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ABSTRACT 
Animal ecologists have successfully applied agent-based models 
to many different problems. Often, these focus on issues 
concerning collective behaviors, environmental interactions, or 
the evolution of traits. In these cases, patterns of interest can 
usually be investigated by constructing the appropriate multi-
agent system, and then varying or evolving model parameters. In 
recent years, however, the study of animal behavior has 
increasingly expanded to include the study of animal cognition. In 
this field, the question is not just how or why a particular behavior 
is performed, but also what its ‘mental underpinnings’ are. In this 
paper, we argue that agent-based models are uniquely suited to 
explore questions concerning animal cognition, as the 
experimenter has direct access to agents’ internal representations, 
control over their evolutionary history, and a perfect record of 
their previous learning experience. To make this possible, a new 
modeling paradigm must be developed, where agents’ reasoning 
processes are explicitly simulated, and can evolve over time. We 
propose that this be done in the form of “if-then” rules, where 
only the form is specified, not the content. This should allow 
qualitatively different reasoning processes to emerge, which may 
be more or less “cognitive” in nature. In this paper, we illustrate 
the potential of such an approach with a prototype model. Agents 
must evolve explicit rule sets to forage for food, and to escape 
predators. It is shown that even in this relatively simple setup, 
different strategies emerge, as well as unexpected outcomes.  

Categories and Subject Descriptors 
I.2.2 [Artificial Intelligence]: Automatic Programming – 
program modifications; I.2.4 [Artificial Intelligence]: 
Knowledge Representation Formalisms and Methods – 
representations (procedural and rule-based); I.2.11 [Artificial 
Intelligence]: Distributed Artificial Intelligence – multi-agent 
systems; J.3 [Life and Medical Sciences]: biology and genetics. 

General Terms 
Algorithms, Experimentation, Theory 

Keywords 
agent-based models, genetic algorithms, evolution, animal 
cognition, theory of mind 

1. INTRODUCTION 
Agent-based models enjoy quite some popularity in the field of 
animal ecology [8]. As they are uniquely suited to simulate 
individual decisions, virtual habitats, and many generations, they 
allow biologists to investigate questions concerning collective 
behaviors, environmental factors, and evolutionary scenarios. 
Verbal accounts of how a particular animal behavior arises can be 
implemented, then tested, to see whether a theory’s assumptions 
can reproduce empirical observations. Generally speaking, the 
theories subjected to such ‘simulation-based evaluation’ can be 
captured by models involving a fixed repertoire of agent 
behaviors, where patterns of interest emerge from the interactions 
between individuals, different parameter settings, or the evolution 
thereof. Such simulations have provided insights into many 
different biological systems. In recent years, however, the study of 
animal behavior has increasingly expanded to include the study of 
animal cognition. As David Premack [13] puts it, ‘...virtually 
every month another cognitive ability, thought to be unique to 
humans, is reported in an animal’. In these studies, the question is 
not just how or why a particular behavior is evoked, but also what 
its ‘mental underpinnings’ are. Can animals reason? Plan for the 
future? Infer mental states? These are fascinating questions, which 
are, at their core, about what makes humans different from 
animals – or not so different after all. The problem is that it is 
very difficult to conclusively establish the presence of any of 
these mental abilities in subjects that cannot talk. No matter how 
‘cognitively impressive’ a particular behavior looks, there are 
always two alternative explanations for a successful performance: 
The necessary actions may be innate, or they may have been 
learned previously, without any understanding of why they solve 
the problem. Take the experiment by Hare et al. [9], where the 
question is whether or not chimpanzees have any concept of 
visual perspective, that is, whether they can reason about what 
others can and cannot see. In this experiment, two chimpanzees 
are put in competition over two pieces of food, placed in a central 
compartment. Both chimpanzees are familiar to each other, with 
an established dominance relationship. In two separate side 
compartments, the subjects wait to be granted access, with no 
view of the baiting. Once the compartment doors are opened, the 
subordinate can see both pieces of food, while the dominant’s 
view of one of the pieces is obstructed by a barrier (Figure 1.1). 

 
Figure 1.1. Hare et al.’s [9] experiment; image after [10]. 
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If the subordinate chimpanzee rushes for the food that is also 
visible to her dominant competitor, she is unlikely to be allowed 
to keep it for herself; if, in contrast, she chooses to head for the 
food that only she can see, she can probably escape with it before 
the dominant chimpanzee catches her. 

What Hare et al. find, is that the subordinate chimpanzee 
generally seems to head towards the hidden food. Therefore, the 
authors conclude, chimpanzees can reason about who sees what, 
implying that they have some insight into mental states, a ‘theory 
of mind’, once thought to be mankind’s prerogative. However, 
this is not the only way to interpret this result. Others [10] argue 
that, perhaps, chimpanzees have an innate preference for eating 
behind barriers. Or maybe, in the course of their daily lives, 
subjects had simply learned that they were more likely to feed 
successfully with an obstacle between themselves and their 
competitors - without understanding why. Although increasingly 
controlled experiments can help clarify the plausibility of various 
explanations, this debate continues until today [5], and shows how 
difficult the issue of animal cognition is. 

It seems, however, that the agent-based approach might be exactly 
what’s required to shed light on the issue. In a model, it is 
possible to exactly control previous learning experience, as well 
as evolutionary history. In fact, with perfect access to every aspect 
of the simulation, the whole difficulty of linking observable 
behaviors to invisible mental states disappears. One can simply 
examine agents’ internal representations, and check. Of course, 
this requires that agents have internal representations. Current 
animal ecology models, with their emphasis on behavior, naturally 
lack such complicating details, and tend to focus on a single on / 
off variable, such as performing an action versus refraining from 
it [12]. Elegant as this type of multi-agent model is, its structure 
cannot be adapted for questions concerning animal cognition, 
such as “why might ‘theory of mind’ evolve”? The ability to 
reason about mental states simply cannot be captured by changes 
in a single variable. One would actually have to evolve agents’ 
reasoning processes. This is, of course, rather difficult, but it 
would also be terribly useful. The evolutionary origins of ‘theory 
of mind’ are one of the most hotly-debated subjects in animal 
cognition today. One prominent school of thought holds that 
deception [6] prompted selection for the understanding of mental 
states; the other the converse, namely that cooperation [11] was 
the driving factor. In an agent-based simulation, one can simply 
try both scenarios: Create agents who must either hide food from 
one another, or cooperate to obtain it. Which population evolves 
more ‘theory of mind-like’ representations? This is an overly 
simplified account, of course, but it illustrates the possibilities. 

That leaves just one problem – how to evolve agents’ 
representations. One possibility would be to use neural networks 
as agents’ internal decision mechanisms, and to create artificial 
environments where ‘virtual natural selection’ could modify their 
composition and connection strengths, as is done in [1]. This 
would certainly allow different internal representations to evolve. 
Unfortunately, they would also be rather difficult to analyze, as 
neural networks do not explicitly represent the strategies that 
account for their success. Despite a large body of work on the 
subject [2], extracting rules from neural networks is still far from 
straightforward. In a model where the main purpose is to discover 
the internal representations that underlie behavior, this is a serious 
liability. Neural networks, then, are unsuitable for simulations of 
animal cognition. A second option is to draw inspiration from 
classifier systems [3], where agents must discover useful new 

behaviors by evolving their repertoire of decision rules. These 
consist of simple, pattern-matching classifiers, represented as 
strings of bits, which specify what actions agents should perform 
in response to different inputs from the environment, also 
represented as strings of bits. Although this technique allows 
natural selection to shape agents’ internal representations, it 
focuses on rules that compete and evolve within agents, rather 
than on populations of agents who must evolve rules to compete 
with each other. Also, the very low-level representation of agents’ 
internal decision mechanisms seems to preclude the simulation of 
moderately complex reasoning processes, which is what animal 
cognition is all about – especially in a multi-agent context. 

Instead, we propose to evolve “if-then” rules to guide agents’ 
behavior. By specifying the form of such rules, and not the 
content, qualitatively different reasoning processes can emerge, 
which may be more or less “cognitive” in nature. For instance, 
some “if-then” rules might map directly from observations to 
actions, such as ‘if you see an agent, then hide your food’, while 
others might make use of intervening variables, such as ‘if an 
agent is oriented towards you, then it sees you’. With sufficiently 
flexible mechanisms for evolving and applying different “if-then” 
rules, cognitively complex representations can emerge, which 
may produce behaviors similar to those of real animals, exposed 
to different experimental paradigms. In our prototype model, 
agents must evolve explicit rule sets of a simpler nature, which 
allow them to forage for food and escape predators. Although the 
structure of our rule sets does not yet allow “more cognitive” 
strategies to emerge, even this rather simple setup leads to the 
evolution of different strategies and unexpected outcomes, 
illustrating the potential of our proposed approach. The rest of this 
paper is organized as follows. Our prototype model structure will 
be described in Section 2, and we will report on our experiments 
in Section 3. A discussion of our results is offered in Section 4, 
where we also compare our model to related approaches. General 
conclusions and future plans will be presented in Section 5. 

2. THE PROTOTYPE 
Our prototype model is intended as a first exploration of the 
possibility of evolving agents’ internal representations in a way 
that is suitable for simulations of animal cognition. These internal 
representations are implemented as “if-then” rule sets, whose 
form is fixed, but whose content and composition may be altered 
by mutation and selection. At present, we aim to demonstrate only 
proof of concept, and our research questions are modest. Can 
evolution of “if-then” rule sets produce agents that are reasonably 
well adapted to their environments? If so, do interesting strategies 
emerge? And how does the system react to changes in 
environmental variables? These issues are explored in a prototype 
model, which consists of four basic components: A Scape, Food, 
Grazers, and Predators1. Grazers are the agents of interest, who 
must evolve efficient rule sets to survive on the Scape: They must 
learn to find Food and escape Predators. On the Scape, time 
advances in cycles; each cycle, all Grazers and Predators can 
perform one action, and Food is redistributed across the Scape. A 
full simulation experiment consists of a tournament of 50 rounds 
of 800 cycles each, and is referred to as a ‘run’ of the model. 
Grazer rule sets are randomly initialized at the beginning of each 
tournament, and at the end of each round, the most successful 
                                                                    
1 In this paper, the names of model components are capitalized, to 

differentiate them from the concepts they represent. 



agents are selected for reproduction, so that their descendants will 
populate the next round. Each of the basic model components, as 
well as the evolutionary algorithm, will be more extensively 
described below. 

2.1 Scape and Food 
The Scape is a continuous, torus-shaped world, on which Grazers, 
Predators and Food exist. It is represented by a rectangle of xSize 
by ySize, currently set to 1250 by 650 pixels. Scape inhabitants of 
all three types - Grazers, Predators and Food – have X and Y 
coordinates which determine their positions on the Scape. Food is 
the simplest of these, and it is represented by a stationary square 
of 3 x 3 pixels, its foodSize. It is what Grazers eat to obtain 
energy, at 50 energy (startEnergy) per Food. At the start of each 
round, 200 Food (startFood) are randomly distributed across the 
Scape. Food does not grow back, but is replenished up to 
startFood at the end of each cycle. 

2.2 Grazers and Predators 
Grazers are the focus of the prototype model. At the start of each 
run, 400 are released onto the Scape (startGrazers). They are 
represented by a circle, 8 pixels in diameter, grazerSize. They 
have X and Y coordinates, as well as an orientation, O. Each 
cycle, Grazers can move a maximum of 5 pixels straight ahead, 
grazerMoveDistance, or change their orientation by a maximum 
of 5 degrees, grazerTurnAngle. Each Grazer has a field of view, a 
portion of the Scape that it has visual access to. This field of view 
is 90 pixels deep and 120 degrees wide; these are 
grazerViewDistance and grazerViewAngle, respectively. Grazers 
have five possible actions: Eat, move, turn, search and hide. ‘Eat’ 
is automatically performed whenever the Grazer intersects a Food. 
‘Move’ affects the Grazer’s X and Y coordinates as one would 
expect; ‘turn’ does the same for the Grazer’s orientation O. 
‘Search’ is a random combination of ‘move’ and ‘turn’. ‘Hide’, 
finally, is a ‘freeze’ behavior, which makes Grazers invisible to 
other Grazers and Predators. Except for ‘eat’, the execution of 
these actions is guided by Grazers’ rule sets, which will be 
separately discussed in Section 2.3. Each cycle, Grazers must burn 
1 energy to survive – their energyCost. When their energy level 
drops below a minEnergy of 10, they die. Every rule costs an 
additional 0.1 energy to maintain (ruleCost), and every clause of 
those rules costs 0.2 energy to evaluate (clauseCost). Grazers do 
not reproduce, but instead are evolved in a tournament structure, 
which is explained in Section 2.4.  

Predators are not unlike Grazers, in that they are represented by 
circles, have X and Y positions, an orientation called O and fields 
of view. But they are larger, faster and can see farther: their 
predatorSize is 10 pixels, predatorMoveDistance is 10 pixels, and 
predatorViewDistance is 140 pixels. PredatorTurnAngle and 
predatorViewAngle, by contrast, are equal to the corresponding 
values for Grazers, at 120 and 5 degrees, respectively. Predators 
exist solely to provide a risk of predation for Grazers, and as such 
do not need to be biologically plausible. They are randomly 
released onto the Scape at intermittent intervals. At any one time, 
the maximum number of released Predators is 0.1 * the current 
number of Grazers, the predatorRatio. Each cycle, if the 
maximum number of Predators is not yet present on the Scape, 
there is a chance of 0.1 percent, or predatorOdds, that an 
additional one will be released. Like Grazers, Predators can eat, 
move, turn and search. Unlike Grazers, they do not have evolving 
rule sets, and their behaviors are pre-programmed, as they are not 

the focus of attention. Each time step, every Predator moves 
towards the closest Grazer in its field of view. If it does not see 
any Grazers, it performs a ‘search’ action. If it intersects a Grazer, 
the Grazer dies. Grazers have only one defence against Predators: 
their ‘hide’ behavior. Predators cannot see Grazers that are 
hidden, and will pass over them unharmed. Predators do not have 
energy levels and cannot die of starvation – they simply disappear 
when they reach maxAge, which is currently set to 100 cycles. 

2.3 Grazer Rule Sets 
This prototype differs from other agent-based simulations 
primarily because of this feature: Grazer rule sets. Rather than 
specifying Grazer behaviors in advance, they are evolved, in the 
form of explicit “if-then” rules. Each rule consists of at least two, 
and a maximum of three, clause types, described in Sections 2.3.1 
– 2.3.3. At the start of a run, all Grazers are initialized with three 
randomly configured rules (initRules), consisting of only 
VisibilityClauses and ActionClauses. Each cycle, each Grazer 
evaluates each of its rules until it finds one that is applicable to its 
current situation. As soon as it does, it executes the action that the 
rule specifies. Each rule is evaluated in a fixed sequence, so that 
the order of rules is relevant. 

Table 2.1. Options for rule slots. 

[object] [object]*  [relation]  [action]  
Grazer Grazer(x) angle-to move(-to) 
Food Food(x) distance-to turn(-to) 

Predator Predator(x)  hide 
 Me  search 

2.3.1 VisibilityClauses 
A rule’s requirements are determined by its VisibilityClauses. 
Each rule has at least one, but may have several. Grazers are 
initialized with 1 to 3 per rule, initVis. A VisibilityClause 
stipulates what the Grazer must see for its rule to apply. Box 2.1 
shows the ‘recipe’ for such a clause. Options for its [object] slot 
are displayed in Table 2.1. A VisibilityClause thus specifies a 
condition like ‘if there is a Food visible’, or ‘if there isn’t a 
Predator in view’. If a VisibilityClause dictates that the Grazer 
must see a particular type of object, the Grazer’s rule evaluation 
mechanism attempts to match it to the closest visible object of the 
right type. This matching procedure allows other types of clauses 
in the rule to refer back to specific objects on the Scape. 

Box 2.1. VisibilityClause ‘recipe’. 

IF [object] [==/!=] VISIBLE 

2.3.2 ConditionClauses 
ConditionClauses, for instance, must refer back to specific 
objects. ConditionClauses are optional; rules are initialized 
without them (initCon is set to 0), but mutation can introduce 
them later. This will be explained further in Section 2.4. 
ConditionClauses place further restraints on the objects matched 
by VisibilityClauses. Box 2.2 shows the ‘recipe’ for such clauses. 
Options for the slots [object]* and [relation] are displayed in 
Table 2.1. The * after [object]* indicates that it must be an object 
already matched by a VisibilityClause: ConditionClauses define 
relationships between specific objects. Thus, a rule with a 
ConditionClause might start with an expression like ‘if there is a 
Grazer visible, and there is a Food visible, and the distance of the 
Grazer to the Food is less than 10’. For the [relation] slot, the 



angle between an object A and another object B is defined as the 
smallest number of degrees A would have to turn to be facing B. 
Food is considered to have an orientation of 90 degrees for this 
purpose. The distance between two objects is simply the length of 
the shortest straight line between them. 

Box 2.2. ConditionClause ‘recipe’. 

AND [object]* [relation] [object]* [> / <] [value] 
If a ConditionClause is not met, the Grazer will first try to match 
the rule’s VisibilityClauses to different objects. If that doesn’t 
help, the rule cannot be applied. A rule can have any number of 
ConditionClauses. If all specified conditions are met, a rule’s 
requirements have been satisfied, and the Grazer will execute the 
action corresponding to the rule’s ActionClause. 

2.3.3 ActionClauses 
Each rule has exactly one ActionClause, which specifies the 
action associated with the rule. ActionClauses come in three 
different varieties, shown in Box 2.3, with slot options displayed 
in Table 2.1. If an ActionClause’s [action] is ‘hide’ or ‘search’, it 
requires no further specification. If it is ‘move’ or ‘turn’, then the 
clause must define how many pixels to move or how many 
degrees to turn – with a maximum of grazerMoveDistance and 
grazerTurnAngle, respectively. ‘Move’ is always straight ahead, 
while ‘turn’ can be either positive or negative, i.e. clockwise or 
anti-clockwise. Grazers can also move or turn towards a specific 
object, provided it is one of the objects matched by the rule’s 
VisibilityClauses. These ‘move-to’ and ‘turn-to’ varieties of the 
[action] slot require a previously matched object to complete 
them. Of course, a Grazer executing this type of ActionClause 
will still only move moveDistance or turn turnAngle in the 
direction of the intended object. Once an ActionClause is 
executed, the Grazer stops evaluating its rules: Grazers can only 
use one rule per cycle. 

Box 2.3. ActionClause ‘recipes’. 

THEN ∈ {[action], [action] [value], [action] [object]*} 

2.4 Grazer Evolution 
After each round of a tournament, the most successful Grazers are 
selected for reproduction. Specifically, the model keeps track of 
how much Food was collected, and then allows each Grazer to 
reproduce according to its contribution. All its descendants will 
have its exact rule set, or slight variations thereof, produced by 
mutation. The fitness measure thus cares nothing for how long 
Grazers manage to live, or if they are successful at avoiding 
Predators. However, the more cycles a Grazer survives on the 
Scape, the more opportunities it has for collecting Food, and the 
better it should do in the eventual ranking. 

Mutation of Grazer rule sets occurs as follows. Rules may be 
duplicated, deleted or swapped, clauses may be duplicated or 
deleted, [object] slots may switch to any other legal value, [value] 
slots may be adjusted by up to 20% (or mutateValue)  in either 
direction, and ConditionClauses may be spontaneously created. 
All of these events have a 1% (or mutationOdds) chance of 
occurring, although they have different effects. Mutations to 
VisibilityClauses are particularly potent. If the [object] slot of a 
VisibilityClause changes, all subsequent references to that 
[object]* are adjusted to match. This allows a rule like ‘if a Food 
is visible, then move to the Food’ to become ‘if a Predator is 
visible, then move to the Predator’ with one change in the 

VisibilityClause’s [object]. Similarly, if a mutation causes an 
ConditionClause to refer to an unmatched object, it is deleted; if it 
causes an ActionClause to do so, a new ActionClause is 
generated. Thus, ‘illegal’ rules are repaired. In contrast, 
‘impossible’ rules, such as those starting with ‘if Food is visible 
and Food isn’t visible’, are left as they are, giving the 
evolutionary algorithm something to work with. 

3. EXPERIMENTS 
The behavior of the prototype model described in Section 2 is 
investigated in three separate experiments. In Experiment 1, the 
simulation is configured exactly as specified; in Experiment 2, the 
number of Predators is first increased, then decreased, and in 
Experiment 3, the amount of Food is varied in the same fashion. 
In each experiment, we conduct 20 runs per configuration. As 
stated previously, three exploratory research questions are of 
primary interest. Does mutation and selection of “if-then” rule sets 
allow well-adapted agents to evolve? If so, does this produce 
interesting strategies? And finally, what are the effects of changes 
to environmental variables? Examining Grazer evolution in 
Experiments 1, 2 and 3 should provide a first set of answers. 
Sections 3.1 - 3.3 present an overview of our results, and we  
discuss their implications in Section 4. 

3.1 Experiment 1 
In Experiment 1, Grazers definitely seem to adapt to their 
environment over time. As Figure 3.1 shows, Grazers become 
more efficient at finding Food (3.1a) and avoiding death (3.1b) as 
rounds progress. On average, Grazers obtain 1 Food every 24.7 
Cycles during rounds 1-5, and improve their performance to 1 
Food every 19.1 cycles during rounds 45-50. Likewise, their 
average lifespan increases from 136.4 to 182.3 cycles over the 
course of a run. But what rule sets explain their improvement? 
Generally, for a Grazer to survive on the Scape, three different 
behaviors are involved: going to Food if it is visible, looking for 
Food if it isn’t, and evading Predators if possible. 

 
Figures 3.1a and 3.1b. Grazer evolution in Experiment 1. 

There are three straightforward rules that encode these behaviors 
– ‘if Food is visible, then move to Food’, ‘if Food isn’t visible, 
then search’, and ‘if Predator is visible, then hide’. The fates of 
these rules across rounds are plotted in Figure 3.2a, with an 
overview of the abbreviations used in Table 3.1. What is 
immediately apparent from Figure 3.2a, is that the rules for going 
to and searching for Food, F → MtF and ¬F → S, respectively, are 
heavily selected for at first, but then reach a plateau relatively 
quickly, while the rule about hiding from Predators, P → H, 
spreads slowly, but keeps increasing in prevalence. The same 
effect seems to be visible in Figures 3.1a and 3.1b. While foraging 
efficiency stagnates by round 15 or so, lifespans continue to 
improve. This suggests that Grazers solve the ‘food finding 
problem’ relatively easily, while the ‘predator problem’ keeps 



challenging them. However, none of the three ‘basic rules’, F → 

MtF, ¬F → S and P → H, reach full saturation. In fact, only in runs 
1, 11 and 13 do a significant percentage of Grazers evolve rule 
sets consisting of the exact three basic rules, all in the order P → 
H, F → MtF, ¬F → S. However, not all runs evolve straightforward 
variations of the basic rule set, and some of these feature equally 
well-adapted Grazers. 

 
Figures 3.2a and 3.2b. Further statistics of Experiment 1. 
Figure 3.2b shows the average Food obtained per Grazer per 
round over rounds 45-50, which is essentially what the 
evolutionary algorithm selects for. It can be seen that the Grazers 
in runs 1, 11 and 13 do quite well, but that their performance is by 
no means exceptional. In Sections 3.1.1 - 3.1.3, we will discuss a 
selection of successful alternatives to the basic rule set, and 
provide a somewhat more detailed analysis of the runs in which 
they evolved. First, however, it must be noted that rules with 
ConditionClauses play no significant role in any of the runs, and 
will not be considered further until Section 4. As Grazers are 
initialized with rules that do not include ConditionClauses, they 
need to be introduced by mutation. Although this occurs, and a 
few Grazers with ConditionClauses occasionally manage to 
reproduce, there appears to be no specific selection for them. 

Table 3.1. Rule abbreviations. 

rule abbreviation 

‘if Food is visible, then move to Food’ F → MtF 

‘if Food isn’t visible, then search’ ¬F → S 

‘if Predator is visible, then hide’ P → H 

‘if Food isn’t visible, then hide’ ¬F → H 

3.1.1 Alternatives to the rule F → MtF 
In Figure 3.2a, it looks like the ‘if Food is visible, then move to 
Food’ rule spreads to over three-fourths of the Grazer population 
by round 10, after which its prevalence stabilizes. The real 
situation is somewhat different: in fifteen out of twenty runs, the F 

→ MtF rule reaches near perfect saturation, while an alternative 
rule does the same in the remaining five (runs 2, 3, 7, 8 and 18). 
This rule states that ‘if Food is visible, and Predator isn’t visible, 
then go to Food’. This is actually a rather interesting variation. On 
the one hand, it is a longer rule consisting of three clauses, as 
opposed to two, so it costs more energy to maintain and evaluate. 
On the other hand, it may be more energy efficient to use. Other 
Grazers, with the standard issue F → MtF rule, need to keep their 
P → H rule, or some variation thereof, as rule #1, to avoid being 
eaten.  This means it always needs to be evaluated, although it is 
only rarely applicable, costing unnecessary energy. In contrast, ‘if 
Food is visible, and Predator isn’t visible, then go to Food’ can be 
rule #1 without inhibiting the effectiveness of a later P → H rule. 

3.1.2 Alternatives to the rule ¬F → S 
Although Figure 3.2a shows that the standard ¬F → S spreads to 
only 25% of Grazers by round 50, the percentage of Grazers with 
an equivalent rule is much higher. Provided rule #1 and rule #2 
are equivalent to P → H and F → MtF, rule #3 really only needs to 
express ‘if the above two rules don’t apply, then search’. ¬F → S 
is one way of doing this, but so is ‘if Predator isn’t visible, then 
search’ or even ‘if Grazer isn’t visible, then search’, although that 
last version is less effective. On average, during rounds 45-50, 
Grazers spend approximately 20% of their cycles performing 
‘search’ actions. Run 10 is the exception, where the ‘move’ action 
is performed in 30% of cycles, as a result of the rule ‘if Food isn’t 
visible, then move 5’. In terms of Food per Grazer, this is a very 
successful run, as can be seen in Figure 3.2b. Although they are 
hardly more efficient at finding Food than the Grazers of other 
runs (obtaining one Food every 18.8 cycles during rounds 45-50, 
as opposed to the average of one Food every 19.2 cycles; one-
sample t-test, true mean is not equal to that of run 10, p = 0.05), 
they live for a rather long time (206.7 cycles for the final Grazers 
of run 10, versus 182.8 cycles otherwise; one-sample t-test, true 
mean is not equal to that of run 10, p < 0.0001). The most 
straightforward explanation for this fact is that they are relatively 
successful at avoiding Predators. This could be due to their 
‘search speed’. ‘Move 5’ puts the maximum amount of distance 
between a Grazer and its previous position, while ‘search’ is a 
random wiggle. Predators are much faster than Grazers, but the 
faster a Grazer moves, the more cycles it takes to catch, and the 
greater the chance that another Grazer will come by to distract a 
chasing Predator. 

3.1.3 Alternatives to the rule P → H 
The most notable alternative to the rule ‘if Predator is visible, then 
hide’ is actually ‘if Food isn’t visible, then hide’. This is a better 
rule than one might at first expect, as Food appears randomly 
across the Scape. Essentially, Grazers with this rule are following 
the strategy ‘don’t show yourself unless you have a reason to’. In 
two runs (4 and 6), ¬F → H functions as the main ‘predator 
avoidance rule’, as it is present in over 75% of rule sets by the end 
of the simulation. In another three runs (14, 16 and 17), it 
represents a significant alternate strategy, as it is possessed by 20 
– 25% of Grazers during rounds 45-50. The main problem with 
the ¬F → H rule is that it occupies a Grazer’s ‘if Food isn’t 
visible’ condition, so that ‘if Food isn’t visible, then search’ can 
never be successfully evaluated. As a result, most Grazers of runs 
4 and 6 have F → MtF as rule #1, ¬F → H as rule #2, and ‘if 
Predator isn’t visible, then search’ as rule #3, which fulfills the 
same function. Of the runs where ‘if Food isn’t visible, then hide’ 
reaches moderate prevalence, run 16 is a rather interesting case. 
Here, by rounds 45-50, 26.2% of Grazers feature ¬F → H in their 
rule sets, but often this is in addition to its P → H alternative, 
which is present in 93.3% of the population. This run, therefore, 
evolves a breed of ‘ultra-cautious’ Grazers, who live relatively 
long as compared to the Grazers of other runs (198.9 cycles  each, 
versus 182.8 cycles on average; one-sample t-test, true mean is 
not equal to that of run 16, p < 0.0001) and are relatively 
inefficient at finding Food (taking 20.5 cycles per Food, versus 
19.2 cycles on average; one-sample t-test, true mean is not equal 
to that of run 16, p < 0.0001). As can be seen in Figure 3.2b, this 
is not a bad strategy, with run 16 performing moderately well as 
measured by Food per Grazer. Although they take a long time to 
find Food, they live long enough to compensate. 



3.2 Experiment 2 
In Experiment 1, Grazers clearly adapt as rounds progress, at least 
as measured by the increase in their lifespans and foraging 
efficiency. But are they really adapting to a specific environment, 
or are they simply evolving general purpose rule sets? In this 
experiment, we investigate that question by studying the effects of 
varying the number of Predators present on the Scape. First, in the 
More Predators (MP) condition, we raise both predatorRatio and 
predatorPercent to 0.3. By contrast, in the Less Predators (LP) 
condition, we lower both parameters to 0.025. Twenty runs of the 
model were done for each. This should replicate that Grazer 
statistics improve over time, but ideally, the rule sets evolved 
should also reflect the different environmental challenges posed. 

As can be seen in Figures 3.3a and 3.3b, when compared to those 
of the Basic (B) setup of Experiment 1, Grazers in the MP 
condition take rather longer to find Food, and enjoy considerably 
shorter lifespans. To a degree, this is to be expected, as MP 
Grazers face three times as many Predators. What is surprising, 
however, is that the P → H rule is barely more popular in this 
condition than in the Basic setup, whereas the ¬F → S rule is 
clearly more heavily selected for, as is shown in Figures 3.4a and 
3.4b. One would expect Grazers to respond to increased Predator 
pressure by evolving more Predator avoidance techniques, but 
instead, it seems they adapt with an increased focus on finding 
Food. With hindsight, this is understandable – if getting caught is 
inevitable, finding Food should be a Grazer’s highest priority – 
but it is not what we would have predicted beforehand.  

 
Figures 3.3a and 3.3b. Agent evolution in Experiment 2. 

 
Figures 3.4a and 3.4b. Two rules in Experiment 2. 

The situation in the LP condition appears to be the opposite. From 
Figures 3.3a and 3.3b, it is clear that Grazers confronted with less 
Predators live longer than their Experiment 1 counterparts, but 
that they are no more efficient at finding Food. In fact, as can be 
seen in Figure 3.4b, it seems they evolve less ‘search for Food’ 
rules, as opposed to more. Finding Food is Grazers’ only 
significant challenge in this setup, and yet, they do not adapt to it 
in any obvious fashion. It seems that with greatly reduced 
predation pressure, Grazers can afford to wait until Food appears 
in their fields of view, rather than needing to actively look for it.   
 

In fact, many Grazers appear to have F → MtF as  their only truly 
useful behavior, with their other rules producing seemingly 
random effects, such as ‘if Grazer visible, then turn 2’. Taken 
together, this replicates an observation made during Experiment 1: 
That the ‘food finding problem’ is too easy in this model, and that 
Grazers require a significant predation risk to drive their evolution. 

3.3 Experiment 3 
In Experiment 2, Grazers respond to variations in Predator density 
by evolving qualitatively different rule sets. Interestingly enough, 
the changes are in unexpected, though understandable directions. 
In Experiment 3, we investigate the effects of varying the 
prototype’s other significant environmental variable, which is 
startFood. In Experiment 1, the Scape’s Food supply is 
continuously replenished up to 200 items; we now limit startFood 
to 50 in our Less Food (LF) condition, and increase it to 600 in 
our More Food (MF) condition. We perform 20 runs of the model 
for each new setup. 

 
Figures 3.5a and 3.5b. Agent evolution in Experiment 3. 

 
Figures 3.6a and 3.6b. Notable features of Experiment 3. 

As Figure 3.5 shows, Grazers who must evolve in the harsh 
environments of the LF condition are slower to find Food (3.5a) 
and quicker to die (3.5b) than those in the Basic setup of 
Experiment 1. Nevertheless, if we look at the rule sets Grazers 
evolve in this condition, they seem to be perfectly adapted to their 
surroundings. ¬F → S is twice as popular as in the basic setup, 
while P → H is only present a tenth as often. In fact, what happens 
is that Grazer rule sets are increasingly pared down to just two 
rules, F → MtF and ¬F → SfF. This is illustrated in Figure 3.6a, 
where the number of clauses per Grazer drops to less than six. 
With a minimum of two clauses per rule, this implies that Grazers 
must have less than three rules on average. Grazers in this setup 
simply cannot afford to pay the energy costs associated with three 
rules, or to spend time hidden instead of searching for Food. 

By contrast, in the MF condition, with three times as much Food 
on the Scape, Grazers live significantly longer and find Food 
considerably quicker than in Experiment 1. Again, though, their 
rule sets vary in expected directions. During rounds 45-50, ¬F →  

S is only a quarter as prevalent as in the Basic condition, while P 

→  H is equally popular. Likewise, the ¬F →  H rule makes it to 



over 75% of Grazers in five runs of the More Food setup, which is 
true of only two runs in Experiment 1. As can be seen in Figure 
3.6b, the MF condition is the only one where the ratio of Grazers 
eaten relative to Grazers starved keeps decreasing over 50 rounds, 
indicating that they are actually learning to escape Predators 
without increasing their chances of starvation. Presumably, that is 
because these Grazers can afford to spend a lot of time hidden, a 
benefit which they evolve to exploit in later rounds. 

4. DISCUSSION & RELATED WORK 
The results presented in Section 3 indicate that, indeed, the 
evolution of “if-then” rule sets allows agents to become better 
adapted to their environments. In all experiments conducted, 
Grazers improve their foraging efficiency as rounds progress, and 
survive longer every successive generation. In that respect, the 
technique works. Evolved Grazer rule sets also vary sensibly 
under  different environmental conditions: more Food decreases 
the popularity of ‘search for Food’ rules, while less Food selects 
for shorter, more compact rule sets. This is an interesting result, as 
it indicates that “trying different evolutionary scenarios” with this 
type of model structure is feasible. 
To return to the example mentioned in the Introduction, if this 
type of simulation were to be applied to the question of ‘why 
theory of mind evolved’, this prototype version suggests that, at 
the very least, the model should produce qualitatively different 
rule sets in response to competitive and cooperative challenges. If 
the ‘rule recipes’ available to the evolutionary algorithm were of 
sufficiently rich form, different degrees of “cognitiveness” might 
be ascribable to the rule sets evolved. But would those rule sets be 
interesting? Could they truly provide genuinely new insights? Our 
prototype suggests they might. Even in our very simple setup, 
different Grazer strategies emerge. In Experiment 1, some runs 
evolve “ultra-cautious” Grazers, while others produce rasher 
inhabitants. Likewise, a more advanced version of this type of 
model might produce more ‘theory of mind’-like and less ‘theory 
of mind’-like strategies for social survival, even for agents evolved 
in the same scenario. One might imagine that one of these would 
best fit chimpanzees, while the other would be characteristic of 
macaques, or capuchins. On the other hand, an unexpected 
simulation result may also lead to the formulation of completely 
new theories, provided that the result is explainable once found. 
This type of outcome is certainly possible, as demonstrated by 
Experiment 2, where Grazers seem to react to increased Predator 
pressure by becoming less focused on avoiding them. 

These are all promising results. However, the prototype model 
also exhibits various structural shortcomings, of which we will 
discuss the most important: in our runs, rules with Condition- 
Clauses were never selected for. Intuitively, however, there seem 
to be many useful examples, such as ‘if a Predator is visible, and 
the Predator’s angle to me is less than 70 degrees, then hide’. This 
rule would allow Grazers to hide only when the Predator sees 
them, rather than whenever they see the Predator. Given that the 
‘hide’ behavior is immediately effective, this seems to be a risk-
free strategy. Such a rule, however, is never discovered. 
Presumably, the problem lies with the low number of 
ConditionClauses available for selection, as they must arise by 
mutation. The alternative, of allowing the initial rule population to 
include ConditionClauses, is also not attractive, as it lowers the 
chance of any first-generation Grazers having even somewhat 
useful rule sets. 

It is possible that choosing a higher value for mutationOdds would 
do the trick, but a more extensive overhaul might be more fruitful. 
One important limitation of our prototype is the rigidity of the rule 
evaluation mechanism, and improving this aspect of the model 
may also promote the success of ConditionClauses. In the current 
implementation, Grazers test their rules’ applicability one by one, 
and execute the first that fits. As this occurs in a fixed order, a 
Grazer can only benefit from one rule per matching “if” condition. 
This seriously limits the possibility of gradually evolving 
ConditionClauses. Addition of a random ConditionClause is likely 
to make a rule worse, not better, and within the current setup, it is 
highly unlikely that a ‘backup’ rule will be available. As an 
example, take the rule ‘if Food visible, then go to Food’. Once 
this becomes corrupted by an inconvenient ConditionClause, such 
as ‘and the Food is more than 25 pixels away’, its Grazer is 
unlikely to have any other rule which allows it to approach Food. 
As a result, many Grazers with freshly mutated ConditionClauses 
are unlikely to reproduce, providing the evolutionary algorithm 
with very little opportunity to improve them over time. If, by 
contrast, Grazers could flexibly evaluate their rule sets, and 
maintain a number of alternatives for any situation, introduction 
of an unsuitable ConditionClause would be far less lethal. This 
kind of flexibility could also be desirable for other reasons, as 
complex reasoning cannot be captured by a sequential decision 
tree. Ideally, Grazers should be able to prioritize different rules in 
different circumstances, or to execute several rules in sequence, so 
that chains of reasoning may be evolved. 

One model which implements such flexible rule evaluation is J.J. 
Grefenstette’s SAMUEL [7], which is an agent-based system for 
learning sequential decision tasks. In [7], it is described how an 
airplane must learn to escape an approaching missile, by 
outmaneuvering it  until it loses speed. This is done by creating a 
population of rule sets, which must compete with each other to 
save the plane as often as possible. Each rule set is tested on a 
selection of different starting configurations; successful strategies 
are reproduced, and crossover can exchange rules between sets. 
Within each set, different rules compete with each other to be 
executed. This occurs on the basis of past utility, in a manner 
somewhat similar to classifier systems [3]. What makes SAMUEL 
so interesting with respect to our model, is that it features 
comparable high-level rule representations, of which an example 
is presented in Box 5.1. 

Box 5.1. Example SAMUEL rule, from [7]. 

IF time = [5, 15] AND fuel [low, medium] 
AND speed = [600, 800] AND range = [400, 800] 
THEN SET turn = right [0.9] 

 

Like a typical classifier system, SAMUEL evolves its rule sets 
within a single agent, and its control structure is probably too 
complicated to be directly transferrable to a large scale multi-
agent system, which is what an evolutionary simulation of animal 
cognition would require. Nevertheless, it features several 
mechanisms which could significantly improve our prototype 
model. First, a variation on the way in which SAMUEL’s rules 
compete for execution within a single rule set might provide our 
agents with the cognitive flexibility they require, and create the 
opportunity for ConditionClauses to evolve. Second, SAMUEL’s 
rule creation mechanism is significantly more sophisticated. It can 
not only mutate, delete, and alter rules, it can also merge, 
specialize, and generalize them, based on the circumstances in 
which they are executed and how useful they prove to be. As our 



model is not intended to simulate how evolution of a particular 
cognitive skill occurs, but under which circumstances it is likely 
to do so, this might be a useful addition to our prototype as well. 
Finally, Grefenstette et al. make a point which applies equally 
well to their design as to ours: Given the high-level rule 
representations involved, it is not only possible to analyze what 
comes out of evolutionary simulations, but it is also possible to 
specify what goes into them. In their case, they can initialize 
airplanes with the escape scenarios favored by human pilots, and 
see if simulation can improve on them; in our case, we can outfit 
agents with basic survival mechanisms, then see if artificial 
evolution can produce cognitively more advanced strategies. This 
seems like a worthwhile avenue to explore in future - in our 
models, but also in complex multi-agent systems generally. 
As for other related work, although we are unaware of any other 
attempts to study animal cognition using evolutionary agent-based 
simulations, in [4], Bosse et al. construct a formal BDI-based 
agent model of animal ‘theory of mind’. Our two approaches are 
very different, however, as [4] takes the ability of non-human 
primates to use ‘theory of mind’ as a given, and then attempts to 
formalize it, while our aim is to build simulations that can play a 
role in the discussion of whether they possess aspects of ‘theory 
of mind’ at all, and if so, which ones. The evolutionary 
component of our work also sets it apart. 

5. CONCLUSIONS 
In this paper, we have argued that agent-based models can offer a 
unique perspective on many questions concerning animal 
cognition, provided that new techniques are developed. The 
central problem facing empirical researchers in this field is that it 
is impossible to directly infer the mental representations that 
underlie observable behavior, so that it is very difficult to 
conclusively establish how “cognitively impressive” any 
particular performance really is. In a simulation, however, this 
problem does not exist, as the experimenter has direct access to 
agents’ internal representations. This suggests that a modeling 
approach to animal cognition might be extremely fruitful. One 
issue that is currently receiving a great deal of scientific attention 
is the degree to which animals may have a ‘theory of mind’, and 
specifically, what ancestral conditions may have provoked such 
an ability to evolve. We proposed a modeling technique that 
could, in theory, simulate this process. By creating agents with 
“if-then” rule sets as their internal decision mechanisms, we can 
allow “virtual natural selection” to modify their content and 
composition, and investigate which evolutionary scenarios 
promote the emergence of agents with more “theory of mind like” 
rule sets. We demonstrated the potential of this technique in a 
prototype model, where agents were exposed to two selective 
challenges: avoiding predators, and finding food. Even in our very 
simple setup, different strategies emerged, and agent rule sets 
varied suitably under different environmental conditions. With 
sufficient extensions to the model,  it should be possible to 
simulate real evolutionary scenarios proposed by animal cognition 
researchers, and investigate their plausibility as explanations for 
the evolution of ‘theory of mind’. A first step towards realizing 
this goal would be to outfit the prototype’s agents with more 
flexible rule evaluation mechanisms, allowing them to prioritize 
different rules in different situations. 
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