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Abstract. Our previous research presents a methodology of cooperative problem solving for belief-
desire-intention (BDI) systems, based on a complete formal theory called TEAMLOG. This covers
both a static part, defining individual, bilateral and collective agent attitudes, and a dynamic part,
describing system reconfiguration in a dynamic, unpredictable environment. In this paper, we in-
vestigate the complexity of the satisfiability problem of the static part of TEAMLOG, focusing on
individual and collective attitudes up to collective intention. Our logics for teamwork are squarely
multi-modal, in the sense that different operators are combined and may interfere. One might expect
that such a combination is much more complex than the basic multi-agent logic with one operator,
but in fact we show that it is not the case: the individual part of TEAMLOG is PSPACE-complete,
just like the single modality case. The full system, modelling a subtle interplay between individual
and group attitudes, turns out to be EXPTIME-complete, and remains so even when propositional
dynamic logic is added to it.
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Additionally we make a first step towards restricting the language of TEAMLOG in order to reduce
its computational complexity. We study formulas with bounded modal depth and show that in case of
the individual part of our logics, we obtain a reduction of the complexity to NPTIME-completeness.
We also show that for group attitudes in TEAMLOG the satisfiability problem remains in EXPTIME-
hard, even when modal depth is bounded by 2. We also study the combination of reducing modal
depth and the number of propositional atoms. We show that in both cases this allows for checking
the satisfiability in linear time.

1. Introduction

In this paper, we investigate the complexity of two important subsystems of the teamwork logics con-
structed (TEAMLOG) in our previous papers ([9, 10, 11]). Although the results and methods of this paper
may be applied to a complexity analysis of many multi-modal logics combining different but interrelated
agent attitudes, the jumping point of the paper is our own theory of teamwork as presented in [9]. Let
us give a reminder of this theory, as well as on complexity theory as it is relevant for logics applied in
multiagent systems (MAS).

1.1. TEAMLOG: A Formal Theory of Mental States in Teamwork

When constructing belief-desire-intention (BDI) systems, the first research question has been to create a
model of an agent as an individual, autonomous entity. A more recent goal has been to organize agents’
cooperation in a way allowing the achievement of their, possibly complex, common goal, while pre-
serving, at least partly, the autonomy of particular agents involved. The BDI-model naturally comprises
such individual notions like beliefs, referring to the agent’s informational attitudes, as well as goals and
intentions, dealing with its motivational stance. However in teamwork, when a team of agents needs
to work together in a planned and coherent way, these are not enough: the group as a whole needs to
present a common collective attitude over and above individual attitudes of team members. Without this,
a sensible organization of cooperation seems to be impossible: the existence of collective (or joint) mo-
tivational attitudes is a necessary condition for a group of agents to become a cooperative team [9, 11].
Thus, in the context of teamwork agents’ attitudes are considered on the individual, social (i.e. bilateral)
and collective level.

A theory of informational attitudes on the group level has been formalized in terms of epistemic
logic [14]. As regards motivational attitudes, the situation is much more complex: a conceptually coher-
ent theory was vitally needed in the MAS literature, as the notions on the bilateral and collective level
cannot be viewed as a straightforward extension or a sort of sum of individual notions. In order to define
them, many subtle aspects that are hard to formalize need to be introduced. A departure point to construct
a static, descriptive theory of collective motivational attitudes is formed by individual goals, beliefs and
intentions of cooperating agents. Research on teamwork should address the question what it means for
a group of agents to have a collective intention, and then a collective commitment to achieve a common
goal.

In our approach, the fundamental role of collective intention is to consolidate a group as a cooperat-
ing team, while collective commitment leads to team action, i.e., to coordinated realization of individual
actions by the agents that have committed to do them according to the team plan. Both notions are con-
structed in a way that allows us to fully express the potential of strictly cooperative teams [9, 11]. In
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this paper we will focus on the theory of teamwork, TEAMLOG, built up from the above-mentioned indi-
vidual and collective attitudes up to collective intentions, where our goal is to give the exact complexity
class of the full logic and its most important subsystem for individual attitudes.

When modelling collective intention, agents’ awareness about the overall situation needs to be taken
into account. In a theory of multiagent systems, the essential notion of awareness is understood as a re-
duction of the general sense of this notion to the state of an agent’s beliefs about itself, about other agents
and about the state of the environment. Under this assumption, various epistemic logics and various no-
tions of group information (from distributed belief to common knowledge) are adequate to formalize
agents’ awareness [14, 11]. In the presented theory, group awareness is usually expressed in terms of
the (rather strong) notion of common belief, but one can also consider weaker forms depending on the
circumstances in question. In the complexity analysis, we do not take into account the cognitive and
other processes necessary for establishing attitudes that appear in the definitions found in section 2; for
such an approach, see [12]. We are just interested in showing how complex it is to check satisfiability and
validity of the formulas with respect to TEAMLOG. Let us turn to a short reminder about the decidability
and complexity of such important questions about logical theories.

1.2. Computational complexity

In this paper we investigate the complexity of two particular modal logics for multiagent systems. In
particular, we examine the complexity of their satisfiability problem: given a formula ϕ, how much time
and space (in terms of the length of ϕ) are needed to compute whether ϕ is satisfiable, i.e. whether there
is a suitable Kripke modelM (from the class of structures corresponding to the logic) and a world s in it,
such that M, s |= ϕ? From this, the complexity of the validity problem (truth in all worlds in all suitable
Kripke models) follows immediately, because ϕ is valid if and only if ¬ϕ is not satisfiable. Model
checking, i.e. evaluating truth of a given formula in a given world and model (M, s |= ϕ) is the most
important related problem, and is easily seen to be less complex than both satisfiability and validity.
Thus, for example, if some logic’ satisfiability problem is NP-complete, then its validity problem is
coNP-complete. We do not investigate the complexity of model checking here, but see [19] for such
an analysis of some MAS logics; in any case, various methods have already been developed that can
perform model checking in a reasonable time, as long as the considered models are not too large.

Unfortunately, even satisfiability for propositional logic is an NP-complete problem. Thus, if indeed
P != NP, then modal logics interesting for MAS, all containing propositional logic as a subsystem, do
not have efficiently solvable satisfiability problems. Even though a single efficient algorithm performing
well on all inputs is not possible, it is still important to discover in which complexity class a given logical
theory falls. In our work we take the point of view of the system developer who wants to reason about,
specify and verify a multiagent system to be constructed. It turns out that for many of the interesting
formulas appearing in such human reasoning, satisfiability tends to be easier to compute than suggested
by the worst-case labels like “PSPACE-complete” and “EXPTIME-complete” [16]. It would be helpful
to develop automated, efficient tools to support the system developer with some reasoning tasks, and
in the discussion (section 5) we will come back to methods that can simplify satisfiability problems for
MAS logics in an application-dependent way.

Of many single-agent modal logics with one modality, the complexity has long been known. An
overview is given in [16], which extends these results to multi-agent logics, though still containing only
a single modality (either knowledge or belief). For us, the following results are relevant. The satis-
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fiability problems for the systems S51 and KD451, modelling knowledge and belief of one agent, are
NP-complete. Thus, perhaps surprisingly, they are no more complex than propositional logic. The com-
plexity is increased to PSPACE if these systems are extended to more than one agent. PSPACE is also
the complexity class of satisfiability for many other modal logics, for both the single and the multiagent
case; examples are the basic system Kn (that we adopt for goals) and the system KDn (that we adopt for
intentions, see section 2). As soon as a notion of seemingly infinite character such as common knowl-
edge or common belief (everybody believes and everybody believes that everybody believes and . . .) is
modelled, the complexity of the satisfiability problem jumps to EXPTIME. Intuitively, trying to find a
satisfying model for a formula containing a common belief operator by the tableau method, one may
need to look exponentially deep in the tableau tree to find it, while for simpler modal logics like Kn, a
depth-first search through a polynomially shallow tree suffices for all formulas.

When investigating the complexity of multi-modal logics, one might like to turn to general results
on the transfer of the complexity of satisfiability problems from single logics to their combinations: isn’t
a combination of a few PSPACE-complete logics, with some simple interdependency axioms, automati-
cally PSPACE-complete again? However, it turns out that the positive general results that do exist (such
as those in [4]) apply mainly to minimal combinations, without added interdependencies, of two NP-
complete systems, each with a single modality. Even more dangerously, there are some very negative
results on the transfer of complexity to combined systems. Thus, there are two “very decidable” logics
whose combination, even without any interrelation axioms, is undecidable1. This goes to show that one
needs to be very careful with any assumptions about generalizations of complexity results to combined
systems.

Our logic TEAMLOG and its subsystems are squarely multi-modal, not only in the sense of mod-
elling a multi-agent version of one modal operator, but also in the sense that different operators are
combined and may interfere. One might expect that such a combination is much more complex than the
basic multiagent logic with one operator, but in fact we show in this paper that this is not the case: the
“individual part” of TEAMLOG (called TEAMLOGind) is PSPACE-complete. In order to prove this, the
semantic properties relating to the interdependency axioms must be carefully translated to conditions on
the multi-modal tableau with which satisfiability is tested. Of course the challenging question appears
when informational and motivational group notions are added to this individual part. We show that also
for this expressive system, modelling a subtle interplay between individual and group attitudes, satisfia-
bility is EXPTIME-complete, thus of the same complexity as the system only modelling common belief.
As a bonus, it turns out that even adding dynamic logic (which is relevant for our study of the evolution of
motivational attitudes in changing environments [10]) does not increase complexity beyond EXPTIME.

Finally, inspired by [15], we explore some possibilities of lowering the complexity of the satisfia-
bility problem by restricting the modal depth of the formulas concerned or by limiting the number of
propositional atoms used in the language. It turns out that bounding the depth gives a nice reduction in
the individual case, but is less successful where group attitudes are concerned. Combining modal depth
reduction with bounding the number of propositional atoms allows for checking the satisfiability in linear
time.

1For B, take a variant of dynamic logic with two atomic programs, both deterministic. Take ; and ∩ as only operators.
Satisfiability of formulas with respect to B, like that for propositional dynamic logic itself, is in EXPTIME. For C, take the
logic of the global operator A (Always), defined as follows: M, w |= Aϕ iff for all v ∈ W , M, v |= ϕ. Satisfiability for C is
in NP. In [4] (see also [3, Theorem 6.31]), it is shown that the minimal combination of B and C is not only not in EXPTIME,
but even undecidable in any finite time.
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BEL(a, ϕ) agent a has the belief that ϕ

E-BELG(ϕ) every agent in group G has the belief that ϕ

C-BELG(ϕ) group G has the common belief that ϕ

GOAL(a, ϕ) agent a has as a goal to achieve ϕ

INT(a, ϕ) agent a has the intention to achieve ϕ

E-INTG(ϕ) every agent in group G has the individual intention to achieve ϕ

M-INTG(ϕ) group G has the mutual intention to achieve ϕ

C-INTG(ϕ) group G has the collective intention to achieve ϕ

Table 1. Formulas and their intended meaning

The rest of the paper is structured as follows. Section 2 shortly reviews the language, semantics and
axiom systems for the individual and group parts of our teamwork logics. In section 3, the complexity
of the satisfiability problem for TEAMLOGind, the part of the theory that covers individual attitudes, is
investigated. This is done both for the system as a whole and for some restrictions of it where formulas
have bounded modal depth or the number of propositional atoms is bounded.

Section 4 extends the investigation to the theory TEAMLOG covering the group notions of common
belief and collective intentions. Also here, we study both the theory as a whole and its restriction to
formulas of bounded modal depth or of bounded number of propositional atoms. Finally, in section 5 we
discuss the results and present some avenues for possible extensions. This paper is an extension of [13].

2. Logical Background

As mentioned before, we propose the use of multi-modal logics to formalize agents’ informational and
motivational attitudes as well as actions they perform. In the present paper, where we restrict ourselves
to the static aspects of the agents’ mental states, we only present axioms relating attitudes of agents with
respect to propositions, not actions. A proposition reflects a particular state of affairs.

Table 1 gives the formulas appearing in this paper, together with their intended meanings. The
symbol ϕ denotes a proposition.

2.1. The Language

Formulas are defined with respect to a fixed finite set of agents. The basis of the inductive definition is
given in the following definition.

Definition 2.1. (Language)
The language is based on the following two sets:

• a countable set P of propositional symbols;

• a finite set A of agents, denoted by numerals 1, 2, . . . , n.

Definition 2.2. (Formulas)
We inductively define the set L of formulas as follows.



6 M. Dziubiński, R. Verbrugge, B. Dunin-Kȩplicz / Complexity issues in multiagent logics

F1 each atomic proposition p ∈ P is a formula;

F2 if ϕ and ψ are formulas, then so are ¬ϕ and ϕ ∧ ψ;

F4 if ϕ is a formula, i ∈ A, and G ⊆ A, then the following are formulas:

epistemic modalities BEL(i, ϕ), E-BELG(ϕ), C-BELG(ϕ);

motivational modalities GOAL(i, ϕ), INT(i, ϕ), E-INTG(ϕ), M-INTG(ϕ), C-INTG(ϕ).

The standard propositional constants and connectives %, ⊥, ∨, → and ↔ are defined in the usual way.

2.2. Semantics Based on Kripke Models

Each Kripke model for the language L consists of a set of worlds, a set of accessibility relations between
worlds, and a valuation of the propositional atoms, as follows.

Definition 2.3. (Kripke model)
A Kripke model is a tuple
M = (W, {Bi : i ∈ A}, {Gi : i ∈ A}, {Ii : i ∈ A},Val), such that

1. W is a set of possible worlds, or states;

2. For all i ∈ A, it holds that Bi, Gi, Ii ⊆ W ×W . They stand for the accessibility relations for each
agent with respect to beliefs, goals, and intentions, respectively. For example, (s, t) ∈ Bi means
that t is an epistemic alternative for agent i in state s.

3. Val : P×W →{0, 1} is a valuation function that assigns the truth values to atomic propositions
in states.

A Kripke frame F is defined as a Kripke model, but without the valuation function. At this stage, it
is possible to define the truth conditions pertaining to the language L. The expression M, s |= ϕ is read
as “formula ϕ is satisfied by world s in structure M”.

Define world t to be GB-reachable (respectively GI -reachable) from world s iff (s, t) ∈ (
⋃

i∈G Bi)+

(respectively (s, t) ∈ (
⋃

i∈G Ii)+). Formulated more informally, this means that there is a path of length
≥ 1 in the Kripke model from s to t along accessibility arrows Bi (respectively Ii) that are associated
with members i of G.

Definition 2.4. (Truth definition)
• M, s |= p iff Val(p, s) = 1;

• M, s |= ¬ϕ iff M, s !|= ϕ;

• M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ;

• M, s |= BEL(i, ϕ) iff M, t |= ϕ for all t such that sBit;

• M, s |= GOAL(i, ϕ) iff M, t |= ϕ for all t such that sGit;

• M, s |= INT(i, ϕ) iff M, t |= ϕ for all t such that sIit;



M. Dziubiński, R. Verbrugge, B. Dunin-Kȩplicz / Complexity issues in multiagent logics 7

• M, s |= E-BELG(ϕ) iff for all i ∈ G, M, s |= BEL(i, ϕ);

• M, s |= C-BELG(ϕ) iff M, t |= ϕ for all t that are GB-reachable from s.

• M, s |= E-INTG(ϕ) iff for all i ∈ G, M, s |= INT(i, ϕ);

• M, s |= M-INTG(ϕ) iff M, t |= ϕ for all t that are GI -reachable from s.

In particular, this implies that for all models M and states s, M, s |= % and M, s !|= ⊥.

2.3. Axiom Systems for Individual and Collective Attitudes

Let us give a reminder of TEAMLOGind for individual attitudes and their interdependencies (see sub-
sections 2.3.1, 2.3.2, 2.3.3, 2.3.4), followed by our additional axioms and rules for group attitudes (see
subsections 2.3.5, 2.3.6). These axioms and rules, together forming TEAMLOG, are fully explained
in [9]. All axiom systems introduced here are based on the finite set A of n agents.

2.3.1. General Axiom and Rule

The following axiom and rule, covering propositional reasoning, form part and parcel of any system of
normal modal logic:

P1 All instances of propositional tautologies;

PR1 From ϕ and ϕ → ψ, derive ψ; (Modus Ponens)

2.3.2. Axioms and Rules for Individual Belief

The well-known system KD45n consists of the following for each i ∈ A:

A2 BEL(i, ϕ) ∧ BEL(i, ϕ → ψ) → BEL(i, ψ) (Belief Distribution)

A4 BEL(i, ϕ) → BEL(i,BEL(i, ϕ)) (Positive Introspection)

A5 ¬BEL(i, ϕ) → BEL(i,¬BEL(i, ϕ)) (Negative Introspection)

A6 ¬BEL(i,⊥) (Consistency)

R2 From ϕ infer BEL(i, ϕ) (Belief Generalization)

2.3.3. Axioms for Individual Motivational Operators

For goals, we take the system Kn and for intentions the system KDn, as follows, for each i ∈ A:

A2D GOAL(i, ϕ) ∧GOAL(i, ϕ → ψ) → GOAL(i, ψ) (Goal Distribution)

A2I INT(i, ϕ) ∧ INT(i, ϕ → ψ) → INT(i, ψ) (Intention Distribution)

R2D From ϕ infer GOAL(i, ϕ) (Goal Generalization)

R2I From ϕ infer INT(i, ϕ) (Intention Generalization)

A6I ¬INT(i,⊥) for i = 1, . . . , n (Intention Consistency)
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2.3.4. Interdependencies Between Intentions and Other Attitudes

For each i ∈ A:

A7DB GOAL(i, ϕ) → BEL(i,GOAL(i, ϕ)) (Positive Introspection for Goals)

A7IB INT(i, ϕ) → BEL(i, INT(i, ϕ)) (Positive Introspection for Intentions)

A8DB ¬GOAL(i, ϕ) → BEL(i,¬GOAL(i, ϕ)) (Negative Introspection for Goals)

A8IB ¬INT(i, ϕ) → BEL(i,¬INT(i, ϕ)) (Negative Introspection for Intentions)

A9ID INT(i, ϕ) → GOAL(i, ϕ) (Intention implies Goal)

By TEAMLOGind we denote the axiom system consisting of all the above axioms and rules for indi-
vidual beliefs, goals and intentions as well as their interdependencies.

2.3.5. Axioms and Rule For General (“Everyone”) and Common Belief

C1 E-BELG(ϕ) ↔
∧

i∈G

BEL(i, ϕ) (General Belief)

C2 C-BELG(ϕ) ↔ E-BELG(ϕ ∧ C-BELG(ϕ)) (Common Belief)

RC1 From ϕ → E-BELG(ψ ∧ ϕ) infer ϕ → C-BELG(ψ) (Induction Rule)

2.3.6. Axioms and Rule for Mutual and Collective Intentions

M1 E-INTG(ϕ) ↔
∧

i∈G INT(i, ϕ) (General Intention)

M2 M-INTG(ϕ) ↔ E-INTG(ϕ ∧M-INTG(ϕ)) (Mutual Intention)

M3 C-INTG(ϕ) ↔ M-INTG(ϕ) ∧ C-BELG(M-INTG(ϕ)) (Collective Intention)

RM1 From ϕ → E-INTG(ψ ∧ ϕ) infer ϕ → M-INTG(ψ) (Induction Rule)

By TEAMLOG we denote the union of TEAMLOGind with the above axioms and rules for general and
common beliefs and for general, mutual and collective intentions.

2.4. Correspondences Between Axiom Systems and Semantics

Most of the axioms above, as far as they do not hold on all frames like A2, correspond to well-known
structural properties on Kripke frames. Thus, the axiom A4 holds in a Kripke frame F iff all Bi relations
are transitive; A5 holds iff all Bi relations are Euclidean; and A6 holds iff all Bi relations are serial (for
proofs of these correspondences and correspondence theory in general, see [2]). As for the interdepen-
dencies, the semantic property corresponding to A7IB is ∀s, t, u((sBit∧ tIiu) → sIiu), analogously for
A7GB . The property that corresponds to A8IB is ∀s, t, u((sIit∧sBiu) → uIit), analogously for A8GB .
Finally, for A9IG the corresponding semantic property is Gi ⊆ Ii. For proofs of these correspondences,
see [11].
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Note also that the Induction Rules RC1 and RM1 are sound due to the definitions of GB-reachability
and GI -reachability in terms of the transitive closure of the union of individual relations for group G,
respectively; see Definition 2.4.

3. Complexity of TEAMLOGind

We will show that the satisfiability problem for TEAMLOGind is PSPACE-complete. First we present
an algorithm for deciding satisfiability of a TEAMLOGind formula ϕ working in polynomial space, thus
showing that the satisfiability problem is in PSPACE. The construction of the algorithm and related
results are based on the method presented in [16]. The method is centred around the well known notions
of a propositional tableau, a fully expanded propositional tableau (a set that along with any formula
ψ contained in it, contains also all its subformulas, each of them either in positive or negated form),
and a tableau designed for a particular system of multimodal logic. Let us give adaptations of the most
important definitions from [16] as a reminder:

Definition 3.1. (Propositional tableau)
A propositional tableau is a set T of formulas such that:

1. if ¬¬ψ ∈ T then ψ ∈ T ;

2. if ϕ ∧ ψ ∈ T then both ϕ, ψ ∈ T ;

3. if ¬(ϕ ∧ ψ) ∈ T then either ¬ϕ ∈ T or ¬ψ ∈ T ;

4. there is no formula ψ such that ψ and ¬ψ are in T .

A set of formulas T is blatantly inconsistent if for some formula ψ, both ψ and ¬ψ are in T .
In a tableau for a modal logic, for a given formula ϕ, Sub(ϕ) denotes the set of all subformulas of ϕ

and ¬Sub(ϕ) = Sub(ϕ) ∪ {¬ψ : ψ ∈ Sub(ϕ)}.

Definition 3.2. (TEAMLOGind tableau)
A TEAMLOGind tableau T is a tuple

T = (W, {Bi : i ∈ A}, {Gi : i ∈ A}, {Ii : i ∈ A}, L),

where W is a set of states, Bi, Gi, Ii are binary relations on W , and L is a labeling function associating
with each state w ∈ W a set L(w) of formulas, such that L(w) is a propositional tableau. Here follow
the two conditions that every modal tableau for our language must satisfy (see [16]):

1. If BEL(i, ϕ) ∈ L(w) and (w, v) ∈ Bi, then ϕ ∈ L(v); similarly for GOAL(i, ϕ) w.r.t. Gi and
INT(i, ϕ) w.r.t. Ii.

2. If ¬BEL(i, ϕ) ∈ L(w), then there exists a v with (w, v) ∈ Bi and ¬ϕ ∈ L(v); similarly for
GOAL(i, ϕ) w.r.t. Gi and INT(i, ϕ) w.r.t. Ii.
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Furthermore, a TEAMLOGind tableau must satisfy the following additional conditions related to ax-
ioms of TEAMLOGind:

TA6 if BEL(i, ϕ) ∈ L(w), then either ϕ ∈ L(w) or
there exists v ∈ W such that (w, v) ∈ Bi,

TA45 if (w, v) ∈ Bi then BEL(i, ϕ) ∈ L(w) iff BEL(i, ϕ) ∈ L(v),
TA78GB if (w, v) ∈ Bi then GOAL(i, ϕ) ∈ L(w) iff GOAL(i, ϕ) ∈ L(v),
TA6I if INT(i, ϕ) ∈ L(w), then either ϕ ∈ L(w) or

there exists v ∈ W such that (w, v) ∈ Ii,
TA78IB if (w, v) ∈ Bi then INT(i, ϕ) ∈ L(w) iff INT(i, ϕ) ∈ L(v),
TA9IG if (w, v) ∈ Gi and INT(i, ϕ) ∈ L(w) then ϕ ∈ L(v),

Condition TA6 corresponds to belief consistency2, TA45 to positive and negative introspection of
beliefs3, TA78GB to positive and negative introspection of goals, TA78IB to positive and negative
introspection of intentions, and TA9IG to goal–intention compatibility.

Given a formula ϕ we say that T = (W, {Bi : i ∈ A}, {Gi : i ∈ A}, {Ii : i ∈ A}, L) is a
TEAMLOGind tableau for ϕ if T is a a TEAMLOGind tableau and there is a state w ∈ W such that
ϕ ∈ L(w).

Throughout further discussion we will use the notion of modal depth, which we define below (the
definition is for the broader language of TEAMLOG).

Definition 3.3. (Modal depth)
Let ϕ be a TEAMLOG formula, then modal depth of ϕ, denoted by dep(ϕ) is defined inductively as
follows:

• dep(p) = 0, where p ∈ P ,

• dep(¬ψ) = dep(ψ),

• dep(ψ1 op ψ2) = max{dep(ψ1),dep(ψ2)}, where op ∈ {∧,∨,→,↔},

• dep(OP(i, ψ)) = dep(ψ) + 1, where OP ∈ {BEL,GOAL, INT},

• dep(OPG(ψ)) = dep(ψ) + 1, where OP ∈ {C-BEL,M-INT}.

Let F be a set of TEAMLOG formulas. Then dep(F ) = max{dep(ψ) : ψ ∈ F}, if F != ∅, and
dep(∅) = 0.

The following analogue to the proposition shown in [16] for S5n can be shown, giving a basis for an
algorithm checking TEAMLOGind satisfiability:

2This is a condition that occurs in [16], corresponding to the consistency axiom.
3We give this condition instead of two other conditions given in [16] as correspondents to positive and negative introspection
axioms in a KD45n tableau. The given condition is exactly the condition the authors of [16] give, together with a condition
corresponding to the truth axiom for S5n.
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Proposition 3.1. A formula ϕ is TEAMLOGind satisfiable iff there is a TEAMLOGind tableau for ϕ.

Proof:
The proof is very similar to the proof given in [16] for S5n tableaus. Although we have to deal with new
conditions here, this is not a problem due to the similarity of conditions TA78GB , TA78IB to condition
TA45. The direction from left to right is a straightforward adaptation of the proof in [16], and we leave
it to the reader.

When constructing a model for ϕ out of a tableau for ϕ in the right to left part we have to construct
a “serial closure” of some relations. This is done by making isolated states accessible from themselves.
For example accessibility relations I ′i for intentions would be defined on the basis of relations Ii in a
tableau as follows: I ′i = I ′′i ∪ {(w,w) : ∀v ∈ W. (w, v) /∈ I ′′i }, where I ′′i is the smallest set containing
Ii and satisfying properties corresponding to axioms A7IB and A8IB . ./

3.1. The Algorithm for Satisfiability of TEAMLOGind

The algorithm presented below tries to construct, for a given formula ϕ, a pre-tableau – a tree-like
structure that forms the basis for a TEAMLOGind tableau for ϕ. Nodes of this pre-tableau are labelled
with subsets of ¬Sub(ϕ). Nodes that are fully expanded propositional tableaus are called states and all
other nodes are called internal nodes.

The algorithm is an adaptation of the algorithm presented in [16]. Modifications are connected with
new axioms of the TEAMLOGind logic and corresponding properties of accessibility relations.

Input: A formula ϕ.

Step 1 Construct a tree consisting of single node w, with L(w) = {ϕ}.

Step 2 Repeat until none of the steps 2.1 – 2.3 applies:

Step 2.1 Select a leaf s of the tree such that L(s) is not blatantly inconsistent and is not a propositional
tableau and select a formula ψ that violates the conditions of propositional tableau.

Step 2.1.1 If ψ is of the form ¬¬ξ then create a successor t of s and set L(t) = L(s) ∪ {ξ};

Step 2.1.2 If ψ is of the form ξ1∧ ξ2 then create a successor t of s and set L(t) = L(s)∪{ξ1, ξ2};

Step 2.1.3 If ψ is of the form ξ1 ∨ ξ2 then create two successors t1 and t2 of s and set L(t1) =
L(s) ∪ {ξ1} and L(t2) = L(s) ∪ {ξ2}.

Step 2.2 Select a leaf s of the tree such that L(s) is not blatantly inconsistent and is not a fully expanded
propositional tableau and select ψ ∈ L(s) with ξ ∈ Sub(ψ) such that {ξ,¬ξ}∩L(s) = ∅. Create
two successors t1 and t2 of s and set L(t1) = L(s) ∪ {ξ} and L(t2) = L(s) ∪ {¬ξ}.

Step 2.3 Create successors of all states that are not blatantly inconsistent according to the following
rules. Here, s denotes a considered state and the created successors will be called bi-, gi-, and
ii-successors.

bel1 If BEL(i, ψ) ∈ L(s) and there are no formulas of the form ¬BEL(i, χ) ∈ L(s), then let
LBELi(s) = {χ : BEL(i, χ) ∈ L(s)} ∪{ OP(i, χ) : OP(i, χ) ∈ L(s)}, where OP ∈
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{BEL, ¬BEL, GOAL, ¬GOAL, INT, ¬INT}. If there is no bi-ancestor t of s, such that
LBELi(t) = LBELi(s), then create a successor u of s (called bi-successor) with L(u) =
LBELi(s).

bel2 If ¬BEL(i, ψ) ∈ L(s), then let L¬BELi(s, ψ) = {¬ψ} ∪ LBELi(s). If there is no bi-
ancestor t of s, such that L¬BELi(t, ψ) = L¬BELi(s, ψ), then create a successor u of s
(called bi-successor) with L(u) = L¬BELi(s, ψ).

int1 If INT(i, ψ) ∈ L(s) and there are no formulas of the form ¬INT(i, χ) ∈ L(s), then let
LINTi(s) = {χ : INT(i, χ) ∈ L(s)}. If there is no ii-ancestor t of s, such that LINTi(t) =
LINTi(s), then create a successor u of s (called ii-successor) with L(u) = LBELi(s).

int2 If ¬INT(i, ψ) ∈ L(s), then let L¬INTi(s, ψ) = {¬ψ} ∪ LINTi(s). If there is no ii-ancestor
t of s, such that L¬INTi(t, ψ) = L¬INTi(s, ψ), then create a successor u of s (called ii-
successor) with L(u) = L¬INTi(s, ψ).

goal If ¬GOAL(i, ψ) ∈ L(s), then let LGOALi(s) = {χ : GOAL(i, χ) ∈ L(s)} and
L¬GOALi(s, ψ) = {¬ψ} ∪LGOALi(s)∪LINTi(s). If there is no gi-ancestor t of s, such that
L¬GOALi(t, ψ) = L¬GOALi(s, ψ), then create a successor u of s (called gi-successor) with
L(u) = L¬GOALi(s, ψ).

Step 2.4 Mark a hitherto unmarked node ‘satisfiable’ if either it is a not blatantly inconsistent state and
step 2.3 can not be applied to it and all its successors are marked ‘satisfiable’, or it is an internal
node having at least one descendant marked ‘satisfiable’.

Step 3 If the root is marked ‘satisfiable’ return ‘satisfiable’, otherwise return ‘unsatisfiable’.

Before showing validity of the above algorithm, we will prove the following lemma which will be
useful in further proofs. In what follows relations of Bi-successor, Gi-successor and Ii-successor between
states will be used and are defined as follows. Let s and t be a subsequent states. If t is a bi-, gi- or ii-
successor of some node, then it is a Bi-, Gi- or Ii-successor (respectively) of t.

Lemma 3.1. Let s and t be states of a pre-tableau constructed by the algorithm, such that t is a Bi-
successor s and t is not blatantly inconsistent. Then the following hold for OP ∈ {BEL,GOAL, INT}.

1. LOPi(s) = LOPi(t).

2. ¬OP(i, ξ) ∈ L(s) and L¬OPi(s, ξ) = L¬OPi(t, ξ), for any ¬OP(i, ξ) ∈ L(t).

Proof:
Note that if s has a Bi-successor, then it is not blatantly inconsistent.

For point 1, let ψ ∈ LOPi(s). Then it is either OP(i, ψ) ∈ L(s) (and consequently OP(i, ψ) ∈ L(t))
or OP = BEL, ψ is of the form BEL(i, ξ) and ψ ∈ L(s) (consequently ψ ∈ L(t)). Thus ψ ∈ LOPi(t).

On the other hand, let ψ ∈ LOPi(t). Then either OP(i, ψ) ∈ L(t) or OP = BEL, ψ is of the form
BEL(i, ξ) and ψ ∈ L(t). Suppose that the first case holds. Since L(s) is a fully expanded propositional
tableau, either OP(i, ψ) ∈ L(s) or ¬OP(i, ψ) ∈ L(s). Because the second possibility leads to blatant
inconsistency of L(t) (as by the algorithm it implies that ¬OP(i, ψ) ∈ L(t)), it must be that the first
possibility holds and thus ψ ∈ LBELi(s). The second case can be shown by similar arguments, as either
BEL(i, ξ) ∈ L(s) or BEL(i, ξ) ∈ L(s).
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For point 2, let¬OP(i, ξ) ∈ L(t). Then by the fact that L(s) is a fully expanded propositional tableau
it is either ¬OP(i, ξ) ∈ L(s) or OP(i, ξ) ∈ L(s). As the second case leads to blatant inconsistency of
L(t), it must be the first one that holds.

L¬BELi(s, ξ) = L¬BELi(t, ξ) can be shown by similar arguments to those used to show point 1 (note
that L¬OPi(v, ξ) = {¬ξ} ∪ LOPi(v) or (in case of OP = GOAL) L¬OPi(v, ξ) = {¬ξ} ∪ LOPi(v) ∪
LINTi(v)). ./

Now we are ready to prove validity of the algorithm.

Lemma 3.2. For any formula ϕ the algorithm terminates.

Proof:
Let |ϕ| = m. For any node in a pre-tableau constructed by the algorithm | L(s) |≤ 2m (if L(s) is not
blatantly inconsistent then | L(s) |≤ m). Any sequence of executions of steps 2.1 and 2.2 can have
length ≤ m. Thus on the path connecting any subsequent states s and t, there can be at most m − 1
internal nodes.

If s and t are states such that t is a Gi-successor or Ii-successor of s then dep(L(t)) < dep(L(s)).
If t is a Bi-successor of s and u is a Bj-successor of t, where i != j, then dep(L(u)) < dep(L(s)).
If t is a Bi-successor of s then, by lemma 3.1, t cannot have any Bi-, Gi- nor Ii-successors. Thus, for

any successor node u of t, dep(L(s)) < dep(L(u)).
All above arguments show that a pre-tableau constructed by the algorithm can have a depth at most

2 · dep(ϕ)m. Since dep(ϕ) ≤ m− 1, the modal depth of a pre-tableau is bounded by m(m− 1). This
also shows that the algorithm terminates.

./

Lemma 3.3. A formula ϕ is satisfiable iff the algorithm returns ‘satisfiable’ on input ϕ.

Proof:
For the right to left direction, a tableau T = (W, {Bi : i ∈ A}, {Gi : i ∈ A}, {Ii : i ∈ A}, L)
based on the pre-tableau is constructed by the algorithm. W is the set of states of the pre-tableau. For
{w, v} ⊆ W , let (w, v) ∈ B∗

i if v is the closest descendant state of w and the first successor of w on the
path between w and v is a bi–successor of w. Then Bi is determined as the transitive euclidean closure
of the above relation B∗

i .
Relations Gi and Ii are defined analogically, but without taking the transitive Euclidean closure.

Labels of states in W are the same as in the pre-tableau. Checking that T is a TEAMLOGind tableau
is very much like in the case of S5n tableaus, with the new conditions TA6, TA45, TA78GB , TA6I ,
TA78IB being the most difficult cases.

For TA6 note that if v ∈ W has no successor states and BEL(i, ψ) ∈ L(v), then v cannot be a
root, otherwise there is no ancestor of v such that its label is LBELi(v), so step 2.3.bel1 of the algorithm
applies to v and it cannot be a leaf. Therefore, there is w ∈ W , such that (w, v) ∈ Bi. Since BEL(i, ψ) is
a subformula of ϕ, then either ¬BEL(i, ψ) ∈ L(w) or BEL(i, ψ) ∈ L(w). Because the first possibility
leads to contradiction with BEL(i, ψ) ∈ L(v), then it must be the second, and this implies ψ ∈ L(v).

Condition TAI can be shown similarly.
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Condition TA45 is also based on the fact that labels of states are fully expanded propositional
tableaus, and can be shown similarly to TA6 (see [16]). Since TA78GB and TA78IB are very simi-
lar to TA45, a bi–successor inherits all formulas of the form GOAL(i, ψ), ¬GOAL(i, ψ), INT(i, ψ)
and ¬INT(i, ψ), then they can be shown analogically to TA45. Proposition 1 gives the final result.

For the left to right direction we show, for any node w in the pre-tableau, the claim that if w is
not marked ‘satisfiable’ then L(w) is inconsistent. From this it follows that if the root is not marked
‘satisfiable’ then ¬ϕ is provable and thus ϕ is unsatisfiable.

The claim is shown by induction on the length of the longest path from a node w to a leaf of the
pre-tableau. Most cases are easy and can be shown similarly to the case of S5n presented in [16]. We
show only the most difficult case connected with new axioms of TEAMLOGind, namely the one, in which
w is not a leaf and has a bi–successor v generated by a formula of the form BEL(i, ψ) ∈ L(w) (other
cases are either similar or easier). Since by induction hypothesis L(v) is inconsistent, we can show
using A2, R1 and R2 that the set X = {BEL(i, ψ) : BEL(i, ψ) ∈ L(w)}) ∪ {BEL(i, ψ) : ψ ∈
L(w) and is of the form OP(i, χ)} proves BEL(i,⊥), so by A6 X is also inconsistent. Assume that
L(w) is consistent, then the set Y = L(w) ∪ {BEL(i, ψ) : ψ ∈ L(w) and is of the form OP(i, χ)} ∪
{¬BEL(i,⊥)} is also consistent (by axioms A4-6, A7-8GB and A7-8IB). This leads to contradiction,
since X ⊆ Y , and thus L(w) must be inconsistent. ./

Theorem 3.1. The satisfiability problem for TEAMLOGind is PSPACE-complete

Proof:
Since the depth of the pre-tableau constructed by the algorithm for a given ϕ is at most |ϕ|(|ϕ| − 1)
and the algorithm is deterministic, it can be run on a deterministic Turing machine by depth-first search
using polynomial space. Thus TEAMLOGind is in PSPACE. On the other hand the problem of KDn

satisfiability, known to be PSPACE-hard, can be reduced to TEAMLOGind satisfiability, so TEAMLOGind

is PSPACE-complete. ./

3.2. Effect of Bounding Modal Depth for TEAMLOGind

As was shown in [15], bounding the modal depth of formulas by a constant results in reducing the
complexity of the satisfiability problem for modal logics Kn, KDn and KD45n to NP-complete.4 An
analogical result holds for the logic TEAMLOGind, as we shall now show.

Theorem 3.2. For any fixed k, if the set of propositional atoms P is infinite and modal depth of formulas
is bounded by k, then the satisfiability problem for TEAMLOGind is NP-complete.

Proof:
From the proof of Lemma 3.2 we can observe that the number of states on a path from the root of
a pre-tableau constructed by the algorithm to a leaf depends strictly on the modal depth of the input
formula. Thus the size of the tableau corresponding to this pre-tableau is bounded by O(|ϕ|dep(ϕ)). This
means that the satisfiability of the formula ϕ with bounded modal depth can be checked by the following
non-deterministic algorithm:

4Actually, in [15] logic Tn (not KDn) is considered, but all proofs there that work for Tn work also for KDn.
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Input: A formula ϕ.

Step 1 Guess a tableau T satisfying ϕ.

Step 2 Check that T is indeed a tableau for ϕ.

Since the tableau T constructed at step 1 of the algorithm is of polynomial size, step 2 can be realized
in polynomial time. Thus the satisfiability problem of TEAMLOGind formula with modal depth bounded
by a constant is in NP-time. It is also NP-complete, as the satisfiability problem for propositional logic
is NP-hard. ./

3.3. Effect of bounding the number of propositional atoms for TEAMLOGind

Another natural constraint on the language is bounding the number of propositional atoms. As was shown
in [15], constraining the language of the logics Kn, KDn (for n ≥ 1) and KD45n (for n ≥ 2) this way
does not change the hardness of the satisfiability problem for them, even if |P| = 1. This result holds
also for our logic, as the formula used in proof of that fact in [15] could be expressed in TEAMLOGind

with use of the INT modality.
Similarly to [15] we can show that if bounding the number of propositional atoms is combined with

bounding the modal depth of formulas, the complexity is reduced to linear time.

Theorem 3.3. For any fixed k, l ≥ 1, if the number of propositional atoms is bounded by l and the
modal depth of formulas is bounded by k, then the satisfiability problem for TEAMLOGind can be solved
in linear time.

Proof:
By the same argument as in [15], if |P| ≤ l, then there is only a finite number of equivalence classes
(based on logical equivalence) of formulas of modal depth bounded by k in the language of TEAMLOGind.
This can be proved by induction on k (see for example [3, Proposition 2.29]). Thus there is a finite set
ϕ1, . . . , ϕN of satisfiable formulas, each witness of a particular equivalence class all of whose members
are satisfiable, and a corresponding fixed finite set of models M1, . . . ,MN satisfying these formulas.

To check the satisfiability of a formula, it is enough to check whether it is satisfied in one of these
models M1, . . . ,MN , and this can be done in time linear in the length of the formula; as the set of
relevant models is fixed, it only contributes to the constant factor. ./

4. Complexity of the System TEAMLOG

We will show that the satisfiability problem for the system TEAMLOG is EXPTIME-complete. First we
prove that TEAMLOG has the small model property in the sense that for each satisfiable formula ϕ, a
satisfying model of size O(2|ϕ|) can be found. To show this a filtration technique is used (see [3]). Let
G ⊆ {1, . . . , n}.

A set of formulas Σ closed for subformulas is closed if it satisfies the following:

Cl1 if C-BELG(ϕ) ∈ Σ , then E-BELG(ϕ ∧ C-BELG(ϕ)) ∈ Σ ,

Cl2 if E-BELG(ϕ) ∈ Σ , then {BEL(j, ϕ) : j ∈ G} ⊆ Σ ,
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Cl3 if M-INTG(ϕ) ∈ Σ , then E-INTG(ϕ ∧M-INTG(ϕ)) ∈ Σ ,

Cl4 if E-INTG(ϕ) ∈ Σ , then {INT(j, ϕ) : j ∈ G} ⊆ Σ .

Let M = (W, {Bi : i ∈ A}, {Gi : i ∈ A}, {Ii : i ∈ A},Val) be a TEAMLOGind model, Σ a closed
set, and let ≡Σ

f ⊆ Σ × Σ be an equivalence relation such that, for {w, v} ⊆ W , w ≡Σ
f v iff for any

ϕ ∈ Σ , M, w |= ϕ ⇔M, v |= ϕ. Let Mf
Σ = (W f , {Bf

i : i ∈ A}, {Gf
i : i ∈ A}, {If

i : i ∈ A},Valf )
be defined as follows:

F0 W f = W/ ≡Σ
f , V alf (p, [w]) = V al(p, w),

F1 Bf
i = {([w], [v]) : for any BEL(i, ϕ) ∈ Σ , M, w |= BEL(i, ϕ) ⇒ M, v |= ϕ and for any
OP(i, ϕ) ∈ Σ , M, w |= OP(i, ϕ) ⇔M, v |= OP(i, ϕ)}, where OP ∈ {BEL,GOAL, INT}.

F2 Gf
i = {([w], [v]) : for any GOAL(i, ϕ) ∈ Σ , M, w |= GOAL(i, ϕ) ⇒ M, v |= ϕ and for any
INT(i, ϕ) ∈ Σ , M, w |= INT(i, ϕ) ⇒M, v |= ϕ}.

F3 If
i = {([w], [v]) : for any INT(i, ϕ) ∈ Σ , M, w |= INT(i, ϕ) ⇒M, v |= ϕ}.

It is easy to check that if M is a TEAMLOGind model, then so is Mf
Σ and, moreover, that if Σ is a

closed set, then Mf
Σ is a filtration of M through Σ . This leads to the following standard lemma (thus

left without a proof):

Lemma 4.1. If M is a TEAMLOGind model and Σ is a closed set of formulas then for all ϕ ∈ Σ and all
w ∈ W , M, w |= ϕ iff Mf

Σ , [w] |= ϕ.

From lemma 4.1 it follows that TEAMLOG has the finite model property and that its satisfiability
problem is decidable. Let Cl(ϕ) denote the smallest closed set containing Sub(ϕ), and let ¬Cl(ϕ)
consist of all formulas in Cl(ϕ) and their negations. If a formula ϕ is satisfiable then it is satisfiable in a
filtration through Cl(ϕ), and any such filtration has at most |P (Cl(ϕ))| = O(2|ϕ|) states.

Now we present an exponential time algorithm for checking TEAMLOG satisfiability of a formula
ϕ. The algorithm and the proof of its validity are modified versions of the algorithm for checking satis-
fiability for PDL and its validity proof presented in [17]5. The algorithm attempts to construct a model
M = N f

Cl(ϕ), where N is a canonical model for TEAMLOG. This is done by constructing a sequence of
models Mk, being subsequent approximations of M as follows:

Input: A formula ϕ

Step 1 Construct a model M0 = (W0, {B0i : i ∈ A}, {G0i : i ∈ A}, {I0i : i ∈ A},Val0), where
W0 is the set of all maximal subsets of ¬Cl(ϕ), that is sets that for every ψ ∈ Cl(ϕ) contain
either ψ or ¬ψ, Val0(p, w) = 1 iff p ∈ w, and accessibility relations are defined analogically as in
Mf

Cl(ϕ). We present the definition of B0i, which makes definitions G1, I1 of G0i and I0i obvious:

5Note that one can see TEAMLOG as a modified and restricted version of PDL, where the BEL, GOAL and INT operators for
each agent are seen as atomic programs satisfying some additional axioms, while group operators can be defined as complex
programs using the ∪ and ∗.
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B1 B0i = {(w, v) : for any BEL(i, ϕ) ∈ Cl(ϕ),
BEL(i, ϕ) ∈ w ⇒ ϕ ∈ v and for any OP(i, ϕ) ∈ Cl(ϕ), OP(i, ϕ) ∈ w ⇔ OP(i, ϕ) ∈ v},
where OP ∈ {BEL,GOAL, INT}.

Step 2 Construct a model M1 by removing from W0 states that are not closed propositional tableaus.

Step 3 Repeat the following, starting with k = 0, until no state can be removed:

Step 3.1 Find a formula ψ ∈ ¬Cl(ϕ) and state w ∈ W k such that ψ ∈ w and one of the conditions6

below is not satisfied. It the state was found, remove it from W k to obtain W k+1.

AB1 if ψ = ¬BEL(i, χ), then there exists v ∈ Bk
i such that ¬χ ∈ v (analogical conditions AG1

and AI1 for GOAL and INT,

AB2 if ψ = BEL(i, χ), then there exists v ∈ Bk
i such that χ ∈ v (analogical condition AI2 for

INT),

AEB1 if ψ = ¬E-BELG(i, χ), then there exists v ∈ Bk
G (where Bk

G =
⋃

j∈G Bk
j such that

¬χ ∈ v (analogical condition AEI1 for E-INTG),

ACB1 if ψ = ¬C-BELG(i, χ), then there exists v ∈ (Bk
G)∗ such that ¬χ ∈ v (analogical condi-

tion AMI1 for M-INTG).

Step 4 If there is a state in the model Ml obtained after step 3 containing ϕ, then return ‘satisfiable’,
otherwise return ‘unsatisfiable’.

It is obvious that the algorithm terminates. Moreover, since each step can be done in polynomial
time, the algorithm terminates after O(2|ϕ|) steps. To prove the validity of the algorithm, we have to
prove an analogue to a lemma in [17]. In the following lemma, OPG ∈ {E-BELG,E-INTG}, OP∗

G ∈
{C-BELG,M-INTG} and R denotes the relation corresponding to operator OP used in the particular
context.

Lemma 4.2. Let k ≥ 1 and assume that M ⊆M k. Let χ ∈ Cl(ϕ) be such that every formula from
Cl(χ) of the form OP(i, ψ), OPG(ψ) or OP∗

G(ψ) and w ∈ W k satisfies the conditions of step 3 of the
algorithm. Then:

1 for all ξ ∈ Cl(χ) and v ∈ W k, ξ ∈ v iff M, v |= ξ;

2.1 for any OP(i, ξ) ∈ Cl(χ) and {w, v} ⊆ W k:

2.1.a if (w, v) ∈ Ri then (w, v) ∈ Rk
i ;

2.1.b if (w, v) ∈ Rk
i and OP(i, ξ) ∈ v then ξ ∈ v;

2.2 for any OPG(ξ) ∈ Cl(χ) and {w, v} ⊆ W k:

2.2.a if (w, v) ∈ RG then (w, v) ∈ Rk
G;

2.2.b if (w, v) ∈ Rk
G and OPG(ξ) ∈ v then ξ ∈ v;

6The conditions are analogical to conditions for PDL. The only differences are conditions AB2 and AI2 that correspond to
axioms A6 and A6I .
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2.3 for any OP∗
G(ξ) ∈ Cl(χ) and {w, v} ⊆ W k:

2.3.a if (w, v) ∈ (RG)∗ then (w, v) ∈ (Rk
G)∗;

2.3.b if (w, v) ∈ (Rk
G)∗ and OP∗

G(ξ) ∈ v then ξ ∈ v.

Proof:
The proof is analogical to the one of the lemma for PDL and the additional properties of TEAMLOG
do not affect the argumentation. The proof of points 2.1-3 is essentially based on the fact that M is a
filtration and similar techniques are used here to those from the proof of the filtration lemma. The proof
of point 1 is by induction on the structure of ξ, similarly to its analogue for the lemma for PDL. ./

Lemma 4.3. A formula ϕ is satisfiable iff the algorithm returns ‘satisfiable’ on input ϕ.

Proof:
Since every state w ∈ W is a maximal subset of ¬Cl(ϕ), we have W ⊆ W0. Moreover, since every state
w ∈ W is a propositional tableau satisfying conditions from step 2 of the algorithm, thus W ⊆ W1.
Conditions in step 2 also guarantee that no state w ∈ W can be deleted in step 3. This shows that
W ⊆ W k, for all W k constructed throughout an execution of the algorithm. It follows that if ϕ is
satisfiable then the algorithm will return ‘satisfiable’.

If model Ml obtained after step 3 of the algorithm is not empty, then it can be easily checked that it
is a TEAMLOGind model. This is because every model Mk constructed throughout an execution of the
algorithm preserves conditions B1, G1, I1. Moreover, conditions AB2, AI2 guarantee that relations Bl

i
and I l

i are serial. Now, if there is a w ∈ W l such that ϕ ∈ w, then (by 1 of lemma 4.2) Ml, w |= ϕ.
Since Ml is a TEAMLOGind model, then ϕ is TEAMLOG satisfiable. So the algorithm is valid. ./

Theorem 4.1. The satisfiability problem for TEAMLOG is EXPTIME-complete.

Proof:
Immediately from lemmas 4.1, 4.2, and 4.3, it follows that satisfiability is in EXPTIME. It is also
EXPTIME-hard by the same proof as used in theorem 4.2. ./

Remark 4.1. The algorithm above and lemma 4.2 are kept similar to the ones presented in [17], so one
can combine them to obtain a deterministic exponential time algorithm for a combination of TEAMLOG
and PDL.

4.1. Effect of Bounding Modal Depth for TEAMLOG

The effect of bounding the modal depth of formulas on the complexity of the satisfiability problem for
TEAMLOG is not as promising as in the case of TEAMLOGind. It can be shown that even if modal depth
is bounded by 2, the satisfiability problem remains EXPTIME-hard. The proof we give here is inspired
by the proof of EXPTIME hardness of the satisfiability problem for PDL given in [3, Ch. 6.8].

Theorem 4.2. The satisfiability problem for deciding satisfiability of TEAMLOG formulas with modal
depth bounded by 2 is EXPTIME-complete.
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Proof:
The fact that satisfiablity for formulas of modal depth bounded by 2 is in EXPTIME follows immediately
by theorem 4.1, because it is a special case. Thus, what we need to show is EXPTIME-hardness of the
problem. To do this we will use the two-person corridor tiling game.

A tile is a 1×1 square, with fixed orientation and a color assigned to each side. There are two players
taking part in the game and a referee who starts the game. The referee gives the players a finite set of
{T1, . . . , Ts} of tile types. Players will use tiles of these types to arrange them on the grid in such a way
that the colors on the common sides of adjacent tiles match. Additionally there are two special tile types
T0 and Ts+1. T0 is an all sides white type, used merely to mark the boundaries of the corridor inside
which the two players will place their tiles. Ts+1 is a special winning tile that can be placed only in the
first column.

At the start of the game the referee fills in the first row (places {1, . . . ,m}) of the corridor with m
initial tiles of types {T1, . . . , Ts} and places two columns of T0 type tiles in columns 0 and m+1 marking
the boundaries of the corridor. Now the two players A and B place their tiles in alternating moves. Player
A is the one to start. The corridor is to be filled row by row from bottom to top and from left to right.
Thus the place of the next tile is determined and the only choice the players make is the type of tile to
place. The color of a newly placed tile must fit the colors of its adjacent tiles. We will use C(T ′, T, T ′′)
to denote that T can be placed to the right of T ′ and above tile T ′′, thus that right(T ′) = left(T ) and
top(T ′′) = bottom(T ), where right, left, top and bottom give the colors of respective sides of a tile.

If after finitely many rounds a tiling is constructed in which a tile of type Ts+1 is placed in the first
column, then player A wins. Otherwise, that is if no player can make a legal move or if the game goes
on infinitely long and no tile of type Ts+1 is placed in the first column, player B wins. The problem of
deciding if for a given setting of the game there is a winning strategy for player A is an EXPTIME-hard
problem [6]. Following [3, Ch. 6.8] we will show that this problem can be reduced to the satisfiability
problem of TEAMLOG formulas of modal depth ≤ 2.

In the proof of [3, Ch. 6.8] a formula is constructed for a given tiling game, such that a model of it
is the game tree for given settings of the game with its root as a current state. States of the tree contain
information about the actual configuration of the tiles, the player who is to move next, and the position
at which the next tile is to be placed. The depth of the tree is bounded by ms+2. Note that after ms+2

rounds, repetition of rows must have occurred and if A can win a game with repetitions, A can also win
a game without them, thus it is enough to consider ms+2 rounds only.

The formula from the proof of [3, Ch. 6.8] uses two PDL modalities [a] and [a∗] and its depth is
bounded by 2. These modalities could be replaced by M-INT′

{1}, where M-INT′
G(ϕ) is a shortcut for

M-INT′
G(ϕ)∧ϕ (recall that [a∗] is reflexive and M-INT is not), and INT(1, ·). The proof would remain

the same. Thus it can be shown that even if we consider M-INT with n ≥ 1 and formulas with modal
depth bounded by 2, the satisfiability problem remains in EXPTIME. Below we show a slightly modified
version of the [3, Ch. 6.8] proof, adapted for C-BEL. In this case n ≥ 2 is required. This is not
surprising, as for n = 1 C-BEL is equivalent to BEL because by axioms A4 and A5, BEL(1, ϕ) and
BEL(1,BEL(1, ϕ)) are equivalent.

Let G = (m, T , (I1, . . . , Im)), where T = {T0, . . . , Ts+1} and Ij ∈ T for 0 ≤ j ≤ m, be a setting
for a two person corridor tiling game described above. Here, (I1, . . . , Im) is the row of types of the initial
tiling of the first row of the corridor. We construct a formula ϕ(G) such that it is satisfiable iff player A
has a winning strategy. The following propositional symbols are used to construct a formula:
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• a to indicate that A has the next move; we will also use p1 to denote a and p2 to denote ¬a in order
to shorten some formulas,

• pos1, . . . , posm to indicate the column in which a tile is to be placed in the current round,

• coli(T ), for 0 ≤ i ≤ m + 1 and T ∈ T , to indicate that a tile previously placed in column i is of
type T ,7

• win to indicate that the current position is a winning position for A,

• q1, . . . qN , where N = 6log2 (ms+2)7, to enumerate states; boolean values of these variables in a
given state can be treated as a representation of a binary number with q1 being the least significant
bit and qN being the most significant one; we will give the same number to all states belonging to
the same round; we will use the notation round = k as a shortcut for the formula expressing that
the number encoded by qN . . . q1 is equal to k.

The formula ϕ(G) will be composed of the following formulas describing settings of the game and
giving necessary and sufficient conditions for the existence of a winning strategy for A. In what follows,
k ∈ {1, 2}, 0 ≤ i != j ≤ m + 1, 0 ≤ x != y ≤ s + 1 and {T, T ′, T ′′} ⊆ T (if not stated differently). We
will also use C-BEL′

G(ϕ) as a shortcut for C-BELG(ϕ)∧ϕ. We also use the conventions that
∧

∅ = %
and

∨
∅ = ⊥.

a ∧ pos1 ∧ col0(T0) ∧ colm+1(T0) ∧ col1(I1) ∧ . . . ∧ colm(Im) (1)

C-BEL{1,2}(pos1 ∨ . . . ∨ posm) (2)

C-BEL′
{1,2}(posi → ¬posj), 1 ≤ i != j ≤ m (3)

C-BEL{1,2}(coli(T0) ∨ . . . ∨ coli(Ts+1)) (4)

C-BEL′
{1,2}(coli(Tx) → ¬coli(Ty)) (5)

C-BEL{1,2}(col0(T0) ∧ colm+1(T0)) (6)

C-BEL′
{1,2}((¬posi → ((coli(Tx) → BEL(k, coli(Tx)))∧

(¬coli(Tx) → BEL(k,¬coli(Tx))))),
(7)

C-BEL′
{1,2}((posm ∧ pk → BEL(k, pos1))∧

(pos1 ∧ pk → BEL(k, pos2)) ∧ . . . ∧ (posm−1 ∧ pk → BEL(k, posm)))),
(8)

7Note that coli(T ) is a parametrized name of a propositional symbol.
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C-BEL′
{1,2}((a → BEL(1,¬a)) ∧ (¬a → BEL(2, a))) (9)

C-BEL′
{1,2}

(
posi ∧ coli−1(T ′) ∧ coli(T ′′) ∧ pk →

BEL
(
k,

∨
{coli(T ) : C(T ′, T, T ′′)}

) )
, 1 ≤ i ≤ m,

(10)

C-BEL′
{1,2}

(
posn → BEL

(
k,

∨
{coln(T ) : right(T ) = white}

))
(11)

C-BEL′
{1,2}

(
¬a ∧ posi ∧ coli(T ′′) ∧ coli−1(t′) →

∧
{¬BEL(k,¬coli(T )) : C(T ′, T, T ′′)}

)
, 1 ≤ i ≤ m

(12)

win ∧ C-BEL′
{1,2}(win → (col1(Ts+1) ∨ (a ∧ ¬BEL(1,¬win))∨

(¬a ∧ BEL(2, win)))))
(13)

C-BEL′
{1,2}((round = N) → BEL(k,¬win)) (14)

Formulas (1–7) describe the settings of the game. The initial setting is as described by (1). During
the game tiles are placed in exactly one of the columns 1..m (2–3) and in every column exactly one tile
type was previously placed (4–5). The boundary tiles are placed in columns 0 and m+1 (6) and nothing
changes in columns where no tile is placed during the game (7).

Formulas (8–11) describe the rules of the game. Tiles are placed from bottom to top, row by row
from left to right (8); thus, the first conjunct of (8) represents the flipping of one row to the next. The
players alternate (9). Tiles that are placed have to match adjacent tiles (10–11). The formula (12) ensures
that all possible moves by player B are encoded in the model.

Formula (13) gives properties of states that can be marked as winning positions for the player A and
formula (14) states that all states reached after≥ N rounds can not be winning positions for A. Similarly
to [3, Lemma 6.51], one can force exponentially deep models of TEAMLOG for satisfying some specific
formulas of depth ≤ 2. Specifically, to enumerate the states according to rounds of the game we will
need the following additional formula.

N∧

j=1

¬qj ∧ C-BEL′
{1,2}

(
INC0 ∧

N−1∧

j=1

INC1(j)
)
, (15)

where

INC0 ≡ ¬q1 →
(
BEL(1, q1)∧

N∧

j=2

((qj → BEL(1, qj)) ∧ (¬qj → BEL(1,¬qj))
) (16)
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INC1(i) ≡
(
¬qi+1 ∧

i∧

j=1

qj

)
→ BEL

(
2, qi+1 ∧

i∧

j=1

¬qj∧

N∧

j=i+2

((qj → BEL(2, qj)) ∧ (¬qj → BEL(2,¬qj)))
) (17)

Formula (15) enforces that the root of the model receives a number (0 . . . 0)2 and worlds corresponding
to states in subsequent rounds of the game receive subsequent numbers in binary representation. The
formula INC0 is responsible for increasing even numbers, and INC1(i) is responsible for increasing
odd numbers ending with a sequence of i 1 and having 0 at the position i + 1.

The formula ϕ(G) is the conjunction of formulas (1–15) and it is of size polynomial with respect
to m. It can be easily seen that if A has a winning strategy in the particular game, the formula ϕ(G)
is satisfiable in a model built on the basis of a game tree for this game. Edges corresponding to turns
of player A are the basis for accessibility relation B1 and those corresponding to turns of player B are
the basis for accessibility relation B2. To satisfy the properties of the model, B1 and B2 are extended
by identity in worlds that violate the seriality property. All other relations Bi and Ii are set to identity
and Gi are set to ∅. Valuation of propositional variables in the worlds of the model is automatically
determined by the description of the situation in the corresponding states of the game.

On the other hand, if ϕ(G) is satisfiable, A can use a model of ϕ(G) as a guide for his winning
strategy. At the beginning, he chooses a transition (represented by accessibility relation B1) to a world
where win is true, and plays accordingly. Player A does analogically in all subsequent rounds of the
game. He can track the worlds corresponding to states of subsequent rounds of the game, by following
relations B1 and B2 alternatingly. Notice for all worlds v corresponding to states where A is to play and
where A has a winning strategy (that is win is true) it must be (v, v) /∈ B1, as guaranteed by (9). The
same holds for B2 and states where B is to play. Notice also that formula (14) guarantees that A will
reach a winning position in a finite number of steps if he plays as described above. ./

4.2. Effect of bounding the number of propositional atoms for TEAMLOG

If the number of propositional atoms is bounded by 1, the complexity of satisfiability problem for logic
TEAMLOG remains EXPTIME-hard. It can be easily shown by using an analogical technique to that
described in [15]. The idea is to substitute propositional symbols used in the proof of the theorem 4.2,
by so called pp-like formulas, that would have similar properties as propositional atoms (in terms of
independence of their valuations in the worlds of a model). Suppose that propositional atoms are denoted
by qj . Then a pp-like formula replacing the propositional symbol qj is ¬OP(k,¬p ∧ ¬BELj(1,¬p)),
where OP(k, ·) is any modal operator not used in the proof of theorem 4.2. 8 See [15] for additional
details and an extended discussion of using pp-like formulas.

Similarly to the case of TEAMLOGind we can show that if bounding the number of propositional
atoms is combined with bounding the modal depth of formulas, the complexity is reduced to linear time.
The proof is analogical to this for TEAMLOGind.
8Note that this argument will not work for the logic KD1 with group operator M-INT, nor will it work for the logic KD452

with group operator C-BEL, because there is no “free” modal operator left to be used as OP(k, ·) for these cases. We do not
know yet what would be the complexity of the satisfiability problem for these logics, when the number of propositional atoms
is bounded.
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Theorem 4.3. For any fixed k, l ≥ 1, if the number of propositional atoms is bounded by l and the
modal depth of formulas is bounded by k, then the satisfiability problem for TEAMLOG can be solved in
linear time.

5. Discussion and Conclusions

This paper deals with the complexity of two important components of TEAMLOG. The first one covers
agents’ individual attitudes, including their interdependencies, which makes the decision procedure more
complicated. The second one deals with the team attitude par excellence: collective intention. Impor-
tantly, however, our results have a more general impact. The tableau methods we use can be adapted to
the non-temporal parts of other multi-modal logics which are similar in spirit to ours, such as the KARO
framework [1].

The presented system defining collective intentions is decidable. More precisely, as proved in the
current paper, it is EXPTIME-complete. As with other modal logics, an option would be to develop
a variety of different algorithms and heuristics, each performing well on a limited class of inputs. For
example, it is known that restricting the number of propositional atoms to be used and/or the depth of
modal nesting may reduce the complexity (cf. [15, 18]). We explored these possibilities in this paper
for both individual and collective part of TEAMLOG. Also, when considering specific applications, it is
possible to reduce some of the infinitary character of collective beliefs and intentions to more manageable
proportions (cf. [14, Ch. 11]). From the perspective of AI applications it is particularly interesting to
restrict considerations to Horn-like formulas (see, [22]). Such restrictions are essential when the strongest
motivational attitude, collective commitment, is considered [11] in order to produce system specifications
of lower complexity.

Another promising technique to reduce the complexity could depend on simplifying multimodal
theories of collective attitudes of agents using approximations in the spirit of rough set theory introduced
by Pawlak [23, 24]. His influential ideas, developed over the last 25 years by many researchers, appeared
very useful, among others, in the context of reducing the complexity of reasoning over large data sets.
It seems rather natural to extend his techniques to the context of approximating the logical theories in
question. In fact, logical approximations have been considered in papers [20, 5, 21, 8] and in a book [7].
It can be shown that the approximations considered in [21, 8] are as strong as rough approximations
introduced by Pawlak.
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