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Abstract

Using a knowledge-based approach, we derive a protocol for the se-
quence transmission problem, which provides a high-level model of the
Internet protocol TCP. The knowledge-based protocol is correct for com-
munication media where deletion and reordering errors may occur. Fur-
thermore, it is shown that both sender and receiver eventually attain
depth n knowledge about the values of the messages for any n, but that
common knowledge about the messages is not attainable.

1 Introduction

In their classical paper [6], Halpern and Zuck showed that epistemic logic pro-
vides a transparent way to specify and verify a number of protocols (like the
alternating-bit protocol) that have been introduced for error-free transmission
of sequences of messages over a distributed network. In particular, they intro-
duced two knowledge-based protocols, A and B, that could solve the following
problem. Let two processors be given, called the sender S and the receiver R.
The sender has an input tape with an infinite sequence X of data elements. S
reads these elements and tries to send them to R, which writes the elements on
an output tape. The protocols are required to guarantee that (a) at any mo-
ment the sequence of data elements received by R is a prefix of X (safety) and
(b) if the communication medium satisfies certain so-called fairness conditions,
every data element of X will eventually be written by R (liveness). Fairness
here means that infinitely many message instantiations from S to R and from
R to S are delivered, guaranteeing that every message arrives eventually.

It is easy to see that no protocol can guarantee these properties in an en-
vironment were deletion errors, mutation errors, and insertion errors may all
occur. For, suppose that the symbols transmitted over the channel are 0, 1, and
A (where A denotes that nothing is sent), and that the elements of the input
sequence X are Os and 1s. Now any sequence of messages in {0,1, A\}* sent by
S may be changed by the communication channel to any other sequence of the
same length as the original.

Halpern and Zuck did however solve the sequence transmission problem for
communication media where any two kinds of the above-mentioned errors occur
together. In order to do this, they used for each combination of two errors a



special encoding of messages ensuring unique decodability and error detection.
Thus, the knowledge-based protocols A and B were implemented in different
ways to solve the sequence transmission problem in different kinds of communi-
cation media. (See [6] or for more background [9, 5]).

In this paper it is our goal to use epistemic methods to model and analyse
some important aspects of a protocol that is actually used in today’s technology:
the Transmission Control Protocol (TCP). Because this protocol is hardwired
into today’s Internet it is at present probably the most frequently used protocol.
The epistemic analysis of TCP will be done in much the same fashion as has been
done with other protocols in the past. Before doing this we will have to abstract
from technical aspects that are irrelevant for our analysis. We will eventually
acquire a knowledge-based protocol, represented by a simple algorithm. As we
shall see, this algorithm beautifully demonstrates the windowing principle used
by TCP.

The analysis of this algorithm yields some interesting results. We will show
that the depth of knowledge the sender and receiver can accumulate about
messages that are sent is dependent upon the length of the tape and the position
of information on the tape. If an infinite tape models the transmitted data, the
following can be shown. For any n and any piece of data on the tape, at some
point n-fold depth of knowledge arises about the message, although common
knowledge can never be achieved. Another interesting aspect of TCP is that
it may almost be viewed as a generalisation of protocol B - but not quite, as
protocol B uses only a finite message alphabet and the knowledge-based protocol
for TCP does not.

The rest of the paper is structured in the following way. Section 2 gives
a short introduction to the Transmission Control Protocol and its role for the
Internet. In Section 3, we present knowledge-based algorithms that model TCP.
Section 4 contains an epistemic analysis of these algorithms, giving bounds on
the state of knowledge achieved by sender and receiver. Finally, Section 5 gives
some conclusions.

2 The Transmission Control Protocol

In this section we will discuss the history of the Internet, and the role which
TCP plays in it. The birth of the Internet as we now know it goes back as
far as 1969 [10]. It was then that the U.S. Defence Department sponsored the
development of the Advanced Research Projects Agency Network (ARPANET).
The ARPANET consists of four layers. The lowest one is called the Network
Interface Layer and comprises the physical link between devices. The second is
the Internet Layer, which insulates hosts from network-specific details. The In-
ternet Protocol (IP) was developed for this purpose. The third layer, the Service
Layer, is very important because it guarantees that packages are delivered. Two
protocols were developed for the Service Layer. TCP was introduced in 1973
and is used when a very reliable delivery is requested. The User Datagram Pro-
tocol or UDP, the counterpart of TCP, is used when the reliability requirements
cannot be met. The combination of the TCP and IP protocols, called TCP/IP,
is so frequently used that they are almost always found together. In this article
we will only discuss TCP. The highest layer is the Process/Application Layer,
which supports user-to-host and host-to-host processing. This layer includes ap-



plications such as Telecommunications Network (TELNET) and File Transfer
Protocol (FTP).

The Internet meets a lot of problems when it comes to the correct delivery
of a package from one computer to the other. First of all it should facilitate
communication between a wide variety of servers, operating systems, and Inter-
net browsers. This part is taken care of by the IP. It also has to deal with the
limited capacity a network might have, and with possible deletion and reorder-
ing problems that may arise from overloading such a network. TCP does not
only deal with these problems, but it also provides efficient use of a network,
adapting transmission speed to the network load.

Note that TCP is a communication protocol, not a piece of software. Thus,
the protocol does specify the format of the data and acknowledgements that
computers exchange as well as the way computers initiate and complete a TCP
stream transfer. On the other hand, TCP does not dictate the details of the
interface between an application program and TCP itself [4]. This gives a pro-
grammer flexibility when implementing TCP for a particular computer’s oper-
ating system. At the same time, the high-level specification of TCP makes it
amenable for an analysis using epistemic logic, as we shall see in the following
sections.

3 Implementation of TCP

Now that we have a better understanding of what TCP’s role is in the Internet,
and the problems it encounters in playing this role, we proceed by explaining
the techniques it uses to cope with these problems. We will see that data
is segmented and sequenced to solve insertion errors. Furthermore, data is
acknowledged, enabling the TCP to spot deletion errors. Probably the most
striking feature of the TCP is the sliding window. This window is not essential
for a correct delivery of data, but it enables TCP to make use of the network in
a very efficient way.

3.1 Segmentation of the Application data

The first problem that TCP encounters in correctly transmitting data across
a network is the size of the data, called Application Data, to be transmitted.
Often networks have a Maximum Transmission Unit (MTU), that determines
the maximum size of a unit of data that is sent across the network. Its value can
be set by the network designer, and a common value is 1500 bytes. Application
Data is almost always larger than the MTU !. To enable the transmission of
these large chunks of Application Data, they are divided over several smaller
units.

A TCP-header is added to these smaller units, which will now be called
segments. Their maximum size is determined by the Maximum Segment Size
(MSS). The TCP-header (20 bytes) contains information about the source and
destination port, sequence numbers, acknowledgement numbers, and a lot more.
The specification of ports ensures that data arrives at the right place. Because
the data does not always arrive in time, the sequence and acknowledgement

1For example, to download the Postscript version of this article, TCP has to send 0.54Mb
across the Internet. This is more than 350x an MTU of 1500 bytes.



number are included to specify which part of the Application Data this Data-
gram encapsulates. This is TCP’s way to deal with insertion errors. Not all the
information in the header is always used. Certain flags can be switched on or
off to indicate if a certain field contains relevant information.

IP-headers (another 20 bytes) are also added to these segments, convert-
ing them into IP-Datagrams, which are sent over the network. Note that a
Datagram may never be larger than the MTU 2.

Before the Datagrams are sent over the network, a connection between the
computers must be established. During this connection setup phase some agree-
ments are made between the sender and the receiver about certain parameters
and offsets. One of the offsets is the sequence number. Both sender and receiver
have an internal parameter that counts the number of bytes that have been sent
or received. They do not have to start at zero, and the sequence number of the
sender and the receiver do not have to coincide.

3.2 Acknowledgements and Retransmission Time-Out

Once Application Data is being transmitted, other problems arise. Datagrams
might get lost on the network. In order for the sender to know whether a Data-
gram has arrived or not, the receiver sends acknowledgements of Datagrams.
The way this is done is shown in Figure 1. Suppose the sender is sending the
Roman alphabet, and every segment contains exactly one letter as Application
Data. An example Datagram may contain sequence number ‘0’ and Application
Data ‘A’. Assume that sequence numbers for both sender and receiver are 0 at
the start of the transmission. Once the receiver has received this Datagram, it
will acknowledge it by sending a Datagram with the acknowledgement field set
to 0, because all the Datagrams up to 0 have been received correctly?.

If a Datagram gets lost on the network (by a deletion error), it never reaches
the receiver, who will thus not acknowledge it. Note that the receiver will keep
sending acknowledgements of a previous Datagram. If the sender has to wait too
long for an acknowledgement of a certain Datagram it assumes that a deletion
error has occurred, and re-sends it. The time the sender waits before re-sending
a Datagram is called Retransmission Time-Out (RTO). The process is shown
in figure 1. The RTO is implemented by starting a retransmission-timer as
soon as the Datagram is sent, like winding up an egg-timer. The computer
keeps track of these timers, incrementing them in real-time. If a timer reaches
RTO (the egg-timer rings), the Datagram it belongs to is re-sent, and the timer
is reset (the egg-timer is rewound). If an acknowledgement of a Datagram is
received before the RTO is reached, it is assumed that all the messages up to this
acknowledgement have been transmitted correctly, and the timer is no longer
needed. In figure 1 the first Datagram arrives correctly and is acknowledged;

2Since a IP-Datagram may never be larger than the MTU, and the segment size (data
plus TCP-header) is always the size of the IP-datagram minus 20 bytes (for the IP-header),
the MSS may never be larger than the MTU minus 20 bytes. If the MTU is 1500, than the
maximum MSS value can be 1480. Often the MSS is chosen to be 1024, which is well within
this 1480 range.

3Tf all the packages up to n have been received, TCP will actually send a ‘request’ for
package n + 1 instead of an acknowledgement of n. Since requesting package n + 1 implies
that all the packages up to n are known, the two requests are functionally equivalent. We will
use the terminology of acknowledgements to enhance our knowledge-based approach. In the
TCP-literature, the n + 1 form is always used.
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Figure 1: Acknowledging and retransmitting Datagrams

as soon as the sender receives the acknowledgement, the second message is sent
and a new timer is started.

Modern versions of TCP have ingenious methods of estimating the RTO for
optimal use of the network. This is done by measuring the Round Trip Time
(RTT), the time between sending a Datagram and receiving its acknowledge-
ment. See [4] for a good description of how the Round Trip Time is used to
estimate an appropriate RTO. Other versions allow the network designer to
specify the RTO. In these versions the RTO does not change during transmis-
sion.

3.3 Sliding Windows

The implementation of TCP we have seen so far is much like a hardware version
of Halpern and Zuck’s protocols A and B, in which the sender sends one package
only, and just resends it until the receiver has successfully acknowledged it
(see [6, 9] for a more detailed account). These protocols are reliable, but do
not take into account the restrictions that a real-life network imposes on data
transmission.

A basic problem is that transmission of receiver acknowledgements in one
direction might hold up the flow of data in the other direction [12]. The data
being held up is the actual Application Data the receiver is requesting with its
acknowledgements! Protocol A and B ignore this problem. For every message
sent by the receiver, at least one acknowledgement has to be sent. This one-on-
one transmission would be highly inefficient on a real network.

Another network issue is that, although the MTU is the maximum size of a
transmission unit, a network is often capable of coping with a sequence of units



if they are separately sent with short intervals between them. Protocol A and
B certainly do not make use of this feature, since they sequentially only send
one message at a time.

TCP counters these real-life networking problems with a beautiful solution:
sliding windows. Sliding windows allow TCP to send more than one Datagram
at a time [3], without having to wait for acknowledgements. Which series of
Datagrams are to be sent is determined by a window which is placed across the
segments.

In figure 2, the window is represented by a box, enclosing the first four
segments. In this example segments 0/1/2/3 (again containing letters of the
Roman alphabet) may be sent without waiting for any acknowledgements. The
efficiency in this method lies in the fact that the receiver can acknowledge mul-
tiple Datagrams with one acknowledgement. If it receives 0/1/2/3 for instance,
as shown in figure 2, it will only acknowledge the Datagram with the highest
consecutive sequence number, in this case 3.
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Once the sender receives this acknowledgement, it knows that the receiver
has received the first four Datagrams. This is where the sliding takes place.
Because the first four Datagrams have arrived, re-sending them is useless. For
this reason the sender’s window slides across the segments considered to be
done onto a fresh, unsent patch of data. Application Data is thus transmitted
Datagram by Datagram, but also window by window.

Yet another problem arising in data transmission is the limited buffer space a
receiver has for each connection. When running an Internet related application
on the operating system, incoming Datagrams (segments of Application Data)
are not directly sent to the application, but kept in an intermediate buffer. This
relieves the application from dealing with all the networking details. It only has
to access the internal buffer to get the Application Data it needs. The buffer is
constantly changing in size, because incoming Datagrams are added, while the
application is reading data from it. This means that at certain times it is able to
cope with more incoming data than at others. Based on the size of the buffer,
the receiver advertises a window-size. The more incoming data a buffer can
process, the larger the advertisement. This advertisement is sent along with the
acknowledgements. The sender can adapt its window-size accordingly. Usually,
the window-size is an integer multiple of the Maximum Segment Size. If the
MSS is 1024 for instance, common window-sizes vary between 0 and 4096 (0-4



times the MSS).

Two things should be mentioned in this context. First of all, if the receiv-
er’s buffer is incapable of handling any Datagrams, it will advise the sender to
make its window size 0, effectively shutting down the transmission. Transmis-
sion can easily be opened by the receiver by transmitting a new advertisement
with a window-size larger than 0. Another aspect that is important to our im-
plementation of the knowledge-based algorithms is that a sender cannot change
its window-size until the entire current window has been sent and acknowl-

edged [12].

4 The Knowledge-based algorithms

To give a knowledge-based interpretation of TCP we will first have to convert
the technical Internet language to knowledge-based terms. We will explain the
language we use, and justify certain simplifications.

4.1 Data format

First of all, in compliance with [6] we will consider our Application Data to be
a tape. The tape we use as an example in this article contains the alphabet.
Each letter on the tape is located at a certain slot, with an integer value (called
the position) as its reference. The letter ‘A’ for instance can be referred to by
position ‘0’ on the tape. When it doesn’t matter what the letter is, a or — is
used. We do not specify a MTU, but will set the MSS as being exactly one letter
on the tape. In this article we will not consider the connection setup phase. We
assume that the initial offsets and parameters are known to both sender and
receiver at the start of the transmission. The sequence numbers are 0 for both
at the beginning.

During transmission, TCP-headers are added to the Roman letters on the
tape. The TCP-header will not contain all the information it usually does. For
instance, since there is only one sender and one receiver, which we will often call
S and R, we do not need to include the source and destination port. We will
indicate who sent the message (the source port) by the subscripted knowledge
operator Kg or Kg. As sending a message implies in this context that one
knows what that message was, the knowledge operator is justified and enhances
our knowledge-based approach.

Our header will also include the window-size, which is always sent both ways.
Note the subtle difference between a window-size sent by the Sender and the
Receiver. The Sender sends the size of the window from which the package came.
The Receiver doesn’t send the actual current window-size, but the window-size
it would prefer at the moment.

No IP-header will be added, as this article only considers the TCP. We
will call the knowledge-based version of a IP-Datagram a package. Packages
have the format: Kg,g(position, data, window _size). Sometimes we will use the
useful abbreviation Ky, 5(position, data) to specify a package when the window-
size is not relevant (although actual packages will never be sent this way). Here
follow some examples of correct packages:

Ks(3,D,4): A message from Sender. Remember that K¢ at the beginning of
a message means that S is the source port, so the destination port must



be R. The message contains data-element ‘D’ at position 3 on the tape,
and the current window-size is 4.

Kg(6,—,2): Receiver acknowledges having received all the packages up to and
including the one with sequence number 6. Its buffer can now optimally
process two packages at a time, so the window-size advertisement is set to
2. The ’—’ indicates that there is no need for Receiver to send Sender the
Data, as Sender already knows this.

Another aspect that is worth mentioning is that if a tape is very long, the
position marker will become larger and larger. The first package might be (0, @),
whilst a latter package might be (1000, ). The first position requires one bit,
the latter ten. Luckily, our algorithm has infinite computing capacity. But the
Internet does not. The TCP-Header of the IP-Datagram always reserves 32 bits
to indicate the sequence number, or position. This allows more than 4 % 10°
sequence numbers to be generated, which is sufficient in practice. On the total
scale of an IP-Datagram, these 32 bits are not that substantial.

4.2 Modeling the TCP features

We have constructed a knowledge-based algorithm that models TCP using the
language used in the previous section.

In order to visualize how the knowledge-based algorithm of TCP works, we
have constructed an applet simulating the simplified case where the window-size
is kept constant [11]. The applet link in the upper menu of this page will take
you to an interactive applet that shows how the algorithms at work. A small
manual is added to explain the applet.

The algorithms incorporate the Retransmission Time-Out, window sliding
and varying window-size features that have been discussed in previous sections.
Comment is added in the algorithms to explain how they work. Presently some
more general issues concerning the algorithm will be discussed.

First of all we will only model versions of TCP that have a fixed RTO. We
feel that determining the RTO is really an issue of implementation, and should
be left out of the knowledge-based algorithms.

The algorithms assume that both Sender and Receiver have an internal clock,
though no global clock is necessary (or realistic). Resetting the local timer is
represented as timer = 0; from this moment it is assumed that the timer
increases in real time. For instance, if (timer == 1000) is true, this means
that 1000 ms or 1 second has passed since the timer was reset. Receiver only
needs one timer, because it only needs to send one acknowledgement at a time.
Sender needs more timers because it can send multiple packages. Its timers are
subscripted with a position, indicating which package is being timed.

Another aspect we feel is too hardware related to include is the ability of
Receiver to make an estimation of an optimal window-size by checking the input-
capabilities of its buffer. We assume that the system takes care of this and that
the algorithm makes an outside call to the system to get this estimation. This
call is called estimateOptimalWindowSize(). The choice of window-size will
have no influence on the proofs given in future sections, if we assume that infinite
window-sizes do not occur. The proofs can cope with any sequence of window-
sizes, either constant, random or generated by estimateOptimalWindowSize().



To guarantee fairness, however, we do assume that the window-size is infinitely
often greater than 0.

While protocol A and B do not have to function in real-time, we would like
to model real-time in our algorithms. For this reason, processing incoming and
outgoing packages is done separately, although the input and output sides of
the algorithms can share global variables. We feel that this is more true to
the nature of TCP. It is probably best to see the algorithm as real code (but
written in pseudo-code), in that every line of the algorithm can be processed
very quickly. The timers of course keep track of the real time.

4.3 The Algorithms

Before we present Sender’s and Receiver’s algorithms we will explain briefly
what the variables and functions refer to. All of the descriptions have been
given more elaborately in previous sections.

seqnumber : A sequence number.
acknumber : An acknowledgement number.
high_cons_seq : Used by R. Keeps track of the highest consecutive sequence
number of the packages it has received.
high_cons_ack : Used by S. Keeps track of the highest consecutive acknow-
ledgement number of the packages it has received.
window_size : The window-size.
offset : The offset of the current window. Only used by S.
latest_advert : Used by S. Keeps track of the most recent
advertisement the sender received.
estimate- A function that calls to the operating system. It returns
Optimal- : an integer that specifies what the best window-size would
WindowSize () be for the current state of the buffer.
time_out : The RTO or Retransmission Time-Out.
timer :  Timer used by R. Starts when an acknowledgement is sent.
timerse, : Timers used by S. The index refers to the package being

timed by this timer. Starts when that package is sent.

Sender’s algorithm: Incoming packages

1 while true do
{Get ready for receiving an infinite tape.}

2 when received Kr(ack_number,-,advertisement) do
{You have received a package. Prepare for processing.}
3 latest_advert = advertisement
{The last advertisement you have received is this one}
4 if (ack_number > high_cons_ack) do

{If this acknowledgement is higher than the highest consecutive
acknowledgement received so far....}

5 high_cons_ack = ack_number

{This is your new highest consecutive acknowledgement}
6 forall ack with (ack =< high_cons_ack) do

{For all the packages up to the highest acknowledgement }
7 store KsKr(ack,-,window_size)

{Store the fact that you know the receiver knows it.}
8 end
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end
{Acknowledgements updated.}
end
{Finished processing of incoming package.}
end

Sender’s algorithm: Outgoing packages
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window_size = 4
{Set initial window-size.}
time_out = 20
{Retransmission Time-Out (RTO). Common value is 20 ms}
offset = 0
{Start reading the tape at position 0}
while true do
{Start reading and sending tape}
forall seq with (offset =< seq < offset+window_size) do
{For all the packages in the current window}
read (seq,alpha)
{Read value from tape.}
store Ks(seq,alpha,window_size)
{Store information in your knowledge base}
end
{Tape within window has been read. Facts stored.}
while (high_cons_ack # offset+window_size-1)
{While not all the packages in the window have been acknowledged}
forall seq with (offset =< seq < offset+window_size) do
{For all the packages in the current window}
if —KsKr(seq,-,-) do
{If package ‘seq’ has not been acknowledged yet, }
if (timerg., >= time_out) do
{And its retransmission time has expired, }
send Ks(seq,alpha,window_size)
{Resend the package to the Receiver.}
timerse, = 0
{Reset the timer.}
end
end
end
end
{All the packages in the window have been acknowledged... }
offset = offset + window_size
{So slide the window!}
window_size = latest_advert
{Set the window-size to the last advertisement the receiver made}
end

10



Receiver’s algorithm: Incoming packages

1

while true do
{Get ready for receiving an infinite tape.}
when received Ks(seq_number,alpha,window_size) do
{You have received a package. Prepare for processing.}
store KrKs(seq_number,alpha,window_size)
{Store the received package in your memory.}
end
{Finished processing incoming package.}
end

Receiver’s algorithm: Outgoing packages

1

10

11
12

13

14

5

We will first describe some choices we made in modeling the sequence transmis-

when KrKs(0,-,-)
{Wait until the first message is received.}
high_cons_seq = 0
{Get ready for receiving an infinite tape.}
time_out = 20
{Retransmission Time-Out (RTO). Common value is 20 ms}
timer = 0
{Reset timer}
while true do
{Get ready to acknowledge packages}
while —Kr(high_cons_seq+l,-,-) do
{Still not received package with sequence number ‘high_cons_seq+1’}
if (timer >= time_out)
{Time to retransmit acknowledgement?}
window_size = estimateOptimalWindowSize()
{Estimate the best window-size for the state your buffer is in.}
send Kr(high_cons_seq,-,window_size);
{Send acknowledgement }
timer = 0;
{You’ve just sent a package. Reset the timer. }
end
end
{You have received message high_cons_seq+1!}
high_cons_seq = high_cons_seq + 1
{You now know the next message. Increment high_cons_seq.}
end

Epistemic analysis of TCP

sion problem for the Internet.

An important aspect of the model of sequence transmission given by Aho and
others and analysed in Halpern and Zuck’s paper, is that they assume message
transmission to proceed in synchronous clocked rounds. One may think of these
rounds as consisting of three consecutive phases: a send phase, a receive phase,
and a local computation phase. In their model, messages are received in the
same round as they are sent, if they are received at all, so reordering problems
do not appear [2]. This model is not adequate for studying TCP, where a global
clock is an unlikely assumption and reordering is one of the most important

11



problems to be solved. The model was relaxed by Halpern and Zuck to include
asynchronous systems, where S and R perform an action only when they are
scheduled. In order to assure liveness, it is assumed that S and R are scheduled
infinitely often [6]. We adopt this extension to asynchronous systems.

Like Halpern and Zuck, we also extend the model of Aho and others by
allowing messages to come from an alphabet larger than {0,1,A}. We even
assume that the strings for Ks(i,a) and Kg(i, —) are distinct for every value
of i, so either we need an infinite alphabet or the strings grow longer as i
becomes larger; we chooses the latter representation, as discussed in section 4.1.
This assumption is necessary to solve the sequence transmission problem in
communication media where reordering is possible. For example, suppose that
messages K¢(10,a) and Kg(1000, a) are represented by the same string and R
receives Kg(100,a) just after sending its acknowledgement about package 999.
Then, due to possible reordering problems, R will not be able to decide whether
it is a new message or an overly late version of K¢(10,a).

When proving properties of knowledge-based protocols, it is usual to make
use of a semantics of interpreted systems representing the behavior of the two
processors over time (see [6, 9, 8]). We give a short review here. When modeling
distributed systems, it is usual to make the assumption that at each point in
time, each of the processors is in some state, which is referred to as its local
state. All of these local states, together with the environment’s state, form
the system’s global state at that point in time. These global states will be the
possible worlds in a Kripke model. Thus, if one represents the global state as
a vector of the local states, a system consisting of two processors R and S in
environment e may be in global state s = (s, sgr,ss), where sg and sg are
the local states of the two processors; in our asynchronous environment, such
a local state may be represented as the sequence of distinct observations of
the processor. As mentioned, the state of the environment is also included in
the global state; it consists of those aspects of the distributed system that are
relevant to an analysis of the problem at hand but that are not part of the local
states of the processors. The accessibility relations are defined according to the
following informal description of “knowledge” of a processor. The processor
R “knows” ¢ if in every other global state which has the same local state as
processor R, the formula ¢ holds. In particular each processor knows its own
local state.

A run is a (finite or infinite) sequence of global states, which may be viewed
as running through time. Notice that time here is taken as isomorphic to the
natural numbers, or a finite part of them. Because we do not want to demand a
fixed time bound on the TCP process from the beginning, we allow time to run
over the set of natural numbers. Note that there need not be any accessibility
relation between two global states for them to appear in succession in a run.

5.1 Correctness result

The algorithms implementing the knowledge-based protocol in section 4.3 can
solve the sequence transmission problem in communication media where deletion
errors and reordering errors, but no other kinds, occur. Formally, this can be
proved using a semantics of interpreted systems I (i.e. sets of runs) that are
consistent with the knowledge-based protocol.

12



Theorem 1 Let I be an interpreted system consistent with the knowledge-based
protocol given in section 4.3. Then every run of I has the safety property and
every fair run of I has the liveness property.

See the introduction to this paper for definitions of the notions of safety,
fairness, and liveness. Intuitively, safety for TCP is obvious since R writes a
data element only if it knows its value. Assuming fairness, one can show the
window eventually slides over every cell of the tape, thus that every message
eventually arrives and is written by the receiver.

A formal proof of such a correctness result is still quite long and complicated,
however, and we do not give it here (see the journal version of [6] for very similar
proofs).

5.2 Accumulating knowledge

In the first knowledge-based algorithm studied by Halpern and Zuck, protocol
A, the sender S needs explicit depth 4 knowledge of the form KsKrKsKpg(x;)
before sending the next data element z;y; to R. In addition to protocol A,
Halpern and Zuck constructed protocol B in which S does not need to wait
until it attains depth 4 knowledge before sending the next message. It was
shown, however, that S eventually does attain such knowledge, in particular,
S knows that always if R writes x;11, then R will know that S knows that R
knows z; (see the conference version of [6]).

In this subsection, we show a stronger result for the TCP algorithm. In fact,
using TCP, the sender and receiver accumulate more and more knowledge about
messages sent previously: when the window has moved n complete window sizes
past the i-th package on the tape n knowledge of that package is attained by
both participants (the receiver knowing even a bit more). For example, after
the window has moved two complete window sizes, the receiver knows that the
sender knows that the receiver knows that the sender knows that the receiver
knows that the sender knows the first data element, or formally (KrKs)3(0, a).

The result holds in communication media where there may be deletion and
reordering errors, but no other kinds of error. In particular, there should be
no undetected mutation and insertion errors. We conjecture that an analogous
result could be proved for communication media with different combinations of
errors, e.g. a combination of reordering errors and (detectable) mutation errors,
by using encoding techniques as in [6]. We have not investigated these other
combinations further here.

Before we can present the theorem we will have to explain the concept of
a sequence of windows. Since S and R have recorded packages in which the
window-size was included, they can easily deduce which package has come from
which window. Using this information they can construct a trace of all the
windows that have been used. We will call this trace a sequence of windows. In
figure 3 we show how the sequence of windows can be reconstructed from the
knowledge-base.

Knowing the sequence of windows allows us to express every position as a
certain number i plus a summation over previous window-sizes. We formulate
this as follows:

p:i-i—E?:le withi>0and n >0
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Figure 3: Reconstructing a sequence of windows

Here, p is the position of a package that has been received, n specifies the
number of windows used, and w; is the window-size of the j-th window in the
sequence of windows. The values of w; can be found at the right of figure 3. We
will show the summation process for package 7. The position 7 of the package
can be expressed in four ways.

n:Oandi:?givesp:?—kZ?:le =7+0=T;
n=1landi=4gvesp=4+3  w;=4+3=T;
n=2andi=2gvesp=2+3_ w; =2+5="T
n=3andi=1lgvesp=1+3Y_ w;=1+6="T;
We will use this way of expressing a position as a summation over the window-
sizes plus a value i in the proof.

We will also need some definitions in order to formulate and prove the result
formally.
Definition 1 We use the following abbreviations and temporal notation:
a is a variable that can be any letter of the Roman alphabet.
B is a variable that can be any integer.

Kg(n,a) stands for Kr(n,a, ) (leaving out the window-size.)
similarly for Ks(n,a).

Kg(n,a) stands for “R knows that the n-th data element is o”;
similarly for Ks(n,a).

Kg(n) stands for “R knows the value of the n-th data element”;
similarly for Ks(n).

The temporal operator O stands for the future operator on a run, and includes
the present state; thus, Op stands for “p holds now and at all moments in future
on this run”. Note that we do not really include temporal logic in the epistemic
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language with which we describe agents’ knowledge at states. We simply use
some facts we know from temporal semantics in our proof, in order to describe
the processors’ behavior on appropriate runs.

Theorem 2 Let R be any set of runs where:

e the environment allows for deletion and reordering errors, but no other
kinds;

o The safety property holds (so that at any moment the sequence Y of da-
ta elements received by R is a prefix of the infinite sequence X of data
elements on S’s input tape);

e S’s state records all data elements that it has read and all acknowledge-
ments that it has received;

o R’s state records all the data elements it has written.

Let w; be the window-size of the j-th window in the sequence. Then for all
runs in R and all n > 0,1 > 0 the following hold:

[Forth]: R stores KpKs(i+ Y7, wj,a) = O(KpKg)" ™ (i, ).
[Back]: S stores KsKr(i+ 7, wj,—) = OKs(KrKs)" "' (i).

Before we give a formal proof, we will try to give an intuitive feel of the
knowledge the sender and the receiver can accumulate about each other with
respect to the packages. First of all S will know a package (i, @) as soon as it has
been read from the tape (Kg(i)). R knows a package (i, ) when it is received
(Kg(i)). A package received by R must have been read by S, so R also knows
that S knows the package (KrKs(i)). When S receives an acknowledgement
of a package, S knows that R has received it. The sender can deduce KrKg(i)
from this (thus KsKrKg(i)). This is actually the case when n is chosen to be
Zero.

Now we reach a more interesting case (n = 1). We will show what R can
deduce once it receives a package Kg(i +wj, «), in which wj is the size of the j-
the window in the window sequence. R will reason like this. If S has sent Kg(i+
wj, ) then its window must contain (i + wj, ). A window with size w; that
contains (i +wj, @) cannot also contain (i, ). Apparently S has already shifted
its window past (i,«). S would only have done this if it had received Kg(i)
from R. Since R now knows that S has received Kg(i), and that (as we showed
above) S would deduce KsKprKg(i) from this, R can deduce Kr KsKrKg(i).
It also works the other way around. Once S receives Kg(i + w;) it knows that
R has received Ks(i + wj,a). S knows that R will deduce KrKsKrKs(i)
from this package (as above), thus KsKrKsKrKg(i). Thus, the further the
tape-transmission progresses, the more information can be deduced about all
parts of the currently read tape.

All these deductions rely on a simple reasoning mechanism. Suppose you
are the Sender or Receiver and you receive something. This implies that the
other must have sent it at some time in the past. If the other has sent it,
the other must know it (then and now). I now know that the other knows it.
Half-formally, we have the following (same holds for S):

if R receives ¢ then K (S has sent ¢), so Kg(S knew/knows ¢),
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therefore KrKgo.

Proof We prove the theorem by induction on n. In the proof, we freely use
three general principles.

First, a principle from tense logic: P(Oy) — O, where P stands for “some-
time in the past on this run”.

Second, R and S are assumed to store all relevant information from their
message history. Thus, if R knows a positive modality (like KsKrKg) about
data elements now, it will know it always in future, i.e. Kr(p) — OKg(p) for
appropriate ¢, and similarly for S. This is implied in the algorithms, in which
S and R actively ’store’ their knowledge in memory.

Third, messages sent have the format Kgr¢ or Kg¢. When S/R receives
this, it kan be interpreted beyond the simple format of data. The knowledge-
operator actually acknowledges that fact ¢ is known to the one who sent it,
now and in the future (previous principles). This is why KrKsd or KsKgro
is stored directly after receiving a message. This receiving/storing combination
is epistemically justified, and made quite explicit in the algorithms. Conclusive
(similar for S):

if R receives Kg¢, then R stores KpKg¢p, so KrKg¢, thus OKrKg¢

n=0 The third principle basically provides us with the Forth-part of the the-
orem for n=0.

R stores KRKS(i, a) — DKRKS(i, Oé)
Furthermore, R will only send an acknowledgement of a message if it has

been received, and thus, is known. Using the first and third principle we
derive:

if R sends Kg(i), then P(R receives Kg(i,)), so POKpKg(i, ),
thus OK g Ks(i, a)

S only stores acknowledgements if they have been received. If S receives
an acknowledgement, it knows that R has sent it in the past.

if S stores KgKpg(i) then KsP(R sends Kg(i)) so ...

We can now use one of the previously proven facts, as well as the second
principle to derive:

. s0 KgP(R sends Kg(i)), so KsP(OKrKs(i)), thus KsOKpKs(i),
therefore OKsKgrKg(4)

By combining this long sequence of consequences (using the hypothetical
syllogism), we get exactly the Back-part of the theorem for n=0.
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induction step Suppose as induction hypothesis that Forth and Back hold
for k£ — 1, where k£ > 1. We will prove that Forth and Back hold for &
itself.

Because S only moves its window forward after it has received acknow-
ledgements about all data elements in the window, we have the following:

k k—1
S sends (i + ij,a) — P(S stores KgKpg(i + ij)).
j=1 j=1

We may combine this fact with the Back-part of the induction hypothesis
and the first general principle to derive:

k
S sends (Z + ij,a) — DKS(KRKS)k(i).

Jj=1

R knows the above fact. Now if R receives a data element with position
marker Ele w; from S, it knows that S has sent it sometime in the
past which implies by the above fact and our two general principles that
OKrKs(KrKs)*(i). Thus, we have

k
R stores KrKs(i + ij,a) — O(KrKs)" (i),
=1

which is exactly the Forth-part of the theorem for n=k.
As in the base case, R sends an acknowledgement about the ¢ + 25:1 wj-

th data element only if it stored KrKgs(i + 2?21 wj,—) in the past, so
we derive by our first general principle:

k
R sends Kg(i + ij, —) = O(KpKg)*(i).
j=1

S knows the above fact, so if it receives an acknowledgement about the
1+ 25:1 w;-th data element, it knows that R has sent this in the past, so
by the two general principles we conclude:

k
S stores KsKg(i + ija —) = OKs(KrKs)* (i),
=1

which is exactly the Back-part of the theorem for n=k.

We assumed from the start that the input tape is infinite and that infinitely
many messages from R to S and from S to R are delivered. Thus, the above
theorem shows that for any n and any message, depth n knowledge of that mes-
sage will eventually be reached. Subsection 5.4 shows that common knowledge
of the message remains nevertheless out of reach. In fact, the upper bound on
the depth of knowledge on messages turns out to be quite close to the lower
bound.
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5.3 Comparison with protocol B

As mentioned in the introduction, TCP could inexactly be viewed as a gen-
eralisation of Halpern and Zuck’s protocol B, by allowing other windows than
of size 1. As a reminder, the knowledge-based protocol B is given here in a
presentation similar to the one in [9]:

Protocol B Sender’s algorithm:

1 i := 03
2 while true do
3 begin read(z;);
{Read the package with position ‘i’ from the tape.}
4 send(z;; “KsKpr(wi—1)”) until KsKg(z;);

{Send a combined message of the data element you have just read
and an acknowledgement of R’s last acknowledgement (none if i=0).}
5 i=1i+ 1;
{Set pointer ‘I’ to the next position on the tape.}
6 end

Protocol B Receiver’s algorithm:

1 when Kgr(wo) set i:=0;
{You can start the algorithm when the first data element has been received.}
2 while true do
{After the initialisation has taken place, get ready to receive the tape.}
3 begin write(z;);
{Write the received data element with position i to your output tape.}
4 send “Kpg(z;)” until Kgr(wiy1);
{Send an acknowledgement of the last received package.}
5 i=1i+ 1;
6 end

In the special case where TCP operates with constant window-size 1, it
will send one package at a time and the window may only be shifted if the
acknowledgement for this package has been received, exactly as in protocol B.

However, there is an important difference between the two algorithms as
well. When implementing protocol B, a finite message alphabet is used so that
e.g. the “KsKg(x;_1)” messages are not distinct for all values of i. For protocol
B, which is meant to work in environments where reordering problems do not
occur, this does not present a problem. Afek and others have shown, however,
that protocols using only a finite message alphabet can never solve the sequence
transmission problem in environments where both reordering and deletion errors
may occur, see [1]. Thus it is essential that our knowledge-based protocol for
TCP uses an infinite message alphabet or messages growing in size.

In the preceding section we discussed Halpern and Zuck’s result about the
eventual attainment of depth 4 knowledge when using protocol B. It is surprising
to note that their result can be strengthened to eventual attainment of depth n
knowledge, similarly as for TCP. Because of the problems mentioned above, it
is an essential condition that no reordering problems occur. We also make the
usual assumption that for any 4, the message that encodes (x;11; “KsKg(z;)”)
sent by S is different from the code of its predecessor (z;; “KsKg(z;—1)”), and
that R’s message encoding “Kg(x;41)” differs from the code of the previous
“KR(I‘i)" .
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Theorem 3 Let R be any set of runs consistent with knowledge-based protocol
B, where:

e Messages are never reordered;

e The safety property holds (so that at any moment the sequence Y of da-
ta elements received by R is a prefix of the infinite sequence X of data
elements on S’s input tape);

e S’s state records all data elements it has read and acknowledgements it
received;

e R’s state records all the data elements it has written.
Then for all runs in R and all n > 0,i > 0 the following hold:
[Forth]: R writes v;1, — O(KrKgs)" ! (x;).

[Back]: S receives “Kg(zi+n)"— OKs(KrKg)"1(i).

Proof By induction on n. The proof is a simpler version of the proof of theorem
2 with a fixed window-size of 1, as is the case in protocol B. In other words, for
all 7, we assume w; = 1.

Using this, we rewrite the summation over the window sequence as:

>i—qwj =37y 1=n. Replacing >3-, w; with n in the proof of theorem 2
and rewriting the messages (where sequence number and window-size are left
out) gives us the proof of theorem 3.

The extra condition of this theorem, namely the absence of reordering prob-
lems, enables S and R to correctly interpret the position of new incoming mes-
sages. For example, suppose that R has already written data elements in the
positions 0, ..., on its output tape and it receives a message from S that differs
from S’s previous message. Then R will interpret the new message as (z;11;
“KsKpg(z;)”), even though ¢ is not explicitly encoded in the message, in con-
trast to the case for TCP. If there would be reordering problems, on the other
hand, R would have no way to “know” the messages it received, because two
different messages (2;41; “KsKr(2;)”) and (xj41; “KsKr(x;)”) (for example,
for i=10 and j=1000) could look the same to R.

Note that for n=1, theorem 3 gives the depth 4 knowledge that was shown to
be eventually attained in the conference version of [6].

5.4 Negative result: bounds on the depth of knowledge

In subsection 5.2, we proved that for any n, an n-fold depth of knowledge about
messages among R and S is eventually realized when using TCP. This might
lead one to hope that also infinite depth knowledge, that is, common knowledge,
might be attainable when using TCP. However, even when using TCP, the two
processors will at any moment only have a finite depth of knowledge about
each message passed between them. The exact bound is given by the following
theorem.

19



Theorem 4 Let R be any set of runs consistent with the knowledge-based TCP
protocol. Then for all runs in R and all n > 0,m > 0 the following hold:

[Bound-forth]:

m m+n m
R stores KRKS(Z wj; + Z wj, o) = —'KS(KRKS)nH(Z w;).
j=1 j=m+1 j=1
[Bound-back]:
m m—+n m
S stores KSKR(Z wj + Z wj,a) = = (KpKg)"*( Z
j=1 j=m+1 =1

Proof We prove the theorem by induction on n. In the proof, we freely use two
general principles. The first is that R and S obey positive introspection, i.e.
Krp - KrKgrp and Kgp — KgKgp are valid. We use the contrapositions
of both principles below, e.g. “KgKg1 — = Kgt. The second principle, well-
known from modal logic, is that if ¢ — ) is valid, then so are both ~KgKg—¢p —
ﬁKRKS—I’gZJ and ﬁKSKR—Icp — ﬁKSKR—I’gZJ.

n=0 In this case the sum 7" w; + E;ntf_‘_l w; reduces to 337" wj. It is

clear that at the moment R stores KRKS(E _, wj,q), then, according
to the algorithm, R has not yet sent any acknowledgement about this
data element to S who cannot know about it in any other way, so indeed
ﬁKS(KRKs)(E;nZI wj), which is the Bound-forth-part of the theorem
for n=0.

On the other hand, at the moment that S stores KSKR(ETzl wj, ), then
according to the algorithm S has not yet moved its window past the one
containing position E _, w;. But the only way for R to know that S has
received any of its acknowledgements about the positions in the present
window is if it noticed that S has slid the window further on. Thus, R does
not know that S received any of its acknowledgements about the messages
from the present window, in particular —IKRKSKRKS(Egnzl w;), which
is the Bound-back-part of the theorem for n=0.

induction step Suppose as induction hypothesis that both Bound-forth and
Bound-back hold for k£ — 1, where £ > 1. We will prove that Bound-
forth and Bound-back hold for & itself.
m-+k

Suppose that R stores KpKs(3 5L, wj+3 70" wj, ). Then, according
to the algorithm, R has not yet sent any acknowledgement about this
position. Therefore, S does not know that R knows that the window has
moved past the position at the beginning of the previous window location,
namely (E;n:l w; +E;nté”+11 w;). Let us suppose that the data element at
that position is 4. Now S holds it for possible that R holds it for possible
that S is at the very moment storing KSKR(Z _Lwj + E;nt,]f;ll wj, ),

or formally,

m m+k—1
-~ KgKpr—(S stores KSKR(Z w; + Z wj, B)).
i=1 j=mt1
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By the Bound-back part of the induction hypothesis, we have

m m+k—1 m
S stores KSKR(Z wj + Z wj, B) — _‘(KRKS)k+1(Z w;).
j=1 j=m+1 j=1

Applying the second principle to the above two formulas now gives

m

~KsKp(KpKs) ™' (Y w)).

j=1

This reduces by the positive introspection principle for R to

—Ks(KrKs) ™ (D w)),

j=1
which is exactly the Bound-forth-part of the theorem for n=k.

Now suppose that S stores KsKr(>_7, w; +Z;n:+n]f+1 wj, ). Then R has

not received any data element from the next window yet, so R does not

know that S received any acknowledgement about the present window.

Thus, R holds it for possible that S holds it for possible that R is at the

very moment storing KRKS(Z?LZI w; + Z;n:t,]f_,_l wj, ), or more formally,
m m+k

- KrKs—(R stores KRKS(Z wj + Z wy, B)).
j=1 j=m+1

Now by the the Bound-forth-part for n=k that has just been proved, we
have

m m+k m
R stores KRKS(Z wj + Z ,8) = _'KS(KRKS)k+1(Z w;).
j=1 j=m+1 Jj=1

Applying the second principle to the above two formulas now gives

~KRrKs=Ks(KpKs)" ™ () w;).

=1

Thus, by positive introspection for S, we have —r(KRKg)k“(Z;-”:l w;),
which is exactly the Bound-back part of the theorem for n=k.

As in the positive case, this negative theorem may be adapted for protocol B
by taking a constant window-size of value 1, as follows (we leave the adaptation
of the proof to the reader).

Theorem 5 Let R be any set of runs consistent with the knowledge-based pro-
tocol B. Then for all runs in R and all n > 0,m > 0 the following hold:

[Bound-forth]: R writes xy1pn — " Ks(KrKgs)" ™ (z).

[Bound-back]: S receives “Kg(zmin)” = ~(KrKs)"2(m).
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6 Conclusions

In this article we have shown that an essential body of a real-life protocols
such as TCP can be modeled by knowledge-based algorithms. These algorithms
can be analysed to determine the robustness of the protocol. The following
questions can then be studied. Can mutation, deletion or insertion errors be
handled by this protocol? If not, what are the practical consequences? How
much knowledge can the protocol attain about delivered data?

One of the results of this analysis has been the proof that the sender and
the receiver using TCP can acquire depth n knowledge about the values of the
messages for any n. The proof technique can also be applied to protocol B,
one of the first protocols that were analysed using epistemic logic; thus far, it
was assumed that protocol B would give rise to knowledge up to a depth of
only four. On the negative side, it had been proven that protocol B could never
ensure common knowledge between the sender and the receiver. We have shown
that this result also holds for TCP, by giving specific bounds on the depth of
knowledge at each moment of data transmission.

As to further research, it would be interesting to investigate whether the
correctness results of section 4 may be extended. We conjecture, for example,
that an environment with any two kinds of deletion, mutation, and insertion
errors can be handled by implementing the knowledge-based algorithm for TCP
using encodings similar to [6].

Applying knowledge-based techniques to other protocols could also yield
interesting results. The User Datagram Protocol mentioned briefly in section 2,
for instance, might have an entirely different epistemic character, as it has not
been built to guarantee a perfect delivery.

The Internet has been the subject of our research, but also the means by
which some of the results have been presented. The Internet has proven to
be a useful tool in the clarification and visualisation of certain concepts. The
Internet and its techniques are readily available, so we hope it will inspire others
to do likewise.
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