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V1 = RT1 RT2 -> AC1 Primitive operations (PRIMs)
Representation: projections between 
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Reinforcement Learning

Operators (ACT-R)
Sequences of primitive operations: parallel 

Compilation

Skills (PRIMs)
Sequences of operators with variable
binding, processed serially 

Instance-based learning

Tasks (ACT-R)
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Overview
A Cognitive Computer based on neuromorphic hardware requires more than 
building neural networks out of silicon or other materials. Just like conventional 
computer architectures, multiple levels of abstraction are needed to support flexible 
computation, each with its own representation that can be reduced to the underlying 
level. 

A critical difference between computer and cognitive architectures is that the latter is  
based on learning. This poster presents a possible framework that is based on what 
we know about human intelligence and learning.

Many of the components of the framework are based on existing theories: ACT-R, 
PRIMs, Nengo. The challenge is to combine them productively.

High level cognitive computing
At the top layer of the architecture we want to capture the human ability to carry 
out arbitrary tasks without prior training, as long as they have the required skills. 
Knowledge for a task, represented by stars in the diagram below, is constructed 
by instantiating the relevant skills (pentagons), which in turn require several mental 
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Medium level cognitive 
computing
Each operator consists 
of a number of primitive 
operations that can be 
carried out in parallel.
There is substantial overlap 
between the condition 
and action sequences of 
operators, creating transfer 
phenomena. 

Low level cognitive computing
We have built an architecture based on spiking neurons that is capable of learning 
and carrying out primitive operations.

Primitive operations transfer information between specialized cortical areas. For our 
working memory task this means:

•	Whenever you see a black digit (i.e., vision1 is a number and vision2 is black), 
copy that number to working memory (wm). --> V1WM1

•	Whenever you see a red question mark, copy the contents of working memory 
(wm) to a memory query (memory1). --> WM1RT1

•	Whenever you have retrieved something from memory, copy it to action -> 
RT2AC1

The current model learns the mapping between the current state of the system to 
the correct action through supervised learning. It is then capable of performing 
both the working memory task and the choice reaction task.

CRT: whenever you see a colored number, 
say whether it is odd or even
WM: whenever you see a colored question 
mark, say whether the last digit you saw was 
odd or even


