
ARTIFICIAL ARGUMENT ASSISTANTS FOR DEFEASIBLE ARGUMENTATION

Bart Verheij

Department of Metajuridica, Universiteit Maastricht
P.O. Box 616, 6200 MD Maastricht, The Netherlands
bart.verheij@metajur.unimaas.nl, http://www.metajur.unimaas.nl/~bart/

Abstract

The present paper discusses experimental argument assistance tools. In contrast with automated reasoning
tools, the objective is not to replace reasoning, but to guide the user’s production of arguments. Two
systems are presented, ARGUE! and ARGUMED based on DEFLOG. The focus is on defeasible
argumentation with an eye on the law. Argument assistants for defeasible argumentation naturally
correspond to a view of the application of law as dialectical theory construction. The experiments provide
insights into the design of argument assistants, and show the pros and cons of different ways of
representing argumentative data. The development of the argumentation theories underlying the systems
has culminated in the logical system DEFLOG that formalizes the interpretation of prima facie justified
assumptions. DEFLOG introduces an innovative use of conditionals expressing support and attack. This
allows the expression of warrants for support and attack, making it a transparent and flexible system of
defeasible argumentation.

1 Introduction

1.1 Argument assistance systems

A current goal in artificial intelligence and law is the development of experimental argument assistance
systems. Such systems assist one or more users during a process of argumentation. A lawyer, for example,
could use such a system in order to draft his pleading in court. Such a system could be part of the
lawyer’s word processing package, and provide assistance, for instance, by helping the lawyer to structure
his unpolished arguments, and by offering tools for analyzing the arguments. Argument assistance
systems can also serve in a context of more than one user: such argument mediation systems can be used
to keep track of diverging positions and assist in the evaluation of opinions.

More specifically, argument assistance systems are aids to drafting and generating arguments by

- administering and supervising the argument process,
- keeping track of the issues that are raised and the assumptions that are made,
- keeping track of the reasons that have been adduced for and against a conclusion,
- evaluating the justification status of the statements made, and
- checking whether the users of the system obey the pertaining rules of argument.

Marshall (1989) speaks similarly of tools to support the formulation, organization and presentation of
arguments.

Argument assistance systems must be distinguished from the more common automated reasoning
systems. The latter automatically perform reasoning on the basis of the information in their ‘knowledge
base’. In this way, an automated reasoning system can do (often complex) reasoning tasks for the user.
Argument assistance systems do not (or not primarily) reason themselves; the goal of assistance systems
is not to replace the user’s reasoning, but to assist the user in his reasoning process.

The different nature of argument assistance systems and automated reasoning systems has two
consequences. First, argument assistance systems are more passive than automated reasoning systems.
Several of their functions are implicitly available, or operate ‘in the background’. For instance, the
evaluation of argumentative data, such as the currently justified statements, can occur in the background,
much like the automatic spelling checks of word processing systems: after each action by the user, the
argument assistance system automatically updates previous evaluations.

April 11, 2003 1

Second, in the development of argument assistance systems, the notorious difficulties of the inherent
complexities of the law (such as its open and dynamic nature) are less severe than for automated
reasoning systems, since they can to a large extent be left to the user. In fact, this is a relevant incentive to
develop argument assistants in the first place (cf. Leenes 1998 and section 1.2).

Other incentives for the development of argument assistance software stem from the recent research
interest in dialogical theories of reasoning (for an insightful overview see Hage 2000), the use of
computer-supported argumentation in teaching and learning (e.g., Aleven’s CATO 1997, related to
Ashley’s HYPO 1990, Bench-Capon and Leng 1998, and - not focusing on the legal domain - Suthers et
al. 1995 on Belvedere, Veerman 2000, Van Gelder 2001), argument analysis (Reed and Walton 2001 on
Araucaria, see http://www.computing.dundee.ac.uk/staff/creed/research/araucaria.html), computer-
supported collaborative work focusing on argumentation (see for instance Shum’s resource site at
http://kmi.open.ac.uk/people/sbs/csca/), computer-supported and online legal mediation and dispute
resolution (see for instance Lodder 2001, and http://www.mediate.com/), knowledge management
(Stranieri and Zeleznikow 2000) and the commercial development of case management and litigation
support systems (see for instance http://www.digital-lawyer.com/resource/caseman.html).

The present paper focuses on argument assistants that have been developed with a legal context in
mind, and in which the argumentation is defeasible. Defeasible argumentation is based on statements or
arguments that can become defeated when they are attacked by other statements or arguments. Examples
of such systems are Gordon’s (1995) Pleadings Game, Room 5 by Loui et al. (1997), Zeno by Gordon
and Karacapilidis (1997)1 and DiaLaw by Lodder (1998). There are many otherwise interesting and
relevant systems that are not about argument assistance, not legally oriented, or not about defeasible
argumentation. Examples are Nute’s 1988 d-Prolog, NATHAN by Loui and his students (1991-1993,
http://www.cs.wustl.edu/~loui/natnathan.text), IACAS by Vreeswijk 1995, Pollock’s 1987, 1995
OSCAR, Tarski’s World by Barwise and Etchemendy 2000, and Jaspars’ logic animations
(http://turing.wins.uva.nl/~jaspars/animations/).

It should be noted that the development of argument assistance systems for defeasible argumentation
is still mainly in an experimental phase. A first difficulty is the lack of a canonical theory of defeasible
argumentation, and more specifically of legal argumentation.2 A second difficulty is that argument
assistance systems require the design of user interfaces of a new kind. There is much to be learnt about
the way arguments can be sensibly and clearly presented to the users (especially when they are
defeasible), or with the way argument moves should be performed by the user. Difficulties such as these
could be the cause of the striking differences between the argumentation theories and user interfaces of
argument assistance systems (cf. section 4 on related work).

Elsewhere (Verheij 1998a, 1998b), I have argued that even in the current experimental phase the
development of argument assistance systems is relevant. I distinguished four ways in which the
development of argument assistance systems is worthwhile: first, such systems can serve as realizations
of (formal) argumentation theories, which is especially relevant because of the (well-recognized)
technical difficulties of many theories; second, they are test beds for argumentation theories, technically,
philosophically and in practice; third, argument assistance systems can be showcases, giving the
argumentation theories more credibility; and, finally, they can be practical aids, with applications in, for
instance, legal decision making, planning and education. Currently developed systems are already
worthwhile in the first two, more theoretically oriented ways, and are starting to become so in the second
two, more practically oriented ways.

In the present paper, two prototypes of argument assistants are presented, with different argumentation
theories and program designs. The first is the ARGUE! system (see section 2), the second ARGUMED based
on DEFLOG (see section 3).3 The systems can be downloaded at
http://www.metajur.unimaas.nl/~bart/aaa/. Section 4 discusses related work. The developmental history
of the systems and the main reasons for the design choices made are overviewed in section 1.3.

1 Zeno was developed in the context of a project focusing on geography, but has also been explicitly
presented in the artificial intelligence and law community.
2 For an overview of argument models in law, see Bench-Capon 1997 and the special issue of Artificial
Intelligence and Law, Vol. 4, Nos. 3/4, 1996. For overviews of defeasible argumentation, see Prakken and
Vreeswijk 2002, or Chesñevar, Maguitman and Loui 2000. For an overview of nonmonotonic logics, see
Gabbay, Hogger and Robinson 1994.
3 Parts of the present paper are based on earlier publications, especially Verheij (1999). The description
of CUMULA (section 2.1) is adapted from Verheij (1998a) and Lodder and Verheij (1998). An extended
version of the present paper will be published as a book (Verheij Asser).

April 11, 2003 2

Before that, we turn to the view on legal argumentation that underlies the systems’ argumentation
theories: legal argumentation is a kind of dialectical theory construction.

1.2 Legal argumentation as dialectical theory construction

A naive conception of the application of the law to concrete cases is that it consists in strictly following
the given rules of law that match the given facts associated with a case - a conception by which a judge is
turned into a bouche de la loi (Figure 1).

Figure 1: A naive view of applying the law to a case

The main problem with this view (which has become a mock image of law application that mainly serves
as a starting place for discussion) is that it assumes that the rules of law and the case facts are somehow
readily available. Obviously, that is not true in general. The available material is often simply not
sufficiently precise and unambiguous to allow straightforward application of rules to facts. And even if
the rules and facts would be given in an adequate manner, following the rules that match the case facts
can be problematic. First, following the rules may not be appropriate, for instance, when a rule is not
applicable because of an exception. Second it may not solve the case at all, for instance, when no relevant
result follows. Third there may be several possibilities, perhaps even conflicting.

The first can occur since legal rules are generally defeasible. There can be exclusionary reasons or
reasons against their application, for instance when applying the rule would be against its purpose.

The second is the case when there is a legal gap: the applicable law does not have an answer to the
current case. This not only occurs on the advent of new legally relevant phenomena (such as the new legal
problems as they are encountered by the rise of the Internet), but also when the law only (and often
deliberately) provides a partial answer, as for instance by the use of open rule conditions, such as grievous
bodily harm or fairness. An adjudicator will have to fill the gap, for instance by making new rules of
classification.

The third is the case when there is a legal ambiguity: the applicable law provides several possible
answers. This can occur by accident, for instance, when there is an unforeseen and unwanted conflict of
rules. In a complex, man-made system such as the law, this is to be expected. Ambiguities also arise on
purpose however, namely when choosing between the different possibilities is left to the discretion of the
adjudicator. For instance, in the Netherlands, rules of criminal law have open rule conclusions, in the
sense that they merely prescribe the maximum amount of punishment. As a result, the adjudicator can
take all circumstances into account when deciding the actual amount of punishment.

Defeasibility is related to the dialectical argumentation that is so deeply entrenched in the law: every
claim can at times be put to discussion. Legal gaps and ambiguities are signs of the inherent openness of
the legal system. Just as defeasibility, they allow for a flexible application of the law that takes all
circumstances into account, and thus can increase the system’s justness.4

Law application can also be considered as a kind of dialectical theory construction (Figure 2). In such
a view, applying the law to a case is a process going through a series of stages. During the process, a
theory of the case, the applicable law and the consequences are progressively developed. The process

4 Some may fear that defeasibility, gaps and ambiguities all too easily diminish legal security and
equality. One asset of the legal system is that it tries to uphold legal security and equality by explicit
specification, while leaving room for justness by remaining open.

April 11, 2003 3

starts with a preliminary theory with imperfections, such as insufficiently justified assumptions, tentative
interpretations of legal sources, unduly applied rules, open issues and conflicting conclusions. During the
process, the theory is gradually enhanced in order to diminish the imperfections. The process is guided by
examining the preliminary theory, and by looking for reasons for and against it.

Figure 2: Theory construction

The argument assistants presented in the present paper support the dialectical theory construction needed
for the application of the law to cases.

1.3 Two prototypes: ARGUE! and ARGUMED based on DEFLOG

The first argument assistant, ARGUE! (section 2), was inspired by work on the logical system CUMULA
that abstractly modeled defeasible argumentation (Verheij 1996). In CUMULA, arguments (in the sense of
trees of reasons and conclusions) can be defeated. The defeat of arguments results from attack by other
arguments, as expressed by defeaters. A defeater indicates which set of arguments attacks which other set
of arguments. CUMULA’s defeaters allow the representation of several types of defeat (including defeat
by parallel strengthening and by sequential weakening; Verheij 1996). While building ARGUE!, it became
apparent however that CUMULA (or better: the simplified version of it used for ARGUE!) was not
sufficiently natural for the representation of real-life argumentation. Also the on-screen drawing of
argumentative data (especially of the defeaters) seemed to be too complex for the intended users. The
result was a system that was mainly interesting from a research perspective, as a realization of (and
testbed for) a particular theory of defeasible argumentation. ARGUE! was first described in this way by
Verheij (1998a).

A new approach was taken, with two starting points. First, the argumentation theory was changed
considerably. Second, the interface would become template-based. The user could perform his
argumentation by filling in forms dedicated to particular argument moves.

With respect to the argumentation theory, the focus was limited to undercutting exceptions, as
distinguished by Pollock (1987, 1995): reasons that block the connection between a reason and a
conclusion. Since undercutting defeaters are of established importance for legal reasoning (see, e.g.,
Prakken 1997, Hage 1997, Verheij 1996), this seemed to be a natural choice. The first version of
ARGUMED (ARGUMED 1.0; Verheij 1998b, not further discussed in the present paper) was soon replaced
by the second since it had two obvious drawbacks: undercutting exceptions were not graphically
represented, and it was not possible to argue about certain relevant issues, such as whether a statement
was a reason or whether it was an exception. The former drawback was solved in ARGUMED 2.0 by the
use of dialectical arguments, in which support by reasons and attack by undercutting exceptions were
represented simultaneously. The latter led to the introduction of step and undercutter warrants. In
ARGUMED 2.0, a step warrant is a kind of conditional sentence that underlies an argument step, such as
‘If Peter has violated a property right, then he has committed a tort’. Undercutter warrants similarly
underlie attack by an undercutting exception. An example of an undercutter warrant is the statement ‘The
statement that there is a ground of justification for Peter’s act, is an exception to the rule that, if Peter has
violated a property right, then Peter has committed a tort’. Verheij (1999) gave the first presentation of
ARGUMED 2.0.

April 11, 2003 4

ARGUMED 2.0 was evaluated by a group of ten test persons. The group was varied and consisted
mostly of students and staff members of the Faculty of Law in Maastricht. They were asked to finish a
test protocol containing several tasks to be performed within ARGUMED 2.0. (The test protocol is
available at http://www.metajur.unimaas.nl/~bart/aaa/. It is however in Dutch.) The goal was to find out
whether the system and its argumentation theory sufficiently spoke for themselves. For that purpose, the
test protocol initially provided little information about its workings, but let the test persons find out for
themselves by showing unexplained examples and by asking to reproduce argumentation samples in the
system.

The test results were qualitatively evaluated. It was reassuring that some test persons almost
flawlessly finished the test protocol. Most test persons indicated having enjoyed the test. The opinions
about the system were reasonably positive. The opinions were more positive when the test protocol was
finished more easily. The tests also showed a number of recurrent obstacles in the system and its
argumentation theory. For instance, the dialectical arguments were understood reasonably well, as long as
there were no warrants involved. Not only was it hard to reproduce warrants in the system, but also their
intended role in argumentation was not entirely clear to all test persons. The distinction between issues
and assumptions turned out to be difficult for some test persons, especially in connection with the
justification status of the statements. The template-based interface was not a complete success. For some,
it was hard to relate the slots of the templates to what was happening in the argument screen. Several test
persons expected that the argument screen would be mouse-sensitive, for instance, to repair small typing
errors, but by trying found out that it was not.

The user evaluation of ARGUMED 2.0 inspired the design of a new user interface of the system. The
result was ARGUMED based on DEFLOG (the version of ARGUMED described in this paper, see section 3).
Its user interface is based on a mouse-sensitive argument screen, in accordance with what the test persons
had expected. When the user double-clicks in the argument screen, a box appears in which a statement
can be typed. The right mouse button gives access to a context-sensitive menu that allows adding support
for or attack against a statement. The resulting interface is very natural and easy to use (as was confirmed
by another user evaluation). Apart from the better interface, the most interesting enhancement of the new
version of ARGUMED is that it uses a richer and more satisfactory argumentation theory. Whereas in
ARGUMED 2.0 the only kind of attack was based on undercutting exceptions, ARGUMED based on
DEFLOG allows the attack of any statement. By considering the connecting arrows between statements
(whether expressing support or attack) as conditional statements, warrants and undercutters found natural
representations. Moreover, the new version of ARGUMED is logically more satisfactory: the evaluation of
dialectical arguments corresponds exactly to the dialectical interpretations of prima facie justified
assumptions in the logical system DEFLOG (see Verheij 2000a, JLC).

The main part of this paper consists of descriptions of the systems and their argumentation theories
(sections 2 and 3). In order to illustrate the possibilities and differences, one example is used throughout
the discussion of the two systems.

1.4 An example: a case of grievous bodily harm

Consider the following fictitious case of grievous bodily harm.

There has been a pub fight, in which someone is badly hurt: according to the hospital report, the
victim has several broken ribs, with complications. Someone is arrested and accused of intentionally
inflicting grievous bodily harm, which is punishable with up to eight years of imprisonment,
according to article 302 of the Dutch criminal code. The accused denies that he was involved in the
fight. However, there are ten witnesses who claim that the accused was involved. In one precedent
(referred to as precedent 1), the victim has several broken ribs, but no complications. In that
precedent, the bodily harm was not considered to be grievous, and the accused was punished for
intentionally inflicting ordinary bodily harm, which is punishable with up to two years of
imprisonment (article 300 of the Dutch criminal code). In another precedent (referred to as precedent
2), the victim has several broken ribs with complications. In precedent 2, the accused was punished
for intentionally inflicting grievous bodily harm.

The case story can give rise to interesting argumentation concerning the accused’s punishability because
of inflicting grievous bodily harm. In the discussion of the systems, it will be shown to what extent the
relevant argumentation can be produced within each of them. In the sections 2.2 and 3.2, the example is
analyzed in ARGUE! and in ARGUMED based on DEFLOG, respectively.

April 11, 2003 5

2 ARGUE!

2.1 Argumentation theory

The argumentation theory underlying the ARGUE! system was inspired by CUMULA (Verheij 1996).
CUMULA is a procedural model of argumentation with arguments and counterarguments. It is based on
two main assumptions. The first assumption is that argumentation is a process during which arguments
are constructed and counterarguments are adduced. The second assumption is that the arguments used in
argumentation are defeasible, in the sense that whether they justify their conclusion depends on the
counterarguments available at a stage of the argumentation process. If an argument no longer justifies its
conclusion it is said to be defeated. The defeat of an argument is caused by a counterargument (that is
itself undefeated).

For instance, if a colleague entering the room is completely soaked and tells that it is raining outside,
one could conclude that it is necessary to put on a raincoat. The conclusion can be rationally justified, by
giving support for it. The following argument could be given:

A colleague entering the room is completely soaked and tells that it is raining.
So, it is probably raining.
So, it is necessary to put on a raincoat.

Such an argument is a reconstruction of how a conclusion can be supported.

An argument that supports its conclusion does not always justify it. For instance, if in our example it
turns out that the streets are wet, but the sky is blue, the conclusion that it is necessary to put on a raincoat
would no longer be justified. The argument has become defeated. For instance, the following argument
could be given:

The streets are wet, but the sky is blue.
So, the shower is over.

In this case the argument that it is probably raining is defeated by the counterargument that the shower is
over. Since the conclusion that it is probably raining is no longer justified, it can no longer support the
conclusion that it is necessary to put on a raincoat.

CUMULA is a procedural model of argumentation with arguments and counterarguments. Arguments
are assigned a defeat status, either undefeated or defeated. The defeat status of an argument depends on
three factors:

(1) the structure of the argument;
(2) the attacks by counterarguments;
(3) the argumentation stage.

We briefly discuss each factor below. The model especially builds on the work of Pollock (1987, 1995),
Simari & Loui (1992), Vreeswijk (1993, 1997) and Dung (1995) in philosophy and artificial intelligence,
and was developed to complement work on the model of rules and reasons Reason-Based Logic (see, e.g.,
Hage 1996, 1997 and Verheij 1996).

In CUMULA, the structure of an argument (factor (1) above) is represented as in the argumentation
theory of Van Eemeren and Grootendorst (1981, 1987). Both the subordination and the coordination of
arguments are possible. It is explored how the structure of arguments can lead to their defeat. For
instance, the intuitions that it is easier to defeat an argument if it contains a longer chain of defeasible
steps (‘sequential weakening’), and that it is harder to defeat an argument if it contains more reasons to
support its conclusion (‘parallel strengthening’), are investigated.

In CUMULA, which arguments are counterarguments for other arguments, that is, which arguments
can attack other arguments (factor (2) above), is taken as the primitive notion (cf. Dung 1995). This
approach to argument defeat can be called counterargument-triggered defeat. Basically, an argument is
defeated if it is attacked by an undefeated counterargument (cf. also Simari & Loui 1992). This approach
to argument defeat must be contrasted with inconsistency-triggered defeat: the primitive notion is which
arguments have conflicting conclusions (as, e.g., in Vreeswijk’s 1993, 1997 abstract argumentation
systems). In this approach to argument defeat, an argument is defeated if there is an undefeated argument

April 11, 2003 6

with conflicting conclusion. Often the defeating argument has higher priority than the defeated argument,
with respect to some priority relation on arguments.5

In CUMULA, so-called defeaters indicate which arguments are counterarguments to other arguments,
that is, which arguments can defeat other arguments. In this way, CUMULA shows that the defeasibility of
arguments can be fully modeled in terms of argument structure and the attack relation between
arguments, independent of the underlying language. Moreover, it turns out that defeaters can be used to
represent a wide range of types of defeat, as proposed in the literature, for instance, Pollock’s (1987)
undercutting and rebutting defeat. Also some new types of defeat can be distinguished, namely defeat by
sequential weakening (related to the sorites paradox; cf. Read 1995) and defeat by parallel strengthening
(related to the accrual of reasons).

In the CUMULA model, argumentation stages (factor (3) above) represent the arguments and the
counterarguments currently taken into account, and the status of these arguments, either defeated or
undefeated. The model’s lines of argumentation, that is, sequences of stages, give insight into the
influence that the process of taking arguments into account has on the status of arguments. For instance,
by means of argumentation diagrams (which give an overview of possible lines of argumentation),
phenomena that are characteristic for argumentation with defeasible arguments, such as the reinstatement
of arguments, are explicitly depicted. In contrast with Vreeswijk’s (1993, 1997) model, we show how in a
line of argumentation not only new conclusions are inferred (‘forward argumentation’, or inference), but
also new reasons are adduced (‘backward argumentation’, or justification). In other words, CUMULA’s
model of the argumentation process is free, as opposed to proof-based systems (that focus on inference
from a fixed set of premises) and issue-based systems (that focus on justification of a fixed set of issues):
in CUMULA neither the premises nor the issues are fixed during a line of argumentation.

To summarize, CUMULA shows

(1) how the subordination and coordination of arguments is related to argument defeat;
(2) how the defeat of arguments can be described in terms of their structure, counterarguments, and the

stage of the argumentation process, and independent of the logical language;
(3) how both inference and justification can be formalized in one model.

CUMULA has obvious limitations. We mention two. First, its underlying language is completely
unstructured. It contains for instance no logical connectives, no quantifiers, and no modal operators. This
is certainly a limitation, but one of the research objectives was to show that defeat can be fruitfully
studied independently of the language. Second, the role of the rules underlying arguments is not clarified
in CUMULA. This is in part due to the first limitation: the language of CUMULA does not contain a
conditional or variables, by which rules would become expressible.6

Verheij (1996) discusses the CUMULA model extensively, both informally and formally.

2.2 The grievous bodily harm example

As an illustration, it is shown how argumentation concerning the grievous bodily harm example (section
1.4) can be represented in ARGUE!.

As a start, an argument is constructed for the conclusion that the accused is punishable with up to 8
years of imprisonment (Figure 3). This is done by typing statements in on-screen boxes and connecting
the statements by drawing arrows. Here the conclusions are drawn above the reasons for them, but the
user can arrange the statements at will.

5 I made the distinction between counterargument-triggered and inconsistency-triggered defeat in my
dissertation (Verheij 1996). I think that (Dung-style) counterargument-triggered defeat is philosophically
the most attractive and innovative of the two approaches to argument defeat.
6 Verheij (1996) does contain a formal model in which rules play a central role, viz. Reason-Based
Logic. However, the formal connection with the CUMULA model is not made. The cause of this is
amongst others the very different ‘flavours’ of the two formalisms.

April 11, 2003 7

Figure 3: A two-step argument

In Figure 3, all three statements are justified, as indicated by the use of white boxes. The hospital report
statement is set as justified (by the user, as is indicated by a box with a different color edge), the other two
are justified since there is a justifying reason for them.

Next precedent 1 is used to argue that broken ribs do not count as grievous bodily harm. The user adds
the appropriate statements and draws the dedicated graphical structure that represents a defeater (Figure
4). Here the rule that several broken ribs do not count as grievous bodily harm, which explains the
precedent, is used as a counterargument against the connection between the hospital report statement and
the conclusion that grievous bodily harm has been inflicted. This is an example of an undercutting
defeater (cf. Pollock 1987).

Figure 4: Adding a defeater

The result is that the connecting arrow is no longer supporting (indicated by the dots). Therefore the
conclusions that grievous bodily harm has been inflicted and that the accused is punishable are no longer
justified. This is indicated by the use of gray boxes.

Finally, the accused’s testimony is added as an argument attacking the conclusion that he has inflicted
grievous bodily harm to the victim (Figure 5). The result is that that conclusion is unjustified, as indicated
by the crossed-out box.

April 11, 2003 8

Figure 5: A second defeater

For ARGUE!, the representation of the grievous bodily harm example ends here. The other relevant
argumentative information cannot be represented in the right way. There are two relevant limitations of
ARGUE!. First it does not allow for the representation of warrants (cf. Toulmin 1958): that a statement is a
reason for another, cannot be the subject of further argument. Therefore the source of the punishability
(the criminal code article 302) cannot be represented. Second the defeaters are not themselves statements
that can be argued against. As a result, it cannot be attacked that some argument defeats another. As a
result, it can for instance not be represented that the accused’s testimony does not defeat the conclusion
that he has inflicted grievous bodily harm to the victim, since there are ten witnesses stating that he was
involved in the fight. Of course the accused’s testimony can itself be argued against, but that would be a
misrepresentation of the example: there is no reason to dispute the accused’s testimony, only its defeating
effect is at issue.

2.3 Program design

In the ARGUE! system, the user ‘draws’ his argumentation on screen. By clicking one of the buttons on
the left, the user chooses the graphical mode. There are four modes. In statement mode, clicking in the
drawing area shows an edit box, in which a sentence can be typed. In arrow mode, statements can be
connected by arrows, indicating that a statement is a reason for another. In order to draw an arrow, the
user clicks twice: first on the reason statement, second on the conclusion statement. In defeater mode,
defeaters are drawn. They consist of two connected rectangles. In order to draw a defeater, the user makes
two selections in the drawing area (by clicking and dragging). The first selection indicates the attacking
part of the argumentative data, the second the attacked part. Only the statements and arrows that are
selected are attacking or attacked, not the defeaters. In selection mode, the user can select argumentative
elements in the drawing area. For instance, a statement can be moved by clicking and dragging.
Statements and arrows can be deleted.

ARGUE! has a stepwise evaluation algorithm, activated by clicking the ‘Evaluate (one round)’ button.
At each step, the current statuses of the argumentative data determine the new statuses. The basis of the
evaluation is formed by the statement statuses that are set by the user. By right-clicking a statement, the
user can set a statement as justified, unjustified or not evaluated.

The evaluation rules are as follows:

1. A statement that is now set to justified or unjustified by the user, keeps its status.
2. A statement that now has justified support, is next justified.
3. A statement that now has no justified support and is attacked, is next unjustified.
4. A statement that now has no justified support and is not attacked, is next not evaluated.

A statement has justified support if and only if it is at the end of a supporting arrow starting at a justified
statement. A statement is attacked if and only if it is inside the attacked rectangle of an active defeater.
An arrow is supporting if and only if it is not inside the attacked rectangle of an active defeater. A

April 11, 2003 9

defeater is active if and only if the statements in its attacking rectangle are justified and the arrows in its
attacking rectangle are supporting.

The ‘Jump (one round)’ button activates a variant of the evaluation algorithm, in which a statement
that now has no justified support and is not attacked, is next justified (instead of not evaluated). This rule
has the effect that all statements are prima facie justified. The user can optionally change the selection of
rules that are used when clicking either of the two buttons.

The changes of evaluation statuses are logged. It depends on the argumentative data whether new
evaluations are made. Two configurations that do not lead to new evaluations (when using the ‘Jump’
rules) are the following:

Figure 6: An attacking statement that is attacked by another statement

Figure 7: Two statements attacking each other

However, when in the second configuration, the statement ‘a’ is set to ‘not evaluated’, repeatedly clicking
the ‘Jump’ button results in a loop flipping between two states: one in which both ‘a’ and ‘b’ are justified,
and one in which both are unjustified. Further details are provided by Verheij (1998a).

3 ARGUMED based on DEFLOG

The development of ARGUE! was soon followed by a series of argument assistants with starting points
that differ fundamentally from those of ARGUE!: the ARGUMED family. With respect to the program
design, the starting point became that the argumentative data should be entered into the system by making
argument moves instead of by drawing graphical elements. With respect to the argumentation theory, the
starting point became that arguments are inherently dialectical, in the sense that support and attack go side
by side and are not separated in different levels.

ARGUMED based on DEFLOG is the successor of ARGUMED 2.0 (described by Verheij 1999).7 With
respect to the program design, forms are no longer used for entering argumentative data. Instead, the
screen has been made mouse-sensitive so that the user can interact directly with the argumentative data
that is already shown. With respect to the argumentation theory, attack is no longer limited to
undercutting exceptions, but it is possible to attack any statement. Moreover the arrows used to represent
support or attack are considered as conditionals statements, which allows a natural treatment of warrants
and undercutters.

3.1 Argumentation theory

The argumentation theory of ARGUMED based on DEFLOG is an extension and streamlining of that of
ARGUMED 2.0.

7 Verheij 1998b describes ARGUMED 1.0.

April 11, 2003 10

3.1.1 The structure of dialectical arguments

In ARGUMED based on DEFLOG, dialectical arguments consist of statements that can have two types of
connections between them: a statement can support another, or a statement can attack another. The
former is indicated by a pointed arrow between statements, the latter by an arrow ending in a cross. Here
is an example:

Figure 8: Support and attack

The dialectical argument consists of three elementary statements, viz. that Peter shot George, that witness
A states that Peter shot George, and that witness B states that Peter did not shoot George. As is indicated,
the second is a reason supporting that Peter shot George, the second a reason attacking that Peter shot
George.

The expressiveness of dialectical arguments is significantly enhanced by considering the connecting
arrows (of both the supporting and the attacking type) as a kind of statements, that can as such be
supported and attacked. The arrow of a supporting or attacking argument step is here called the
conditional underlying the step.

For instance, one could ask why A’s testimony supports that Peter shot George. In the following, the
statement that witness testimonies are often truthful is adduced as a reason:

Figure 9: Supporting that a statement is a reason for another

The statement that witness testimonies are often truthful serves as reason why it follows from A’s
testimony that Peter shot George. The same statement can back the attacking argument step of B’s
testimony attacking that Peter shot George.

Figure 10: Supporting that a statement is a reason against another

The following examples show that the connecting arrows can also be attacked:

Figure 11: Attacking that a statement is a reason

April 11, 2003 11

Here the unreliability of the witnesses A and B, respectively, are adduced as reasons against the
consequential effect of their testimonies.

In general, dialectical arguments are finite structures that result from a finite number of applications of
three kinds of construction types:

1. Making a statement
2. Supporting a previously made statement by a reason for it
3. Attacking a previously made statement by a reason against it

It should be borne in mind that the types two and three consist of making two statements: one an ordinary
elementary statement, viz. the reason for or against a statement, the other the special statement that the
reason and the supported or attacked statement are connected, as expressed by the conditional underlying
the supporting or attacking argument step.

Though dialectical arguments are here considered as the result of a finite construction, their
corresponding tree structure can be virtually infinite. An example is given in the following picture:

Figure 12: An attack loop

The dots indicate where the argument could be further extended.
The argument can be thought of as being the result of three construction steps. First the statement that

Peter shot George is made, then that statement is attacked by the reason against it that Peter did not shoot
George, and finally it is stated that the statement that Peter shot George is on its turn a reason against its
attack. If the resulting loop is expanded as a tree (growing downward from the initial statement), the
result is infinite. The relevant information can be finitely represented by blocking the expansion of a
branch after the first recurrence of a statement, as in the figure (which was generated by the system).

3.1.2 Evaluating dialectical arguments

Dialectical arguments can be evaluated with respect to a set of prima facie justified assumptions. An
example of an evaluated dialectical argument is the following:

Figure 13: An evaluated argument

Assumptions are preceded by an exclamation mark, all other statements - called issues - by a question
mark. For instance, in Figure 13, the statement that witness A states that Peter shot George is an
assumption, while the other two statements shown are issues. The three shown statements are evaluated as
justified, as is indicated by the dark bold font. The statement about A’s testimony is justified since it is an
assumption that is not attacked; the statement that Peter shot George is justified since it is supported by a
justifying reason (viz. A’s testimony), and similarly for the statement about the investigation. (Here and
in the following the conditionals underlying argument steps are implicitly considered to be to be prima
facie justified assumptions.)

The following example involves the attack of the support relation between two statements:

April 11, 2003 12

Figure 14: An evaluated dialectical argument

The statements about A’s testimony and unreliability are assumptions, while the statement that Peter shot
George is an issue. The two assumptions are justified since they are not attacked. The statement that Peter
shot George is unevaluated (as is indicated by the light italic font): it is not justified or defeated since it is
an issue without justifying or defeating reason.

An example of a dialectical argument in which a statement is defeated is the following:

Figure 15: A defeated assumption

Here the statement that Peter shot George is an assumption. Just like all assumptions, it is prima facie
justified. However in the argument shown it is actually defeated (as is indicated by the bold struck-
through font) since it is attacked by the reason against it that witness B states that Peter did not shoot
George.

The evaluation of dialectical arguments with respect to a set of prima facie justified assumptions is
naturally constrained as follows:

1. A statement is justified if and only if

a. it is an assumption, against which there is no defeating reason, or
b. it is an issue, for which there is a justifying reason.
A statement is defeated if and only if there is a defeating reason against it.

2. A reason is justifying if and only if the reason and the conditional underlying the corresponding
supporting argument step are justified.

3. A reason is defeating if and only if the reason and the conditional underlying the corresponding
attacking argument step are justified.

It is a fundamental complication of dialectical argumentation that a dialectical argument can have any
number of evaluations with respect to a set of prima facie justified assumptions: there can be no
evaluation, or one, or several.

Assuming as we do that statements cannot be both justified and defeated, the argument whether Peter
shot George shown in Figure 8 has no evaluation with respect to the testimonies by A and B as
assumptions. That the argument has no evaluation is seen as follows. Since both assumptions are not
attacked they must be justified in every evaluation. But then A’s testimony would require that it is
justified that Peter shot George, while at the same time B’s testimony would require that it is defeated that
Peter shot George. This is impossible.

An example of a dialectical argument with two evaluations is the looping argument discussed above:

Figure 16: An example with two evaluations

The argument has two prima facie justified assumptions, viz. that Peter shot George and that Peter did not
shoot George. The assumptions attack each other. In one evaluation, it is justified that Peter shot George,

April 11, 2003 13

thus making it defeated that Peter did not shoot George, while in the other evaluation it is the other way
around.

Note that the existence of the two evaluations is possible because the loop of attacks consists of an
even number of statements. An odd length loop of attacks can cause that there is no evaluation. Two
examples are shown in figure 17:

Figure 17: Two examples in which there is no evaluation

In the example on the left, there are three assumptions. The first is that A says that he is lying. The second
(represented by the supporting arrow) is that A’s saying that he is lying supports that he is lying. The third
(representing by the attacking arrow) is that when A is lying A’s saying that he is lying provides no
support for A’s lying. By reasoning that is well-known from all variants of the liar’s paradox it follows
that there is no evaluation.8 The example on the right with a self-attacking assumption is similar.9

3.1.3 DEFLOG: on the logical interpretation of prima facie justified assumptions

The ideas on dialectical argumentation discussed above can be made formally precise in terms of the
logical system DEFLOG (Verheij 2000a, JLC).

The dialectical interpretation of theories

DEFLOG’s starting point is a simple logical language with two connectives × and |. The first is a unary
connective that is used to express the defeat of a statement, the latter is a binary connective that is used to
express that one statement supports another. When ϕ and ψ are sentences, then ×ϕ (ϕ‘s so-called
dialectical negation) expresses that the statement ϕ is defeated, and (ϕ | ψ) that the statement ϕ supports
the statement ψ. Attack, denoted as Y, is defined in terms of these two connectives: ϕ Y ψ is defined as ϕ
| ×ψ, and expresses that the statement ϕ attacks the statement ψ, or equivalently that ϕ supports the
defeat of ψ. When p, q, r and s are elementary sentences, then p | (q | r), p | ×(q | ×r) and (p | q) | (p
| ×(r | s)) are some examples of sentences. (For convenience, outer brackets are omitted.)

The central definition of DEFLOG is its notion of the dialectical interpretation of a theory. Formally,
DEFLOG’s dialectical interpretations of theories are a variant of Reiter’s (1980) extensions of default
theories, Gelfond and Lifschitz’s (1988) stable models of logic programming, Dung’s (1995) stable
extensions of argumentation frameworks, and Bondarenko et al.’s (1997) stable extensions of
assumption-based frameworks.10

8 Assume that there is an evaluation. When the statement that A is lying were justified in the evaluation,
it would have to be justified by A’s saying that he is lying. However, that is impossible since the
statement that A is lying then attacks the supporting connection. The statement that A is lying cannot be
defeated either since it is not attacked. But when the statement that A is lying is neither justified nor
defeated in the evaluation, A’s saying that he is lying justifies that A is lying, contradicting that it is not
justified that A is lying. By reductio ad absurdum it follows that there is no evaluation.
9 Note that for DEFLOG the statement ‘This statement is defeated’ is taken as an elementary statement,
just like ‘John is a thief’ or ‘p’. DEFLOG’s language does not include a demonstrative ‘this’ nor does it
contain a predicate ‘is defeated’.
10 In the appendix, a formal connection with Dung’s (1995) work is established. More relations between
the formalisms mentioned are for instance discussed by Dung (1995) and in the extended manuscript on
DEFLOG (Verheij 2000a). To guide intuition, the following may be useful. A default p : q / r (as in
Reiter’s 1980) would in DEFLOG be translated to two conditionals, viz. p | r and ¬q | ×(p |r). The
second says that the former is defeated in case of ¬q. This corresponds to the intuition underlying the
default that r follows from p as long as q can consistently be assumed. (Note however that the properties
of ordinary negation ¬ are not part of DEFLOG.) A rule in logic programming p b q, ~r where ~ is
negation as failure, corresponds in DEFLOG to two conditionals, viz. q | p and r | ×(q | p). The second

April 11, 2003 14

A theory is any set of sentences. A theory represents a set of prima facie justified assumptions. When
a theory is dialectically interpreted, all sentences in the theory are evaluated, either as justified or as
defeated. (This is in contrast with the interpretation of theories in standard logic, where all sentences in an
interpreted theory are assigned the same positive value, namely true, for instance, by giving a model of
the theory.)

An assignment of the values justified or defeated to the sentences in a theory gives rise to a dialectical
interpretation of the theory, when two conditions are fulfilled. First, the justified part of the theory must
be conflict-free. Second, the justified part of the theory must attack all sentences in the defeated part.
Formally the definitions are as follows.

(i) Let T be a set of sentences and ϕ a sentence. Then T supports ϕ when ϕ is in T or follows from T by

the repeated application of |-Modus ponens (from ϕ | ψ and ϕ, conclude ψ). T attacks ϕ when T
supports ×ϕ.

(ii) Let T be a set of sentences. Then T is conflict-free when there is no sentence ϕ that is both supported
and attacked by T.

(iii) Let ∆ be a set of sentences, and let J and D be subsets of ∆ that have no elements in common and
that have ∆ as their union. Then (J, D) dialectically interprets the theory ∆ when J is conflict-free
and attacks all sentences in D. The sentences in J are the justified statements of the theory ∆, the
sentences in D the defeated statements.

(iv) Let ∆ be a set of sentences and let (J, D) dialectically interpret the theory ∆. Then (Supp(J), Att(J)) is
a dialectical interpretation or extension of the theory ∆. Here Supp(J) denotes the set of sentences
supported by J, and Att(J) the set of sentences attacked by J. The sentences in Supp(J) are the
justified statements of the dialectical interpretation, the sentences in Att(J) the defeated statements.

Note that when (J, D) dialectically interprets ∆ and (Supp(J), Att(J)) is the corresponding dialectical
interpretation, J is equal to Supp(J) ∩ ∆, and D to Att(J) ∩ ∆. It is convenient to say that a dialectical
interpretation (Supp(J), Att(J)) of a theory ∆ is specified by J.

The examples discussed in the sections 3.1.1 and 3.1.2 can be used to illustrate these definitions. Let
the sentence s express Peter’s shooting of George, a A’s testimony, b B’s testimony, t the truthfulness of
testimonies, u A’s unreliability, and i the obligation to investigate. Then the example shown in Figure 13
corresponds to the three-sentence theory {a, a | s, s | i}. The arrows in the figure correspond to the two
conditional sentences. The theory has a unique extension in which the three assumptions in the theory are
justified. In the extension, two other statements are justified, viz. s and i. The example in Figure 15
corresponds to the theory {b, b | ×s, s}. The arrow ending in a cross in the figure corresponds to the
sentence b | ×s. The theory is not conflict-free, but has a unique extension in which b and b | ×s are
justified, while s is defeated. In the extension, there is one other interpreted statement, viz. ×s, which is
justified. The example of Figure 9 corresponds to the theory {a, t, t | (a | s)}. In its unique extension, all
statements of the theory are justified, and in addition a | s and s. The example of Figure 14 corresponds
to the theory {a, u, u | ×(a | s)}. In its unique extension, a | s is defeated and s is not interpreted (i.e.,
neither justified nor defeated). Note that the theory {a, u, u | ×(a | s), a | s} has the same unique
extension, but is not conflict-free.

DEFLOG’s logical language only uses two connectives, viz. | and ×. Notwithstanding its simple
structure, many central notions of dialectical argumentation can be analyzed in terms of it. For instance, it
is possible to define an inconclusive conditional (a conditional for which the consequent does not always
follow when its antecedent holds) in terms of DEFLOG’s defeasible conditional (that is defeasible in the
same way as any other statement). Other examples of DEFLOG’s expressiveness are Toulmin’s (1958)
warrants and backings and Pollock’s (1987) undercutting and rebutting defeaters. Verheij (2000a)
discusses how to express these notions.

Theories without and with several extensions

The examples of theories discussed above all had a unique extension. Several were examples of the
following general property: a conflict-free theory always has a unique extension, namely the extension
specified by the theory itself. The simplest theory that is not conflict-free with a unique extension is {p,

says that q | p is defeated in case of r. This corresponds to the intuition underlying the program rule that
p follows when q is proven, while r is not.

April 11, 2003 15

×p}. In its extension, p is defeated and ×p justified. Other important examples of theories that are not
conflict-free, but do have a unique extension are {p, q, q | ×p} and {p, q, r, q | ×p, r | ×q}. In the
former theory, the statement that p is attacked by the statement that q. In its unique extension, q and ×p
are justified and p is defeated. In the latter theory, a superset of the former, in addition to q’s attack of p, r
attacks q. In its unique extension, p, ×q and r are justified, and q is defeated. The theories together provide
an example of reinstatement: a statement is first defeated, since it is attacked by a counterargument, but
becomes justified by the addition of a counterattack, that is, an attack against the counterargument. Here p
is reinstated: it is first successfully attacked by q, but the attack is then countered by r attacking q.

There are however also theories with no or with several extensions:

(i) The three theories {p, p | ×p}, {p, p | q, ×q} and {pi | i is a natural number} ∪ {pj | ×pi | i and j are

natural numbers, such that i < j} lack extensions. For the latter theory, this can be seen as follows.
Assume that there is an extension E in which for some natural number n pn is justified. Then all pm
with m > n must be defeated in E, for if such a pm were justified, pn could not be justified. But that is
impossible, for the defeat of a pm with m > n can only be the result of an attack by a justified pm’ with
m’ > m. As a result, no pi can be justified in E. But then all pi must be defeated in E, which is
impossible since the defeat of a pi can only be the result of an attack by a justified pj with j > i. (Note
that any finite subset of the latter theory has an extension, while the whole theory does not. This
shows a ‘non-compactness’ property11 of extensions.)

(ii) The three theories {p, q, p | ×q, q | ×p}, {pi, pi+1 | ×pi | i is a natural number} and {×ip | i is a natural
number} have two extensions. Here ×ip denotes, for any natural number i, the sentence composed of a
length i sequence of the connective ×, followed by the constant p. (Note that each finite subset of the
latter theory has a unique extension, showing another non-compactness property.)

3.2 The grievous bodily harm example

ARGUE! could not represent all argumentation concerning the grievous bodily harm example of
section 1.4. ARGUE! allowed the attack of statements, but could not deal with the warrants underlying
argument steps. In ARGUMED based on DEFLOG, it is possible to argue about step warrants. For instance,
returning to the argumentation of Figure 5, it can be asked why it is the case that the statement that the
accused has inflicted grievous bodily harm to the victim, is a reason for the conclusion that the accused is
punishable with up to 8 years of imprisonment? Figure 18 shows the argument why: in general, inflicting
grievous bodily harm is punishable with up to 8 years imprisonment, and this is the case because of article
302 of the criminal code.

Figure 18: A defeated reason

Note the fundamentally different ways in which attack is represented in Figure 5 and in Figure 18: in the
former representation, attack is a relation between argument structures, whereas in the latter
representation, attack is a relation between statements. In Figure 18, the conclusion that the accused is
punishable is not justified since the only reason for it (the inflicting of grievous bodily harm) is not
justified, even defeated by the accused’s testimony.

11 A property P of sets is called compact if a set S has property P whenever all its finite subsets have the
property. Cf. the compactness of satisfiability in first-order predicate logic.

April 11, 2003 16

In the case story, there is further information that makes the accused’s testimony non-defeating: the
testimonies of 10 pub visitors that the accused was involved in the fight. Figure 19 shows how the
argument is extended to incorporate this information. Still there is no reason justifying the punishability
of the accused, but the prima facie reason that the accused has inflicted grievous bodily harm has become
unevaluated instead of defeated.

Figure 19: A reason that is neither justified nor defeated

We come to the final piece of information in the case story that could not yet be incorporated in the
argumentation: the second precedent that is more on point, and is explained by a more specific rule.12 The
rule explaining precedent 2, viz. that several broken ribs with complications count as grievous bodily
harm, has the effect that precedent 1’s rule (viz. that several broken ribs do not count as grievous bodily
harm) is not defeating. The reason why precedent 2’s rule can do this is that it is more specific. The result
is shown in Figure 20. In the end, the conclusion that the accused is punishable with up to 8 years of
imprisonment is justified for the reason that he has inflicted grievous bodily harm to the victim.

Figure 20: Attacking that a statement is an undercutter

A variant of the precedent-based reasoning is shown in Figure 21. It makes explicit that precedent 2 is
more on point than precedent 1. The argumentation could continue by justifying why this is the case: the
reason would be that precedent 2 shares more factors with the current case than precedent 1 since
precedent 2 concerns a case of broken ribs with complications.

12 Precedent-based reasoning in the law has been studied extensively. For instance, Ashley (1990) treats
the on pointness of cases, and Rissland & Skalak (1991) discuss the use of cases to warrant and to
undercut conclusions.

April 11, 2003 17

Figure 21: Attacking that a statement is an undercutter (in terms of on-pointness)

3.3 Program design

ARGUMED based on DEFLOG uses a ‘mouse sensitive’ argument screen. Double clicking the screen opens
an edit box in which a statement can be typed. Further argumentative data can be added using the context
menu that appears after right-clicking the mouse on a statement or an arrow. Recently, a toolbar has been
added to ARGUMED based on DEFLOG. Argument moves can be made by clicking one of the buttons. The
toolbar is context-sensitive: only those buttons can be clicked that allow moves pertaining to the active
statement. For instance, when the active statement is an issue, the ‘Set as issue’-button cannot be clicked,
while the ‘Set as assumption’-button is available. There are buttons for adding an elementary statement,
for setting a statement as an assumption or as an issue, to support or attack a statement, and to add a
conjunct. Note that use of the buttons in ARGUMED based on DEFLOG and in ARGUE! is different: the
latter change the graphical mode (such as the mode of drawing an arrow), while the former correspond to
argument moves (such as supporting a statement).

Adding a conjunct to a conditional statement was not yet encountered. Conditionals with conjunctions
as antecedents are useful for the representation of rules with composite conditions. For instance, the
article on murder in the Dutch criminal code (article 289 Sr) combines three conditions: taking someone’s
life, intent and premeditation. Figure 22 shows how this can be represented in ARGUMED based on
DEFLOG. The article itself is cited as support for the conditional statement.

Figure 22: A conditional statement with a conjunction as antecedent

In ARGUMED based on DEFLOG, dialectical arguments are computed starting from the conclusion, by
recursively adding the reasons for and against the statements in the argument (including the connecting
conditionals). When a branch of the argument contains a loop, the recursion stops after the first repeated
occurrence of a statement in order to make sure that the resulting graphical structure is finite. The

April 11, 2003 18

blocking of the recursion is indicated by a series of dots (...). Evaluation occurs automatically in the
background. ARGUMED based on DEFLOG computes the dialectical interpretations of the available
assumptions, in accordance with the formal definitions of DEFLOG.

When there is more than one dialectical interpretation, each of them can be viewed. Figure 23 shows
two evaluated dialectical arguments corresponding to the two different dialectical interpretations of the
same set of assumptions. When there is no dialectical interpretation, all statements are shown as
unevaluated (Figure 24).

Figure 23: Two dialectical interpretations

Figure 24: No dialectical interpretation

ARGUMED based on DEFLOG has three viewing screens. The first shows the file that contains the
argumentative data. It is formatted in an XML-styled format. The second lists the prima facie justified
assumptions. The third shows the dialectical arguments as evaluated in accordance with the assumptions’
dialectical interpretations. If applicable, the different dialectical interpretations can be viewed by clicking
a corresponding dynamically generated button. When there is no dialectical interpretation, this is reported
in the status bar, and the dialectical arguments remain unevaluated.

4 Related work

4.1 Argumentation theory

In this subsection, the argumentation theories of ARGUE! and ARGUMED based on DEFLOG, are briefly
compared to a selection of theories of defeasible and legal argumentation. ARGUMED 2.0 is the precursor
of ARGUMED based on DEFLOG, described by Verheij (1999).

As a start, Toulmin’s (1958) argument scheme is discussed (Figure 25). Clearly, Toulmin’s notions of
datum and conclusion have counterparts in all three argumentation theories. Warrant and backing find a
natural place in both versions of ARGUMED. Whereas Toulmin only uses warrants for support, ARGUMED
2.0 adds warrants for undercutters, and ARGUMED based on DEFLOG warrants for attack in general.
Toulmin’s scheme contains rebuttals13, that just as the defeaters in ARGUE!, the undercutting exceptions
in ARGUMED 2.0, and the attacks in ARGUMED based on DEFLOG make argumentation defeasible. The
notion of rebuttal is not well elaborated however. A serious omission of Toulmin’s work is that he does
not discuss argument evaluation. For defeasible arguments, valuation is not a trivial matter, and certainly
non-standard. Toulmin’s scheme is not put in a procedural context, and does not distinguish between
assumptions and issues. The modal qualifier distinguished by Toulmin does not occur in the

13 Toulmin (1958) does not yet make Pollock’s (1987) distinction between undercutting and rebutting
exceptions, that is by now standard.

April 11, 2003 19

argumentation theories presented here. Verheij (2001a) extensively analyzes Toulmin’s scheme from the
point of view of DEFLOG.

So, Q, C

Since
W

On account of
B

Unless
R

D

W for Warrant
B for Backing
R for Rebuttal

D for Datum
Q for Qualifier
C for Claim

Figure 25: Toulmin’s argument scheme

Next, Reiter’s (1980) default logic deserves discussion, since it can be considered as an early theory of
defeasible argumentation. A difference between Reiter’s default logic and the present argumentation
theories is that the former uses a first-order language with variables and quantifiers, whereas the language
of the latter only use elementary sentences (ARGUE!) or sentence connectives (ARGUMED 2.0, ARGUMED
based on DEFLOG). The prerequisite α, the justification β and the consequent γ of a default α : β / γ,
correspond closely to a reason, the negation of an undercutting exception, and a conclusion, respectively.
In DEFLOG, the default would correspond to two sentences, viz. α | γ and not-β | ×(α | γ), where not-β
is the standard negation of β. Defaults are not conditionals in the logical object language, resulting in the
(for long recognized) drawback that they cannot be derived. This is in contrast with the conditionals of
ARGUMED 2.0 and ARGUMED based on DEFLOG. Verheij (2000a) gives a formal connection between
Reiter’s default logic and DEFLOG. Reiter’s default logic is not put in a procedural context, and does not
distinguish between issues and assumptions.

Pollock’s (1987, 1995) theory of defeasible argumentation has already been mentioned. Pollock’s
logical system is richer than the one presented here, for instance, since Pollock adds numerical weights
that measure the strengths of reasons. Pollock discusses expressions of the form ‘P wouldn’t be true
unless Q were true’, that are closely related to the step warrants of ARGUMED 2.0 and DEFLOG sentences
of the form P | Q. Pollock characterizes undercutters as reasons for the negation of these expressions.
This is similar to DEFLOG expressions of the form U | ×(P | Q), where U is the undercutter.
Apparently, there is no discussion of (an analog of) undercutter warrants in Pollock’s work. DEFLOG uses
a more general kind of attack than Pollock. Both his undercutters and his rebutters can be sensibly
expressed in DEFLOG. One way of representing a rebutter R against P as a reason for Q would use
sentences of the form R | not-Q, R | ×(P | Q) and ×(R | not-Q) | ×(R | ×(P | Q)). By the first
sentence, R is a reason for Q’s negation. The second sentence turns R into an undercutter of P as a reason
for Q. The third sentence expresses that R is not undercutting when it is not actually a reason for Q’s
negation (e.g., since it is itself undercut). Pollock’s inference graphs (extended with his ‘defeat links’) are
related to the dialectical arguments of the present paper, but are not considered as the analog of classical
proofs of a conclusion. Pollock’s central use of inference graphs is in the definition of justification.
Formal differences are that Pollock’s defeat links are a relation on sequents (a supposition-conclusion
pair), while ARGUE!’s defeaters work on arguments, ARGUMED’s undercutters effect connections
between statements and DEFLOG’s attacks apply to any statement. Pollock’s notion of interests seems to
be related to that of issues in the present paper.

In Vreeswijk’s (1993, 1997) abstract argumentation systems, the tree-like reason-conclusion structure
of arguments (but lacking the coordination of reasons as in CUMULA) is studied in relation to defeat.
Vreeswijk uses an (almost) unstructured language with one distinguished sentence that denotes
contradiction. He does not include ARGUMED 2.0’s step warrants nor DEFLOG’s conditionals expressing

April 11, 2003 20

support and attack.14 Vreeswijk considers inconsistency-triggered defeat (a term used by Verheij 1996):
an argument can only be defeated if there is an undefeated argument with conflicting conclusion. In
Vreeswijk’s argumentation theory, support and attack are considered separately, viz. in the definition of
arguments, and in the definition of the ‘in force’ arguments, just like in ARGUE!. In ARGUMED 2.0 and
DEFLOG, support and attack occur side by side in dialectical arguments. Vreeswijk puts argumentation in
a procedural context, but his argumentation sequences have fixed assumptions. Issues are not
distinguished. Vreeswijk does not use prima facie justified assumptions as in DEFLOG.

The arguments of Prakken and Sartor’s (1996) argumentation theory are formed by chaining rules
together. Prakken and Sartor’s rules are the conditionals of logic programming, and cannot be nested.
They are not comparable to ARGUMED 2.0’s step warrants since there can be no support for the rules
themselves. There are no undercutter warrants. Support and attack are treated separately, and not
simultaneously as in the dialectical arguments of the ARGUMED systems. Prakken and Sartor discuss a
rebutting and an undercutting type of defeat, where it should be noted that the latter is unrelated to
Pollock’s (1987, 1995) standard distinction. A naming technique is used for argumentation about
priorities. Argumentation is put in a procedural context by the definition of dialogues.

Reason-Based Logic, as initiated by Hage, and further developed in cooperation with Verheij (Hage
1996, 1997, Verheij 1996), can be characterized as a theory of rules and reasons. It does not have a notion
of an argument, but focuses on types of sentences related to rules and reasons, and on the states of affairs
expressed by sentences of these types. It is of relevance here, since the argumentation theories of the
ARGUMED systems have resulted from attempts to bridge the unsatisfactory gap between Reason-Based
Logic and CUMULA, as it occurred in my dissertation (Verheij 1996). Reason-Based Logic’s sentences
expressing the validity of a rule are comparable to step warrant sentences of ARGUMED 2.0 (or better still
to rule sentences supporting them) and similarly to conditional sentences in DEFLOG. Sentences
expressing ARGUMED 2.0’s undercutter warrants do not occur in Reason-Based Logic, but are related to
the validity of a rule with the exclusion of another rule as its conclusion. DEFLOG’s attack sentences are
related to reasons against a conclusion in Reason-Based Logic. However, in Reason-Based Logic, reasons
accrue. The definition of Reiter-style extensions in Reason-Based Logic can be regarded as a definition of
the statements justified with respect to a set of assumptions as in ARGUMED 2.0 and DEFLOG. Issues are
not distinguished.

Models of precedent-based reasoning like Ashley’s (1990) HYPO and Aleven’s (1997) CATO are
very different in flavor from the abstract, logic-styled approaches of the present paper (cf. also the logic-
styled approaches to precedent-based reasoning by Hage 1997, Prakken and Sartor 1998 and Bench-
Capon and Sartor 2001). However CATO’s factor hierarchy is related to the trees of reasons and
conclusions as they are used here. Just like the argumentation theories presented here, HYPO and CATO
model defeasible reasoning. The focus is on specific kinds of support and attack, related to the role of
precedents in reasoning. Examples are the analogizing of a precedent, the distinguishing of one precedent
from another and the downplaying of distinctions. HYPO represents the dialectical structure of precedent-
based reasoning in so-called three-ply arguments.

In Dung’s (1995) analysis of defeasible argumentation, the focus is on an abstract attack relation.
DEFLOG is closely related to Dung’s argumentation frameworks (see the Appendix, where it is shown that
essentially Dung uses a less expressive language than DEFLOG). A contrast with all argumentation
theories discussed in the present paper is that Dung’s analysis does not take the internal structure of
arguments into account. Dung does not analyze the connection with support, and considers the attack
relation to be fixed: arguing for or against an attack relation is not possible. Dung separates arguments
and the attack relation, in contrast with ARGUMED 2.0 and DEFLOG in which support and attack are
integrated. Dung’s stable extensions correspond to DEFLOG’s dialectical interpretations, and Dung’s
notion of admissibility is related to (but subtly different from) DEFLOG’s notion of dialectical
justification.

Bondarenko, Dung, Kowalski and Toni (1997) have presented an assumption-based framework for
default reasoning, related to Dung’s (1995) work. Assumption-based frameworks are related to DEFLOG
(see Verheij 2000a, JLC). They are based on a fixed set of rules of inference, in contrast with DEFLOG’s
use of an object language conditional. Assumption-based frameworks use a contrary mapping that is
related to DEFLOG’s dialectical negation × (and not to the weak negations that are also used extensively in
the assumption-based frameworks). Assumption-based frameworks are mainly presented as a tool to

14 In an appendix, Vreeswijk (1997, p. 275ff.) briefly discusses Pollock’s undercutters by using a richer
language which includes defeasible conditionals.

April 11, 2003 21

reconstruct non-monotonic logics (but see Kowalski and Toni 1996, where they are applied to legal
reasoning).

Summarizing, the present paper’s argumentation theories show an innovating development towards
the integrated treatment of support and attack in dialectical arguments, the use of object level conditionals
expressing support and attack, thereby allowing the expression of warrants and ‘anti-warrants’ for both
supporting and attacking argument steps, and the theory of evaluating dialectical arguments with respect
to prima facie justified assumptions. A limitation of the present paper’s argumentation theories is their
high level of abstraction: specialized kinds of legal reasoning, such as reasoning with precedents, statutes,
principles, goals and values have not been analyzed in detail. The argumentation theories, and especially
DEFLOG, have been developed as an abstract background against which such dedicated argumentation
schemes can be elaborated on (see Verheij 2001b).

4.2 Argument assistance and mediation

In order to put ARGUE! and ARGUMED based on DEFLOG in context, they are briefly compared to each
other and to related systems, viz., Belvedere by Suthers et al. (1995; for more recent information on
Belvedere, see http://lilt.ics.hawaii.edu/lilt/software/belvedere/), Room 5 by Loui et al. (1997) and Zeno
by Gordon and Karacapilidis (1997). Belvedere is a system to support students engaged in critical
discussion of science issues. Room 5 is called a testbed for public interactive semi-formal legal
argumentation. Zeno is meant to create advanced support for complex multi-party/multi-goal decision-
making. The relation with Verheij’s (1999) ARGUMED 2.0, the precursor of ARGUMED based on
DEFLOG, is also treated. First, the underlying argumentation theories are discussed; second, the user
interfaces.

4.2.1 The underlying argumentation theories

In the underlying argumentation theories of all systems argumentation is dynamic. Statements can be
made, reasons can be adduced, attacks or defeat information can be added. In Room 5 and Zeno,
argumentation is issue-based (as in Rittel’s well-known Issue-Based Information System (IBIS); Rittel
and Webber 1973). No new conclusions can be drawn, since these systems focus on the justification of an
initial central issue. In Belvedere, ARGUE! and both versions of ARGUMED, argumentation is free, in the
sense that there is no central issue, and both inference (‘forward’ argumentation, drawing conclusions
from premises) and justification (‘backward’ argumentation, adducing reasons for issues) are allowed.
Also connecting previously made arguments (e.g., by turning the conclusion of one argument into a
reason for a premise of another argument) is only possible in these systems.

In all systems, reasons can be chained (subordination) and can support a conclusion in parallel
(coordination). In Room 5, Zeno and ARGUMED based on DEFLOG, a distinction is made between reasons
for and against a conclusion. Belvedere uses typed links, including ‘conflicts’ and ‘explains’. The
arguments in ARGUMED 2.0 incorporate counterarguments by means of undercutting exceptions. Only
ARGUMED 2.0 and ARGUMED based on DEFLOG have notions of the warrants underlying argument steps.

All systems model a notion of defeasible or dialectical argumentation. Belvedere allows the
representation of conflicting information. In Zeno, weighing the conflicting reasons determines which
conclusions are justified. In ARGUE!, support configuration can attack any other support configuration (as
long as they graphically fit inside a rectangle). In ARGUMED 2.0, undercutting exceptions can block the
justification of a conclusion by a reason for it. ARGUMED based on DEFLOG allows the attack of any
statement, including the conditionals underlying supporting or attacking argument steps. ARGUE! has
composite-type defeat, such as defeat by sequential weakening (terms used by Verheij 1996).

In Room 5 and Zeno, argumentation is considered as a game with participants. Belvedere is focused
on work in small groups. In Room 5 and Zeno, the game character is left implicit, but obtained by the
distributed access to the systems, on the World-Wide Web. ARGUE! and the two versions of the
ARGUMED system, all designed as single-user systems, have no explicit notion of game participants, but
can be considered as one-participant games. (The implementation of a multi-participant version of
ARGUMED based on DEFLOG is planned.)

Belvedere is only a tool to graphically represent argumentative relations between data. Zeno, ARGUE!
and the two versions of the ARGUMED system are evaluative: the status of statements and arguments can
be determined by the system. In Zeno and the ARGUMED systems, evaluation occurs automatically in the
background. In ARGUE!, the user asks the system to update the evaluation of the statements and

April 11, 2003 22

arguments. ARGUMED based on DEFLOG uses the logical semantics of DEFLOG for the evaluation of the
arguments.

4.2.2 The user interfaces

All systems have a window-style interface. Room 5 and Zeno are web applications, ARGUE! and the two
versions of ARGUMED are standalone applications that can be run on a PC (downloadable at
http://www.metajur.unimaas.nl/~bart/aaa/). Belvedere and ARGUE! have a graphical interface, in the
sense that the user draws and organizes the argumentation data on the screen using a pointing device.
Room 5, Zeno and ARGUMED 2.0 have a template-based interface: users fill in forms to perform an
argument move. ARGUMED 2.0 uses different templates for different types of moves. ARGUMED based on
DEFLOG uses a mouse-sensitive screen, just like ARGUE!, but the system determines how the
argumentative data are organized on the screen.

All systems present arguments in a visual manner. Belvedere, Zeno, ARGUE! and the ARGUMED
systems use a tree-like presentation. Belvedere uses typed links. Room 5 uses a clever system of boxes-
in-boxes in an attempt to avoid ‘pointer-spaghetti’. ARGUMED based on DEFLOG uses trees branching not
only at the tree nodes (expressing elementary statements), but also at the tree connections (expressing
conditional statements).

In Room 5, Zeno and the ARGUMED systems, counterarguments (based on reasons against
conclusions) are grouped together in the visual argument structure. Belvedere and ARGUE! leave the
organization of the data to the user. In ARGUE!, counterarguments are shown by a dedicated visual
structure. In the ARGUMED systems, counterarguments are incorporated in the arguments themselves,
which is possible by the concept of dialectical arguments.

In the ARGUMED systems, the dynamic aspect of argumentation is shown by a view on the sequence of
moves. In ARGUMED 2.0, it is possible to move back and forth in a line of argumentation. In Belvedere,
Room 5, Zeno and ARGUE!, only a view on the current stage of the argumentation process is visible. In
Room 5 and the ARGUMED systems, it is possible to switch between different views showing different
types of information.

5 Conclusion

ARGUE!, the system that was developed first, provides an interesting realization of (and testbed for) a
particular theory of defeasible argumentation (a stripped-down version of CUMULA; Verheij 1996), but
that theory is not sufficiently natural to apply to ordinary argumentation. Its user interface, which allows
the user to draw and organize argumentative data on screen, is flexible, but also cumbersome due to the
complexity of the data structures (especially of the defeaters). As such, it is mainly relevant from a
research perspective. For instance, its step-wise evaluation function provides interesting insights into the
evaluation of defeasible arguments.

ARGUMED based on DEFLOG is more accessible to ordinary users. ARGUMED based on DEFLOG
simplified the warrant model of Verheij’s (1999) ARGUMED 2.0 by considering the arrows between a
reason and its (supported or attacked) conclusion as conditional statements. The result was an expressive
and flexible argumentation theory (formalized as the logical system DEFLOG). The evaluation function
became logically more satisfactory (with respect to that of ARGUMED 2.0) by its correspondence to
DEFLOG. As user interface, a middle way was taken between the too flexible interface of ARGUE! and the
too rigid one of ARGUMED 2.0 which used forms. This has been achieved by the use of a mouse-sensitive
argument screen in which the argumentative data is organized by the system. Editing the argumentative
data occurs directly on the argument screen, instead of in separate templates.

A strong point of the systems is that all allow the evaluation of argumentative data. This is essential
for data concerning defeasible arguments and statements. Several other systems stop at the graphical
representation of the data (e.g., Belvedere by Suthers et al. 1995, and systems based on Toulmin 1958,
who did not discuss argument evaluation; see Verheij 2001a). A difficulty is of course that there is no
consensus with respect to defeasible argumentation and its (formal) evaluation. DEFLOG has been
designed in order to be as transparent as possible with respect to the evaluation of dialectical arguments
based on prima facie justified assumptions. Further experience has to be gathered about whether the
attempt has succeeded. The test results with ARGUMED are promising in this respect.

Systems using Toulmin’s scheme have the advantage that the different slots in the scheme are
assigned specific argumentative roles, such as warrant and backing. This can have the effect that a user is

April 11, 2003 23

forced to better organize his argumentation. A drawback is however that the assigned roles may lead to
argumentative rigidity. Further research will have to be done in this direction in order to find out the best
approach.

A general question in the design of argument assistants is whether arguments should be graphically
represented in the first place. Especially the complexities and subtleties of legal argument may impede
such representations, and require natural language representations. (Cf. a recent discussion on the OSSA
argumentation theory e-mail list.) A compromise could be the dual representation of arguments, both
graphically and in natural language.

Important directions for future research include the integration of domain knowledge and domain-
specific argumentation schemes. With respect to the integration of domain knowledge, one can think of
diminishing the gap between argument assistants and automated reasoners. Argument assistants have the
advantage of being open and flexible, but it is to be expected that the integration of domain knowledge
can make the systems more useful in practice. In this way, the advantages of both argument assistants and
automated reasoners become available. With respect to the integration of domain-specific argumentation
schemes, one can think of typically legal kinds of argumentation, involving precedents, rules, principles,
values and goals (of which the understanding has recently increased significantly, mainly by research in
artificial intelligence and law). Integrating such schemes opens many difficult questions (such as the way
of presenting such involved kinds of arguments), but may increase the usefulness of argument assistants
for practical purposes.

With such developments, argument assistants can evolve to valuable knowledge management tools for
argument-intensive environments, such as the law.

Acknowledgments

The research reported in this paper was financially supported by the Dutch National Programme
Information Technology and Law (ITeR, project number 01437112). The author thanks Jaap Hage, Bram
Roth and the editors of this special issue for comments and discussion.

References

Aleven, V. (1997). Teaching Case-Based Argumentation Through a Model and Examples. Dissertation,
University of Pittsburgh.

Ashley, K. (1990). Modeling legal argument. Reasoning with cases and hypotheticals. The MIT Press,
Cambridge (Massachusetts).

Barwise, J., and J. Etchemendy (2000). Language, Proof, and Logic. Seven Bridges Press, New York.
Bench-Capon, T.J.M. (1997). Argument in Artificial Intelligence and Law. Artificial Intelligence and

Law, Vol. 5, pp. 249-261.
Bench-Capon, T.J.M. (1997). Argument in Artificial Intelligence and Law. Artificial Intelligence and

Law, Vol. 5, pp. 249-261.
Bench-Capon, T.J.M., Leng, P.H., and Staniford, G. (1998). A Computer Supported Environment for the

Teaching of Legal Argument. Journal of Information, Law and Technology (JILT), No. 3.
http://elj.warwick.ac.uk/jilt/98-3/capon.html.

Bench-Capon, T., and Sartor, G. (2001). Theory Based Explanation of Case Law Domains. The 8th
International Conference on Artificial Intelligence and Law. Proceedings of the Conference, pp. 12-
21. ACM, New York.

Bondarenko, A., Dung, P.M., Kowalski, R.A., and Toni, F. (1997). An abstract, argumentation-theoretic
approach to default reasoning. Artificial Intelligence, Vol. 93, pp. 63-101.

Chesñevar, C.I., A.G. Maguitman and R.P. Loui (2000). Logical models of argument. ACM Computing
Surveys, Vol. 32, No. 4, pp. 337-383.

Dung, P.M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, Vol. 77, pp. 321-357.

Eemeren, F.H. van, Grootendorst, R., and Kruiger, T. (1981). Argumentatietheorie. Uitgeverij Het
Spectrum, Utrecht.

Eemeren, F.H. van, Grootendorst, R., and Kruiger, T. (1987). Handbook of Argumentation Theory. A
Critical Survey of Classical Backgrounds and Modern Studies. Foris Publications, Dordrecht.
Translation of van Eemeren et al. (1981).

April 11, 2003 24

Gabbay, D.M., Hogger, C.J., and Robinson, J.A. (eds.) (1994). Handbook of Logic in Artificial
Intelligence and Logic Programming. Volume 3. Nonmonotonic Reasoning and Uncertain Reasoning.
Clarendon Press, Oxford.

Gelder, T.J. van (2001). The Reason! Project. The Skeptic, Vol. 21, No.2, pp. 9-12.
Gelfond, M. and Lifschitz, V. (1988). The stable model semantics for logic programming. Logic

Programming. Proceedings of the Fifth International Conference and Symposium (eds. R.A.
Kowalski and K.A. Bowen), pp. 1070-1080. The MIT Press, Cambridge (Massachusetts).

Gordon, T.F. (1995). The Pleadings Game. An Artificial Intelligence Model of Procedural Justice.
Kluwer Academic Publishers, Dordrecht.

Gordon, T.F., and Karacapilidis, N. (1997). The Zeno Argumentation Framework. The Sixth International
Conference on Artificial Intelligence and Law. Proceedings of the Conference, pp. 10-18. ACM, New
York (New York).

Hage, J.C. (1997). Reasoning with Rules. An Essay on Legal Reasoning and Its Underlying Logic.
Kluwer Academic Publishers, Dordrecht.

Hage, J.C. (2000). Dialectical Models in artificial intelligence and law. Artificial Intelligence and Law,
Vol. 8, pp. 137-172.

Kowalski, R.A., and Toni, F. (1996). Abstract Argumentation. Artificial Intelligence and Law, Vol. 4, p.
275-296.

Leenes, R.E. (1998). Hercules of Karneades. Hard cases in recht en rechtsinformatica. Enschede: Twente
University Press.

Lodder, A.R. (1998). DiaLaw – on legal justification and dialog games. Dissertation, Universiteit
Maastricht.

Lodder, A.R., and Verheij, B. (1998). Opportunities of computer-mediated legal argument in education.
Proceedings of the BILETA-conference. March 27-28, 1998, Dublin.

Lodder, A.R. (2001). A simple model to structure the information of parties in online ADR. The 8th
International Conference on Artificial Intelligence and Law. Proceedings of the Conference, pp. 233-
234. ACM, New York.

Loui, R.P. (1998). Process and Policy: Resource-Bounded Non-Demonstrative Reasoning. Computational
Intelligence, Vol. 14, No. 1, pp. 1-38.

Loui, R.P., Norman, J., Altepeter, J., Pinkard, D., Craven, D., Linsday, J., and Foltz, M. (1997). Progress
on Room 5. A Testbed for Public Interactive Semi-Formal Legal Argumentation. The Sixth
International Conference on Artificial Intelligence and Law. Proceedings of the Conference, pp. 207-
214. ACM, New York (New York).

Marshall, C.C. (1989). Representing the structure of a legal argument. The Second International
Conference on Artificial Intelligence and Law. Proceedings of the Conference, pp. 121-127. ACM,
New York (New York).

Nute, D. (1988). Defeasible reasoning: a philosophical analysis in Prolog. Aspects of Artificial
Intelligence (ed. James H. Fetzer), pp. 251-288. Kluwer Academic Publishers, Dordrecht.

Pollock, J.L. (1987). Defeasible reasoning. Cognitive Science, Vol. 11, pp. 481-518.
Pollock, J.L. (1995). Cognitive Carpentry: A Blueprint for How to Build a Person. The MIT Press,

Cambridge (Massachusetts).
Prakken, H. (1997). Logical Tools for Modelling Legal Argument. A Study of Defeasible Reasoning in

Law. Kluwer Academic Publishers, Dordrecht.
Prakken, H., and Sartor, G. (1996). A Dialectical Model of Assessing Conflicting Arguments in Legal

Reasoning. Artificial Intelligence and Law, Vol. 4, pp. 331-368.
Prakken, H., and Sartor, G. (1998). Modelling Reasoning with Precedents in a Formal Dialogue Game.

Artificial Intelligence and Law, Vol. 6, pp. 231-287.
Prakken, H., and Vreeswijk, G.A.W. (2002). Logics for Defeasible Argumentation. Handbook of

Philosophical Logic, Second Edition (eds. D.M. Gabbay & F. Guenthner), Vol. 4, pp. 218-319.
Kluwer Academic Publishers, Dordrecht.

Read, S. (1995). Thinking About Logic. An Introduction to the Philosophy of Logic. Oxford University
Press, Oxford.

Reed, C., and Walton, D. (2001). Applications of argumentation schemes. OSSA 2001: Argumentation
and its applications (The Ontario Society for the Study of Argumentation).

Reiter, R. (1980). A Logic for Default Reasoning. Artificial Intelligence, Vol. 13, pp. 81-132.
Rissland, E.L., and Skalak, D.B. (1991). CABARET: Rule Interpretation in a Hybrid Architecture.

International Journal of Man-Machine Studies, Vol. 34, No. 6, pp. 839-887.
Rittel, H.W.J., and Webber, M.M. (1973). Dilemmas in a general theory of planning. Policy Sciences 4.

April 11, 2003 25

April 11, 2003 26

Simari, G.R., and Loui, R.P. (1992). A mathematical treatment of defeasible reasoning and its
applications. Artificial Intelligence, Vol. 53, pp. 125-157.

Stranieri, A. and Zeleznikow, J. (2000). Argumentation Structures for Knowledge Management.
Proceedings of the Third International Conference on the Practical Applications of Knowledge
Management PAKeM—2000, pp. 51-69. The Practical Application Company Ltd, Blackpool, United
Kingdom.

Suthers, D., Weiner, A., Connelly, J., and Paolucci, M. (1995). Belvedere: Engaging students in critical
discussion of science and public policy issues. Proceedings of the 7th World Conference on Artificial
Intelligence in Education (AI-Ed 95), pp. 266-273.

Toulmin, S.E. (1958). The uses of argument. University Press, Cambridge.
Veerman, A. (2000). Computer-supported collabrative argumentation through argumentation.

Dissertation, Universiteit Utrecht.
Verheij, B. (1996). Rules, Reasons, Arguments. Formal studies of argumentation and defeat. Dissertation,

Universiteit Maastricht.
Verheij, B. (1998a). ARGUE! - an implemented system for computer-mediated defeasible argumentation.

NAIC '98. Proceedings of the Tenth Netherlands/Belgium Conference on Artificial Intelligence (eds.
H. La Poutré and J. van den Herik), pp. 57-66. CWI, Amsterdam

Verheij, B. (1998b). ARGUMED - A Template-Based Argument Mediation System for Lawyers. Legal
Knowledge Based Systems. JURIX: The Eleventh Conference (eds. J.C.Hage, T.J.M. Bench-Capon,
A.W. Koers, C.N.J. de Vey Mestdagh and C.A.F.M. Grütters), pp. 113-130. Gerard Noodt Instituut,
Nijmegen.

Verheij, B. (1999). Automated Argument Assistance for Lawyers. The Seventh International Conference
on Artificial Intelligence and Law. Proceedings of the Conference, pp. 43-52. ACM, New York (New
York).

Verheij, B. (2000a). DEFLOG - a logic of dialectical justification and defeat. Manuscipt. See
http://www.metajur.unimaas.nl/~bart/publications.htm.

Verheij, B. (2000b). Dialectical Argumentation as a Heuristic for Courtroom Decision-Making.
Rationality, Information and Progress in Law and Psychology. Liber Amicorum Hans F. Crombag
(eds. Peter J. van Koppen and Nikolas H.M. Roos), pp. 203-226. Metajuridica Publications,
Maastricht.

Verheij, B. (2001a). Evaluating arguments based on Toulmin’s scheme. OSSA 2001: Argumentation and
its applications (The Ontario Society for the Study of Argumentation).

Verheij, B. (2001b). Legal decision making as dialectical theory construction with argumentation
schemes. The 8th International Conference on Artificial Intelligence and Law. Proceedings of the
Conference, pp. 225-226. ACM, New York.

Verheij, B. (JLC). DEFLOG: on the logical interpretation of prima facie justified assumptions. Journal of
Logic and Computation. To appear.

Verheij, B. (Asser). Virtual arguments. On the design of argument assistants for lawyers and other
arguers. TMC Asser Press, The Hague. To appear.

Vreeswijk, G. (1995). IACAS: an Implementation of Chisholm’s Principles of Knowledge.
Dutch/German Workshop on Nonmonotonic Reasoning. Proceedings of the Second Workshop, pp.
225-234. Delft University of Technology, Universiteit Utrecht.

Vreeswijk, G. (1997). Abstract argumentation systems. Artificial Intelligence, Vol. 90, pp. 225-279.

