
From Physical Neurons to Cognitive Programs:
How to build a Cognitive Computer Architecture?

Niels Taatgen (n.a.taatgen@rug.nl)
Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence

Groningen Cognitive Systems and Materials Center

Clusters of neurons (Nengo/NEF)
Representation: activation patterns

V1 = RT1 RT2 -> AC1 Primitive operations (PRIMs)
Representation: projections between
brain areas

Reinforcement Learning

Operators (ACT-R)
Sequences of primitive operations: parallel

Compilation

Skills (PRIMs)
Sequences of operators with variable
binding, processed serially

Instance-based learning

Tasks (ACT-R)
Combinations of skills
(parallel, sequential or hierarchical)

Prospective reasoning

=

Conditions

Actions

Neuromorphic architecture
(Learning Materials)

Basic representation of symbols
(Nengo/SPA)
Representation: vectors

PES/Voja

Neural clustering

eats-meat

negate

retrieve-attribute

find-value

not-hooves

add-all

six-babies

more

include-all

find-all-values

determine-attribute

more-fish

count-goal

count-spoons

Overview
A Cognitive Computer based on neuromorphic hardware requires more than
building neural networks out of silicon or other materials. Just like conventional
computer architectures, multiple levels of abstraction are needed to support flexible
computation, each with its own representation that can be reduced to the underlying
level.

A critical difference between computer and cognitive architectures is that the latter is
based on learning. This poster presents a possible framework that is based on what
we know about human intelligence and learning.

Many of the components of the framework are based on existing theories: ACT-R,
PRIMs, Nengo. The challenge is to combine them productively.

High level cognitive computing
At the top layer of the architecture we want to capture the human ability to carry
out arbitrary tasks without prior training, as long as they have the required skills.
Knowledge for a task, represented by stars in the diagram below, is constructed
by instantiating the relevant skills (pentagons), which in turn require several mental

J. R. Anderson. How can the human mind occur in the physical universe? Oxford university press, New
York, 2007.
Chris Eliasmith, Terrence C Stewart, Xuan Choo, Trevor Bekolay, Travis DeWolf, Yichuan Tang, Charlie
Tang, and Daniel Rasmussen. A large-scale model of the functioning brain. Science, 338(6111):1202–5,
nov 2012.
N. A. Taatgen. The nature and transfer of cognitive skills. Psychological Review, 120:439–471, 2013.

start-retrieve-attribute

>>V3

WM<<
answer-yes

V1=C2

RT4=C3

move-one-if-not-countable-and-last

WM<<
WM<<

result-is-target

RT1=C2

WM1=C1

>>WM4

new-container-is-not-greater-move-on

WM1=C1

C6->AC2

result-is-target-move-next

>>V2

WM1=C1C2->AC1

WM2=C2

WM1=C1

WM3->RT3

WM1=C1

V0->WM2

V<<

init-countgoal

WM2->AC2

WM2<>C2
WM<<

determine-attribute

add-result-to-total-done

yes-to-no

C2->RT1

RT4=C3

C3->WM1

report-result14

WM1=C1

C3->WM2

WM2<>nil

negate

new-container-is-not-greater-last

include-all

compare-total-retrieve

V0->AC2

>>V2

WM1=C1

C5->AC2

RT4->WM2

>>WM4

find-value

WM<<

WM2=C2

add-all

nil->WM4

WM2->RT2

C4->WM2

WM2->RT2

WM3->WM2

result-is-not-target-all-done

C4->WM1

add-result-to-total-move-on

>>V3

WM<<

>>V3

V4=C3

C3->AC1

result-is-not-target-move-next2

>>WM4

C2->WM1

C2->RT1

init-find-value

C2->WM2

WM1=C1

>>WM4

C4->WM1

find-all-values

C5->AC1

>>WM4

new-container-is-greater-last

move-one-if-not-countable-and-not-last

count-goal

WM<<

WM1=C1

RT1=C2
>>WM4

RT1=C1

add-count-and-not-last

add-result-to-total-retrieve

RT1=C1

C4->AC1

>>V3

add-count-last

RT3->WM3

init-find-most

V4<>C3

V1=C1

C3->WM3

WM1=C1

C3->AC1

WM1=C1

RT1=C2

C2->WM1

WM3->WM2

WM<<

C2->RT1

C2->WM1

no-to-yes

V0->RT2

nil->WM4

return-attribute

C3->RT1
WM4=nil

V0->AC2

RT2->WM5

WM1=C1

result-is-target1

WM<<

answer-yes-always

V2=nil

C3->RT3

>>WM4

report-result

nil->G1

C3->AC1

C3->AC1

>>WM4

init-find-value0

V1=C2

RT4->WM3

init-add-all

V0->WM3

WM2=C2

RT4->WM2

WM1=C1

start-retrieve-attribute12

WM1=C1

V0->AC2

start-do-subsub-task

WM1=C1

C3->AC1

C4->AC2

WM1=C1

WM2<>C2

WM1=C1

V2<>nil

WM1=C1

C3->WM3

C5->AC1

answer-no

RT1=C2

RT1=C2

>>WM4

WM<<

retrieve-attribute

>>V2

nil->WM4

>>V2

C2->AC1

WM5->RT3

V<<

RT1=nil

C3->WM5

RT1=nil

C2->WM1

result-is-target-all-done

WM3->RT2

result-is-not-target-move-next

RT3->WM2

C4->AC1

WM1=C1

more

result-is-not-target-all-done3

V1=C2

>>WM4

new-container-is-greater-move-on

WM1=nil

WM3=nil

>>V2

retrieve-count-fact-for-countable-item

Medium level cognitive
computing
Each operator consists
of a number of primitive
operations that can be
carried out in parallel.
There is substantial overlap
between the condition
and action sequences of
operators, creating transfer
phenomena.

Low level cognitive computing
We have built an architecture based on spiking neurons that is capable of learning
and carrying out primitive operations.

Primitive operations transfer information between specialized cortical areas. For our
working memory task this means:

•	Whenever you see a black digit (i.e., vision1 is a number and vision2 is black),
copy that number to working memory (wm). --> V1WM1

•	Whenever you see a red question mark, copy the contents of working memory
(wm) to a memory query (memory1). --> WM1RT1

•	Whenever you have retrieved something from memory, copy it to action ->
RT2AC1

The current model learns the mapping between the current state of the system to
the correct action through supervised learning. It is then capable of performing
both the working memory task and the choice reaction task.

CRT: whenever you see a colored number,
say whether it is odd or even
WM: whenever you see a colored question
mark, say whether the last digit you saw was
odd or even

