture model of the HMM and a simpler bi-gram model was used in
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the evaluation of test samples. The results showed a small but significant
difference in favor of merging when comparing the best model merging result
with the best Baum-Welch result. Another big advantage of model merging
over Baum-Welch training revealed by the experiment is that it generates
much simpler and more compact model.
In the last scenario the merging algorithm was applied to a speaker indepen-
dent spontaneous continuous speech understanding system. Comparison of
the multiple-pronunciation system with an identical system using only one
phone sequence per word showed a significant reduction in both word-level
error rate and errors on the semantic interpretation level.
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Chapter 4

Segmenting, Compressing
and Merging HMMs

In the following section we discuss our first method for HMM simplification.
We take a new approach where we analyze and use the structure within
a classical HMM directly. By finding strongly associated states within the
HMM that are part of Cycles or Trajectories we are able to partition those
states into meaningful groups. Combined with labeled HMMs those groups
can be directly used to perform classification.

4.1 Hidden Markov Model Implicit Structure Anal-
ysis

A HMM Transition Matrix encodes a fully connected directed and weighted
graph of transition chances between states. Given a limited number of states,
different choices for the transition chances still allow an infinite amount of
different model structures. However, if we only consider strong structures
, defined by the fact that for some states a particular transition is more
likely than all others, then the type of distinguishable structures is small. In
fact all such structures are then expressible in terms of two atomic structure
primitives, namely Cycles and Trajectories. Cycles are ordered sequences
of states beginning and ending in the same state. They have the property
that starting from every state in the cycle the chance is high of returning
to that same state by stepwise visiting all states in the cycle’s ordered state
sequence.Trajectories are similar, except that they don’t end in the same
state – they may be seen as a weaker form ofCycles.

43
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4.1.1 Cycle extraction

Our algorithms are concerned with the extraction of Cycles and Trajectories
in the HMM using the Transition Matrix T .
Cycles are extracted in three steps. We compute for every pair of states SA
and SB the likelihood of the most probable path that goes from SA to SB
and then back from SB t SA. This defines CycleChanceT (SA, SB):

CycleChanceT (SA, SB) =
P (V iterbiPath(SA, SB))× P (V iterbiPath(SB , SA))
= maxSiεStatesP ([SA, . . . , SB ])× P ([SB , . . . , SA])

Since all transition chances are smaller than 1, it follows that the most likely
sub-path [SA, . . . , SB] and [SB, . . . , SA]will not contain duplicate states . We
define

CycleDistance(SA, SB) =
1

CycleChance(SA, SB)
− 1

. The cycle chance and cycle distance are dependent on the Transition
Matrix used to compute them. We use a modified version Tm of the
original Transition Matrix, in order to achieve some time-scale invariance
and guarantee minimal transition chances for retrieved cycles. To modify
the Transition Matrix, we go through the following steps. We first set
diagonal elements to zero and then re-normalize. This eliminates the
influence of within-state cycles to the distance, giving a better relative time
scale invariance. As a next step, we set all transitions below a threshold
ThresholdCycleTransition to a very small number Nsmall. When we later form
cycles from states based on the cycle distance, this guarantees a minimum
transition chance above the threshold for all between state transitions part
of the cycle.
We apply the Viterbi algorithm on the thus Modified Transition Matrix to
compute the cycle distance between all pairs of states.

Next, we use Complete Link Clustering on the Cycle Distance Matrix,
finding groups of states likely to be on the same cycle. Complete Link
Clustering recursively groups elements bottom up. At every iteration it
merges the two groups G1 and G2t which give the smallest new maximum
within group distance. Formally:

arg minG1,G2 maxeAεG1,eBεG2(dist(eA, eB))

Let the result be a tree-structure T with the leave nodes L of the tree
containing the single states, and every non-leave node i containing a list
of states rooted at that node and a value distance which is the maximum
between-state distance over all states merged in that node. Then we seek the
largest possible state groups that satisfy distance < cycleGroupThresh. By
setting cycleGroupThresh = 1

ThresholdCycleTransition
, the retrieved groups are
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guaranteed to have for all transitions that make up their cycle a transition
chance Ptransition > ThresholdCycleTransition We find those state groups by
starting at the root of the tree, and recursively descending towards the
children nodes until we either:
1. Find a node with distance < CycleThresh, whose state set is than added
to the set of cycles.
2. We reach a leave node and stop.

4.1.2 Trajectory extraction

After Cycles have been found, a is new Transition Matrix is extracted from
the modified Transition Matrix Tm used in the previous step. This matrix is
created by deleting all rows and columns from Tm that correspond to states
belonging to cycles. The new sub-Transition Matrix TransMatrem is used
to find trajectories. The algorithm for finding Trajectories is simple and
intuitive. We start from the set of singleton states S. For every state sinεS
a trajectory is repeatedly extended by appending the most likely next state
sin+1 as long as P (sin+1|sin) > ThresholdTrajectoryTransition. In this way we
find a set of possibly overlapping trajectories To.
The process by which we form trajectories guarantees that possible overlap
is always on the tail of the trajectories. Thus for a trajectory [s1, . . . , sn]
overlap is always on some sub-trajectory [sm, . . . , sn], with 1 ≤ m ≤ n, that
ends with the last state. This property is exploited by an algorithm that
partitions the overlapping trajectories in a set of longest non-overlapping
trajectories. To do this we start with the full set of overlapping trajectories
Trem = To and an empty set of partitioned trajectories Tp. We then pick a
trajectory txεTrem , and find the set Toverlap(tx) of overlapping trajectories,
having a sequence of last states overlapping with tx. If Toverlap(tx) is empty,
it means that tx did not overlap with anything and can be removed from Trem
and added to Tp. If not, we take the longest tail shared by all trajectories
in the overlapping set, add this tail to Tp, and remove it from tx and all
trajectories in Toverlap(tx). We continue taking trajectories from Trem until
it becomes empty, and at this point Tp will be containing the set of non-
overlapping trajectories. Some non-overlapping trajectories in the final set
will consist of only one state and are therefore not really trajectories at all
but rather Singleton states.

All states are now assigned to be part of a particular cycle, trajectory or
to be singleton. Groups of states corresponding to Cycles, Trajectories and
Singleton states are returned and sub-HMMS for them are extracted from
the original HMM. The complete algorithm that performs all steps, first the
Cycle extraction and then the Trajectory extraction, is called HISAA - short
for Hidden Markov Model Implicit Structure Analysis Algorithm.
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4.1.3 Setting the Thresholds

One important issue in the use of the algorithms is how to set the thresholds
ThresholdCycleTransition and ThresholdTrajectoryTransition. An important
constraint is that it must always be the case that ThresholdCycleTransition ≤
ThresholdTrajectoryTransition to prevent that state sets that are not accepted
as cycles can later be accepted as trajectories. This would lead to algorithmic
failure because a cycle contains many trajectories, one for each state in the
the cycle’s state set. From a theoretical point of view it is also clear that if
we don’t accept a certain cycle because we consider (some of) the involved
transitions to weak, then we also shouldn’t accept a trajectory for the same
states and thus relying on the same transitions. This intuition is reflected
by the constraint on the thresholds.
Apart from this constraint however, we are free to choose the thresholds as
we like, and unfortunately it is hard to predict beforehand what the best
thresholds are, because this depends on the HMM that is to be segmented
as well as on the application. High thresholds will lead to small state
groups, or even only singletons if there are no strongly connected states
in the HMM. On the other hand, to low thresholds will lump all states
together into one group, which is also meaningless. Intuitive values for
the thresholds lie somewhere in the range around 0.5, meaning that every
transition of the cycle/trajectory must have at least 50% chance of occurring.
While it is clear that neither very low nor very high thresholds will work,
a range of thresholds in the middle might all work for a certain problem,
and experiments have to be done to find the best values. This was also
reflected by both our initial experiments and our later extensive tests of the
algorithm.

4.2 HMM compression and HMM merging

In the following paragraphs we cover our second approach towards HMM
simplification, which is HMM compression and HMM merging. Compressing
and merging Models are important issues in computer science nowadays,
with the increasing amount of data and facilities to do computing in a
distributed manner. In gesture and motion recognition research model
merging can be required to merge new data with existing models and forgo
the need to keep all data and perform all computation in a centralized way.
The advantage of merging models is that it decreases the number of model
parameters to be kept as well as the runtime for recognition by the factor

Number Original models
Models remaining after merging

(assuming the merged models have the same number of parameters as
the original models). Furthermore model merging has also important
applications to the generalization of different demonstrations of a gesture to
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a single model, which is an important task for human robot interaction in the
domain of Imitation Learning. Of course the result of merging models could
also be achieved by simply keeping all data and then training a new model
from this data. This however puts high demands on the storage capacity
of the system. Furthermore it comes at the price of a higher computational
cost, since the computational cost of HMM training increases linearly with
the size of the used training set, as discussed at the end of this chapter.
With an incremental or distributed approach to gesture learning exploiting
model merging, the total computational cost may eventually be not smaller
than it is for batch learning. The big advantage however is that the work
in training the models can be divided much simpler over time, people and
computers than can be done in a centralized approach that requires learning
the models on the full data in one shot. Similarly model merging greatly
facilitates the adaptation or customization of gesture models to new data
and new users in case the starting model is still largely appropriate.

In [28] the authors perform incremental hierarchical learning of gestures,
using HMM distance [14, 38] to determine whether new data can be merged
with an existing model or should be put in a new model.
Compressing and merging of models can be approached in two different
manners. Either one can try to regenerate data from the model(s) to be
compressed/merged and learn a new model on this data, or one can try to
compress/merge the model(s) directly from the parameters. The second
approach is typically much more efficient, but may not always achieve
the same performance as the first one. For Hidden Markov Models [38],
compression and merging are mainly done by data re-sampling so far in the
literature. This method consists of generating new data by sampling from
the model(s), and then using this data to train a new HMM model in the
normal way using the Baum-Welch algorithm. While this simple method
gives good results, it comes at a relatively high computational cost. In this
paper we explore the other alternative, which is to Compress/Merge HMMs
directly.

In ”Hierarchical Clustering of a Mixture Model” [18] a new algorithm
(to which we refer as GMM Clustering) was presented for direct clustering
and compression Gaussian Mixture Models, without the need for data re-
generation.

Inspired by this work we created a new HMM compression and merging
algorithm that uses GMM clustering to compress and merge GMM-HMMs
without any data re-sampling or model training from the scratch. This
makes the HMM compression/merging computationally more efficient.
Especially for HMMs with a large amount of states, the advantage of
avoiding Baum-Welch re-training can be considerable. The question is if
direct model merging or compression works just as well as the current
method that relies on data re-sampling. If not, it is unclear how big
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the loss of performance will be, and if this can be still acceptable given
the computational gain. To answer this question, we did several test on
the Interactplay gesture database, comparing the performance of direct
model compression/merging with re-sampling compression/merging and
direct training on all data.

4.2.1 HMM Compression

While standard HMM compression methods rely on re-sampling, our method
compresses models directly from their parameters.

The essence of the algorithm

The intuition behind our algorithms is to compress Gaussian Mixture Model
HMMs (GMM-HMMs) based on only the spatial information as provided by
the GMM part. This means considering the set of all mixture components
for of all states, and using this spatial view of the HMM as a basis for
compression. In this view it is easy to find mixture components or states
(which are sets of mixture components) that are spatially close. Since most
signals are continuous in space it is reasonable to expect that states that
are spatially close are temporarily close as well, so they are good candidates
for merging when compressing the HMM. Based on spatial proximity our
algorithm decides which states are to be merged. After that, constructing
the new states and new Transition Matrix comes down to a straightforward
form of addition of the merged parts.

The algorithm stepwise

We now give a more detailed description of the steps involved in the
algorithm. For those who want to implement the algorithm, we also provide
pseudo code in the Appendix, closely matching the following discussion.

The compression algorithm starts by compressing the multiple mixture
components per state into just one Gaussian (see 4.1 (a)). .

(a) Step 1: Merge Components (b) Step 2: Merge States

Figure 4.1: Step 1 and 2 of HMM compression algorithm
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This state-Gaussian is the weighted sum of the mixtures for the state,
as defined by the following formulas:

wj =
∑
iεπ(j)

wij (4.1)

µ̂j =

∑
iεπ(j) w

i
jµ
i
j

ŵj
(4.2)

Σ̂j =

∑
iεπ(j) w

i
j(Σ

i
j + (µij − µ̂j)(µij − µ̂j)T )

ŵj
(4.3)

In these formulas iεπ(j) is the set of Mixture components of state j.
Secondly the algorithm uses GMM-clustering [18, 2] to compress the

state-Gaussians of the previous step into a smaller set of Gaussians,
corresponding to a smaller set of states (see 4.1 (b)).. GMM-clustering
solves the problem of compressing a Gaussian Mixture density

f(y) =
k∑
i=1

αiN(y;µi,Σi) =
k∑
i=1

αifi(y) (4.4)

into a reduced mixture of m < k components. This can be formalized as
finding the ”closest” reduced mixture ĝ under some distance metric. If we
take as distance metric

d(f, g) =
k∑
i=1

αimin
m
k=1KL(fi||gj). (4.5)

it can be proven that the optimal ĝ is a Mixture of Gaussians obtained
from grouping the components of f into clusters and collapsing all Gaussian
within a cluster in a single Gaussian. While there is no closed form solution
for finding ĝ , an iterative procedure exists that is much like a higher order
version of the K-means clustering algorithm. Normal K-means iteratively
assigns points to spherical clusters and then recomputes the clusters based
on the new assignments, until convergence. GMM-clustering works not
on the level of points but on the level of entire mixture components. At
initialization a set of mixture components (Gaussians) is taken and every
component is assigned to one of a smaller number of new components.
Then this new components are computed as the weighted sum of original
components assigned to them, using equations (4.1),(4.2), (4.3). After this
initialization, the algorithm iterates through a Regroup and Refit step just
as in normal k-means.

πg = arg minπd(f, g, π) (REGROUP ) (4.6)

gπ = arg mingd(f, g, π) (REFIT ) (4.7)
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In the REGROUP step, every original component is assigned to the clos-
est new component, using the Kullback Divergence between two components
as a distance metric. The Kullback Divergence is a measure of how similar
distributions are, and can be computed analytically for two Gaussians as:

KL(N(µ1,Σ1), N(µ2,Σ2)) = (4.8)
1
2

(log
|Σ2|
|Σ1|

+ Tr(Σ−1
2 Σ1) + (4.9)

(µ1 − µ2)TΣ−1
2 (µ1 − µ2)− d (4.10)

Next, in the REFIT step the new components are recomputed based on
the new set of components that is assigned to them in the REGROUP step.
We use equations (4.1),(4.2), (4.3) again for this computation.

The GMM-clustering eventually converges, when the component assign-
ments no longer change, which typically happens within a few iterations.
The final assignments are returned in an assignment Matrix, which gives for
every original state the index of the new state to which it is mapped

Using the assignment Matrix and the mixture components from the
original HMM, we collect for each new state all mixture components that are
to be combined in it. Those combined components are then compressed into
a smaller set of only NumberOfMixtures components using GMM-clustering
again, while simultaneously producing a new Mix-Matrix by taking

weight(newC) =∑
c : mapping(c)=newC)mixtWeight(c)× prior(state(c))

as the weight of the newly formed mixture components.

As a final step, a new Transition Matrix and set of Priors is produced.
For this we first sum all columns in the old Transition Matrix corresponding
to states that are merged together. Then, taking the result of this operation,
we do the same for the rows (see Figure 4.2).

Summing on the columns means that we sum the probabilities of
mapping to states that are merged in the new model. Summing on the
rows averages the transition chances for moving to the next state, of those
states that are merged in the new model. As a last step, we normalize the so
acquired new Transition Matrix so that the probabilities on every row sum
to one. Finally, to compute the priors for the new states we simply sum the
priors of the old states that map to those states.

4.2.2 HMM Merging

The algorithm

The merging algorithm is simply a small extension of the compression
algorithm. First,if necessary, the states of the two merged HMMs are again



4.2. HMM COMPRESSION AND HMM MERGING 51

(a) Simple Compressed
HMM

(b) Adaptation Transition Matrix

Figure 4.2: The simple HMM of three states is compressed by merging states
S1 and S2 (left). This corresponds to first summing the columns of S1 and
S2 in the Transition Matrix and next their rows (right)

reduced to contain only one mixture component per state. Next, the States,
Transition Matrices, Mixture Matrices and Priors for the two (reduced)
merged HMMs are appended to form a new big HMM (see 4.3).

Figure 4.3: Append HMMs: First reduce HMMs to have one component per
state, then append resulting reduced states.

Appending States , Mixture Matrices and Priors boils down to simple
Matrix concatenation. We just need to take care that we concatenate on
the right dimension, so that we import the parts of the second HMM as new
states and not accidentally add them to extend the states of the first HMM.
Appending Transition matrices is only slightly more complicated. Given are
Transition Matrices T1 with size n×n and T2 with size m×m belonging to
the first and second HMM respectively. To append them, we take T1 and
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then paste the T2 at the lower right corner below it, so that it fills positions
(n + 1 : n + m,n + 1 : n + m) in the newly formed Matrix. The blocks
(1 : n, n+ 1 : n+m) and (n+ 1 : n+m, 1 : n) of the new Matrix are filled
with zeros (see.4.4).

Figure 4.4: Original Data Subgroup Classification results

After all structures of the two merged HMMs have been properly
appended to form a new big HMM, this big HMM is compressed with the
HMM compression algorithm. This automatically takes care of Merging
the states and fixing the Transition Matrix and other parameters, and thus
finishes the merging operation.

The importance of good Initialization

One important detail for the merging is the way we initialize the GMM-
clustering in the second step of the HMM-Compression algorithm. Our
current solution is to just initialize the new states with the states of only one
of the two merged HMMs. During the iterations of the algorithm, the states
of the other HMM will then be automatically combined with the closest
states of this first HMM. This assumes that both merged models have a
more or less equal amount of states, and that the produced model will have
an amount of states equal to that of the first of the merged models. Other
initialization schemes are possible, but should assure that for every state of
both merged HMMs there is a new State that is reasonably close. Provided
that the merged models are reasonably close, our simple initialization scheme
is effective in achieving this most important goal.

Combining the two merging methods

It would be interesting if we could find a computationally cheap yet effective
method to guess the quality of a model formed by direct model merging. We
could then use direct model merging in most cases and only resort to the
more expensive method of re-sampling followed by training of a new model if
this is strictly necessary. A simple and intuitive idea to estimate the difficulty
of merging is to use the HMM distance between the two HMMs to be merged
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as a metric, were higher distances correspond to a more difficult merging
cases. The HMM distance between two HMMs λ1 and λ2 is computed as

D(λ1, λ2) =
1
T

[logP (O(2)|λ1)− logP (O(2)|λ2)] (4.11)

where O(2) is an observation sequence generated by λ2 and T is the length
of the observation sequence. Since this is not symmetric, the average of two
intra HMM distances is used to form a symmetric distance

Ds =
D(λ1, λ2) +D(λ2, λ1)

2
(4.12)

We implemented this idea in a hybrid algorithm, that allows re-sampling
for the most difficult cases and uses our merging algorithm for all other cases.

4.2.3 Computational Complexity Analysis

In this paragraph we shortly compare the computational complexity of our
algorithm with the complexity of training a new model. A more complete
discussion is given in the Appendix. A new model is trained using either
the original data or data that is re-sampled from the model that must be
compressed. HMM training is done by the Baum-Welch algorithm, so we
must analyze the complexity of this algorithm as well. It turns out that
the computational complexity of Baum-Welch is O(3N2T +NT +NTMD)
for continuous HMMs, where T is the number of observations, M is the
number of Gaussian components in the mixtures used to represent the
output distributions in continuous HMMs, and D =

∑R
i=1 di with di the

dimension of the data stream i the total number of Gaussian components of
data vectors. Most noticeable here is the linear dependency on the amount
of training data. For our HMM compression algorithm it can be shown that
the computational complexity is O(N × M × D2)., with for N and M in
this formula the total number of mixture components in the original and
compressed HMM, and D the dimensionality of the mixture components.
Notice that in this formula there is no dependence upon the size of a dataset.
Hence we see the gain of our compression algorithm over generating a new
model based on original or re-sampled data. Training a new model has
complexity linear dependent on the amount of data used. To get good
performance we may well require a re-generated dataset that has a size even
much larger than the original dataset, so that the computational cost of
compression by re-sampling will be much larger than that of using the direct
compression algorithm which is independent of data size.
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4.3 Implementation

4.3.1 HMM Libraries

While our algorithms could have been implemented in many different
programming languages, one condition was the availability of a good
implementation of the basic HMM algorithms so that we would save the work
of programming all basic things from the scratch. We looked at different
implementations. Our first candidate was the the General Hidden Markov
Model library (GHMM) [27], which is a C implementation of the basic HMM
algorithms and has Python support as well, which is advantageous for fast
application development. After some initial experiments, we found out that
in the current version GHMM did not support multivariate Gaussian output
variables, making it unusable to our purpose. This feature is expected to
appear in newer versions however. Another serious candidate we considered
was the Hidden Markov Model Toolkit (HTK) [19]. This professional package
is the standard in the speech processing community, and was developed for
this domain originally. While it is possible to use it for gesture recognition,
this is quite complicated so that there was even another layer developed by
Georgia Tech (Georgia tech gesture toolkit [49]) to make the development
process for gesture recognition using HTK easier. The latest version of this
gesture toolkit is programmed in Java, which makes it nicer to work with
than the former shell-script based implementation. Still, the many layers
make the whole process complex, and make it very hard to get control
of what is going on at the algorithmic level. The best solution we finally
settled on is the Hidden Markov Model Toolbox for Matlab written by Kevin
Murphy (1998) [36], which offers a clean and complete implementation of
basic HMM functionality. Working with Matlab furthermore has the great
advantage that coding goes very fast since it is a scripting language, and
debugging is easy since all variables can be easily inspected. The only big
disadvantage of Matlab is that it is slow, and hence less suitable for real-
time applications. This is the reason we didn’t decide to use it right from
the start.



Chapter 5

Experiments

5.1 Gesture Databases

5.1.1 Dataset for HMM segmentation

To test our HMM segmentation algorithm we developed a gesture database
containing arm- and head movement data recorded with the X-sens Xbus
Kit system [8]. The X-sens posture measuring device consists of various
sensors that must be mounted on the different body parts. Using gyroscopes
it computes the relative positions of the different body parts, and angles
between ”limbs” can be computed from those. Using all sensors, including
the head sensors, the system was used to generate 14 dimensional data
streams of angles between limbs.
We generated a database of 9 gestures containing the three sub-categories
”slow”, ”moderate” and ”fast” for different execution speeds. With 12
examples per sub-category of each gesture, this amounts to 36 examples
per gesture and 324 examples in total.

We recorded five repetitive gestures: 1: ”Come to me”, 2: ”Go away”,
3: ”Two hands rotating”, 4: ”Normal clapping” 5: ”Swimming” and four
trajectorial gestures: 6: ”Simple pointing”, 7:”You are dead”, 8: ”Up
yours”, 9: ”Timeout”. All gestures are started with both arms besides
the body (rest position), and also typically end in this way. The Appendix
gives details about the lengths and the PCA reconstruction error.

5.1.2 Dataset for HMM Compression and HMM Merging

In our tests of the HMM compression and HMM merging algorithms we used
the Interactplay dataset [24], which is a hand gesture database made of a 3D
hand trajectories recorded by France Telecom Research and Development.
It contains 16 hand gestures from 22 persons and provides 5 sessions and
10 recordings per session. The database is 12 dimensional and contains the
coordinates of two hands, and the head and the torso, of segmented gestures.

55
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To speed things up, we used two smaller subsets of this big dataset in our
tests. The first subset consists of the data of the first four sessions of person
1, the second contains all data from person 1 and 2. We used PCA to
lower the dimensionality of the data, keeping 99 % of the data variance,
effectively 7 dimensions. The PCA reconstruction error graphs for both
subsets are shown in the Appendix in Figure 7.2 and Figure 7.3.

Figure 5.1: Example of the ”swim” gesture from the Interactplay dataset.
The final 3-d coordinates in the dataset are extracted from the multi-camera
video sequence by 3-d visual tracking of the colored markers.
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5.2 Experiments

In this section we discuss the experiments that were executed to test
our HISAA algorithm and our HMM compression and HMM merging
algorithms. While the algorithms have many common features, the task
of segmentation and the tasks of HMM compression and HMM merging
require significantly different input data and a different form of evaluation.
This is reflected by the fact that they both have their own experimental
set-ups, discussed in the following paragraphs.

5.2.1 Experimental set-up HISAA tests

In the design of tests for our algorithm HISAA, we pursue different goals
simultaneously. First and foremost we want to test if the algorithm succeeds
in robustly extracting sensible state groups, so that it can be used to
segment a model and give a more informative and compact description
of its structure. Our secondary objective is to prove that the algorithm
can be used for clustering of unlabeled gesture data, and segmentation and
extraction of unlabeled gesture examples. This last goal is obviously more
difficult to achieve, also since it depends on many other algorithms besides
HISAA.

In our pilot experiments we worked with 2-d gestures consisting of circles,
lines and letters that were constructed by hand in Matlab. Using this
gestures we trained a big HMM for a sequence of atomic sub-gestures, and
then segmented this big HMM with HISAA into cycles and trajectories.
The promising results we achieved on those tests motivated us to pursue
our research further with more serious tests on a multi-dimensional gesture
database. When using HISAA we have to chose both the cycle transition
threshold and the trajectory transition threshold such that the cycle and
trajectory state groups can be effectively extracted by the algorithm. In our
pilot tests we worked with values of 0.5 for both these thresholds.

The 2-d gestures are nice for illustrative purposes, since the GMM-part
of GMM-HMMs is easily visualized with Matlab as a set of ellipses in a
plane. With multi-dimensional gestures there is no clear way to visualize
the GMM-HMM, which makes it harder to see if the chosen partition of the
HMM-states into state-groups is correct.

Our final experiments were done using the gesture database we recorded
with the X-sens. We repeatedly choose 2 or 3 gesture types from the
database, and then randomly divided the data for those types into a part for
training and a part for testing. The different examples in the train and test
set are then concatenated in random order to create a long data sequence for
training and a similar sequence for testing. With the training sequence, our
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”big gesture”, we train a HMM called ”big HMM” The goal is to segment
this ”big HMM” into meaningful parts, namely Cycles, Trajectories and
Singletons which should map to the original gesture types. We used PCA
to compress the gesture data,using only the first 12 PCA components we
maintained > 99 % of the variance from the original data.

Both our Cycle-extraction and Trajectory-extraction algorithm depend
on a threshold on the minimum required transition chance for the transitions
that are part of the Cycle or Trajectory. We do not know what the best
values are for those thresholds. We therefore test with different combinations
of Cycle-transition and Trajectory-Transition thresholds, starting with 0 and
ending with 1 for both, and trying all intermediate combinations using a
step-size of 0.05.
After the Cycles, Trajectories and Singletons have been extracted, we map
those state groups to the closest labeled HMMs. For this mapping we use a
simple Gaussian Mixture Model distance [18]

d(f, g) =
k∑
i=1

αimin
m
k=1KL(fi||gj)

The advantage of this distance is that it can be computed exactly, and
does not rely on sampling as many other distance measures do [14] , that
attempt to compute the unconstrained KL-divergence between two MOGs
or HMM models. The KL-divergence between two Gaussians KL(fi||gj) in
this formula is computed as.

KL(N(µ1,Σ1), N(µ2,Σ2)) =
1
2

(log
|Σ2|
|Σ1|

+ Tr(Σ−1
2 Σ1) +

(µ1 − µ2)TΣ−1
2 (µ1 − µ2)− d

We only use labeled HMMs corresponding to gestures that also really
appeared in the ”big gesture” data, since we may assume we know which
gestures we are looking for (open ended classification is another, more
difficult problem). In our tests, the labeled HMMs are trained with all
the gesture data (from the ”moderate” subset) of our database.
After the mapping has been completed, we use the Viterbi Algorithm on the
”big HMM” to generate a Viterbi-state-sequence for the training and test
sequence. Those state sequences are then mapped to class sequences, using
the state to group to class mapping computed in the previous steps. Finally,
the achieved class sequences for the training sequence and the test sequence
are compared with the ”ground truth” of the real class sequence of the
training and test data to compute an accuracy in retrieving the right class
from the structural groups. We define the segmentation accuracy then as the
fraction of data points from the gesture sequence that is via its corresponding
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datapoint → State → StateGroup → labeled HMM mapping assigned to the
correct labeled HMM:

SegmentationAccuracy =
Datapoints mapped to correct labeled HMM

Number of Datapoints in Big Gesture Data Sequence
(5.1)

We tested one variant of our original algorithm HISSAA-SC that is
constrained to only use the labeled HMMS chosen by the Cycles and
Trajectories. The motivation is that every gesture should have at least some
part that is a cycle or trajectory, and those structures are more reliable for
selecting HMMS than singleton states.

Apart from the accuracy of our Algorithms, we compute two other
performance measures. The Baseline Performance is computed as the
performance gotten when we use no structure, so every single state is mapped
to the closest labeled HMM. The Theoretical best possible performance is
computed by mapping every state to the best class, i.e. the class that will
lead to the best performance. If the classes were perfectly separable by
the states, the Theoretical best possible performance would be 100%; since
gestures do tend to overlap,the best performance possible is lower.

5.2.2 Experimental set-up HMM compression and HMM
merging tests

To test our compression algorithm we compared the performance of directly
trained HMMs and compressed HMMs. The first are directly trained on the
database, the second are formed by compressing HMMs with a larger amount
of states trained on the same database. For our test we took the data of all
five sessions, and all 16 gestures for the first person from the Interactplay
database [24]. For every test the data was randomly split into half train
set, half test set (25 training/test examples per HMM). As usual for basic
gesture recognition, in the evaluation then the test examples (gestures) are
matched with the HMMs trained for all different gestures. The gesture label
of the HMM that assigns the highest likelihood to the example is taken as
the retrieved gesture. Accuracy is then computed as:

RecognitionAccuracy =
Number of Correctly labeled test examples

Total number of test examples
(5.2)

which can be multiplied by 100 to get the percentage of correctly
recognized gestures.

In our test, we compressed HMMs of 12 states into simpler HMMs
with a smaller amount of states. We compressed to HMMs having 1 to
10 states, and also directly trained HMMs on the original data with this
amount of states. Compression was done either by our Direct Compression
Algorithm or alternatively by re-sampling data from the to-be-compressed
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HMM followed by training of a smaller model on this data. The Baum-
Welch HMM training was initialized by K-means over all data. We allowed
5 trials for training every HMM to compensate for the sensitivity of the
Baum-Welch algorithm to its initialization. We kept for every gesture the
model with the highest data likelihood.

For testing our Merge Algorithm we used two data subsets, which in
turn were divided in two parts for training and testing sets. Then on the
train parts of both subsets we trained HMMs for all gestures. A full data
train/test set was created by merging the train/test part of both train/test
subsets. We then ran different tests.
To get reference scores we first tested the HMMs trained with the subset
train parts on their corresponding subset test parts. We also tested
those subset-HMMs on the full data test set, to see how well they would
already naturally generalize to the other subset without any merging being
performed. For comparison we tested also HMMs trained on the full train
set on the full test set.
Then, we formed new HMMs by merging the HMMs trained with the
train part of the first and second subset. This Merging was performed
either by our Algorithm or by simple re-sampling of data from both merged
HMMs followed by training of a new HMM. A hybrid Algorithm, using our
Algorithm for most cases and re-sampling for the two most difficult merging
cases was tried as well. In all those tests the performance measure used was
the simple recognition accuracy (see 5.2).

The merge Algorithm was applied to merge either HMMs trained on different
sessions for the same person, or HMMs trained for different persons. In the
first test, the data subsets were formed by taking all data from session 1
+ 2 for the first subset and session 3 + 4 for the second subset. With 10
examples per session and 16 gestures, this gave sub train-/test sets of 160
examples and full train/test sets of size 320.examples. In the second test,
the first subset was formed by taking all data from person 1 and the second
subset by taking all data from person 2. With a total of 5 sessions per
person, this gave sub train-/test sets of 400 examples and full train/test
sets of size 800 examples.

All our tests were repeated 30 times, in every repetition using a different
randomly generated split of the data into train and test parts, to get
significant results.
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5.3 Results

5.3.1 Results HISAA tests

Results Pilot tests

In the first pilot experiment we tested the effectiveness of the HISAA
algorithm to partition a strongly structured data sample into its underlying
strong cycles and intermediate states. The artificially generated data
consists of repeatedly three times a circle, followed by some intermediate
data that goes from the left to the right, followed by three times a line up and
down, followed by intermediate data back to the circle again. This sequence
of [circle, intermediate, line, intermediate] is itself repeated four times. The
original HMM trained for this data contains 6 states with only one mixture
component per state. In Figure 5.2 we show the original data and the
original HMM extracted from it, as well as the data randomly generated
by sampling from the found HMM. Since the data is two-dimensional, we
plot only the positions and leave out the time information in our plot of the
original data.

(a) Original Data (b) Original Data HMM

(c) Data Sampled from Original
Data HMM

Figure 5.2: Original Data and Original Data HMM
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As a next step we applied the HISAA algorithm to the original HMM.
The algorithm segments the HMM into groups of states corresponding to
cycles, trajectories and singleton states (see Figure 5.3).The algorithm finds
two cycle state groups, which neatly correspond to the two cycles (the circle
and the line). The state corresponding to the transition between the circle
and the line is adequately segmented as a singleton state.

As a last step in this experiment, we compute the Viterbi state sequence
for the original data, and map this state sequence to a subgroup number
sequence, using the known state to subgroup mapping. Here (see Figure 5.4)
we see the pattern of circle, intermediate, line, intermediate, circle . . . is
clearly retrieved. It must be remarked that this experiment sometimes goes
wrong as well, with the intermediate state becoming part of one of the
two other state groups. Effectiveness also depends on the original HMM
found by Baum-Welch training. Since this is contains random elements,
and can easily converge upon suboptimal solutions, it sometimes finds a set
of Gaussians that makes a perfect segmentation of the circle and the line a
priori impossible.

In the second pilot experiment we tested the effectiveness of the combined
usage of strong cycles and strong trajectories to partition a data sample
containing both cycles and trajectories into these natural sub-structures.
The artificially generated data consists of both the letters Z and W, but
additionally also contains the circle from the first example. The complete
sequence of data is : [z; w; circles; w; circles; z; circles]. Strong trajectories
are a weaker version of strong cycles. In other words, if we have a strong
cycle, then we could also have a whole set of strong trajectories that start
from any state on the cycle and end just before the cycle turns back to
this starting state. It is therefore natural to first find all strong cycles, and
remove their corresponding state from the transition Matrix, and then search
for trajectories only in the reduced transition Matrix of the remaining states.
This is the approach taken throughout this work, when combining cycles and
trajectories. Indeed it turned out, that in this way the Algorithm succeeded
well at first extracting the states corresponding to the circle, and then from
the remaining state identifying to trajectory-subgroups corresponding to the
two letters.
In this experiment we used 15 states with one mixture component per state
for the trained HMM.

In Figure 5.5 we show the original data and the original HMM extracted
from it, as well as the data randomly generated by sampling from the found
HMM.

Next, in Figure 5.6 we show the retrieved sub-HMMs. The first sub-
HMM corresponds to the cycle, the last two to the two trajectories of the
letters.

Finally, we show the classification results. Figure 5.7 shows the result of
mapping the Viterbi state sequence of the original data to the corresponding
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(a) First Sub-HMM (b) Data Sampled from First
Sub-HMM

(c) Second Sub-HMM (d) Data Sampled from Second
Sub-HMM

(e) Third Sub-HMM (f) Data Sampled from Third
Sub-HMM

Figure 5.3: The three Sub-HMMs found

sub-HMM groups. If we compare the group sequence here with the class
sequence [z; w; circles; w; circles; z; circles] of the original data, we see that
the group sequence matches the original data. Figure 5.8 shows the results
for the classification of the original data with the real class labels. Since the
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Figure 5.4: Original Data Subgroup Classification results

states are mapped to the right groups, and the groups get mapped to the
right classes the results are perfect for this example.

The third pilot experiment is an exact repetition of the second, except
that we have now added uniform Gaussian noise with a mean of 0 and a
covariance of 0.6 in all dimensions.

In Figure 5.9 we show the original data and the original HMM extracted
from it, as well as the data randomly generated by sampling from the found
HMM.

Next, in Figure 5.10 we show the retrieved sub-HMMs. The first sub-
HMM corresponds to the cycle, the last two to the two trajectories of the
letters.

Again we show the classification results. Figure 5.11 shows the result of
mapping the Viterbi state sequence of the original data to the corresponding
sub-HMM groups. This mapping is still consistent with the original data
sequence. Figure 5.12, and the classification proves to be correct as well. We
performed experiments with even more noise as well, but while the algorithm
still sometimes works with noise levels of covariance 1 or higher, it starts
making errors. Those errors can occur in the state grouping or state group to
labeled HMM mapping, which leads to big errors. Alternatively sometimes
the higher amount of noise can also lead to small errors in the Viterbi state
decoding, effectively retrieving the wrong state for the observation. Then,
even though the state groups and even state to labeled HMM mapping are
still correct, the classification graph starts to contain small errors.
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(a) Original Data (b) Original Data HMM

(c) Data Sampled from Original Data
HMM

Figure 5.5: Original Data and Original Data HMM

Results tests on database

We performed different tests with our gesture database. We list the
results of two tests, which were performed with the ”moderate” subset and
respectively 2 and 3 gesture types. Ten trials were used in the construction
of every HMM to compensate for the tendency of the EM-Algorithm to
convergence to local optima and its strong sensitivity to the initialization.
We verified with simple two-dimensional gestures, that keeping the HMM
with the highest data likelihood over several trials usually leads to much
better models. The number of EM-iterations itself was limited to 20. We
used 15 states with 2 mixture components per state in the ”big HMM”.
For the labeled gestures, we took 10 states with two mixture components.
The data was split with 2/3 (8 examples per type) for training and 1/3
(4 examples per type) for testing. In our test with 2 gesture types, the
gestures were drawn from two different groups in an attempt to lower the
amount of spatial overlap between the different gestures, which leads to
badly separable models. We used complete link clustering on the GMM
distance to form groups to have maximum spatial separability.
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(a) First Sub-HMM (b) Data Sampled from First
Sub-HMM

(c) Second Sub-HMM (d) Data Sampled from Second
Sub-HMM

(e) Third Sub-HMM (f) Data Sampled from Third
Sub-HMM

Figure 5.6: The three Sub-HMMs found

Every test was repeated 30 times, to allow the different combinations of
gestures to be selected, and get statistically valid results.

In the first test with 2 gesture types (see Table 5.1 – 5.4) we achieved
a training performance of 78.0% and a test performance of 71.5%. In the
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Figure 5.7: Original Data Subgroup Classification results

Figure 5.8: Original Data Real Class Classification results

second test with 3 gestures (see Table 5.5 – 5.8), the performance decreased
somewhat and we had 69.2% for training sequence and 64.3% for the test
sequence. Those performances were significantly higher than the results for
the Baseline method (with 76.5% train, 68.5 % test for the first experiment
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(a) Original Data (b) Original Data HMM

(c) Data Sampled from Original Data
HMM

Figure 5.9: Original Data and Original Data HMM

and 66.1% train, 62.1% test for the second experiment).
Above three gesture types the performance deteriorates, since the overlap
between the different gestures then causes almost every state of the ”big
HMM” to belong to different classes simultaneously, and at the same time
no strong temporal structure won’t be learnable anymore since the spatial
separability lacks.

5.3.2 Results HMM compression and HMM merging tests

The test of our compression Algorithm (see Table 5.9) showed that
compression from a bigger model to a smaller model almost gives the same
performance as directly training smaller model on the original data (”direct
training”). Direct training is still superior, but with an average performance
loss only 0.42% (not considering the performances with only one state) the
difference is almost negligible.
It is remarkable that compression through data re-generation does not
perform better than direct compression in our test. The average performance
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(a) First Sub-HMM (b) Data Sampled from First
Sub-HMM

(c) Second Sub-HMM (d) Data Sampled from Second
Sub-HMM

(e) Third Sub-HMM (f) Data Sampled from Third
Sub-HMM

Figure 5.10: The three Sub-HMMs found

loss over direct training of re-sampling compression is 2.1% for resampling
with 20 samples and 0.9% for re-sampling with 50 examples. This is more
than two times worse than the average performance loss of 0.42% obtained
by direct compression. When looking at the performance graphs (see Figure
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Figure 5.11: Original Data Subgroup Classification results

Figure 5.12: Original Data Real Class Classification results

5.14) we see that direct training works best, but direct compression gives
almost the same performance. Compression by data re-generation from the
compressed model improves with the amount of data samples generated and
used for the training of the compressed model. The lowest graph corresponds
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Table 5.1: Results for Trainsequence
Method Segmentation Accuracy
Baseline 0.765 ± 0.084

Theoretical best possible 0.852 ± 0.050
HISAA best1 0.780 ± 0.075

HISAA-SC best2 0.765 ± 0.084
1 Using Cycle- and Trajectory thresholds of 0.5 and 0.8
2 Using Cycle- and Trajectory thresholds of 0.7 and 1.0

Table 5.2: Best Grouping TrainSequence
HISAA HISAA-SC

cycles 0.767 ± 0.935 0
trajectories 1.167 ± 0.913 0
singletons 10.700 ± 2.693 15

total 12.633 ± 1.671 15

Table 5.3: Results for Testsequence
Method Segmentation Accuracy
Baseline 0.685 ± 0.157

Theoretical best possible 0.804 ± 0.129
HISAA best3 0.715 ± 0.145

HISAA-SC best4 0.706 ± 0.141
3 Using Cycle- and Trajectory thresholds of 0.50 and 0.80
4 Using Cycle- and Trajectory thresholds of 0.70 and 1.00

Table 5.4: Best Grouping TestSequence
HISAA HISAA-SC

cycles 1.600 ± 1.102 1.600 ± 1.102
trajectories 2.233 ± 1.165 2.233 ± 1.165
singletons 3.833 ± 2.653 3.833 ± 2.653

total 7.667 ± 2.537 7.667 ± 2.537

to re-training with 20 samples per HMM. The second lowest dotted graph
corresponds to training with 50 samples per HMM. With 50 samples we
have twice the amount of data on which the original HMMs were trained
(25 samples), but still the results are worse than for direct compression. The
difference in performance between 20 and 50 samples shows that with more
samples the compression by data re-generation improves, so that in the limit
it may well even slightly improve over our direct compression method. On
the other hand, the computational cost of EM-training increases linearly
in the amount of data. We are thus likely to pay a great increase in
computational cost to beat our direct compression method by compression
through data re-generation.

Our Merge tests show different things. In the first test (see Table
5.10) we see that training on all data gives a performance of 98.7% (the
best score). Our Merge Algorithm performs not that good, but gets
close nonetheless with a performance of 94.5% (a relative performance loss
of 426% from the best). The alternative method that uses re-sampling
performs even better, with 98.1% (a relative performance loss of 0.61%
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Table 5.5: Results for Trainsequence
Method Segmentation Accuracy
Baseline 0.661 ± 0.089

Theoretical best possible 0.793 ± 0.059
HISAA best5 0.692 ± 0.094

HISAA-SC best6 0.672 ± 0.099

5 Using Cycle- and Trajectory thresholds of 0.35 and 0.90
6 Using Cycle- and Trajectory thresholds of 0.30 and 0.50

Table 5.6: Best Grouping TrainSequence
HISAA HISAA-SC

cycles 2.100 ± 0.923 2.433 ± 1.006
trajectories 0.167 ± 0.379 0.800 ± 0.925
singletons 6.967 ± 2.977 4.233 ± 2.582

total 9.233 ± 2.909 7.467 ± 2.700

Table 5.7: Results for TestsequenceSequence
Method Segmentation Accuracy
Baseline 0.621 ± 0.153

Theoretical best possible 0.790 ± 0.127
HISAA best7 0.643 ± 0.140

HISAA-SC best8 0.630 ± 0.173
7 Using Cycle- and Trajectory thresholds of 0.45 and 0.95
8 Using Cycle- and Trajectory thresholds of 0.30 and 0.35

Table 5.8: Best grouping TestSequence
HISAA HISAA-SC

cycles 1.367 ± 0.928 2.433 ± 1.006
trajectories 0.300 ± 0.466 1.233 ± 1.165
singletons 10.200 ± 2.882 2.767 ± 1.654

total 11.867 ± 2.330 6.433 ± 2.063

from the best). The reference scores show that the HMMs trained on
only the subsets give much lower scores when tested on the complete data
test set (71.8%,70.9%). Testing those HMMs on only the subset test sets
gives very high performances (99.5%,96.4%), which proves that the higher
performances gained by model merging are not just an artifact of training
with more data.
In the second test (see Table 5.11) all performances decrease, with the
performance achieved when training and testing on all data now being 94.4%
(the best score). For the re-sampling merging the performance decreases to
92.3% (a relative performance loss of 2.23% from the best). Our merging
Algorithm however drops to 81.5% (a relative performance loss of 13.67%
from the best). Combining the results from both tests we can compute
that the relative performance loss from the best score for the resampling
method increased from 0.6% in the first test to 2.23% in the second test,
a relative 366% increase in relative error. On the other hand, the relative
performance loss of the direct merging method increased from 4.26% to
13.67%, a relative 321% increase in error. We see that while the two methods
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Figure 5.13: Flowchart HISAA experiments

show very different absolute decreases in performance for more difficult
merging problems, their relative decreases in performance are remarkably
quite comparable.

We conclude from this test that the absolute performance of our Merging
Algorithm deteriorates when the HMMs to be merged become too different,
which is the case for the HMMs of two different persons. The Hybrid
Algorithm shows some improvement over purely using our Merge Algorithm,
but it fails to achieve a performance equal to the re-sampling method.
Inspecting the confusion Matrices during testing suggested that this is
mainly explainable by the fact that HMM distance fails to find the HMMs
that gives most problems in merging. It is however also true that as all
HMMs become more dissimilar, selecting a few hard cases and using only
re-sampling for those is no longer a feasible solution in any case.

5.4 Discussion and further work

5.4.1 HISAA

The experiments established the ability of the HISAA algorithm to extract
meaningful structure from the Transition Matrix of an HMM, and hinted
that with some improvement of the method used for mapping groups
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Table 5.9: Recognition Accuracies on Testset: Compression test
States: Direct Training Direct Compr

1 0.756 ± 0.040 0.877 ± 0.019
2 0.930 ± 0.021 0.916 ± 0.023
3 0.944 ± 0.020 0.944 ± 0.020
4 0.959 ± 0.018 0.956 ± 0.017
5 0.969 ± 0.015 0.964 ± 0.016
6 0.973 ± 0.014 0.970 ± 0.016
7 0.975 ± 0.013 0.972 ± 0.010
8 0.978 ± 0.011 0.976 ± 0.011
9 0.981 ± 0.011 0.977 ± 0.012
10 0.983 ± 0.012 0.981 ± 0.010

States: Data-Resampling Compr 20 samples Data-Resampling Compr 50 samples
1 0.705 ± 0.037 0.718 ± 0.045
2 0.909 ± 0.025 0.919 ± 0.017
3 0.921 ± 0.021 0.932 ± 0.018
4 0.934 ± 0.022 0.943 ± 0.016
5 0.944 ± 0.020 0.954 ± 0.013
6 0.950 ± 0.019 0.962 ± 0.012
7 0.956 ± 0.019 0.969 ± 0.009
8 0.959 ± 0.020 0.974 ± 0.010
9 0.963 ± 0.019 0.977 ± 0.009
10 0.967 ± 0.017 0.980 ± 0.008

Method: Average performance loss compared to direct Training
Direct Compr -0.004 ± 0.004

Resampling Compression 20 samples -0.021 ± 0.003
Resampling Compression 50 samples -0.009 ± 0.005

Figure 5.14: Compression Test results

to labeled HMMs, it might be useful for clustering and segmentation of
gestures. The pilot experiments showed that a big gesture consisting of
clearly separable sub-gestures can be perfectly segmented into those sub-
gestures. Condition for such perfect segmentation is that the sub-gestures
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Table 5.10: Recognition Accuracies on Testset: Merge test person 1
Test: Recognition Accuracy:

Trained on both subsets together 0.987 ± 0.007
HMMs Merged by Merge Algorithm 0.945 ± 0.022

HMMs merged by Resampling 0.981 ± 0.009
Hybrid Algorithm 0.959 ± 0.019

Trained: subset 1, Tested: subset 1 0.995 ± 0.008
Trained: subset 2, Tested: subset 2 0.964 ± 0.024

Trained: subset 1, Tested: subset 1 + 2 0.718 ± 0.017
Trained: subset 2, Tested: subset 1 + 2 0.709 ± 0.031

Table 5.11: Accuracies on Testset: Merge tests person 1 and 2
Test: Recognition Accuracy:

Trained on both subsets together 0.944 ± 0.012
HMMs Merged by Merge Algorithm 0.815 ± 0.035

HMMs merged by Resampling 0.923 ± 0.009
Hybrid Algorithm 0.842 ± 0.035

Trained: subset 1, Tested: subset 1 0.980 ± 0.010
Trained: subset 2, Tested: subset 2 0.938 ± 0.014

Trained: subset 1, Tested: subset 1 + 2 0.639 ± 0.013
Trained: subset 2, Tested: subset 1 + 2 0.658 ± 0.020

have strong temporal coherence and no mutual spatial overlap (so that states
are not shared between different sub-gestures) The experiments also showed
limitations of the algorithm. It works bad when gestures are too much
spatially overlapping. We noticed that the problem of spatial overlap is
also a problem of the Baum-Welch Algorithm that trains the HMM model.
Often there is much spatial but not temporal overlap, for example if there
are two overlapping circles, one traversed clockwise and the other counter
clockwise. Duplicating states at points of much spatial overlap, and using
one of the duplicates for every overlapping gesture, would be an intuitive
idea to get better models. However,experiments showed that the Baum-
Welch algorithm cannot exploit such duplicate states, even if we manually
generate them. It sticks with suboptimal models that put all spatially close
points in same states independent of their temporal properties. Stronger
models such as Hierarchical Hidden Markov Models (HHMMs) might offer a
solution to this problem. A conceptual weakness of the HISAA algorithm is
its reliance on thresholds, which have to be optimized experimentally. Our
experiments showed that while optimal values have reasonable values (Cycle-
and Trajectory thresholds of 0.35/0.45 and 0.90/0.95 for training and testing
respectively) those values show variance over tests, and hence it is difficult
to find single best values through experimental optimization. The problem
here is that we search for cycles and trajectories, which are in principle fuzzy
concepts that can occur with different strengths within the HMM. To extract
those structures efficiently however, we have to define a strict criterion that
defines when a collection of connected states can be considered a trajectory



76 CHAPTER 5. EXPERIMENTS

or cycle and when it no longer can. The most straightforward way to do
this is through thresholds on the transition chances, but we considered other
alternatives as well. One can think in the direction of finding multiple
candidate sets for cycles, trajectories and singletons, and then performing
some global optimization scheme that finds the best segmentation amongst
those candidates according to some heuristics and prior knowledge on the
total number of gesture classes. At the cost of much more complex cycle and
trajectory extraction algorithms such an approach might eventually lead to
better segmentations.

One other thing we noticed is that the use of labeled HMMs to map
state-groups to a ground-truth of labeled gesture sequences is a somewhat
unsatisfying solution to the problem of formal evaluation of our HISAA
algorithm. The problem with this approach is that we are just as much
measuring the adequacy of our HMM distance metric, on which the quality
of the mapping relies, as we are evaluating the quality of our partition
into groups. Apart from the GMM-distance metric, we also tried wit the
Kullback-Divergence sample based HMM distance measure. This ”more
advanced” distance measure however is very unreliable as it often gives
infinite distances, which happens when a certain sample from one model
has zero probability for the other model, which is often the case. This
method thus relies greatly on the used samples, and requires very big
sample sizes to make it at least a bit robust, which was not feasible for our
already computationally intensive tests. It would clearly be nice to have a
meaningful evaluation method for HISAA that does not rely on performance
on a segmentation task, and thereby indirectly depending on many other
methods as well. Application of HISAA to other problems might naturally
provide such a better evaluation metric.

We envisage another promising application for HISAA besides its current
use for gesture segmentation. This would be to use it in generating a better
HMM distance metric, that uses the model structure. The popular Kulback-
Divergence distance metric [38] is inappropriate for computing distance
between HMMs that overlap in many parts, but are very different on some
small part. Since it works with sampling, the small non-overlapping parts
of both models will then generate data inexplicable by the other model.
This means the whole distance becomes (±)∞. A distance metric based
on HISAA could work state-group wise, thus distinguishing no overlap for
some parts of the models from no overlap for all parts of the models. This
important distinction cannot be made by standard KL-divergence, which
only give reasonable, non-infinite distances when the models are quite close
for all parts.
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5.4.2 HMM compression and HMM merging

We’ve tested the model based Compression and Merging algorithm. Test of
the compression algorithm showed that it achieved a very high performance,
only slightly worse (at most 0.42 % on average) than direct training on the
original data. Compression by data re-generation did not achieve better
results, while sampling up to two times the number of original examples that
were used in the original training. This proves that direct model compression
without retraining of a new model is feasible, and might in some scenarios be
an interesting option if many HMMs need to be compressed and computation
time is a significant issue. There are many scenarios where HMMs might
be needed at different level of complexity/precision for the same data. One
example would be mobile computing where the systems on site have limited
computational resources, so that they need more simplified models than
a server system that can perform more intensive computation if required.
Especially when the data changes often, it might be more efficient to just
keep one complex HMM and derive the more simplified HMMs from it by
model compression, then to retrain all small HMMs as well from scratch.

The tests showed that our Merging Algorithm works reasonably well
in most cases, although it cannot reach the same level of performance as
training of a new HMM based on re-sampled data. They also suggest that
direct model merging is most beneficial if the merged models are very similar,
for in this case the performance loss compared to the re-sampling method is
smallest, while the computational gain is the same. When HMMs are more
fine-grained (have more states), the performance of direct model Merging
will typically be better, while the cost of re-computation of a new HMM
increases. Still, most HMMs used in practical applications have less than 30
states, so that the computational cost of recomputing a new HMM is not
always a big issue. Despite the loss of performance when compared to the
re-sampling alternative, the Algorithm might have a function in Algorithms
that must merge many HMMs realtime. Since the computation times of our
Algorithm does not grow linearly with the amount of (re-sampled) data as
discussed in the previous section, it can merge sets of HMMs faster than can
be done by training a new model with Baum-Welch from re-sampled data.
The results are interesting from a theoretical point of view, as they show that
also for HMM models the parameters can be exploited directly to construct
compressed or merged models, similarly to the way this has already been
done for GMMs. From a practical point of view it may be questioned if
there are many scenarios were computational cost would be the dominant
factor for HMM merging, so that a more imprecise but also computationally
cheaper algorithm would be preferable to the more expensive alternative of
data re-sampling.
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5.4.3 Comparison of the two approaches

We now compare our two approaches towards HMM analysis and sim-
plification. Segmenting HMMs into structural parts, as we do with our
first approach, has the advantage of keeping all information and providing
a better insight into the structure of the HMM. At the same time it
requires additional steps to compress the HMM based on its structural
decomposition, or to exploit the structural decomposition for other things
such as data segmentation. Our second approach of directly compressing or
merging HMMs has the advantage of providing a more direct result in the
sense of a smaller compressed or merged model. At the same time it does
not provide the structural insight our first method gives and has a smaller
promise of being useful in some form to other methods. It is also possible to
combine both approaches, that is to first segment a HMM into parts, and
then to compress the parts separately with the algorithms from our second
approach. Alternatively, it may be the case that different HMMs are learned,
that have a big overlap. In that case our first approach may be helpful to
segment those models into parts, then identify the parts that reappear in
different models, and finally compress by storing the shared parts only once.

While HMMs are often used as black boxes, our research shows that
for the analysis and simplification of HMMs much can be gained with the
approach of working directly on the model parameters.

5.4.4 Further work

Better segmenting spatially overlapping sub-gestures

The HISAA algorithm is limited in its ability to segment sug-gestures that
are spatially overlapping. Such gestures are typically sharing states in the
BIG-HMM for the entire gesture sequence. Our segmentation works by
partitioning the complete state set, assigning every state to belong to only
one sub-gesture. Therefore it is unable to deal properly with spatial overlap,
states that are shared by multiple sub-gestures. One extension to overcome
this problem would be to adapt the algorithms so that states can be assigned
to multiple cycles and trajectories. While such an extension is relatively
simple to make, it would introduce some new problems in turn. When
states become shared, a straightforward mapping from a state to a labeled
sub-gesture is no longer possible.

Replacing Thresholds

Another point of improvement is the usage of thresholds in the extraction
of cycles and trajectories. These thresholds must now be optimized through
testing. A similar algorithm that would not rely on any thresholds, or
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alternatively would set them automatically to appropriate values would be
a good improvement.

Automatic determination new number of states

Analogous to the K-means algorithm our direct compression and merging
algorithm requires a user-set amount of new states to perform its compres-
sion and merging. A nice extension would be to determine an appropriate
amount of new states automatically. In case of the Compression algorithm
methods that trade-of model accuracy against model complexity, such as
the Baysian Information Criterion (BIC) or Akaike Information Cirterion
(AIC) [7] could be used. In case of the direct merging algorithm it might
be appropriate to introduce a threshold on the maximum allowable distance
between states that are merged. Then the algorithm would determine the
required new amount of states automatically, performing a lot of merging
if the merged models are very similar and only little merging if the models
are very distinct.

Incorporating temporal information in compression and merging
algorithm

Currently our direct compression and merging algorithm only uses spatial
information and ignores temporal information in the Merging process. This
is a clear limitation, and overcoming it is likely to improve performance
at least in some scenarios. It would be desirable to only merge states if
not only their spatial properties but also their temporal properties align.
This second feature could be checked for by making a local representation
of every state, that contains besides the state itself a representation of the
local neighbors of this state. In other words, a feature set representing
the most likely predecessor and successor states as extracted from the
Transition Matrix might do the job. Using again 4.5 as a distance metric
to compute the distance between two mixtures of Gaussians, we could
require that two states S1 and S2 are only to be merged provided that
the distance between their predecessor and successor state sets is small
enough. Formally: d(predecessorStates(S1), predecessorStates(S2) <
threshold1 and d(successorStates(S1), successorStates(S2) < thresh2 for
some sensible values of the thresholds threshold1 and threshold1. Here we
could also define a local temporal distance between two states S1 and S2:

dt(S1, S2) = d(predecessorStates(S1), predecessorStates(S2)
+d(successorStates(S1), successorStates(S2)) (5.3)

To make this idea even more concrete, we could implement this idea
by using all states as predecessors and successors, but giving them weight
according to the Transition chance they have to move to the target state
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(for predecessor states) or be moved to from the target state (for successor
states).
Instead of applying a maximum on such a local temporal distance as a
constraint state merging, we could also make it a more integrated part of
the merging algorithm itself by defining a new distance ds−t metric that
combines the spatial state distance (the distance between the GMMs of the
two states) and the local temporal distance:

ds−t(S1, S2) = α× d(S1, S2) + (1− α)× dt(S1, S2) (5.4)

The iterative state merging algorithm would then use this new distance
in the assignment of states to the closest compressed state in the Regroup
phase of the merging algorithm.
While the described extension has not been implemented yet and indeed
their may be better alternatives, it is clear that the incorporation of temporal
information to the compression and merging process provides an important
direction for further research.

To summarize we discussed better spatial segmentation and the re-
placement of thresholds as two directions of further work for our HMM
segmentation research. Secondly we discussed automatic determination of
the new number of states and incorporation of temporal information as
accents for future research on HMM compression and merging.
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Conclusion

In this Master project we worked on the general problem of Gesture
Recognition, focusing on torso-arm movement gestures as recorded by the
posture capturing device Xsens or derived by tracking the limbs in multi-
camera video sequences. Gesture recognition can be approached with
different methods, but the Hidden Markov Model and its variations like
the Hierarchical Hidden Markov Model (HMM) are by far the most popular
and most successful tools used for the problem. Our work centers on the
problem of Hidden Markov Model Simplification. Simplification is motivated
by different demands. One goal is to limit the computational cost or memory
requirements. Simplification solves this by limiting the number of models,
parameters per model or total parameters. Another important goal is to
make models more general, possibly at the cost of some precision. Here
simplification offers a solution as well. Simplification covers a range of
related approaches that all have in common that they eventually reduce
the total description length of the set of all models. One approach is to
segment a big model into meaningful smaller parts. If the smaller parts are
(partly) shared by different models, they have to be stored only once and
the number of total parameters is reduced. A second approach is to merge
similar models into one model, which clearly directly reduces the number of
models and hence total description length. A third possibility is to compress
a model itself directly, replacing it with a simpler one that keeps as much
information as possible with the decreased number of parameters. To solve
the problem of simplification as discussed above, we studied the current
state of the art, extended on existing HMM implementations and introduced
new methods. We explored two different methods towards simplifying
complex HMMs and gaining more insight into their structure. Our first
method is to segment HMMs into structural parts, corresponding to the
first simplification approach. Our second method is to directly merge or
compress HMMs based on spatial information, corresponding to the second
and third simplification approach respectively.
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For our first method we introduced a new HMM structure analysis
Algorithm called HISAA, which decomposes the states of a HMM into
structural groups corresponding to Trajectories and Cycles. One specific
application of the algorithm is the usage for clustering and segmentation of
unlabeled (gesture) data. Tests on a small gesture database of 9 gestures
recorded with the XSens resulted a training performance of 78.0% and
a test performance of 71.5%. in correctly retrieving the type labels for
an unlabeled gesture sequence In a second, more difficult test with 3
gestures the performance decreased somewhat and we had 69.2% for training
sequence and 64.3% for the test sequence. A baseline method that works
only with single states to perform the segmentation task scored 76.5%
train performance, 68.5% test performance on the first test an 66.1% train
performance, 62.1% test performance on the second test respectively. This
showed that the discovery of state groups improved the performance of a
segmentation algorithm over the state-group free baseline. The relatively
low performances on the segmentation task could be partly explained by
spatial overlap, which leads to the sharing of states by different gestures. If
states are shared by multiple gestures, any method that attempts to perform
classification/segmentation based on state to gesture mappings will suffer
in performance. Our algorithm HISAA succeeds in deriving meaningful
information about the structure of an HMM, as well as succeeds in extracting
groups of associated states corresponding to cycles and trajectories in the
model. The experiments showed that this information can have some
function in a segmentation task, but with other tasks the algorithm might
even be done better justice.

For our second method,we implemented a new HMM model Merging and
Compression algorithm, that uses GMM clustering to group states that are
close and then uses it again to compress or merge them. Compressing HMMs
offers a very direct way to get smaller models that generalize better and are
computationally cheaper to work with. It is not always feasible to keep
all original data, nor to keep models of many different levels of complexity.
This makes compression of a sufficiently rich model an attractive solutions
for many applications were a simpler model must be derived on the fly from
a more complex one. Similarly, merging models offers a very direct way to
decrease the number of parameters to keep, decrease the number of models
that must be tested during recognition, and improve generalization of the
models.
Our tests on the Interactplay database showed the compression algorithm
worked good. While direct compression lost only 0.4% performance over
direct training with the original data on average, compression by data re-
sampling lost 2.1% with 20 samples and 0.9% with 50 samples on average.
This shows that at least for limited sample sizes the direct compression
method is superior to the compression by data re-sampling method. In fact,
even if for much larger sample sizes re-sampling-compression would work
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better, direct-compression is still attractive because of its good performance
combined with low computational cost.

Other tests on the Interactplay Database showed that our merging
method worked reasonably well. Merging models trained for different
sessions of one person, we achieved on average 94.5% recognition accuracy
with the models merged by direct merging. With the re-sampling merging
method we achieved even 98.1%, compared to 98.7% achieved by direct
training on all data. In the second test that involved merging the models
of two different persons, we achieved performances of 81.5% and 92.3%
for direct merging and re-sampling-merging respectively; compared with
94.4% recognition accuracy achieved with direct training on the full data.
From this we concluded that the re-sampling method gives superior results
for merging, and the differences between the performances of the merging
methods become bigger when the merged models are more different (which
makes the merging task harder). On the other hand, our direct merging
is computationally cheaper and for merging similar models reaches high
performances as well. We experimented with a hybrid merging scheme
as well, which was intended to combine the computationally cheap direct
merging with the more expensive but better performing re-sampling-
merging. Unfortunately, the unreliability of the distance metric that
measures similarity for HMMs however made it difficult to come up with
a robust method to separate hard- from the easy cases.

To summarize, we introduced a new Algorithm that gives superior results
for HMM compression and reasonable results for HMM merging, for which
problem re-sampling-merging turned out to work better. Compression and
merging of HMM models are tasks that both have applications in their own
right, and together account for a significant part of the task framework of
HMM simplification.

We saw that the simplification of complex HMMs is an important
problem framework, to which solutions have many different applications,
particularly within the domain of Gesture recognition. We showed that
segmentation through structural analysis, merging and direct compression
of HMMs provide promising as well as complementing approaches for this
problem. Some of the new methods and Algorithms we introduced such
as the algorithm for direct HMM compression can be readily used in new
applications and future research.
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Chapter 7

Appendix

7.1 Appendix HISAA

7.1.1 Algorithms

7.1.2 Results

Figure 7.1 shows the PCA reconstruction error of the ”moderate” data
subset which is used in our experiments.Table 7.1 gives statistics for the
lengths of the different gestures in the database.

Figure 7.1: PCA Reconstruction error for ”moderate” subset
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Algorithm 7.1.1: CycleDistanceMatrix()

Inputs: TransitionMatrix, transitionThreshold

noStates← size(TransitionMatrix, 2)
∀iε{1...n} : TransitionMatrix(i, i) = 0
normalize(TransitionMatrix)
∀i,jε{0...(n−1)} :{

if TransitionMatrix(i, j) ≤ transitionThreshold
then TransitionMatrix(i, j)← 1 ∗ 10−20

∀iε{1...n} : TransitionMatrix(i, i) = 1

∀i,jε{0...(n−1)} :
probIJ ← viterbiPath(TransitionMatrix, i, j)
probJI ← viterbiPath(TransitionMatrix, j, i)
cycleDistance = (1/(probIJ ∗ probJI))− 1;
CycleDistanceMatrix(i, j)← cycleDistance

return (CycleDistanceMatrix)

Algorithm 7.1.2: FindStrongCycles()

Inputs: group
comment:Returns list of lists of states belonging
to strong cycles

if size(group.elements) < 2
then return{}

cycles← {}
if group.distance > 10−20

then cycles = cycles ∪ {group.elements}

else

{
∀child ε children(group) :{
cycles = cycles ∪ FindStrongCycles(child)

return (strongCycles)

7.2 Appendix HMM Compression and Merging

7.2.1 Complexity Analysis

Baum-Welch Algorithm

The Baum-Welch algorithm is based on the computation of two functions,
known as Forward and Backward probabilities, (i, t) and (i, t), for each state
i [1, N ] of an HMM and each frame t ε [1, T ] of an observation sequence
O = O1, O2, ..., OT . Computing these functions yields a complexity of order
O(N2T ). Once computed, Forward and Backward probabilities are used to
weight the contributions of each observation Ot to the HMM parameters.

If L observation sequences O(l) = O1, O2, ..., OTl , with l = 1, 2, ..., L, are
explicitly available for an HMM, the resulting procedure is known as single
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Algorithm 7.1.3: FindLongestStrongTrajectories()

Inputs: TransMat,transThresh
comment:Returns set of ordered lists
corresponding to trajectories

noStates← size(Transmat, 2)
states← {1, . . . , noStates}
remainingStates← {1, . . . , noStates}
strongTrajectories← {}
while remainingStates 6= ∅

do



Sstart ← remainingStates(1)
Pmax ← 1
Snext ← Scur ← Sstart
while (Pmax > transThresh) ∧ (Snext 6= Scur)

do


Scur ← Snext
traj ← [traj, Snext]
Pmax = maxSnextεstates(P (Snext|Scur))
Snext = argmaxSnextεstates(P (Snext|Scur))

strongTrajectories← strongTrajectories ∪ traj
remainingStates← remainingStates ∩ elts(traj)

return (strongTrajectories)

Algorithm 7.1.4: PartitionTrajectories()

Inputs: strongTrajs
Comment: Returns set of non-overlapping
ordered lists corresponding to atomic trajectories

partTrajs← {}
while strongTrajs 6= ∅

traj = strongTrajs(1)
overlapping ←find strongTrajectories

having overlapping last states with traj
overlappedSet← overlapping ∩ traj
strongTrajs← strongTrajs ∩ overlappedSet
if overlappedSet 6= ∅

then



tail←find longest overlapping tail which
is part of all overlapping trajectories

withoutTail← ∀ trajO ε overlappedSet :
removeTail(overlappedSet, tail)

partTrajs← partTrajs ∪ tail
strongTrajs← strongTrajs ∪ withoutTail

else

{
partTrajs← partitionedTrajectories ∪ traj
strongTrajs← strongTrajs ∩ traj

return (partitionedTrajectories)

model Baum-Welch re-estimation [6]. This is the case for gesture recognition
with labeled data. For each observation sequence O(l) , the Forward and
Backward probabilities must be computed, and then various contributions
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Algorithm 7.1.5: HISAA()

Inputs: hmm,cycleThresh,trajThresh

cycDistMat←
CycleDistanceMatrix(hmm.TransMat, cycleThresh)

group← CompleteLinkClustering(cycDisteMat)
strongCs← FindStrongCycles(group)

remainingStatesTransmat←
getRSTransmat(TransitionMat, strongCycles)

overlappingStrongTrajs←
LongestStrongTrajectories(TransMat, trajThresh)

strongTs←
PartitionTrajectories(overlappingStrongTrajs)

singletons← remainingStates(hmm, strongCs, strongTs)
subHMMS ←

getSubHMMs(hmm, strongCs, strongTs, singletons)
return ([strongCs, strongTs, singletons, subHMMs])

Table 7.1: Subsets ”fast” and ”moderate”
Id ”fast” ”moderate”
1 104.9 ± 7.1 127.3 ± 10.6
2 93.6 ± 13.8 121.9 ± 15.0
3 122.6 ± 26.2 109.8 ± 11.7
4 124.3 ± 14.5 152.2 ± 28.5
5 134.6 ± 26.8 267.8 ± 79.1
6 36.5 ± 2.7 53.6 ± 5.5
7 37.4 ± 4.4 73.4 ± 4.5
8 38.2 ± 2.1 61.0 ± 6.6
9 42.8 ± 4.3 84.4 ± 10.9

Subsets ”slow” and subsets combined
Id ”slow” subsets combined
1 186.1 ± 24.3 139.4 ± 38.0
2 159.1 ± 17.1 124.9 ± 31.0
3 158.6 ± 56.9 130.3 ± 41.3
4 226.7 ± 44.8 167.7 ± 53.6
5 384.7 ± 94.4 262.4 ± 125.4
6 104.4 ± 7.5 64.8 ± 29.8
7 109.6 ± 15.2 73.5 ± 31.3
8 125.0 ± 15.8 74.7 ± 38.6
9 187.0 ± 27.3 104.7 ± 63.8

and norms accumulated, which yields a computational complexity of order
O(3N2Tl +NTl +NTlMD) for continuous HMMs, where M is the number
of Gaussian components in the mixtures used to represent the output
distributions in continuous HMMs, and D =

∑R
i=1 di with di the dimension

of the data stream i the total number of components of data vectors in the
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continuous case. In the most common configurations, the last term of the
summation is dominant. Summing for all the training sequences, we get
complexities of order O(3N2T + NT + NTMD) , respectively, where T is
the length of the training database.

GMM Clustering complexity

The GMM Clustering
compression algorithm is very similar to the K-means algorithm, and
consists of repeated regrouping and refitting of mixture components until
convergence. In the regroup step every mixture component is compared
with every component from the compressed set, to find the closest one. The
distance computation itself is given by the formula

d(f, g) =
k∑
i=1

αimin
m
k=1KL(fi||gj)

. The KL-divergence between two Gaussians KL(fi||gj) in this formula is
comuted as.

KL(N(µ1,Σ1), N(µ2,Σ2)) =
1
2

(log
|Σ2|
|Σ1|

+ Tr(Σ−1
2 Σ1) +

(µ1 − µ2)TΣ−1
2 (µ1 − µ2)− d

and has a complexity quadratic in the mixture dimensionality so then the
regroup operation has complexity O(C ×K ×D2) with for C the number of
components in the model to be compressed and K the number of components
compressed to.
For the refit operation, we computed a weighted combination of the means
and covariance matrices of all components that are compressed together.
The formulas for those computations are given as: wjr =

∑
iεπ−1(j)w

i
c

µ̂jr =
∑

iεπ−1(j)
wicµ

i
c

ŵrj

Σ̂j
r =

∑
iεπ−1(j)

wic(Σ
i
c+(µic−µ̂

j
r)(µ

i
c−µ̂

j
r)
T )

ŵrj

In these formulas iεπ−1(j) is the set of mixture components that project
onto component j in Mr

We can see that these computations have a complexity that is quadrat-
ically dependent on the dimensionality of the mixture components that
are combined and linearly dependent on the number of old and reduced
mixtures, hence the total complexity of refitting is also O(C ×K ×D2).

The entire algorithm, which combines the refit and regroup steps, then
also has complexity O(C×K×D2); since the algorithm usually converges so
fast that the iterative nature does not add an extra factor to the complexity.
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Direct HMM Compression complexity

The HMM compression algorithm has the GMM Clustering as it’s core, but
furthermore also has to recompute a transition matrix, mixture matrices
and priors. However, those operations have complexity of at most O(C ×
K), so they do not increase the complexity of HMM Compression over
GMM Clustering. In other words, our HMM Compression algorithm has
complexity O(C × K × D2), that is linear in the number of original and
reduced components C and K, and quadratic in the mixture component
dimensionality D. When we compare this with the complexity of Baum-
Welch, we notice that it has no dependence on the size of a training set,
but only depends on the number of states and the dimensionality of the
mixture components. Hence our Direct compression Algorithm has a big
computational advantage over Compression through retraining by data re-
sampling, since in that method the computational cost there grows linearly
with the amount of regenerated data, and thus becomes quite costly as the
amount of data used for retraining gets large.

7.2.2 Algorithm Pseudocode

Algorithm 7.2.1: mergeHMMs(hmm1, hmm2)

Comment: Returns a merged hmm

s1 = size(hmm1.transmat, 1)
s2 = size(hmm2.transmat, 2)

mid = s1 + 1
last = s1 + s2
nStates← append(hmm1.states, hmm2.states)
nMixmat← append(hmm1.mixmat, hmm2.mixmat)
nPriors← append(hmm1.priors, hmm2.priors)

nTransmat← zeros(noStates1 + noStates2)
nTransmat(1 : s1, 1 : s1) = hmm1.transmat;
nTransmat((mid : last,mid : last) = hmm2.transmat;

appHMM ←
newHMM(nStates, nTransmat, nPriors, nMixMat)

mergedHMM ← CompressHMM(appHMM)
return (mergedHMM)
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Algorithm 7.2.2: CompressHMM(hmm,numNewStates)

Comment: Returns a compressed HMM

numStates← size(hmm.transmat, 2)
gmHMM ← ExtractGMHMM(hmm)
[mapping, newC]←

CompressGMM(gmHMM.states,UniformWs(noStates))
[newStates, compMixMat]←

ComputeNewStates(hmm,mapping, numNewStates)
[cTransmat, cPrior]←

CompTransAndP(hmm.transmat, hmm.priors,mapping)
compHMM ←

newHMM(newStates, cTransmat, cPrior, compMixMat)
return (partitionedTrajectories)

Algorithm 7.2.3: ExtractGMHMM(hmm)

Comment: Returns a GM-HMM by summing the
mixture components for every state

newHMM ← hmm
for i← 1 to noStates
s← hmm.states(i)
newHMM.states(i)←∑numMixt

j=1
hmm.mixmat(i, j)× s.mixtureComps(i)

return (newHMM)

Algorithm 7.2.4: compressGMM()

Inputs: gmmComps,numNewComp, weights
Comment: Returns a compressed GMM by iterative
regrouping and refitting similar to K-Means
nAS : the new assignments, nC = the new components
nW : the weights of the new components

newHMM ← hmm
numOldComp← size(gmmComponents, 2)
oldAssignments←[]
nAS ← initAssignments(numOldComp, numNComp)
while assignments 6= oldAssignments
oldAssignments← assignments
[nC, nW ]←

refit-mixture(gmmComps, assignments, weights)
nAS ← regroup-components(gmmComps, nC)

return ([nAS, nC, nW ])
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Algorithm 7.2.5: ComputeNewStates()

Inputs: hmm,assignments,numNewStates
Comment: Returns states: Mixtures of Gaussians
and mixmat: Matrix of mixture weights

for i = 1 to numNewStates

statesComb← ∪state : assignments(state)=i

compComb← CollectComponents(statesCombined)
weightsCC ← compWeights(hmm.priors, hmm.mixat)
[,newC,weights]←

compressGMM(compComb, numMixt, weightsCC)
states(i)← newC
mixmat(:, j) = weights

return (states,mixmat)

Algorithm 7.2.6: CompTransAndP()

Inputs: transmat,priors,assignments
Comment: Returns new, compressed transmat and priors

for i = 1 to numNewComponents
cpTransmat1(:, i)←

∑
j:assignments(j)=i

transmat(:, j)

for i = 1 to numNewComponents
cpTransmat2(i, :)←∑

assignments(j)=i
cpTransmat1(j, :)

cpPriors(i)←
∑

assignments(j)=i
priors(j)

cpTransmat = normalise(cpTransmat2, 2)
return ([cpTransmat, cpPriors])

7.2.3 Remaining Results

Figure 7.2 and 7.3 give the PCA reconstruction Error for the Training
sets used in the Merge experiments. Table 5.9 gives the results for the
compression test, in which the accuracy of the direct compression method is
compared with the accuracy of directly learning a model from the original
data or compressing by data re-sampling with a sample size of 20 or 50
data samples per compressed HMM respectively. Every sample with a fixed
length equal to the mean example length of the training sets. Since all
gesture signals in the Interactplay database have very similar lengths, this
is a reasonable approach.
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Figure 7.2: PCA Reconstruction Error, Data Person 1, sessions 1,2,3,4

Figure 7.3: PCA Reconstruction Error, Data Person 1 and 2, all sessions


