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ABSTRACT
Abstract dialectical frameworks (ADFs) have been introduced as

a formalism for modeling and evaluating argumentation allowing

general logical satisfaction conditions. Different criteria used to

settle the acceptance of arguments are called semantics. Semantics

of ADFs have so far mainly been defined based on the concept of

admissibility. However, the notion of strongly admissible semantics

studied for abstract argumentation frameworks has not yet been

introduced for ADFs. In the current work we present the concept of

strong admissibility of interpretations for ADFs. Further, we show

that strongly admissible interpretations of ADFs form a lattice with

the grounded interpretation as top element.
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1 INTRODUCTION
Interest and attention in artificial intelligence-related areas in ar-

gumentation theory has been increasing, by the wide variety of

formalisms of argumentation to model argumentation and by the

variety of semantics that clarify the acceptance of arguments [1, 2].

Abstract argumentation frameworks (AFs) as introduced by Dung

[3] are a core formalism in formal argumentation, (have proven

successful in many applications related to multi-agent systems [4]).

Abstract dialectical frameworks (ADFs) were first introduced in [5],

further refined in [6, 7]. They are expressive generalizations of AFs

in which the logical relations among arguments can be represented.

A key question in formal argumentation is ‘How is it possible to

evaluate arguments in a given formalism?’ Answering this question

leads to the introduction of several types of semantics. Different
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semantics reflect different types of point of view about the accep-

tance or denial of arguments. Most of the semantics of AFs/ADFs

are based on the concept of admissibility, in [8] it is shown that

admissibility plays an important role w.r.t. rationality postulates.

It is shown in [7], that each AF can be represented as an ADF,

further, it is shown that semantics defined for ADFs are proper

generalizations of the semantics of AFs. However, some of the

semantics of AFs have not yet been introduced for ADFs, namely

strongly admissible semantics. In the current work we introduce

strongly admissible semantics of ADFs.

In ADFs an interpretation is called admissible if it does not con-
tain any unjustifiable information. An interpretation is called pre-
ferred if it is a maximal admissible interpretation. Thus, each ad-

missible interpretation is contained in a preferred interpretation.

That is, to answer the credulous decision problem under preferred

semantics it is enough to answer the problem under admissible

semantics. In addition, an interpretation is grounded if it collects

all the information that is beyond any doubt.

In AFs the concept of strongly admissible semantics has first been

defined in the work of Baroni and Giacomin [9], based on the notion

of strong defence. Later in [10] this concept was introduced without

referring to strong defence. Further, in [11] Caminada and Dunne

presented a labelling account of strong admissibility to answer the

credulous decision problem of AFs under grounded semantics. In

[10–12] it was shown that strong admissibility plays a critical role in

discussion games for AFs under grounded semantics. That is, it has

been shown that strongly admissible extensions/labellings make a

lattice with the maximum element of the grounded extension of a

given AF. Therefore, the concept of strong admissibility semantics

of AFs relates to grounded semantics of AFs in a similar way as

the relation between admissible semantics of AFs and preferred

semantics of AFs. That is, to answer the credulous decision problem

of AFs under grounded semantics it is enough to solve the decision

problem for AFs under strongly admissible semantics.

In [13], a discussion game was introduced to answer the credu-

lous decision problem of ADFs under grounded semantics without

constructing the full grounded interpretation of the given ADF.

However, the concept of strongly admissible semantics of ADFs

has not been introduced.

This was a motivation for us to present the notion of strongly

admissible semantics for ADFs in this work. However, studying

whether the game that is presented in [13] is equivalent to construct-

ing a strongly admissible interpretation that satisfies the claim, in

the given ADF, is beyond the topic of this work and is left for future

research.

Semantics of AFs are usually defined based on extensions us-

ing the notion of argument acceptability. In contrast, semantics of
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ADFs are defined in terms of three-valued interpretations using

both argument acceptability and deniability. In this sense, there

is a connection with the use of labelings for AFs using argument

acceptability/deniability (e.g., [16]). However, by the use of general

propositional formulas as argument acceptance conditions, ADFs

allow for richer relations between arguments than AFs, which only

allow attack.

As a result, because of the special structure of ADFs, the defi-

nition of strong admissibility semantics of AFs cannot be directly

reused in ADFs. Thus, we first present the notion strong acceptabil-

ity/deniability of arguments in an interpretation. Then, we present

the concept of strong admissibility to characterise the properties of

the grounded interpretation of ADFs.

The presented notion of strong admissibility for ADFs is closely

related to strong admissibility for AFs in three ways. First strong

admissibility is defined in terms of strongly acceptable/deniable

arguments the truth value of which presented in a given interpre-

tation. Second such strongly acceptable/deniable arguments are

recursively reconstructed from their strongly acceptable/deniable

parents. Third there is a close relation to the grounded semantics,

in the formally precise sense that the maximal element of the lattice

of strongly admissible sets is the grounded interpretation.

This paper is structured as follows. In Section 2, we present the

relevant background. Then, in Section 3, the main contribution of

our work is to introduce the concept of strongly admissible seman-

tics for ADFs. Then we show that in each ADF, the set of strongly

admissible interpretations form a lattice with the trivial interpreta-

tion as the unique minimal element and the grounded interpretation

as the unique maximal element In Section 4, we present a conclu-

sion of our work and we present some future research questions

arising from this work.

2 FORMAL PRELIMINARIES
In this section, we only briefly present the syntax of AFs [3]. We

present the concept of strongly admissible semantics of AFs due to

[9]. Then, we present ADFs due to [5–7].

2.1 Abstract Argumentation Frameworks
We start the preliminaries to our work by recalling the basic notion

of Dung’s abstract argumentation frameworks (AFs) [3] and the

concept of strong admissibility semantics of AFs due to Baroni and

Giacomin [9].

Definition 2.1. [3] An abstract argumentation framework (AF) is

a pair (𝐴, 𝑅) in which 𝐴 is a set of arguments and 𝑅 ⊆ 𝐴 × 𝐴 is a

binary relation representing attacks among arguments.

Let 𝐹 = (𝐴, 𝑅) be a given AF. For each 𝑎, 𝑏 ∈ 𝐴, the relation

(𝑎, 𝑏) ∈ 𝑅 is used to represent that a is an argument attacking the

argument b. An argument 𝑎 ∈ 𝐴 is, on the other hand, defended by

a set 𝑆 ⊆ 𝐴 of arguments (alternatively, the argument is acceptable

w.r.t. 𝑆) (in 𝐹 ) if for each argument 𝑐 ∈ 𝐴, it holds that if (𝑐, 𝑎) ∈ 𝑅

then there is a 𝑠 ∈ 𝑆 such that (𝑠, 𝑐) ∈ 𝑅 (𝑠 is called a defender of 𝑎).

Example 2.2. Let 𝐹 = ({𝑎, 𝑏, 𝑐}, {(𝑎, 𝑏), (𝑏, 𝑐)}) be an AF. In 𝐹 ,

(𝑎, 𝑏) means that argument 𝑎 attacks 𝑏, and (𝑏, 𝑐) means that 𝑏

attacks 𝑐 . Here, argument 𝑐 is defended by set {𝑎} (alternatively, 𝑐

is acceptable with respect to {𝑎}), since 𝑎 attacks the attacker of 𝑐 ,

namely 𝑏.

Different semantics of AFs present which sets of arguments in a

given AF can be accepted jointly.
1
Let 𝐹 = (𝐴, 𝑅) be an AF, then 𝑆 ⊆

𝐴 is a conflict-free set (extension), if there exists no 𝑎, 𝑏 ∈ 𝑆 such that

(𝑎, 𝑏) ∈ 𝑅. For instance, in Example 2.2, the set {𝑎, 𝑐} is a conflict-
free set of 𝐹 . Further, a set of arguments is a grounded extension

of an AF if (intuitively) there is no doubt on the acceptance of the

arguments in the set. Every AF has a unique grounded extension. In

Example 2.2, a unique grounded extension of 𝐹 is {𝑎, 𝑐}. We avoid

here to present the formal definition of the grounded extension

However, in Example 2.2, the intuition is that 𝑎 is not attacked by

any argument, thus no one has any doubt to accept argument 𝑎.

Argument 𝑐 is attacked by 𝑏, however, it is defended by 𝑎 which was

accepted by everyone. Thus, {𝑎, 𝑐} is a unique grounded extension

of 𝐹 . In Definition 2.4 we represent the notion of strongly admissible

semantics of AFs.

Definition 2.3. [9] Given an argumentation framework, 𝐹 =

(𝐴, 𝑅), 𝑎 ∈ 𝐴 and 𝑆 ⊆ 𝐴, it is said that 𝑎 is strongly defended

by 𝑆 if and only if each attacker 𝑐 ∈ 𝐴 of 𝑎 is attacked by some

𝑠 ∈ 𝑆 \ {𝑎} such that 𝑠 is strongly defended by 𝑆 \ {𝑎}.

In other words, 𝑎 is strongly defended by 𝑆 if for any attacker

of 𝑎 there exists a defender 𝑠 for 𝑎 in 𝑆 that is not equal to 𝑎, i.e.

𝑠 ≠ 𝑎, such that 𝑠 is strongly defended by 𝑆 \ {𝑎}. In Example 2.2,

argument 𝑐 is strongly defended by set 𝑆 = {𝑎, 𝑐}, since the attacker
of 𝑐 , namely 𝑏 is attacked by 𝑎 ∈ 𝑆 \ {𝑐} and 𝑎 is strongly defended

by 𝑆 \ {𝑐}. Actually, 𝑎 is strongly defended by 𝑆 = ∅, since 𝑎 is not

attacked by any argument.

Definition 2.4. Given an AF 𝐹 = (𝐴, 𝑅) and set 𝑆 ⊆ 𝐴. It is said

that 𝑆 is a strongly admissible extension of 𝑆 if every 𝑠 ∈ 𝑆 is

strongly defended by 𝑆 .

In Example 2.2, sets 𝑆1 = ∅, 𝑆2 = {𝑎}, and 𝑆3 = {𝑎, 𝑐} are strongly
admissible extensions of 𝐹 ; all of them are subsets of the grounded

extension of 𝐹 . However, set 𝑆 ′ = {𝑐} is not a strongly admissible

extension of 𝐹 , since 𝑐 ∈ 𝑆 ′ is not strongly defended by 𝑆 ′. Because
argument 𝑐 is attacked by 𝑏, however, no argument in 𝑆 ′ \ {𝑐}
attacks 𝑏.

2.2 Abstract Dialectical Frameworks
We briefly restate some of the key concepts of abstract dialectical

frameworks that are derived from those given in [5–7].

Definition 2.5. An abstract dialectical framework (ADF) is a tuple

𝐹 = (𝐴, 𝐿,𝐶) where:
• 𝐴 is a finite set of arguments (statements, positions);

• 𝐿 ⊆ 𝐴 ×𝐴 is a set of links among arguments;

• 𝐶 = {𝜑𝑎}𝑎∈𝐴 is a collection of propositional formulas over

arguments, called acceptance conditions.

An ADF can be represented by a graph in which nodes indicate ar-

guments and links show the relation among arguments. Each argu-

ment𝑎 in anADF is labelled by a propositional formula, called accep-

tance condition, 𝜑𝑎 over par (𝑎) such that, par (𝑎) = {𝑏 | (𝑏, 𝑎) ∈ 𝐿}.
The acceptance condition of each argument clarifies under which

1
The interested reader in semantics of AFs can see [3].
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condition the argument can be accepted [5–7]. Further, acceptance

conditions indicate the set of links implicitly, thus, there is no need

of presenting 𝐿 in ADFs explicitly.

An argument 𝑎 is called an initial argument if par (𝑎) = {}. An
interpretation 𝑣 (for 𝐹 ) is a function 𝑣 : 𝐴 ↦→ {t, f, u}, that maps

arguments to one of the three truth values true (t), false (f), or
undecided (u). Truth values can be ordered via the information

ordering relation <𝑖 given by u <𝑖 t and u <𝑖 f and no other pair

of truth values are related by <𝑖 . Relation ≤𝑖 is the reflexive and
transitive closure of <𝑖 . The pair ({t, f, u}, ≤𝑖 ) is a complete meet-

semilattice with the meet operator ⊓𝑖 , such that, t⊓𝑖 t = t, f⊓𝑖 f = f ,
and returns u otherwise. The meet of two interpretations 𝑣 and𝑤

is then defined as (𝑣 ⊓𝑖 𝑤) (𝑎) = 𝑣 (𝑎) ⊓𝑖 𝑤 (𝑎) for all 𝑎 ∈ 𝐴.

Further, 𝑣 is called trivial, and 𝑣 is denoted by 𝑣u, if 𝑣 (𝑎) = u
for each 𝑎 ∈ 𝐴. Further, 𝑣 is called a two-valued interpretation if

for each 𝑎 ∈ 𝐴 either 𝑣 (𝑎) = t or 𝑣 (𝑎) = f . Interpretations can
be ordered via ≤𝑖 with respect to their information content. Let

V be the set of all interpretations for an ADF 𝐹 . It is said that

an interpretation 𝑣 is an extension of another interpretation 𝑤 , if

𝑤 (𝑎) ≤𝑖 𝑣 (𝑎) for each 𝑎 ∈ 𝐴, denoted by𝑤 ≤𝑖 𝑣 . Further, if 𝑣 ≤𝑖 𝑤
and𝑤 ≤𝑖 𝑣 , then 𝑣 and𝑤 are equivalent, denoted by 𝑣 ∼𝑖 𝑤 .

For reasons of brevity, we will sometimes shorten the notion

of three-valued interpretation 𝑣 = {𝑎1 ↦→ 𝑡1, . . . , 𝑎𝑚 ↦→ 𝑡𝑚} with
arguments 𝑎1, . . . , 𝑎𝑚 and truth values 𝑡1, . . . , 𝑡𝑚 as follows: 𝑣 =

{𝑎𝑖 | 𝑣 (𝑎𝑖 ) = t} ∪ {¬𝑎𝑖 | 𝑣 (𝑎𝑖 ) = f}. For instance, 𝑣 = {𝑎 ↦→ f, 𝑏 ↦→
t} = {¬𝑎, 𝑏}. We use this notation in Figure 3.

Semantics for ADFs can be defined via the characteristic op-
erator Γ𝐹 which maps interpretations to interpretations. Given

an interpretation 𝑣 (for 𝐹 ), the partial valuation of 𝜑𝑎 by 𝑣 , is

𝑣 (𝜑𝑎) = 𝜑𝑣
𝑎 = 𝜑𝑎 [𝑏/⊤ : 𝑣 (𝑏) = t] [𝑏/⊥ : 𝑣 (𝑏) = f], for 𝑏 ∈ par (𝑎).

Definition 2.6. Let 𝐹 be an ADF and let 𝑣 be an interpretation of

𝐹 . Applying Γ𝐹 on 𝑣 leads to 𝑣 ′ s.t. for each 𝑎 ∈ 𝐴, 𝑣 ′ is as follows:

𝑣 ′(𝑎) =


t if 𝜑𝑣

𝑎 is irrefutable (i.e., 𝜑𝑣
𝑎 is a tautology) ,

f if 𝜑𝑣
𝑎 is unsatisfiable (i.e., 𝜑𝑣

𝑎 is a contradiction),

u otherwise.

Note that the operator Γ𝐹 is monotonic, that is, when 𝑣 ≤𝑖 𝑤 for

interpretations 𝑣 and 𝑤 , then Γ𝐹 (𝑣) ≤𝑖 Γ𝐹 (𝑤). The semantics of

ADFs are defined via the characteristic operator as follows.

Definition 2.7. Given an ADF 𝐹 , an interpretation 𝑣 is:

• conflict-free iff 𝑣 (𝑠) = t implies 𝜑𝑣
𝑠 is satisfiable and 𝑣 (𝑠) = f

implies 𝜑𝑣
𝑠 is unsatisfiable;

• admissible in 𝐹 iff 𝑣 ≤𝑖 Γ𝐹 (𝑣);
• preferred in 𝐹 iff 𝑣 is ≤𝑖 -maximal admissible;

• the grounded interpretation of 𝐹 iff 𝑣 is the least fixed point

of Γ𝐹 .

The set of all 𝜎 interpretations for an ADF 𝐹 is denoted by 𝜎 (𝐹 ),
where 𝜎 ∈ {cf, adm, grd, prf} abbreviates the different semantics in

the obvious manner. The notion of an argument being accepted

and the symmetric notion of an argument being denied in an inter-

pretation are as follows.

Definition 2.8. Let 𝐹 = (𝐴, 𝐿,𝐶) be an ADF and let 𝑣 be an inter-

pretation of 𝐹 .

• An argument 𝑎 ∈ 𝐴 is called acceptable with respect to 𝑣 if

𝜑𝑣
𝑎 is irrefutable.

𝑎 𝑏 𝑐 𝑑

⊤ 𝑎 ∧ ¬𝑐 ¬𝑏 ∧ 𝑑 ⊥

Figure 1: ADF of Examples 2.9 and 3.3

• An argument 𝑎 ∈ 𝐴 is called deniable with respect to 𝑣 if 𝜑𝑣
𝑎

is unsatisfiable.

Example 2.9. An example of an ADF 𝐷 = (𝑆, 𝐿,𝐶) is shown in

Figure 1. To each argument a propositional formula is associated, the

acceptance condition of the argument. For instance, the acceptance

condition of 𝑐 , namely 𝜑𝑐 : ¬𝑏 ∧ 𝑑 , states that 𝑐 can be accepted

in an interpretation where 𝑏 is denied and 𝑑 is accepted. In 𝐷 the

interpretation 𝑣 = {𝑎 ↦→ u, 𝑏 ↦→ t, 𝑐 ↦→ u, 𝑑 ↦→ u} is conflict-free.
However, 𝑣 is not an admissible interpretation, because Γ𝐷 (𝑣) =

{𝑎 ↦→ u, 𝑏 ↦→ u, 𝑐 ↦→ u, 𝑑 ↦→ u}, that is, 𝑣 ≰𝑖 Γ𝐷 (𝑣).
The interpretation 𝑣1 = {𝑎 ↦→ t, 𝑏 ↦→ u, 𝑐 ↦→ f, 𝑑 ↦→ f} on the

other hand is an admissible interpretation. Since Γ𝐷 (𝑣1) = {𝑎 ↦→
t, 𝑏 ↦→ t, 𝑐 ↦→ f, 𝑑 ↦→ f} and 𝑣1 ≤𝑖 Γ𝐷 (𝑣1). Further, in 𝐷 a unique

grounded interpretation 𝑣2 = {𝑎 ↦→ t, 𝑏 ↦→ t, 𝑐 ↦→ f, 𝑑 ↦→ f} is a
preferred interpretation of 𝐷 .

Given an ADF 𝐹 = (𝐴, 𝐿,𝐶), an argument 𝑎 ∈ 𝐴 and a semantics

𝜎 ∈ {cf, adm, prf, grd}, argument 𝑎 is credulously acceptable (deni-
able) under 𝜎 if there exists a 𝜎 interpretation 𝑣 of 𝐹 in which 𝑎 is

acceptable (𝑎 is deniable, respectively).

In ADFs, relations between arguments can be classified into

four types, reflecting the relationship of attack and/or support that

exists between the arguments. These are listed in Definition 2.10.

Further, we denote the update of an interpretation 𝑣 with a truth

value 𝑥 ∈ {t, f, u} for an argument 𝑏 by 𝑣 |𝑏𝑥 , i.e. 𝑣 |𝑏𝑥 (𝑏) = 𝑥 and

𝑣 |𝑏𝑥 (𝑎) = 𝑣 (𝑎) for 𝑎 ≠ 𝑏.

Definition 2.10. Let𝐷 = (𝑆, 𝐿,𝐶) be an ADF. A relation (𝑏, 𝑎) ∈ 𝐿

is called

• supporting (in 𝐷) if for every two-valued interpretation 𝑣 ,

𝑣 (𝜑𝑎) = t implies 𝑣 |𝑏t (𝜑𝑎) = t;
• attacking (in 𝐷) if for every two-valued interpretation 𝑣 ,

𝑣 (𝜑𝑎) = f implies 𝑣 |𝑏t (𝜑𝑎) = f ;
• redundant (in 𝐷) if it is both attacking and supporting;

• dependent (in 𝐷) if it is neither attacking nor supporting.

In the current work we say that the truth value of 𝑎 is presented in

𝑣 , if 𝑣 (𝑎) = t/f .

3 THE STRONGLY ADMISSIBLE SEMANTICS
FOR ADFS

In the following, we first present the concept of strongly admissible

semantics for ADFs. In ADFs, beside an argument being acceptable

in an interpretation, there is a symmetric notion of an argument

being deniable. Thus, in Definition 3.1 we introduce the notion of

strong acceptability/deniability of an argument in an ADF with

respect to a given interpretation. In Theorem 3.21, we show that

in a given ADF, the set of strongly admissible interpretations of 𝐷

make a lattice, with the unique minimal element 𝑣u and the unique

maximal element grd(𝐷).
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Note that in the following, 𝑣 |𝑃 is equal to 𝑣 (𝑝) for any 𝑝 ∈ 𝑃 ,

however, it assigns all other arguments that do not belong to 𝑃 to

u. Further, in Definition 3.1 set 𝑆 contains the ancestors of 𝑎 the

truth value of which are presented in 𝑣 , that have an effect on the

truth value of 𝑎 in 𝑣 . This is similar to Definition 2.3, in which set 𝑆

contains the defenders of 𝑎. In the first item of Definition 3.1, set 𝑃

contains exactly those parents of 𝑎, excluding 𝑎, that satisfy 𝑣 (𝑎)
and of which the truth value is presented in 𝑣 .

Definition 3.1. Let 𝐷 = (𝐴, 𝐿,𝐶) be an ADF and let 𝑣 be an

interpretation of 𝐷 . Argument 𝑎 is a strongly acceptable/deniable

argument with respect to interpretation 𝑣 and set 𝑆 if the following

conditions hold.

• Let 𝐸 = {𝑎}. There exists a subset of parents of 𝑎 excluding

𝑎, namely 𝑃 ⊆ (par (𝑎) ∩𝑆) \𝐸 such that 𝜑
𝑣|𝑃
𝑎 ≡ ⊤ if 𝑣 (𝑎) = t

and 𝜑
𝑣|𝑃
𝑎 ≡ ⊥ if 𝑣 (𝑎) = f .

• Each 𝑝 ∈ 𝑃 , with 𝑃 that satisfies the first item, is strongly

acceptable/deniable with respect to interpretation 𝑣 and set

𝑆 such that 𝐸 := 𝐸 ∪ {𝑝}.

Note that in Definition 3.1 to indicate whether an argument 𝑎 is

strongly acceptable/deniable, we collect the set of ancestors of 𝑎

that affect the truth value of 𝑎 in set 𝑆 . If the set of parents of an

argument, namely 𝑃 , is an empty set, then 𝑣 |𝑃 = 𝑣u. In Definition 3.2
the concept of strong admissibility of an interpretation of a given

ADF is introduced.

Definition 3.2. Let 𝐷 = (𝐴, 𝐿,𝐶) be an ADF and let 𝑣 be an

interpretation of 𝐷 . An interpretation 𝑣 is a strongly admissible

interpretation if for each 𝑎 such that 𝑣 (𝑎) = t/f , then 𝑎 is a strongly

acceptable/deniable argument with respect to 𝑣 and set 𝑆 .

These notions are clarified in Example 3.3. Note that set 𝑆 in Defi-

nitions 3.1 and 3.2 can be the empty set. Example 3.4 is an instance

of strong acceptability of an argument with 𝑆 = {}.

Example 3.3. Let 𝐷 = ({𝑎, 𝑏, 𝑐, 𝑑}, {𝜑𝑎 : ⊤, 𝜑𝑏 : 𝑎 ∧ ¬𝑐, 𝜑𝑐 :

¬𝑏 ∧ 𝑑, 𝜑𝑑 : ⊥}), depicted in Figure 1. Let 𝑣 = {𝑎 ↦→ u, 𝑏 ↦→ t, 𝑐 ↦→
f, 𝑑 ↦→ f}. We show that 𝑐 is strongly deniable with respect to 𝑣

and set 𝑆 = {𝑑}. To satisfy the first condition of Definition 3.1,

we choose the subset of parents of 𝑐 excluding 𝑐 equal to {𝑑}. It
is easy to check that 𝜑

𝑣|𝑑
𝑐 ≡ ⊥. In this step 𝐸 = {𝑐}. To check the

second condition of Definition 3.1, we have to show that 𝑑 is also a

strongly deniable argument. To this end, by the definition 𝐸 extends

to 𝐸 := 𝐸∪{𝑑}. Further, clearly𝜑𝑣u
𝑑

≡ ⊥. Thus, 𝑐 is strongly deniable
with respect to 𝑣 and set 𝑆 = {𝑑}. In other words, set 𝑆 indicates a

parent of 𝑐 , namely 𝑑 that has affect on the truth value of 𝑐 in 𝑣 .

On the other hand, 𝑐 is not strongly deniable with respect to 𝑣 and

set 𝑆 = {𝑏}. The reason is as follows. Although the first condition of

Definition 3.1 is satisfiable, that is, 𝜑
𝑣|𝑏
𝑐 ≡ ⊥, the second condition

is not satisfiable, i.e. 𝑏 is not strongly acceptable with respect to 𝑣 .

Toward a contradiction, assume that 𝑏 is strongly acceptable w.r.t.

𝑣 . Thus, we have to choose a parent of 𝑏 that does not belong to

𝐸 = {𝑐, 𝑏}, namely 𝑎 and we have to show that 𝜑
𝑣|𝑎
𝑏

≡ ⊤. However,
𝜑
𝑣|𝑎
𝑏
. ⊤. Therefore, 𝑏 is not strongly acceptable with respect to 𝑣 .

Note that 𝑐 is also strongly acceptable with respect to 𝑣 and

𝑆 = {𝑐, 𝑑}. In other words, 𝑆 = {𝑑} is the least subset of 𝐴 that

satisfies the conditions of Definition 3.1 for 𝑐 .

Example 3.4 is an instance of ADFs with a redundant link.

Example 3.4. Let 𝐷 = ({𝑎, 𝑏}, {𝜑𝑎 : 𝑏 ∨ ¬𝑏, 𝜑𝑏 : 𝑏}) be an ADF,

depicted in Figure 2. We show that 𝑣 = {𝑎 ↦→ t, 𝑏 ↦→ u} is a

strongly admissible interpretation of 𝐷 . To this end, we show that

𝑎 is strongly acceptable with respect to 𝑣 and 𝑆 = {}. It is clear
that 𝑃 ⊆ (par (𝑎) ∩ 𝑆) is the empty set and 𝜑

𝑣u
𝑎 is irrefutable. Thus,

𝑆 = {} satisfies the conditions of Definition 3.1 for 𝑎. That is, 𝑎 is

strongly acceptable with respect to 𝑣 and 𝑆 = {}.

𝑎 𝑏

𝑏 ∨ ¬𝑏 𝑏

Figure 2: ADF of Examples 3.4

As we presented earlier, for instance, in Example 3.3, we are in-

terested in finding a least set 𝑆 of ancestors of an argument in

question that satisfies the conditions of Definition 3.1, presented in

Definition 3.5.

Definition 3.5. Let 𝑎 be an argument that is strongly accept-

able/deniable with respect to 𝑣 and 𝑆 . We say that 𝑆 is a least set
that satisfies the conditions of Definition 3.1 for 𝑎 if there is no

𝑆 ′ with |𝑆 ′ | < |𝑆 | such that 𝑎 is strongly acceptable/deniable with

respect to 𝑣 and 𝑆 ′.

For instance, in Example 3.3, 𝑆 = {𝑑} is the least set that satisfies
the conditions of Definition 3.1 for 𝑐 . We define the maximum level
of 𝑎 in a least set 𝑆 recursively, as follows.

Definition 3.6. Let 𝐷 be an ADF and let 𝑎 be strongly accept-

able/deniable with respect to 𝑣 and a least set 𝑆 , and let 𝑃 ⊆
{par (𝑎) ∩ 𝑆} \ {𝑎} such that 𝜑

𝑣 |𝑃
𝑎 ≡ ⊤/⊥. The maximum level

of 𝑎 with respect to a least set 𝑆 is:

• If 𝑃 = ∅, then the maximum level of 𝑎 in 𝑆 is 1.

• If 𝑃 ≠ ∅ and the maximum of the maximum level of an

argument of 𝑃 in 𝑆 is 𝑘 , then the level of 𝑎 with respect to 𝑆

is 𝑘 + 1.

For instance, in Example 3.3, the maximum level of 𝑐 with respect

to 𝑆 = {𝑑} is 2. This is because the maximum level of 𝑑 with respect

to 𝑆 is 1.

Considering ADF 𝐷 of Example 3.4, by Definition 3.6 the maxi-

mum level of 𝑎 with respect to the least set 𝑆 = {} is one. Lemma

3.7 shows that if 𝑎 is strongly acceptable/deniable with respect to 𝑣

and 𝑆 , then the maximum level of 𝑎 is finite in any given ADF.

Lemma 3.7. Let 𝐷 be an ADF, let 𝑣 be an interpretation of 𝐷 and
let 𝑎 be an argument that is strongly acceptable/deniable with respect
to 𝑣 and a least set 𝑆 . Then 𝑎 has a finite maximum level in in 𝑆 .

Proof. Toward a contradiction assume that 𝑎 is an argument

with infinite maximum level in 𝑆 . Therefore, by Definition 3.6, the

set of parents of 𝑎, namely 𝑃 with 𝜑
𝑣|𝑃
𝑎 is a non-empty set. Further,

there exists an argument 𝑝 in 𝑃 \ {𝑎} with infinite maximum level.

By the same reason 𝑝 has a parent with infinite maximum level
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that is neither equal to 𝑎 nor 𝑝 . Thus, 𝑎 has an infinite number of

ancestors. This is a contradiction by the assumption that the 𝐷 is a

finite ADF. Thus, the assumption that 𝑎 has an infinite maximum

level is wrong. □

Lemma 3.8. Let 𝐷 be an ADF. If 𝑎 ∈ 𝐴 is strongly acceptable/
deniable with respect to interpretation 𝑣 of 𝐷 and a least set 𝑆 and
𝑣 ≤𝑖 𝑣 ′, then 𝑎 is also strongly acceptable/deniable with respect to 𝑣 ′

and a least set 𝑆 .

Proof. Since 𝑎 is strongly acceptable/deniable with respect to

𝑣 and 𝑆 , there exists 𝑃 ⊆ (par (𝑎) ∩ 𝑆) \ 𝐸 that satisfies the first

condition of Definition 3.1. Since 𝑣 ≤𝑖 𝑣 ′ the same set of parents

of 𝑎, namely 𝑃 guarantees that the first condition of Definition 3.1

holds for 𝑎 with respect to 𝑣 ′ and 𝑆 .
Assume that 𝑆 is also a least set that satisfies the conditions of

the current lemma.We show that the second condition of Definition

3.1 works by induction on the maximum level of argument 𝑎 in 𝑆 .

Base case: let 𝑎 be an argument of the maximum level one that

is strongly acceptable/deniable with respect to 𝑣 and 𝑆 . Therefore,

𝜑
𝑣u
𝑎 ≡ ⊤/⊥. Thus, 𝑎 is clearly strongly acceptable/deniable with

respect to 𝑣 ′ and 𝑆 .
Inductive step: Assuming that this property holds for each ar-

gument of the maximum level 𝑗 with 1 ≤ 𝑗 < 𝑖 in 𝑆 , i.e., if 𝑎

is an argument with the maximum level 𝑗 in 𝑆 that is strongly

acceptable/deniable with respect to 𝑣 and 𝑆 , then 𝑎 is strongly

acceptable/deniable with respect to 𝑣 ′ and 𝑆 . We show that this

property also holds for arguments of level 𝑖 . Let 𝑎 be an argument

of the maximum level 𝑖 . By Definition 3.1, there exists the set of

parents of 𝑎, namely 𝑃 , that satisfies the conditions of the definition

with respect to 𝑣 and set 𝑆 . We claim that this 𝑃 also satisfies the

conditions of the definition for 𝑎 w.r.t. 𝑣 ′ and 𝑆 . By Definition 3.6,

the maximum level of each 𝑝 ∈ 𝑃 is at most 𝑖−1. Thus, by induction

hypothesis 𝑝 is strongly acceptable/deniable with respect to 𝑣 ′ and
set 𝑆 . Therefore, the second condition of Definition 3.1 also holds.

Thus, 𝑎 is strongly acceptable/deniable with respect to 𝑣 ′ and 𝑆 . □

A sequence of interpretations, for a given ADF 𝐷 , is presented in

Lemma 3.9, each member of which is strongly admissible. In Lemma

3.10 it is shown that the maximum element of this sequence is the

grounded interpretation of 𝐷 .

Lemma 3.9. Let 𝐷 be an ADF, let 𝑣0 = 𝑣u and let 𝑣𝑖 = Γ𝐷 (𝑣𝑖−1)
for 𝑖 > 0. For each 0 ≤ 𝑖 it holds that

• 𝑣𝑖 ≤𝑖 𝑣𝑖+1,
• 𝑣𝑖 is a strongly admissible interpretation of 𝐷 .

Proof. • The first item holds because the characteristic

operator is a monotonic function.

• We show that each 𝑣𝑖 is a strongly admissible interpretation

by induction on 𝑖 .

Base case: For 𝑖 = 0, it is clear that 𝑣0 = 𝑣u is a strongly

admissible interpretation.

Inductive step: Assume that 𝑣 𝑗 for 𝑗 with 0 ≤ 𝑗 < 𝑖 is

a strongly admissible interpretation. We show that 𝑣𝑖 is a

strongly admissible interpretation. Let 𝑎 be an argument that

is assigned to either t or f in 𝑣𝑖 . If 𝑎 ↦→ t/f ∈ 𝑣𝑖−1, there is
nothing to prove, since by the induction assumption 𝑣𝑖−1 is a
strongly admissible interpretation. Assume that 𝑎 ↦→ t ∈ 𝑣𝑖

and 𝑎 ↦→ u ∈ 𝑣𝑖−1. We show that 𝑎 is strongly acceptable

with respect to 𝑣𝑖 and set 𝑆 . For the case that 𝑎 ↦→ f ∈ 𝑣𝑖 ,

the proof follows a similar method. Since 𝑣𝑖 (𝑎) = t, we
can conclude that 𝜑

𝑣𝑖−1
𝑎 is irrefutable. Let 𝑃 be a subset of

parents of 𝑎 the truth value of which appears in 𝑣𝑖−1 and
𝜑
𝑣𝑖−1 |𝑃
𝑎 ≡ ⊤. Otherwise, 𝜑𝑣𝑖−1

𝑎 cannot be irrefutable. Thus,

the first condition of Definition 3.1 holds.

To show the second condition of Definition 3.1, assume that

𝑃 ≠ {}. Otherwise, there is nothing to prove. Let 𝑝 ∈ 𝑃 .

By the induction assumption, 𝑣𝑖−1 is a strongly admissible

interpretation. Since 𝑝 ↦→ t/f ∈ 𝑣𝑖−1 for each 𝑝 ∈ 𝑃 , 𝑝 is

strongly acceptable/deniable with respect to 𝑣𝑖−1 and set 𝑆 .

Thus, by the monotonicity of the characteristic operator, 𝑝 is

strongly acceptable/deniable with respect to 𝑣𝑖 and 𝑆 . Thus,

the second condition of Definition 3.1 holds, as well. That

is, arbitrary argument 𝑎 is strongly acceptable with respect

to 𝑣𝑖 and 𝑆 . Thus, 𝑣𝑖 is a strongly admissible interpretation.

Hence, every interpretation in the sequence 𝑣u, Γ𝐷 (𝑣u), . . .
is a strongly admissible interpretation.

□

Lemma 3.10. Let 𝐷 be an ADF.

• 𝐷 has at least one strongly admissible interpretation.
• The least strong admissible interpretation of 𝐷 , with respect to
the ≤𝑖 ordering, is the trivial interpretation.

• The biggest strongly admissible interpretation in the sequence
of interpretations as in Lemma 3.9, with respect to the ≤𝑖
ordering, is the unique grounded interpretation of 𝐷 .

Proof. • The first and the second items of the lemma are

clear by Lemma 3.9, which says that 𝑣u is a strongly admis-

sible interpretation.

• By Definition, the grounded interpretation of 𝐷 is the least

fixed-point of the characteristic operator over 𝑣u with re-

spect to the ≤𝑖 -ordering. By Lemma 3.9, each Γ𝑛
𝐷
(𝑣u) is a

strongly admissible interpretation. Thus, the least fixed-point

of Γ𝑛
𝐷
(𝑣u) is also a strongly admissible interpretation. Note

that, the 𝑛th power off Γ𝐷 is defined inductively, that is,

Γ𝑛
𝐷
= Γ𝐷 (Γ𝑛−1

𝐷
).

□

In Theorem 3.11 we show that each strongly admissible interpreta-

tion is an admissible interpretation as well as conflict-free. However,

the other direction of the following theorem does not work. For in-

stance, let 𝐷 = ({𝑎, 𝑏}, {𝜑𝑎 : ¬𝑏 ∨ 𝑎, 𝜑𝑏 : ¬𝑎}) be a given ADF. The

interpretation 𝑣 = {𝑎 ↦→ f, 𝑏 ↦→ t} is an admissible interpretation

of 𝐷 , however, neither 𝑎 nor 𝑏 is strongly admissible with respect to

𝑣 . Thus, 𝑣 is not a strongly admissible interpretation of 𝐷 . Further,

𝑣 ′ = {𝑎 ↦→ u, 𝑏 ↦→ t} is a conflict-free interpretation of 𝐷 that

is neither an admissible nor a strongly admissible interpretation.

The only strongly admissible interpretation of 𝐷 , which is also the

grounded interpretation of 𝐷 , is the trivial interpretation.

Theorem 3.11. Let𝐷 = (𝐴, 𝐿,𝐶) be an ADF and let 𝑣 be a strongly
admissible interpretation of 𝐷 . Then the following hold:

• 𝑣 is an admissible interpretation of 𝐷 .
• 𝑣 is a conflict-free interpretation of 𝐷 .
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Proof. • Let 𝑣 be a strongly admissible interpretation of

𝐷 . We show that 𝑣 is an admissible interpretation. Toward

a contradiction assume that 𝑣 is not an admissible interpre-

tation, that is, 𝑣 ≰𝑖 Γ(𝐷) (𝑣). That is, there exists 𝑎 such

that 𝑣 (𝑎) = t/f , but Γ𝐷 (𝑣) (𝑎) ≠ t/f . By the assumption 𝑣 is a

strongly admissible interpretation. That is, if 𝑣 (𝑎) = t/f , then
𝑎 is strongly acceptable/deniable with respect to 𝑣 and set 𝑆 .

Thus, by the first item of Definition 3.1, there exists a subset

of parents of 𝑎, namely 𝑃 such that 𝜑
𝑣|𝑃
𝑎 ≡ ⊤ if 𝑣 (𝑎) = t, and

𝜑
𝑣|𝑃
𝑎 ≡ ⊥ if 𝑣 (𝑎) = f . However, 𝜑

𝑣|𝑃
𝑎 ≡ ⊤ implies that 𝜑𝑣

𝑎

is irrefutable and 𝜑
𝑣|𝑃
𝑎 ≡ ⊤ implies that 𝜑𝑣

𝑎 is unsatisfiable.

The former implies if 𝑣 (𝑎) = t, than Γ𝐷 (𝑣) (𝑎) = t and the

latter one implies that if 𝑣 (𝑎) = f , then Γ𝐷 (𝑣) (𝑎) = f . This is
a contradiction by the assumption that there exists 𝑎 such

that 𝑣 (𝑎) = t/f , and Γ𝐷 (𝑣) (𝑎) ≠ t/f . Thus, the assumption

that 𝑣 is not an admissible interpretation is wrong. Hence,

if 𝑣 is a strongly admissible interpretation, then it is also an

admissible interpretation.

• If 𝑣 is a strongly admissible interpretation, then by the first

item of this theorem it is an admissible interpretation. By

the fact that in ADFs every admissible interpretation is a

conflict-free interpretation, we conclude that 𝑣 is a conflict-

free interpretation, as well.

□

3.1 The Strongly Admissible Interpretations of
an ADF form a lattice

Although the sequence of interpretations presented in Lemma 3.9

produces a sequence of strongly admissible interpretations of a

given ADF 𝐷 , this sequence does not contain all of the strongly

admissible interpretations of 𝐷 . For instance, in Example 3.3, 𝑣 =

{𝑎 ↦→ u, 𝑏 ↦→ u, 𝑐 ↦→ f, 𝑑 ↦→ f} is a strongly admissible inter-

pretation of 𝐷 . However, 𝑣 is not equal to any of the elements of

the sequence 𝑣u, Γ𝐷 (𝑣u), . . . for 𝐷 given in Example 3.3. However,

Theorem 3.12, indicates that any strongly admissible interpretation

of ADF 𝐷 is bounded by an element of the sequence of strongly

admissible interpretations presented in Lemma 3.9.

Theorem 3.12. Let 𝐷 be an ADF, let𝑤 be an interpretation of 𝐷 ,
and let 𝑣𝑖 for 0 ≤ 𝑖 be the sequence of interpretations presented in
Lemma 3.9. If 𝑤 is a strongly admissible interpretation of 𝐷 , then
there exists the least 0 ≤ 𝑚 such that𝑤 ≤𝑖 𝑣𝑚 .

Proof. Let {𝑎1, . . . , 𝑎𝑛} be the set of arguments the truth values

of which appear in 𝑤 . Further, assume that each 𝑎𝑖 is strongly

acceptable/deniable with respect to 𝑤 and a least set 𝑆𝑖 . Let 𝑆 =⋃𝑛
𝑖=1 𝑆𝑖 . Let 𝑎 be an argument with the greatest maximum level𝑚

in 𝑆 . We claim that𝑤 ≤𝑖 𝑣𝑚 . We have to show that if 𝑎𝑖 ↦→ t/f ∈ 𝑤 ,

then 𝑎𝑖 ↦→ t/f ∈ 𝑣𝑚 . We show our claim by induction on the

maximum level of arguments in 𝑆 .

Base case: If 𝑎 ↦→ t/f ∈ 𝑤 and the maximum level of 𝑎 in 𝑆 is 1,

then it is clear that𝑤 ≤𝑖 Γ(𝑣0) = 𝑣1. Therefore, 𝑎 ↦→ t/f ∈ 𝑣𝑚 .

As induction hypothesis, assume that if 𝑎 ↦→ t/f ∈ 𝑤 and the

maximum level of 𝑎 in 𝑆 is 𝑗 with 1 ≤ 𝑗 ≤ 𝑘 < 𝑚, then 𝑎 ↦→ t/f ∈ 𝑣 𝑗
(and also 𝑎 ↦→ t/f ∈ 𝑣𝑚).

Induction step: Assume that 𝑎 is an argument that is strongly

acceptable/deniable with respect to𝑤 and the maximum level 𝑎 in

𝑆 is 𝑘 +1. We have to show that 𝑎 ↦→ t/f ∈ 𝑣𝑘+1 (and 𝑎 ↦→ t/f ∈ 𝑣𝑚).

Since 𝑎 is strongly acceptable/deniable with respect to𝑤 and 𝑆 and

the maximum level of 𝑎 in 𝑆 is 𝑘 + 1, there exists a non-empty set

𝑃 ⊆ par (𝑎) such that 𝜑
𝑤|𝑃
𝑎 ≡ ⊤/⊥. Since 𝑝 is a parents of 𝑎, by

Definition 3.1, 𝑝 is also strongly acceptable/deniable with respect

to𝑤 and 𝑆 . Thus, by Definition 3.6 the maximum level of each 𝑝 is

strictly less than the maximum level of 𝑎 i.e. the maximum level of 𝑝

in 𝑆 is at most 𝑘 . Then, by the induction hypothesis, 𝑝 ↦→ t/f ∈ 𝑣𝑘 ,

for each 𝑝 ∈ 𝑃 . Therefore, 𝜑
𝑤|𝑃
𝑎 ≡ 𝜑

𝑣𝑘 |𝑃
𝑎 . Further, 𝜑

𝑣𝑘 |𝑃
𝑎 ≡ 𝜑

𝑣|𝑃
𝑎

because 𝑣𝑘 |𝑃 ≤𝑖 𝑣𝑘 and Γ𝐷 is a monotonic function. Therefore,

𝑎 ↦→ t/f ∈ 𝑣𝑘+1 (and also 𝑎 ↦→ t/f ∈ 𝑣𝑚). That is, there exists an

𝑚 ≥ 0, such that𝑤 ≤𝑖 𝑣𝑚 .

Further, we have to show that the natural number𝑚 assumed in

the beginning of the proof is the least natural number that satisfies

the condition of the theorem. Toward a contradiction assume that

there exists an𝑚′ < 𝑚 such that𝑤 ≤𝑖 𝑣𝑚′ . By our assumption the

greatest maximum level of an argument of 𝑤 , namely 𝑎 is𝑚 and

𝑆 is a least set that satisfies the conditions of Definition 3.1 for all

arguments the truth values of them appear in𝑤 . It is easy to check

that Γ𝑚
′

𝐷
𝑣0 (𝑎) = u. Thus, 𝑤 ≰𝑖 𝑣𝑚′ . That is,𝑚 is the least natural

number that satisfies the condition of the theorem.

□

Theorem 3.13. Let 𝐷 be an ADF and let 𝑣 be an interpretation of
𝐷 . If argument 𝑎 is strongly acceptable/deniable with respect to 𝑣 and
a least set 𝑆 , then each 𝑠 ∈ 𝑆 is also strongly acceptable/deniable with
respect to 𝑣 and a 𝑆 ′ ⊆ 𝑆 .

Proof. Toward a contradiction assume that there exists 𝑠 ∈ 𝑆

that is not strongly acceptable/deniable with respect to 𝑣 and any

𝑆 ′ ⊆ 𝑆 . By Definition 3.1, any argument in set 𝐸 \ {𝑎} is an ancestor

of 𝑎 that is strongly acceptable/deniable. Thus, 𝑠 is not any of the

ancestors of 𝑎 that appears in set 𝐸, otherwise it is strongly ac-

ceptable/deniable. Therefore, 𝑎 is also strongly acceptable/deniable

with respect to 𝑣 and 𝑆 \ {𝑠}. Then, 𝑆 is not a least set that satis-

fies the conditions of Definition 3.1 for 𝑎. This is a contradiction

by the assumption of the theorem that 𝑆 is a least set. Thus, the

assumption that there exists an argument in 𝑆 that is not strongly

acceptable/deniable with respect to 𝑣 and a subset of 𝑆 is wrong. □

To show that the set of strongly admissible interpretations of a

given ADF make a lattice, first, in Theorem 3.17 we show that

every two strongly admissible interpretations of 𝐷 have a unique

supremum. To this end, we first introduce the notion of join of two

strongly admissible interpretations in Definition 3.14.

Definition 3.14. Let 𝐷 be an ADF and let 𝑣 and𝑤 be two strongly

admissible interpretations of 𝐷 . The join 𝑣 ⊔𝑖 𝑤 is defined as

𝑣 ⊔𝑖 𝑤 (𝑎) =


𝑣 (𝑎) if there exists 𝑎 s.t. 𝑎 ↦→ t/f ∈ 𝑣,

𝑤 (𝑎) if there exists 𝑎 s.t. 𝑎 ↦→ t/f ∈ 𝑤,

u otherwise.

Proposition 3.15. The join of two strongly admissible interpreta-
tions of 𝐷 is a well-defined function.

Proof. Let 𝐷 be an ADF and let 𝑣 and 𝑤 be two strongly ad-

missible interpretations of 𝐷 . We show that the join operator is a

well-defined function. That is, we have to show that there is no
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𝑎 that has two different values in 𝑣 ⊔𝑖 𝑤 . Toward a contradiction

assume that there is a 𝑎 that has two different outputs in 𝑣 ⊔𝑖 𝑤 .

That is, 𝑎 is assigned to t in one of the interpretations and to f in
another one. For instance, 𝑣 (𝑎) = t and𝑤 (𝑎) = f . By Theorem 3.12,

there exists the least natural numbers 𝑘 and𝑚 such that 𝑣 ≤𝑖 𝑣𝑘
and𝑤 ≤𝑖 𝑣𝑚 , respectively. Since 𝑣 ≤𝑖 𝑣𝑘 and 𝑣 (𝑎) = t, 𝑎 ↦→ t ∈ 𝑣𝑘 .

Further, since𝑤 ≤𝑖 𝑣𝑚 and𝑤 (𝑎) = f , 𝑎 ↦→ f ∈ 𝑣𝑚 . That is, 𝑣𝑘 ≰𝑖 𝑣𝑚
and 𝑣𝑚 ≰𝑖 𝑣𝑘 . This is a contradiction by Lemma 3.9, that says ei-

ther 𝑣𝑘 ≤𝑖 𝑣𝑚 or 𝑣𝑚 ≤𝑖 𝑣𝑘 , because 𝑣𝑘 and 𝑣𝑚 are elements of

the sequence of interpretations presented in Lemma 3.9. Thus, the

assumption that there exists 𝑎 that is acceptable in a strongly ad-

missible interpretation of 𝐷 but that is deniable in another strongly

admissible of𝐷 is wrong. Thus, 𝑣⊔𝑖𝑤 is a well-defined function. □

Lemma 3.16, presents that the join of two strongly admissible inter-

pretations of a givenADF is also a strongly admissible interpretation

of that ADF.

Lemma 3.16. Let 𝐷 be an ADF and let 𝑣 and𝑤 be strongly admis-
sible interpretations of 𝐷 . Then 𝑣 ⊔𝑖 𝑤 is also a strongly admissible
interpretation of 𝐷 .

Proof. Toward a contradiction assume that 𝑣 ⊔𝑖 𝑤 is not a

strongly admissible interpretation of𝐷 . Thus, there exists an 𝑎 such

that 𝑎 ↦→ t/f ∈ 𝑣⊔𝑖𝑤 but it is not strongly acceptable/deniable with

respect to 𝑣 ⊔𝑖 𝑤 and any set. By Definition 3.14, either 𝑎 ↦→ t/f ∈ 𝑣

or 𝑎 ↦→ t/f ∈ 𝑤 . Since 𝑣 and 𝑤 are strongly admissible interpre-

tations, 𝑎 is strongly acceptable/deniable with respect to 𝑣 or 𝑤 .

Since 𝑣 ≤𝑖 𝑣 ⊔𝑖 𝑤 and 𝑤 ≤𝑖 𝑣 ⊔𝑖 𝑤 , by Lemma 3.8, 𝑎 is strongly

acceptable/deniable with respect to 𝑣 ⊔𝑖 𝑤 . This is a contradic-

tion with the assumption that 𝑎 is not strongly acceptable/deniable

with respect to 𝑣 ⊔𝑖 𝑤 . Thus, the assumption that 𝑣 ⊔𝑖 𝑤 is not a

strongly admissible interpretation was wrong. That is, the join of

two strongly admissible interpretations of𝐷 is a strongly admissible

interpretation of 𝐷 . □

Theorem 3.17. Let 𝐷 be an ADF. Every two strongly admissible
interpretations of 𝐷 have a unique supremum.

Proof. Let 𝐷 be an ADF and let 𝑣 and 𝑤 be two strongly ad-

missible interpretations of 𝐷 . We show that 𝑣 ⊔𝑖 𝑤 is a supremum

of 𝑣 and 𝑤 . By Definition 3.14, 𝑣 ⊔𝑖 𝑤 is an upper bound of 𝑣 and

𝑤 . By Lemma 3.16, 𝑣 ⊔𝑖 𝑤 is a strongly admissible interpretation

of 𝐷 . It remains to show that 𝑣 ⊔𝑖 𝑤 is a least upper bound of 𝑣

and𝑤 . Toward a contradiction, assume that 𝑣 ⊔𝑖 𝑤 is not the least

upper bound of 𝑣 and𝑤 . That is, there exists a strongly admissible

interpretation𝑤 ′
of 𝐷 such that 𝑣 ≤𝑖 𝑤 ′

,𝑤 ≤𝑖 𝑤 ′
and𝑤 ′ <𝑖 𝑣 ⊔𝑖𝑤 .

Thus there exists 𝑎 with 𝑎 ↦→ u ∈ 𝑤 ′
and 𝑎 ↦→ t/f ∈ 𝑣 ⊔𝑖 𝑤 . Thus,

either 𝑎 ↦→ t/f ∈ 𝑣 or 𝑎 ↦→ t/f ∈ 𝑤 . That is, either 𝑣 ≰𝑖 𝑤 ′
or

𝑤 ≰𝑖 𝑤
′
. This is a contradiction by the assumption that𝑤 ′

is the

least upper bound of 𝑣 and𝑤 . Thus, the assumption that 𝑣 ⊔𝑖 𝑤 is

not the least upper bound of 𝑣 and𝑤 was wrong. □

Further, to show that the set of strongly admissible interpretations

of ADF 𝐷 make a lattice, in Theorem 3.20 we show that every two

strongly admissible interpretations of 𝐷 have an infimum. To this

end, in Definition 3.18, we present the concept of the maximum

strongly admissible interpretation contained in an interpretation

of 𝐷 .

Definition 3.18. Let 𝐷 be an ADF and let 𝑣 be an interpretation of

𝐷 . Interpretation𝑤 is called a unique maximum strongly admissible

interpretation that is less than or equal to 𝑣 , with respect to ≤𝑖
ordering if the following conditions hold:

• 𝑤 is a strongly admissible interpretation of 𝐷 s.t.𝑤 ≤𝑖 𝑣 ,
• there is no strongly admissible interpretation𝑤 ′

of 𝐷 such

that𝑤 <𝑖 𝑤
′ ≤𝑖 𝑣 .

Lemma 3.19. Let 𝐷 be an ADF and let 𝑣 be an interpretation of 𝐷 .
Then, there exists a unique maximum strongly admissible interpreta-
tion that is less than or equal to 𝑣 , with respect to ≤𝑖 ordering.

Proof. Each interpretation of 𝐷 has at least as much informa-

tion as the trivial interpretation. Thus, each 𝑣 of 𝐷 has at least as

much information as 𝑣u, which is a strongly admissible interpreta-

tion. Since the number of arguments of 𝐷 is finite, there exists at

least one maximal strongly admissible interpretation of 𝐷 , namely

𝑤 for the given interpretation 𝑣 . We show that this 𝑤 is unique.

Toward a contradiction assume that there are two maximal strongly

admissible interpretations that satisfy the condition of the lemma,

namely𝑤 and𝑤 ′
. By Lemma 3.16,𝑤 ⊔𝑖 𝑤 ′

is a strongly admissible

interpretation of 𝐷 s.t.𝑤 ⊔𝑖 𝑤 ′ ≤𝑖 𝑣 . However,𝑤 ≤𝑖 𝑤 ⊔𝑖 𝑤 ′
and

𝑤 ′ ≤𝑖 𝑤 ⊔𝑖 𝑤 ′
together with the assumption that 𝑤 and 𝑤 ′

are

maximal strongly admissible interpretations lead to𝑤 ∼𝑖 𝑤 ⊔𝑖 𝑤 ′

and𝑤 ′ ∼𝑖 𝑤 ⊔𝑖 𝑤 ′
. That is,𝑤 ∼𝑖 𝑤 ′

. Thus, the maximum strongly

admissible interpretation which is contained in 𝑣 is unique. □

Theorem 3.20. Let 𝐷 be an ADF. Every two strongly admissible
interpretations of 𝐷 have a unique infimum.

Proof. Let 𝐷 be an ADF and let 𝑣 and 𝑣 ′ be two strongly admis-

sible interpretations of 𝐷 . Let 𝑤 = 𝑣 ⊓𝑖 𝑣 ′. By Lemma 3.19, there

exists a unique maximum strongly admissible interpretation 𝑤 ′

that is less than or equal to 𝑤 , i.e. 𝑤 ′ ≤𝑖 𝑤 . That is 𝑤 ′
is a lower

bound of 𝑣 and 𝑣 ′. It remains to show that𝑤 ′
is the greatest lower

bound of 𝑣 and 𝑣 ′. Toward a contradiction assume that there exists

𝑤 ′′
that is the greatest lower bound of 𝑣 and 𝑣 ′. That is, 𝑤 ′′ ≤𝑖 𝑣

and𝑤 ′′ ≤𝑖 𝑣 ′. Then by the definition𝑤 ′′ ≤𝑖 (𝑣 ⊓𝑖 𝑣 ′ = 𝑤). By the

assumption 𝑤 ′
is the maximum strong admissible that is less or

equal to𝑤 , thus,𝑤 ′′ ≤𝑖 𝑤 ′
. Thus,𝑤 ′

is an infimum of 𝑣 and 𝑣 ′. □

Theorem 3.21. Let 𝐷 be an ADF. The strongly admissible inter-
pretations of 𝐷 form a lattice with respect to the ≤𝑖 -ordering, with
the least element 𝑣u and the top element grd(𝐷).

Proof. We have to show that every two strongly admissible

interpretations of 𝐷 have a supremum and an infimum. Theorem

3.17 shows the former one and Theorem 3.20 indicates the latter

one. Thus, the strongly admissible interpretations of 𝐷 make a

lattice with respect to the ≤𝑖 -ordering. In Lemma 3.10, it is shown

that 𝑣u is the least strongly admissible interpretation and grd(𝐷)
is the largest strongly admissible interpretation of the sequence

of the interpretations presented in Lemma 3.9. This fact together

with Theorem 3.12, shows that grd(𝐷) is the greatest element of

this lattice. It is trivial that 𝑣u is the least element of this lattice. □

The set of strongly admissible interpretations of ADF𝐷 = ({𝑎, 𝑏, 𝑐, 𝑑},
{𝜑𝑎 : ⊤, 𝜑𝑏 : 𝑎 ∧ ¬𝑐, 𝜑𝑐 : ¬𝑏 ∧ 𝑑, 𝜑𝑑 : ⊥}), given in Example 3.3

form a lattice, depicted in Figure 3. The top element of this lattice

is grd(𝐷) = {𝑎 ↦→ t, 𝑏 ↦→ t, 𝑐 ↦→ f, 𝑑 ↦→ f} = {𝑎, 𝑏,¬𝑐,¬𝑑}.
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{}

{𝑎} {¬𝑑}

{𝑎,¬𝑑} {¬𝑐,¬𝑑}

{𝑎,¬𝑑,¬𝑐}

{𝑎, 𝑏,¬𝑐,¬𝑑}

Figure 3: Complete lattice of the strongly admissible inter-
pretations of the ADF of Example 3.3

4 CONCLUSION
In this work we have defined strongly admissible semantics for

ADFs, based on the concept of strongly acceptable/deniable argu-

ments. From a theoretical perspective, we have observed that the

strongly admissible interpretations of a given ADF form a lattice

with the trivial interpretation as the unique minimal element and

the grounded interpretation as the unique maximal element.

The concept of strong admissibility is related to grounded se-

mantics in a similar way as the concept of admissibility is related

to preferred semantics. That is, to answer the credulous decision

problem of an ADF under the grounded semantics, there is no need

of constructing the full grounded interpretation of the given ADF.

Instead, it is enough to construct a strongly admissible interpreta-

tion of the given ADF that satisfies the decision problem. Similarly,

to answer the credulous decision problem of ADFs under preferred

semantics, it is enough to investigate whether there exists an ad-

missible interpretation in order to solve the decision problem.We

used this method in preferred discussion games in [14] to answer

the credulous decision problem of ADFs under preferred semantics.

Possible future research questions include whether the concept

of strongly admissible semantics for ADFs, presented in this work,

is a proper generalization of the concept of strongly admissible

semantics for AFs [9, 10].

Further, it is interesting to investigate how the concept of strong

admissibility of ADFs relates to the grounded discussion game

presented in [13]. In other words, investigation is required of the

question whether the discussion game presented in [13] to answer

the credulous decision problem of ADFs under the grounded se-

mantics is equivalent to answer the same decision problem under

strong admissibility interpretation. The grounded discussion game

was defined over ADFs without any redundant links, however, the

concept of strongly admissible semantics is presented for all kinds

of ADFs. Thus, we will investigate whether the concept of strongly

admissible semantics is at the basis of the proof procedures of the

grounded discussion games for ADFs without any redundant links.

Further, we would like to investigate whether the grounded dis-

cussion game presents the shortest discussion/explanation that

answers the credulous decision problems under strongly admissi-

ble/grounded semantics for the given argument of ADFs.

Computational complexity classes of semantics of AFs and ADFs

are presented in [15]. Computational complexity of strongly ad-

missible semantics of AFs is studied in [16]. Further, in [17], the

computational complexity of identifying strongly admissible la-

bellings with bounded or minimal size was studied. As a future

work, it would be interesting to clarify the computational complex-

ity of investigating of the truth value of an argument in a strongly

admissible interpretation of a given ADF.
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