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Abstract 

Computational modeling of cognition has provided many new 
insights into the human mind. In this paper, we use the same 
technique to advance our understanding of other, nonhuman 
minds: Those of corvids. This family of birds stores food 
under ground, saving it for later. This process of caching and 
recovery has been used to study many different aspects of 
corvid cognition, making it possible to build one integrated 
model that can be used to study many different cognitive 
phenomena. We start the construction of such a model by 
focusing on memory, and validate it by replicating three 
experiments by de Kort et al. Here, the caches of scrub jays 
are systematically stolen or moved, and the question is how 
this will affect their choice of cache sites. We use our model 
to reproduce the empirical data, and confirm its robustness by 
demonstrating that there are alternative outcomes that it could 
not have fit. In the process, we provide a new perspective on 
what exactly scrub jays may be learning and remembering. 

Keywords: Computational model; cognition; corvid; scrub 
jay; Aphelocoma californica; caching; memory; learning. 

Introduction 

Computational models of cognition have significantly 

advanced our understanding of the human mind (Sun, 

2008). Therefore, the same techniques hold promise for 

advancing our understanding of other, nonhuman minds. 

Essentially, what such models do, is to implement a theory 

of cognition as a working computer program, making it 

possible to very precisely test a theory’s assumptions, 

conclusions and predictions. In the field of comparative 

cognition, many questions are being asked about animal 

memory, learning and problem solving (Premack, 2007). 

Innovative experiments have produced a wealth of empirical 

data, but results can be difficult to interpret. Computational 

models offer one way of testing the plausibility of 

competing explanations (Penn, Holyoak, & Povinelli, 2008). 

Studies of jays, nutcrackers and other corvids - members 

of the extended family of crows - seem particularly likely to 

benefit from this approach. In terms of their cognitive 

abilities, corvids have been likened to apes: One species 

uses tools, another solves trap-tube problems, a third can 

infer hierarchical relationships (Emery & Clayton, 2004). 

But what makes corvids particularly attractive from a 

modeling perspective, is that some of the most interesting 

results have been obtained within a single experimental 

paradigm - that of caching and recovery. 

Virtually all corvids cache: They bury food items under 

ground, saving them for later. It can be days, weeks, or 

months before they return to eat them. This behavior has 

been extensively studied in the laboratory, and depends on 

memory. Corvids’ natural tendency to cache and recover has 

been used to study memory mechanisms, various kinds of 

learning, use of visual landmarks, future planning, and 

social cognition, among other things (de Kort et al., 2006). 

Usually, in these experiments, the birds are presented with a 

discrete set of cache sites to choose from, a number of 

visual landmarks, the presence or absence of a conspecific, 

and very little else. This means a uniform setup is being 

used to study a diverse set of cognitive phenomena, making 

it possible to validate a single computational model across a 

large variety of experimental results. 

In this paper, we start the design of such a model by 

focusing on memory, for cache and recovery events. To 

store these, we draw inspiration from the ACT-R cognitive 

architecture, and the way it uses chunks (Anderson, 2007). 

Here, a chunk is a declarative fact, stored in memory, with 

an activation that depends on its own history of use, as well 

that of related chunks. What this allows us to do, is to 

encode both a bird’s options and its memories as chunks, 

and to have the most active option chunk determine its next 

action. Then, if we let memory chunks affect the activations 

of option chunks, we can simulate how previous cache and 

recovery events affect future cache and recovery choices. 

We validate our cognitive model, and test its usefulness, 

by replicating three experiments by de Kort et al. (2007). 

This work features Western scrub jays, Aphelocoma 

californica, and looks at whether they learn to adjust their 

choice of cache sites in response to their experiences at 

recovery. In these experiments, a scrub jay in its cage is 

presented with a bowl of worms, and a number of visually 

distinct ice cube trays to cache in. After it has cached for 

fifteen minutes, all trays are taken away, only to be returned 

a day later, with all caches in one of the trays missing, or 

moved. This procedure is repeated across a number of trials, 

and the question is whether the scrub jay will change its 

caching behavior over time, and if it does, what the 

mechanism is. Is it responding to punishment, avoiding trays 

that are always pilfered, or is it responding to reward, 

preferring trays where it always finds its worms? Our 
computational model successfully reproduces the empirical 
data, and thereby gives a new answer to this question. 



We show that both punishment and reward may be at work, 
and that learning is likely to involve recall of specific 
caching events. A systematic exploration of our model’s 

parameter space confirms its robustness: First, there are 

plausible, alternative outcomes that it cannot generate, and 

second, there are no other initial assumptions that allow it 
to fit all three experiments. That is, with only punishment 
or with only reward, or with indiscriminate learning, our 
model always fails to match the birds’ performance. In this 

way, our computational model provides a new perspective 

on what exactly scrub jays may be learning and 

remembering, and serves as a suitable starting point for 

more comprehensive architectures of corvid cognition. 

Model 

Our implementation of de Kort et al.’s (2007) experiments 

consists of two components: A simulator and a cognitive 

model. The simulator runs the experiments, while the 

cognitive model is a computational theory of the cognitive 

processes under concern. We assume that three factors 

account for the caching and recovery behavior of corvids: 

First, that corvids experience inhibition to return to recently 

visited sites; second, that they form memories of caching 

events, which influence where they will recover, and third, 

that they form memories of recovery events, which influence 

where they will cache. Motivational processes, that govern 

whether the birds want to cache or recover at all, are not 

considered; we simply assume that they want to cache in 

caching sessions and recover in recovery sessions.  

The Basics of Chunks 

At our model’s core are two types of chunks: Option chunks 

and memory chunks. Option chunks represent the locations 

that are available for the bird to cache or recover in; 

memory chunks represent the actual cache or recovery 

events that the bird has experienced. Every chunk has at 

least two features, an identifier and an activation. A chunk’s 

identifier specifies which individual tray section it 

represents, in which particular tray. 

 A chunk’s activation Ai consists of three parts: Base-level 

activation Bi, spreading activation Si, and noise; see 

Equation 1. A chunk’s base-level activation Bi is computed 

according to Equation 2, following ACT-R’s equation for 

base-level learning (Anderson, 2007). Here, tj represents the 

elapsed time t since use j of chunk i, while d is a decay 

parameter. The weighing factor wi is determined by chunk 

i’s type, where the wo of option chunks is 1, and the wm of 

memory chunks is 2. This represents the idea that actually 

caching in a particular location is more memorable than 

simply deciding to cache there. The effect is that a chunk’s 

base-level activation depends on its frequency and recency 

of use, plus its type. A chunk’s spreading activation depends 

on the activation of other chunks, and will be discussed in 

the following sections. A chunk’s noise value is re-

computed every time it is evaluated, according to Equation 

3, taken from ACT-R, where n is a parameter that we tune, 

and r is a random value between 0 and 1. 
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The Structure of Sessions 

When our cognitive model is first initialized, its memory is 

empty, and the time is 0. Every subsequent caching or 

recovery event counts as one time step. 

 As soon as a caching session starts, the cognitive model 

encodes every individual section in every available tray as a 

cache option chunk. Every time it starts to cache, it 

computes the activation of all its cache option chunks, 

according to Equation 1, and selects the most active one; 

this causes the model bird to cache in the corresponding tray 

section, and counts as a use of that chunk. Once the 

cognitive model has selected its cache site, it caches there, 

and the corresponding cache memory chunk is given a use. 

Caching continues until the simulator asks the cognitive 

model to stop; this is determined by the average number of 

caches made by the real scrub jays in the same experiment. 

 A recovery session works in exactly the same way, except 

that it revolves around recovery option chunks and recovery 

memory chunks. Also, as we lack data on the number of 

recovery attempts made by the real jays, the simulator 

always prompts the model birds to try twenty recoveries, 

unless all caches are found before twenty attempts are made. 

Inhibition of Return 

To prevent the model birds from returning to recently 

visited sites, once a memory chunk is used within a session, 

it spreads negative activation, or inhibition, to the 

corresponding option chunk. See Equation 4 for recovery 

chunks, and Equation 6 for cache chunks.  To work out the 

case of Equation 6: The higher the base-level activation B of 

the cache memory chunk cmi, the lower the spreading 

activation S of the cache option chunk coi, and the smaller 

the odds that the model bird will return to that cache site. 

Knowing Where to Recover 

What allows the cognitive model to relocate its caches, is 

the fact that every cache memory chunk spreads positive 

activation to the recovery option chunk that codes for the 

same location; see Equation 4. This has the effect that the 

cognitive model is more likely to try and recover in cups 

where it has actually cached items. Given the noise present 

in the system, it can of course make errors, however. 
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Learning Where To Cache 

In de Kort et al.’s (2007) research, every experiment 

consists of multiple trials. Although every trial features new 

ice cube trays, with unique identifiers, the locations of trays 

are consistent across trials. A tray’s position is what predicts 

whether or not its caches will be stolen or moved by the 

experimenter. Our model, then, considers all trays placed in 

the same location to be equivalent. It learns by taking the 

outcomes of previous recovery attempts into account: All 

recovery memory chunks of which the bird is confident 

spread activation to cache option chunks which code for the 

same or neighboring tray sections. 

 Confidence works as follows: Once the cognitive model 

has received the simulator’s feedback concerning the 

outcome of a recovery attempt, it checks if it can remember 

actually caching in the current location. This process is not 

perfect; in trying to recall a cache memory chunk belonging 

to the exact tray section just probed, it can also accidentally 

retrieve a cache memory chunk for a section directly 

adjacent to it, either horizontally or vertically. Whichever of 

these eligible cache memory chunks has the highest 

activation will be selected for recall. Whether or not this is 

successful depends on ACT-R’s probability of retrieval 

equation (Anderson, 2007); see Equation 5. 
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Here, n is the same parameter that governs the noise 

production of Equation 3, and ! is a new parameter that 

governs the sharpness of the retrieval threshold. If a cache 

memory chunk can be retrieved, the new recovery memory 

chunk will have a confidence rating of 1; otherwise, it will 

have a confidence rating of 0. Once a chunk’s confidence 

rating is set, a new experience will not affect it. Thus, a 

model bird can only learn from a recovery experience if it is 

confident that it has cached there; only then is the fact that it 

has relocated a worm, or failed to relocate a worm, really 

relevant to where it should cache in future. 

What kind of activation a recovery memory chunk will 

spread, depends on its success; this is simply whether or not 

a simulated worm is found. Separate recovery memory 

chunks are kept for successful and unsuccessful recoveries. 

Successful recovery memory chunks spread positive 

activation; unsuccessful recovery memory chunks spread 

negative activation. This is summarized by Equation 6, 

where the expression rmi,s,c indicates a recovery memory 

chunk with identifier i, success s, and confidence level c.  
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(where T represents the set of chunks that code for direct 

tray neighbors of chunk i) 

 
 

Experiments 

To validate our cognitive model, we test it against three 

experiments from de Kort et al. (2007). For each 

experiment, we average the outcomes of 1000 model runs, 

using the parameter values of Table 1. The choice of these 

values, and their effect on the model’s performance, will be 

discussed in the section Parameter Search and Robustness. 

 

Table 1: Parameter values used in the experiments.  

 

 d, decay n, noise !, threshold 

experiments 0.10 0.35 3.00 

range 

searched 

0.05 – 0.5, 

by 0.05 

0.05 – 0.5, 

by 0.05 

1 – 3, 

 by 0.25 

Experiment 1 (Experiment 2b in de Kort et al. (2007)) 

In this experiment, the birds are presented with two ice cube 

trays, of which one is always replenished with fresh worms 

in the correct locations, while the other is pilfered and 

returned empty. Every caching trial, ten scrub jays may 

cache for fifteen minutes. When both trays are returned a 

day later, the birds may recover for ten minutes, finding one 

tray empty, and the other as they left it. This routine is 

repeated four times, with at least a day between trials, and 

unchanging locations for the replenished and pilfered trays. 

 

Real Bird Results, de Kort et al. (2007) As can be seen in 

Figure 1A, as trials progress, the scrub jays cache 

proportionally more worms in the replenished tray. 

Statistically, de Kort et al. (2007) find a significant effect of 

trial on the number of caches in the replenished tray, and a 

significant difference between the two trays on trial four. 

 

Computational Model Results Like the real birds, the 

model birds quickly learn to allocate proportionally more 

caches to the replenished tray. The learning curve of the 

model birds is similar to that of de Kort et al.’s (2007) scrub 

jays; see Figure 1A. 

 

 
 

Figure 1: Results, real birds, de Kort et al. (2007) and 

computational model; 1A: Experiment 1, 1B: Experiment 3. 



Experiment 2 (Experiment 4a in de Kort et al. (2007)) 

In this experiment, some caches are moved from one tray to 

another. Eight scrub jays are again presented with two trays, 

A and B, but now one of them, tray B, is unavailable for 

caching, as it is covered by a lid. A day later, during the 

recovery session, both trays are fully accessible. Now, the 

birds in the control condition find their caches returned to 

them in tray A, where they had left them; those in the 

experimental condition find their caches moved to tray B, 

with tray A now empty. After two such training trials, the 

birds are given a single test trial. It consists of one caching 

session, where both trays are fully accessible. 
 

Real Bird Results, de Kort et al. (2007) On the test trial, 

the birds in the control group cache more in tray A than in 

tray B, while those in the experimental group seem to prefer 

tray B over tray A, though this difference is not significant 

(de Kort et al., 2007; see Figure 2A). 
 

Computational Model Results As can be seen in Figure 

2B, on the test trial, the model birds distribute their caches 

in a fashion that is qualitatively similar to that of de Kort et 

al.’s (2007) jays. The most notable difference is in the 

control condition, where the model birds show a slightly 

weaker preference for tray B than the real scrub jays. 
 

 
 

Figure 2: Results for Experiment 2; 2A: Real birds, de 

Kort et al. (2007), 2B: Computational model. 

Experiment 3 (Experiment 4b in de Kort et al. (2007)) 

Like Experiment 2, this experiment involves movement of 

caches, but now using a third, neutral tray. It comprises two 

training trials, each consisting of a caching and a recovery 

session, and a single test trial, consisting of a caching 

session only. Every session, four birds are offered three 

trays, A, B and C. During the training trials, caching in trays 

B and C is not possible, as access to these trays is blocked. 

However, at recovery, the scrub jays find all their caches 

moved from tray A to tray B, leaving trays A and C empty. 

On the test trial, all three trays are available for caching. 

 

Real Bird Results, de Kort et al. (2007) This experiment is 

replicated twice with the same subjects, with the outcome 

redrawn in Figure 1B. In the test trial, the scrub jays make 

significantly less caches in tray A as compared to trays B 

and C, while trays B and C are used equally often, 

statistically speaking (de Kort et al., 2007). 

Computational Model Results Like the real scrub jays, in 

the test trial, our model birds cache approximately equally 

in trays B and C, and considerably less in tray A. A direct 

comparison can be found in Figure 1B. 

Parameter Search and Robustness 

All reported results are the product of the same parameter 

settings; see Table 1. These values were chosen after a 

comprehensive search for good fits, in all of the model’s 

plausible parameter space. However, as Roberts and Pashler 

(2000) point out, the fact that a theory with free parameters 

is capable of reproducing empirical data is not in itself that 

informative. What is equally important, is to understand 

how strongly the model predicts the observed results, and if 

there are any plausible alternatives that it cannot reproduce. 

To determine this, we explore the model’s performance in 

the rest of its plausible parameter space.  In all, we evaluate 

729 different combinations of decay, noise and threshold, 

by averaging the results of 100 model birds for Experiments 

1, 2 and 3; see Table 1 for the range of values used.  

First, we define as qualitative fits all results that match the 

empirical data in terms of the direction of tray preferences, 

with at least twenty percent more caches in the preferred 

trays. So, for Experiment 1, this requires more caches in the 

replenished tray than in the pilfered tray; for Experiment 2, 

more caches in tray A for the control group and more caches 

in tray B for the experimental group; and for Experiment 3, 

more caches in trays B and C than in tray A – all with 

differences of at least twenty percent. Using these criteria, 

we find a total of 565 qualitative fits. In other words, in 

about 78% of its parameter space, our model replicates the 

direction of observed tray preferences, if not their exact 

proportions. This raises the question: What does the model’s 

behavior look like in the rest of its parameter space? 

 Taking a closer look, we find that the remaining 164 

combinations of values have very high settings of threshold 

relative to noise and decay. What happens then, is that very 

few recoveries make an impression on the model birds, as 

they cannot specifically recall caching anywhere. As a 

consequence, they do not learn, or only very slowly. Instead, 

two kinds of behavior are possible: If noise is very low, the 

tendency to cache in familiar locations takes over, so that 

the model birds of Experiments 2 and 3 develop a 

preference for caching in tray A on test trials, the only tray 

that was also available during training. Otherwise, if noise is 

sufficiently high, this effect is suppressed, and the model 

birds cache equally in all trays available. This implies that, 

irrespective of its exact parameter settings, our cognitive 

model can only produce outcomes that reflect the learning 

displayed by the real birds, or that show no learning at all. 

Discussion 

In the previous section, we have demonstrated that our 

cognitive model can successfully reproduce the empirical 

results obtained by de Kort et al. (2007), and that this 

success is relatively robust with respect to the model’s 

parameters. Three issues, however, remain to be discussed. 



Implications of the Model for Real Scrub Jays 

To assess what new insights our current work contributes, it 

is necessary to look at the conclusions drawn by de Kort et 

al. (2007), who were mainly interested in whether scrub jays 

learn by punishment, or by reward. In the end, they explain 

the birds’ behavior in these experiments as inhibited caching 

in pilfered locations, using a ‘memory at retrieval’ process. 

The idea is that when the scrub jays attempt to recover a 

cache and find it missing, they recall the corresponding 

caching episode, and associate their current state of 

frustration with it, discouraging the birds from caching in 

that location again. As a result, the scrub jays learn to avoid 

trays that are pilfered, and place their caches in ‘safe’ trays 

instead. Thus, the mechanism at work is one of punishment.  

 This account is very close to what occurs in our cognitive 

model, except that our artificial birds respond to both 

punishment and reward. Every recovery leads to the creation 

of a recovery memory chunk; if the model bird is confident 

that it actually cached there, the recovery memory chunk 

will influence further cache choices. If it represents a 

success, it spreads positive activation to nearby cache option 

chunks; if it represents a failure, it spreads negative 

activation to nearby cache option chunks. Whether or not 

the artificial bird is confident of its recovery attempt 

depends on whether, at recovery, it can actually recall 

caching there. In other words, this is exactly de Kort et al.’s 

‘memory at retrieval’ process, but with inhibited caching in 

pilfered trays and preferred caching in rewarded trays – 

punishment and reward. Our model uses both because it 

cannot fit the data otherwise. The main problem is with the 

control group of Experiment 2: On de Kort et al.’s (2007) 

test trials, the scrub jays in this condition cache significantly 

more in tray A (Figure 2A), where they have previously 

cached and recovered. If we run our cognitive model with 

spread of negative activation only, and the parameters of 

Table 1, we get the results of Figure 3A: The model birds of 

the control condition cache equally in trays A and B. As 

they experience few unsuccessful recoveries, they do not 

learn to prefer one tray over another. In fact, with just 

punishment, or with just reward, we find no qualitative fits 

of the empirical data at all, anywhere in the model’s 

plausible parameter space. 

 

 
 

Figure 3: Results of altered models; 3A: Experiment 2, 

computational model, 3B: Experiment 3, real birds, de Kort 

et al. (2007) and computational model. 

 

This effect might have been predicted without running the 

simulation. What the model contributes, is that it allows us 

to easily integrate different explanations. The idea that 

successful recoveries reinforce particular caching strategies 

is not new; Clayton et al. (2005) already propose it. 

However, de Kort et al. (2007) discard this explanation 

because it does not account for the results of Experiment 3. 

Our model shows that punishment and reward are not 

mutually exclusive, and that, in fact, only the two 

mechanisms together are capable of successfully 

reproducing all of the empirical data. 

 We also draw a second conclusion from our work, which 

is that recall of specific caching events really is necessary to 

produce the results obtained by de Kort et al. (2007). In the 

first version of our model, our artificial birds were 

automatically impressed by every recovery attempt. In 

Experiment 3, this creates unforeseen effects. If we assume 

that every failure to recover a worm inhibits caching in that 

tray, then the model birds of Experiment 3 always learn to 

prefer tray B over tray C, even if we only allow learning 

through punishment. This is illustrated in Figure 3B, using 

the parameter values of Table 1. At first sight, the result is 

counterintuitive: The artificial birds have only lost caches 

from tray A, and they only learn from negative experiences, 

so why do they differentiate between trays B and C? 

 The answer is that, during recovery, once the model birds 

give up on tray A, they start probing the other trays, and 

invariably experience fewer unsuccessful recoveries in tray 

B, because their own caches have been moved there, while 

tray C is empty. Only if recovery attempts are linked to 

specific caching events, can the birds learn to avoid caching 

in tray A but treat trays B and C equally. For us, this insight 

came only after explicitly simulating the experiment, 

illustrating the contribution that models can make to 

clarifying what specific theories and assumptions predict. 

Validation of the Model’s Recovery Behavior 

As de Kort et al.’s (2007) experiments focus on caching 

strategies, recovery behavior is not reported. Therefore, we 

have not fit this aspect of our cognitive model to the 

empirical data. Other publications, however, offer clues that 

allow us to judge its performance. One issue concerns 

whether the real scrub jays in Experiments 2 and 3 learn to 

look for worms in tray B, where their caches are moved to, 

rather than in tray A, where they left them. Our simulated 

birds, in any case, cannot learn to shift their attention at 

recovery. Work by Watanabe (2005) suggests that this lack 

of learning is perhaps not too much of a simplification; 

there, in a similar setup, scrub jays find their entire tray of 

caches moved at recovery, with a different tray left in its 

place. These birds, in other words, have the tray’s visual 

identifiers to guide them to the new locations of their 

caches. But even they do not learn to prefer the displaced 

tray over the course of three trials. Another issue concerns 

the scrub jays’ basic recovery accuracy: For this, we turn to 

Clayton and Dickinson (1999), who test scrub jays in 

similar setups, though involving shorter retention intervals. 



They report that the birds direct 76 ± 5% and 81± 5% of 

their recovery attempts to cache sites. When we calculate 

the same statistic for our model birds in the control 

condition of Experiment 2, using the parameters of Table 1, 

we find an accuracy of 83 ± 18%, which seems to be in the 

right range. We hope to further validate our model’s 

recovery behavior in future. 

Plausibility of the Model’s Implementation 

A number of core aspects of our model are derived from the 

cognitive architecture ACT-R (Anderson, 2007), and in 

particular, its declarative memory module. But ACT-R is a 

cognitive architecture designed for humans, and our use of it 

for birds might seem problematic. However, we do not think 

that this is the case: Although built for humans, ACT-R’s 

declarative memory module captures fundamental properties, 

such as recency and frequency effects, that seem to apply to 

all species. In addition, previous research has used the full 

architecture to model experiments with mice (Belavkin, 

2001) as well as monkeys (Wood, Leong, & Bryson, 2004), 

so there is some precedence for our approach. 

 More fundamental, perhaps, are the changes we make to 

the architecture itself. While ACT-R allows for spreading 

activation, it is a fixed amount, which spreads between 

related chunks, depending on the strength of the association 

between them. In our cognitive model, it is a chunk’s own 

activation that spreads, and this activation can even be 

negative, inhibiting a chunk’s retrieval. The main function 

of this mechanism is to prevent the model birds from 

continuously caching or recovering in the same location. It 

is possible that the same effect could be achieved by instead 

increasing the activation of all other chunks, but our 

solution is computationally easier, and seems to be 

acceptable in the model’s current state of development. 

Interestingly, other recent ACT-R adaptations also make 

similar changes to the architecture: Van Maanen & van Rijn 

(2007) let activation spread between chunks of different 

types, and Juvina & Taatgen (2009)  also attach negative 

activation to chunks to suppress their retrieval. 

Conclusions and Future Work 

In this paper, we have presented a computational model of 

corvid cache and recovery cognition, and have shown that it 

can successfully replicate three experiments by de Kort et 

al. (2007), with robust performance. In this work, scrub jays 

must learn where it is safe to cache. Our work brings the 

novel insight that both positive and negative reinforcement 

are likely to be involved. In future work, we aim to apply 

the same cognitive model to other cache and recovery 

experiments, in order to study new cognitive phenomena. 
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