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ABSTRACT
We introduce a non-parametric hierarchical Bayesian approach for open-ended 3D object categoriza-
tion, named the Local Hierarchical Dirichlet Process (Local-HDP). This method allows an agent to
learn independent topics for each category incrementally and to adapt to the environment in time.
Each topic is a distribution of the visual words over a predefined dictionary. Using an inference algo-
rithm, these latent variables are inferred from the dataset. Subsequently, the category of an object is
determined based on the likelihood of generating a 3D object from the model. Hierarchical Bayesian
approaches like Latent Dirichlet Allocation (LDA) can transform low-level features to high-level con-
ceptual topics for 3D object categorization. However, the efficiency and accuracy of LDA-based
approaches depend on the number of topics that is chosen manually. Moreover, fixing the number of
topics for all categories can lead to overfitting or underfitting of the model. In contrast, the proposed
Local-HDP can autonomously determine the number of topics for each category. Furthermore, the on-
line variational inference method has been adapted for fast posterior approximation in the Local-HDP
model. Experiments show that the proposed Local-HDP method outperforms other state-of-the-art
approaches in terms of accuracy, scalability, and memory efficiency by a large margin. Moreover,
two robotic experiments have been conducted to show the applicability of the proposed approach in
real-time applications.

1. Introduction
Most recent object recognition/detection techniques are based
on deep neural networks [15, 16, 19, 31, 40, 44, 33]. These
methods typically need a large labeled dataset for a long
training process. The number of object categories (class
labels) should be predefined in advance for such methods.
However, in real-life robotic scenarios, a robot can always
face new object categories while operating in its environ-
ment and it requires learning from a small number of obser-
vations. Therefore, the model should be updated in an open-
ended manner without completely retraining the model [3].
In this paper, open-ended learningmeans that the number of
categories (class labels) is not fixed and predefined for the
model, and that it can grow during runtime. Furthermore,
object category recognition is not a well-defined problem be-
cause of the large inter-category variation (Figure 1 (top)),
multiple object views for each object (Figure 1 (bottom)),
and concept drift in dynamic environments [25].

Object recognition in humans is a complex hierarchical
multi-stage process of streaming visual data in the cortical
regions [8]. The hierarchical structure of the brain for the
object recognition task has motivated us to choose hierarchi-
cal Bayesian models like Latent Dirichlet Allocation (LDA)
[7] and Hierarchical Dirichlet Process (HDP) [46] for object
category recognition.

In this paper, we suggest that 3D visual streaming data
should be processed continuously, and object category learn-
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Figure 1: An illustrative example of inter-category variation
of the mug category in the Washington RGB-D dataset (top),
and different object views of a mug object (bottom).

ing and recognition should be performed simultaneously in
an open-ended manner. We propose the Local Hierarchical
Dirichlet Process (Local-HDP), an extension of the Hierar-
chical Dirichlet Process [46] method, which can incremen-
tally learn new topics for each category of objects indepen-
dently. In contrast to notable recent works [25, 13, 45] us-
ing a predefined number of topics, Local-HDP is more flex-
ible since it is a non-parametric Bayesian model that can au-
tonomously determine the number of topics for each cate-
gory at run-time.

Figure 2 shows the processing layers of the proposed
Local-HDP. The tabletop objects are detected in the initial
phase (green bounding box around apple on the table in Fig-
ure 2). Subsequently, the hierarchy of the five processing
layers is utilized. The features layer extracts a set of local
shape features using the spin-image descriptor [17].

The computed features are represented as Bag of visual
Words (BoWs). The obtained representation is then sent to
the topics layer, where a set of topics is inferred autonomously
for the given object using the proposed Local-HDP method.
Each topic is a distribution of visual words over a dictio-
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Figure 2: The architecture of the proposed method.

nary. In other words, the topic layer provides an unsuper-
visedmapping of the BoW representation to the topics space,
which can fill the conceptual gap between low-level features
and high-level concepts. As shown in the object views layer,
the appearance of an object may vary from different perspec-
tives (Figure 1 (bottom)). Therefore, it is necessary to infer
topics using different object views. There might be different
instances in an object category as well (see Figure 1 (top)).
This point is addressed in the categories layer. Moreover,
a simulated teacher has been developed to interact with the
model and evaluate its performance in an open-ended man-
ner.

This work extends two approaches, namely Local-LDA
[25] and HDP [46], in four aspects. First, our approach can
autonomously detect the number of required topics to inde-
pendently represent the objects in each category, avoiding
the limitation of Local-LDA for determining the number of
topics in advance. This feature prevents underfitting or over-
fitting of the model. Second, our research adapts the online
variational inference technique [48], which significantly re-
duces inference time. Third, the proposed local online varia-
tional inference method leads to memory optimization since
it needs to store a smaller average number of instances per
object category in memory. Fourth, our work extends the
hierarchical Dirichlet process [46] by learning and updating
local topics for each object category independently in an in-
cremental and open-ended fashion.

2. Related Work
Object representation is one of the main building blocks of
object recognition approaches. The underlying reason is that
the output of the object representationmodule is used in both
learning and recognition. Object representation techniques
can be categorized into three groups, namely, global and

local object descriptors and machine learning approaches
[27]. Notable global object descriptors are Global Ortho-
graphic Object Descriptor (GOOD) [24, 20], Ensemble of
Shape Functions (ESF) [50] andViewpoint FeatureHistogram
(VFH) [43]. Examples of local 3D shape descriptors include
Spin-Images (SI) [17], Intrinsic Shape Signature (ISS) [54],
and Fast Point Feature Histogram (FPFH) [42]. Local de-
scriptors are more robust to occlusions and clutter. However,
comparing pure local descriptors is a computationally ex-
pensive task [1]. To alleviate this problem, machine learning
techniques like Bag of Words (BoW) [21], Latent Dirichlet
Allocation (LDA) [7, 23] and deep learning [30, 52] meth-
ods can be used for representing objects in a compact and
uniform format.

Kasaei et al. [25] extended Latent Dirichlet Allocation
(LDA) and proposed Local-LDA. They showed the applica-
tion of Local-LDA in the context of open-ended 3D object
category learning and recognition. Similar to our approach,
Local-LDA learns a set of topics for each object category
incrementally and independently. Unlike our approach, in
Local-LDA, the same number of topics is chosen in advance
based on trials and errors for all of the object categories. A
good choice for the number of topics for each object category
is correlated to the intra-category variation of each 3D ob-
ject category. Therefore, choosing the same number of top-
ics for all the object categories with different intra-category
variation might be not reasonable. Moreover, in open-ended
scenarios, it is not feasible to anticipate the inter-category
variation of 3D objects that the model might see in the fu-
ture and choose a fixed number of topics in advance for all
the categories. To solve these issues, our approach can au-
tonomously choose the number of topics for each object cat-
egory on the fly without a need for in advanced trails and
errors. This makes our approach more robust for recogniz-
ing object categories with various inter-category and intra-
category variation and applicable in real-world open-ended
scenarios. Local-LDA uses collapsed Gibbs sampling for
approximating the posterior probability. However, we adapt
the online variational inference technique [48] for Local-HDP.

Our approach builds on the Hierarchical Dirichlet Pro-
cess (HDP) [46], that is based on Dirichlet process (DP) [11]
and mixture of DPs [2]. Posterior inference is intractable
for HDP, and much research has been done to find a proper
approximate inference algorithm [46, 47, 32]. The Markov
Chain Monte Carlo (MCMC) sampling method for DP mix-
ture models has been proposed for approximate inference in
HDPs [34]. David Blei et al. proposed the variational in-
ference for DP mixtures [6]. Teh et al. [46] proposed the
Chinese Restaurant Franchise metaphor for HDP and used
Gibbs sampling method for the inference. The online varia-
tional inference approach is proposed byWang et al. [48] for
HDP, which can be used in online incremental learning sce-
narios and for large corpora. Our method is different from
HDP, since the proposed Local-HDP only shares the topics
in the local models for each category and not across different
categories. This is especially needed in the case of 3D ob-
ject categorization for open-ended scenarios [25]. The use
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of local topics avoids underfitting of the model by consider-
ing intra-category variations. HDP has further extensions to
construct tree-structured representations for text data which
have nested structure [36]. Similar to supervised hierarchi-
cal Dirichlet Process (sHDP) [9], we use the category label
of each object. Unlike sHDP, we learn object categories in
an open-ended fashion, while in sHDP, the number of object
categories to be learned should be defined in advance.

Deep learning-based approaches [55, 53, 10] try to learn
a sparse representation for 3D objects. Unlike our approach,
such methods typically need a large labeled dataset and re-
quire long training time. In particular, our proposed ap-
proach does not require a large labeled dataset and can in-
crementally update the model facing an unforeseen object
category in an open-ended manner. Moreover, the number
of categories is not fixed in open-ended approaches like ours.

3. Method
We assume that an object has already been segmented from
the point cloud of the scene, and we hence mainly focus on
detailing the Local Hierarchical Dirichlet Process (Local-
HDP) approach.
3.1. Pre-Processing Layers
In Figure 2, the first two layers—the feature layer and BoWs
layer— are the pre-processing layers. In the feature layer,
we first select key-points for the given object and then com-
pute a local shape feature for each key-point. Towards this
goal, we first voxelized1 the object (Figure 3) (b), and then,
the nearest point to each voxel center is selected as a key-
point. Afterwards, the spin-image descriptor2 [17] is used
to encode the surrounding shape in each key-point using the
original point cloud (Figure 3 (c)). This way, each object
view is described by a set of spin-images in the first layer,
Os = {s1,… , sN} where N is the number of key-points.
The obtained representation is then sent to the BoWs layer.
Since HDP-based models have the bag-of-words assumption
- that the order of words (visual words) in the document (3D
object view) can be neglected - the BoWs layer transforms
the computed spin-images to a BoW format (Figure 3 (d)).
Towards this end, the BoWs layer requires a dictionary with
V visual words (spin-images). In this work, we have created
a dictionary of visual words using the same methodology as
Local-LDA [25]. The obtained BoW representation is fed to
the topic layer.
3.2. Local Hierarchical Dirichlet Process
After synthesizing the point cloud of the 3D objects to a set
of visual words in BoW format, the data is ready to be in-
serted into the topic layer where the proposed Local-HDP
method is employed. In this layer, the model transforms the
low-level features in BoW format to conceptual high-level
topics. In other words, each object is represented as a distri-
bution over topics, where each topic is a distribution of visual

1www.pointclouds.org/documentation/classpcl_1_1_voxel_grid.html
2www.pointclouds.org/documentation/classpcl_1_1_spin_image_

estimation.html

(a) coffee mug (b) voxelization

(c) local-features (d) BoW

Figure 3: (a) The RGB-D image of a coffee mug. (b) Key-
points selection using voxelizing [25]. (c) Key-points neigh-
borhoods are represented by different colors. (d) The BoW
representation for the given object.

words over a dictionary. To this end, we use an incremen-
tal inference approach where the number of categories is not
known beforehand and the agent does not know which ad-
ditional object categories will be available at run-time. The
plate notation of Local-HDP is shown in Figure 4. In this
graph,C is the number of categories, |c| is the number of ob-
jects in each category. Each object, j, is represented by a set
ofN visual words,Wj,n where j, n show the n’th visual word
from the j’th object. Each visual word is an element from the
vocabulary of visual words with predefined V words, that is
Wj,n ∈ {1...V }. Using a Coffee Mug as an example, a dis-
tribution over the topics of the Coffee Mug should be used to
generate the visual words of the object. Accordingly, a par-
ticular topic is selected out of the mixture of possible top-
ics of the Coffee Mug category to generate the visual words.
For instance, coffee mugs typically have a “handle”, which
is represented as a distribution of visual words that repeat-
edly occur together. This can be interpreted as the “handle”
topic, which is inferred from the co-occurrence of the visual
words in several objects of the same category. The process
of choosing a topic and then drawing the visual words from
that topic is repeated several times to generate all the visual
words of the Coffee Mug. It is worth mentioning that the
generative process is not used in the experiments. However,
the local online variational inference technique is used to do
a reverse procedure of inferring the topics, corresponding to
latent variables from the 3D object views. Using the inferred
topics, we then compare the log-likelihood of generating the
visual words in a 3D object for each local model. The cat-
egory of the local model with the highest log-likelihood is
then selected as the predicted category of the 3D object.
3.3. Dictionary of Visual Words
In this paper, we have used the method of [25] to construct
the dictionary of the visual words. This means that a dic-
tionary with V visual words is constructed by clustering a
random subset of 50% of the training data. We have utilized
the k-means method for clustering the local shape descrip-
tors (spin-images) of the randomly selected objects into V
visual words. Consequently, the nearest spin-images to the
cluster centers are selected as the dictionary’s visual words.
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3.4. Local Online Variational Inference
The inference method is responsible for inferring the latent
variables in the model using a dataset [4]. In this section, we
adapt the online variational inference method [48] for Local-
HDP. This method can be used in open-ended applications
since it can handle streaming data in an online and incremen-
tal manner. Moreover, it is faster than traditional approxi-
mate inference techniques, e.g., Chinese restaurant franchise
[46] and variational inference [6], and it can be used to infer
the latent variables of differently scaled datasets [48].

Online variational inference for HDP is inspired by the
online variational Bayes [14] method for LDA. This method
tries to optimize a variational objective function [18] exploit-
ing stochastic optimization [41]. HDP is a collection of DPs
Gj that share the same base-distribution G0 (which is also
drawn from a DP). These DPs share the same set of atoms
and only the atom weights are different. Mathematically, a
two-level HDP is defined as follows:

G0 ∼ DP (
H)
Gj ∼ DP (�0G0), for each j (1)

where �0 > 0 is the scaling parameter and 
 is the concen-
tration parameter of a DP. Sethuraman’s stick-breaking con-
struction technique [12] is responsible for determining the
number of topics in the model. Using the same approach as
[49] for HDP , the variational distribution for local online
variational inference is in the following form:

q(�′, �′, c, z, �) = q(�′)q(�′)q(c)q(z)q(�) (2)
In the terminology of variational inference techniques, q is
called the variational approximation to the posterior p. Vari-
ational techniques try to solve an optimization problem over
a class of tractable distributions Q in order to find a q ∈ Q
that is most similar to p and can be used as its approxima-
tion. Moreover, �′ = (� ′k)

∞
k=1 is the top-level stick propor-

tion, �′ = (�′jt)
∞
t=1 is the bottom-level stick proportion and

cj = (c′jt)
∞
t=1 is the vector of indicators for each Gj . More-

over, � = (�k)∞k=1 is the inferred topic distribution, and zjdis the topic index for the nth visual word in the jth 3D object.
The infinity notion (∞) shows the open-ended nature of the
number of parameters.

The factorized form of q(c), q(z), q(�), q(�′) and q(�′)
is the same as the online variational inference for HDP [49].
Assuming that we have |c| objects in each category for Local-
HDP, the variational lower bound for object j in category C
is calculated as follows:

L(C)j =

Eq[log(p(wj|cj , zj , �)p(cj|�′)p(zj|�′)p(�
′

j|�0))]

+H(q(cj)) +H(q(zj)) +H(q(�′))

+ 1
|c|
[Eq[logp(�′)p(�)] +H(q(�′)) +H(q(�)] (3)

Where H(.) is the entropy term for the variational distribu-
tion. Therefore, the lower bound term for each category is

Figure 4: The plate notation of Local-HDP.

calculated in the following way:

L(C) =
∑

j
L(C)j = Ej[|c|L

(C)
j ] (4)

Using coordinate ascent equations in the same way as online
variation inference, the object-level parameters (aj , bj , 'j , �j)are estimated. To be more specific, aj and bj are the param-
eters of the beta distributions for the bottom-level stick pro-
portions �j , 'j is the variational parameter for the vector of
indicators cj , and �j is the variational parameter for the topic
zj . These variables are defined in the same way as in [49].
Then, for the category-level parameters (�(C), u(C), v(C)), we
do gradient descent with respect to a learning rate:

)�(C)kw (j) = −�kw+�+|c|
T
∑

t=1
'jtk(

∑

n
�jntI[wjn = w]) (5)

)u(C)k (j) = −uk + 1 + |c|
T
∑

t=1
'jtk (6)

)v(C)k (j) = −vk + � + |c|
T
∑

t=1

K
∑

l=k+1
'jtl (7)

Here, K and T are the document (3D object view) and cor-
pus (category) level truncates. Moreover, ' (multinomial),
� (multinomial) and � (Dirichlet) are the variational param-
eters, which are the same for all the categories. Using an ap-
propriate learning rate pt0 for online inference, the updatesfor �(C), u(C) and v(C) become:

�(C) ← �(C) + pt0)�
(C)(j) (8)

u(C) ← u(C) + pt0)u
(C)(j) (9)

v(C) ← v(C) + pt0)v
(C)(j) (10)

Algorithm 1 shows the pseudo-code of the proposed infer-
ence technique for the Local-HDP approach.
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Algorithm 1: Local Online Variational Inference
initialization:
Randomly initialize �(C) = (�(C)k )Kk=1, u(C) = (u(C)k )K−1k=1 and
v(C) = (v(C)k )K−1k=1 for all the learned categories. Set t0 = 1

for each Category C do
while Stopping criterion is not met do

- Use the object view j for updating the
parameters.

- Compute the document-level parameters
aj , bj ,Φj , �j using the same methodology as
[48].

- Using Eq. 5-7, compute the natural gradients
)�(C)(j), )u(C)(j) and )v(C)(j).

- Set pt0 = (�0 + t0)−K , t0 = t0 + 1.- Update the �(C), u(C), v(C) parameters using Eq.
8-10.

end
end

3.5. Object Category Learning and Recognition
In this subsection, the mechanism of interactive open-ended
learning has been explained in more detail. Classical object
recognition methods do not support open-ended learning. In
contrast, our method is open-ended, and the number of cate-
gories can be incrementally extended through time. The sys-
tem can interact with a human user to learn about new cate-
gories or to update existing category models by receiving
corrective feedback when misclassification occurred. We
follow the same methodology as [22] for this purpose. The
user can interact with the system with one of the following
actions:

• Teach: introducing the category of target object to the
agent.

• Ask: inquiring the agent about the category of a target
object.

• Correct: sending corrective feedback to the agent in
case of wrong categorization.

Whenever the agent receives a teach command, it incremen-
tally updates the local model corresponding to the category
of the target object using the aforementioned online varia-
tional inference technique. In case of the ask command, the
log-likelihood is used to determine the category of an object.
The log-likelihood is computed in the same way as in [48].
The local model with highest likelihood is then selected as
the predicted category for an object.

4. Experimental Results
Following the same protocol as Local-LDA [25] for inter-
acting with a simulated teacher, two sets of experiments,
namely, offline experiments and open-ended experiments,
have been conducted to evaluate the performance of the pro-
posed method. The offline experiments use the k-fold cross-
validation technique for evaluating the performance of the

model in offline scenarios with a small number of training
instances. The open-ended experiments are focused on eval-
uating the proposed approach for the scenarios in which the
number of object categories (class labels) is not fixed and
can grow over time. In open-ended scenarios, the model
is updated in an incremental manner. However, in the of-
fline evaluations, themodel is trained once with a training set
and then evaluated using a testing set from the dataset. For
Local-HDP in all the experiments, we set pt0 = (�0 + t0)−Kwhere K ∈ (0.5, 1] and �0 > 0 as suggested by [48].
4.1. Datasets and Baselines for Comparison
For offline evaluation of the proposed Local-HDP and the
other state-of-the-art approaches, we have used the restau-
rant RGB-D object dataset [22]. This dataset has 10 cate-
gories of objects and each category has a significant intra-
category variation. It consists of 306 different object views
for 10 household objects. Therefore, it is a suitable dataset
to perform extensive sets of experiments.

The Washington RGB-D dataset [28] is used for online
open-ended evaluation of the method since it is one of the
largest 3D object datasets. It has 250,000 views of 300 com-
mon household objects, categorized in 51 categories. Fig-
ure 5 shows some of the categories of objects presented in
the Washington RGBD Dataset. In all experiments, only the
depth data has been used for determining the category of 3D
objects. Therefore, as one can see in Figure 5, detecting the
category of an object based solely on the depth data is a hard
task even for humans.

We have compared the proposed Local-HDP using local
online variational inferencewith Local-LDA [25], LDAwith
shared topics [7], BoW [21], RACE [35], and HDP with
shared topics and online variational inference [48].
4.2. Offline Evaluation
Similar to Local-LDA, our approach has several parameters
that should be well selected to provide an appropriate bal-
ance between recognition performance, memory usage and
computation time. In order to fine-tune the parameters of
our proposed method for offline evaluation, 440 experiments
have been conducted with different parameter values. The
voxel grid approach has been used for down-sampling and
finding the keypoints for the local descriptor. Voxel grid has
Voxel Size (VS) parameter which determines the size of each
voxel. Moreover, the spin-image local descriptor has two
parameters, namely Image Width (IW) and Support Length
(SL).

In all experiments, the first level and second level con-
centration parameters are set to 1, chunk size for offline eval-
uation is set to 1, and the maximum number of topics is set
to 100. All the other parameters are set to the default values
as proposed in [49] . Moreover, in all the experiments the
LDA parameters are set to be the same values as described
in [25]. Since online variational inference is a stochastic in-
ference technique, for each experiment the order of the data
instances has been permuted 10 times and for each permu-
tation 10-fold cross-validation has been used. Accordingly,
the results have been averaged.
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Figure 5: Similar object categories to those from the Washington RGBD dataset. The second row shows the same objects as the
first row, but without color (in red), to emphasize the similarity of objects based on the depth data.

Table 1
Average accuracy of Local-HDP and Local-LDA based on 440
experiments with different parameter values.

Parameters IW VS SL
Value 4 8 0.01 0.02 0.03 0.04 0.03 0.04 0.05 0.1 0.15

Acc
(%)

Local-LDA 84 83 81 82 86 83 81 83 84 85 83
Local-HDP 94 92 91 93 95 93 91 92 92 94 91

Parameters Dictionary Size
Value 40 50 60 70 80 90 100 200 500 2000 2500

Acc
(%)

Local-LDA 82 82 82 83 85 85 86 87 88 90 87
Local-HDP 91 92 92 92 92 93 93 94 95 96 94

Table 2
The comparison of different approaches using the best param-
eter values. The average run-time of each experiment is re-
ported for all the approaches.

Approach Accuracy (%) Run-time (s)
RACE [35] 87.09 1757
BoW [21] 89.00 195

LDA (shared topics) [7] 88.32 227
Local-LDA [25] 91.30 348

HDP (shared topics) [48] 90.33 233
Local-HDP (our approach) 97.11 352

Table 3
The comparison of the proposed approach with some deep
learning approaches for 3D object classification.

Approach Accuracy (%) Accuracy (%)
(original dataset) (augmented dataset)

PointNet [37] 0.11 85.13
PointNet++ [38] 0.12 87.45
PointCNN [29] 0.12 88.02
Local-HDP 97.11 98.64

Table 1 shows the comparison of Local-HDP and Local-
LDA with different parameter values. As one can see in this
table, the proposed Local-HDP method outperforms Local-
LDA which is the best among the other methods (see [25]).
Using the best parameter values based on Table 1 and the
corresponding tables in [25], the accuracy of all the approaches
is shown in Table 2.

Table 2 shows that Local-HDP outperforms the other
state-of-the-art methods in terms of accuracy with a large
margin. In particular, the accuracy of Local-HDPwas 97.11%,
which is around 6.11 percentage point (p.p.) better than Local-

LDA, and 6.78, 9.11, 8.11, 10.11 p.p better than HDP, LDA,
BoW and RACE approaches respectively. Moreover, Local-
HDP has almost the same run-time as Local-LDA.

Table 3 shows the comparison of the proposed Local-
HDP approachwith some deep learning architectures, namely,
PointNet [37], PointNet++ [38], and PointCNN [29] for of-
fline evaluation. Since the number of training instances for
each category is limited in the restaurant RGB-D object dataset
[22] (the number of training instances for offline 10-fold cross-
validation for the fork category is 8 and the average number
of training instances per category is 27), the deep learning
approaches tend to overfit and could not generalize well. To
resolve this issue for deep learning approaches, the dataset is
augmented 20 times by randomly rotating the point clouds
around different axes. Table 3 also compares the accuracy
of deep learning approaches with the proposed Local-HDP
after augmentation.

To uniformly sample 2048 points from a point cloud for
the deep learning approaches, a mesh is constructed using
the ball-pivoting algorithm for surface reconstruction [5].
Subsequently, the point clouds are normalized to a unit sphere
(the same approach is used in PointNet [37]) to uniformly
sample 2048 points from the constructed meshes.
4.3. Open-Ended Evaluation
In order to evaluate ourmodel in an open-ended learning sce-
nario, we used the Washington RGBD dataset [28], and we
have followed the same methodology as discussed in [25].
In particular, we have developed a simulated teacher which
can interact with the model by either teaching a new cate-
gory to it or asking the model to categorize the unforeseen
object view. In case of wrong categorization of an object by
the model, correcting feedback is sent to the model by the
simulated teacher. In order to teach a new category, the sim-
ulated teacher presents three randomly selected object views
of the corresponding category to the model. After teach-
ing a new category, all of the previously learned categories
are tested using a set of randomly selected unforeseen object
views. Subsequently, the accuracy of category prediction is
computed. In open-ended evaluation, the model observes
the 3D objects one by one and the history of the latest 3n
predictions of the model is considered for calculating the ac-
curacy, where n is the number of the learned categories. If
the corresponding accuracy is higher than a certain threshold
� = 0.66 (whichmeans that the number of true-positives is at
least twice the number of wrong predictions), the simulated
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Exp# #QCI #LC AIC GCA(%)
1 201 8 14.88 52.74
2 231 8 16.38 53.68
3 336 10 17.2 57.74
4 495 15 15.47 62.22
5 193 9 14.44 46.63
6 138 5 17.4 47.83
7 264 7 20.29 54.17
8 348 10 19.3 53.16
9 206 9 15.22 46.60
10 279 10 16.9 50.18

Avg. 269 9.1 16.74 51

(a) Summary of experiments for LDA
Exp# #QCI #LC AIC GCA(%)

1 1011 34 13.24 65.58
2 737 22 14.59 65.40
3 306 15 10.47 63.40
4 439 19 10.84 66.06
5 1079 34 13.26 67.66
6 1052 35 12.74 67.59
7 937 25 16.52 63.93
8 909 32 11.88 68.76
9 480 24 9.417 67.92
10 1069 32 14.66 65.11

Avg. 753 27.2 12.76 66.14

(b) Summary of experiments for HDP

Exp# #QCI #LC AIC GCA(%)
1 1346 40 12.93 70.51
2 1764 40 17.73 66.61
3 1385 43 12.4 70.83
4 1224 41 11.29 72.22
5 1594 47 13.11 70.20
6 1551 46 13.04 70.21
7 1263 35 14.83 67.22
8 1455 46 12.04 71.41
9 1012 34 12.53 67.98
10 1518 34 17.62 67.26

Avg. 1411 40.6 13.75 69.44

(c) Summary of experiments for Local-LDA (Online Variational Inference)

Exp# #QCI #LC AIC GCA(%)
1 1325 51 6.45 86.72
2 1370 51 8.25 80.44
3 1325 51 6.62 86.04
4 1325 51 6.70 85.74
5 1325 51 6.37 87.02
6 1325 51 7.03 84.45
7 1325 51 6.64 85.96
8 1325 51 6.80 85.36
9 1330 51 7.17 83.98
10 1327 51 6.47 86.66

Avg. 1330 51 6.85 85.23

(d) Summary of experiments for Local-HDP (our approach)

Figure 6: Summary of 10 experiments for open-ended evaluation LDA, HDP, Local-LDA and our proposed Local-HDP approach.
The learning capacity and the global accuracy of different models is compared with the corresponding plots.

teacher will teach a new category to the model. If the learn-
ing accuracy does not exceed the threshold � after a certain
number of iterations (100 for our experiments), the teacher
infers that the agent is not able to learn more categories and
the experiment stops. More details on the online evaluation
protocol that has been used in our experiments can be found
in [13].

Since the performance of open-ended evaluationmay de-
pend on the order of introducing categories and object views
(randomly selected at the beginning of each experiment), 10

Table 4
The average result of 10 open-ended experiments for all the
methods.

Approach #QCI #LC AIC GCA(%)
LDA 269 9.1 16.74 51.00%
HDP 753 27.2 12.76 66.14%

Local-LDA 1411 40.6 13.75 69.44%
Local-HDP 1330 51.0 6.85 85.23%

independent experiments have been carried out for each ap-
proach. Several performance measures have been used to
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Figure 7: The absolute number of stored instances per category (for one out of ten open-ended experiments): the lower stored
instances mean that the method is more memory efficient. The horizontal axis from left to right shows the order of introducing
categories to all methods.

evaluate the open-ended learning capabilities of the meth-
ods, namely: (i) the number of Learned Categories (#LC);
(ii) the number of Question/Correction Iterations (#QCI) by
the simulated user; (iii) the Average number of stored In-
stances per Category (AIC) ; (iv) Global Categorization Ac-
curacy (GCA), which represents the overall accuracy in each
experiment. These performance measures have the follow-
ing interpretations. #LC shows the open-ended learning ca-
pability of the model, which answers the following question:
How capable is the model in learning new categories? #QCI
shows the length of the experiment (iterations). AIC repre-
sents the memory efficiency of the method. A lower aver-
age number of stored instances per category means a higher
memory efficiency of the method. AIC is also related to the
learning speed. A smaller AIC means that the method re-
quires fewer observations to correctly recognize each cate-
gory. #GCA shows the accuracy of the model in predicting
the right category for each object.

In order to compare methods fairly, the simulated teacher
shuffles data at the beginning of each round of experiments
and uses the same order of object categories and instances
for training and testing all the methods. Figure 6 (left) shows
the detailed summary of 10 experiments for Local-LDA, and
Local-HDP methods. It shows that Local-HDP could learn
all 51 categories in all experiments, while Local-LDA, HDP,
and LDA, on average learned 40.6, 27.2, and 9.1 categories,
respectively (Table 4). The average AIC for Local-HDP is
6.85, while it is 13.75, 12.76, and 16.74 for Local-LDA,
HDP, and LDA, respectively. This means that the proposed
approach could achieve higher learning accuracy (85.23 com-
pared to 69.44, 66.14, and 51), while observing a smaller
number of 3D objects (around 50% fewer examples). This
result shows the descriptive power of Local-HDP.

Figure 6 (center) shows the learning capability of the
new categories as a function of the number of learned cate-
gories versus the question/correction iterations. Local-HDP
achieved best performance by learning all the 51 categories
in 1330.20 ± 13.95 iterations (Table 4). One important ob-
servation is that shuffling the order of introducing categories
by the simulated user does not have a serious effect on the
performance of Local-HDP, while it affects the performance
of other methods significantly. The longest experiment, on
average was continued for 1411.20 ± 212.75 iterations with
Local-LDA and the agent was able to learn 40.60 ± 4.98.

Figure 6 (right) plots the global categorization accuracy

versus the number of learned categories. It was observed
that the agent with Local-HDP not only achieved higher ac-
curacy than othermethods in all experiments but also learned
all the categories. It is worth mentioning that Local-HDP
concluded prematurely due to the “lack of data” condition,
i.e., no more categories available in the dataset. This means
that the agent with Local-HDP has the potential of learning
more categories in an open-ended fashion. According to Ta-
ble 4, the average GCA for Local-HDP is 85.23% and it is
69.44%, 66.14% and 51.00% for Local-LDA, HDP and LDA,
respectively.

Figure 7 represents the absolute number of stored in-
stances per category in one round of the open-ended exper-
iments. It shows that the agent with Local-HDP stored a
lower or equal number of instances for all of the categories.
On closer review using Figure 6 (left), one can see that the
Local-HDP on average stored 6.85 instances per category to
learn 51 categories, while Local-LDA stored 13.75 to learn
40.6 categories. HDP achieved the third place by storing
12.76 instances to learn 27.20 categories and LDA was the
worst among the evaluated approaches, i.e., on average it
stored 16.74 instances to learn 9.10 categories. According to
this evaluation, Local-HDP is competent for robotic applica-
tions with strict limits on the computation time and memory
requirements.

5. Real-time Robotic Application
To demonstrate the applicability of the proposed 3D object
categorization method in real-time robotic applications, we
have performed two object-manipulation experiments, as shown
in Figure 8. In both robotic applications, the model is trained
in an open-ended manner from scratch and the models are
not pre-trained.

In both demonstrations, a UR5e robotic arm is used to
manipulate the objects located on a table. Moreover, a Kinect
camera is fixed in front of the table to acquire the visual data
for further perceptual analysis. The system detects table-top
objects, draws a bounding box around them and assigns a
tracking ID (TID) to each object (Figures 8.b - 8.d). To
compute the orientation of the bounding boxes, the Prin-
ciple Component Analysis (PCA) [51] algorithm has been
used. First, a local reference frame is constructed by ap-
plying PCA on the normalized covariance matrix, Σ, of the
point cloud, i.e., ΣV = EV , where E = [e1, e2, e3] containseigenvalues in the descending order, and V = [v1, v2, v3]
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a) The robotic setup for the first demonstration.
b) Point cloud and object category visualization in RViz

for the first robotic demonstration.

c) Clearing coke cans from the table for the second
robotic demonstration.

d) The RViz visualization of the recognized categories
for the second robotic demonstration.

Figure 8: The real-time application of the proposed Local-HDP 3D object category recognition method in a robotic scenario.

represents the eigenvectors. Therefore, v1 is the eigenvec-
tor with the largest variance of the points of the object. We
consider v1 and v2 asX and Y axes, respectively. We define
the Z axis as the cross product of v1×v2. The minimum and
maximum values in each axis are then considered for com-
puting the oriented bounding boxes. The model does not ini-
tially have any knowledge about the category of the objects
located on the table. In both scenarios, we involved a hu-
man user in the learning loop as it is necessary for a human-
robot interaction. In the first scenario, a user can interact
with the system through the RViz3 [39] 3D visualization en-
vironment and assign a category label to each of the detected
objects on the table. After introducing the object category
labels to the model, it can detect the category of the objects
even if they have been placed in a different location on the
table, which might change the object view partially due to
the perspective or occlusion by the other objects. Finally,
the clearing task is initiated in which for each individual ob-
ject, the end-effector of the robotic arm moves to the pre-
grasp position of a target object, and then grasps the object

3 ROS Visualization: http://wiki.ros.org/rviz

and puts it into a trash box located on the table (Figure 8.a).
This demonstration showed that the system was able to de-
tect different object categories and learned about new object
categories using very few examples on-site. Furthermore,
it was observed that the proposed approach was able to dis-
tinguish geometrically very similar objects from each other
(e.g., Cup vs CokeCan). The video of this robotic demon-
stration is available at: https://youtu.be/YPsrBpqXWU4

The second robotic demonstration has more emphasis on
category recognition of unforeseen objects and performing a
category-specific robotic task. In this demonstration, a user
interacts with the system through voice commands and intro-
duces the initially located objects on the table to the model.
The model uses the segmented point cloud of these table-top
objects to train the model. Subsequently, three new objects
will be spawned on the table in the Gazebo simulator [26].
After the detection of each of the new objects, the system
tells the predicted category to the user and asks for correc-
tive feedback in case of a wrong prediction. This way the
system learns about new object categories incrementally and
updates the category models once a misclassification hap-
pens.
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After recognizing all object categories, the user com-
mands the robot to clear all the coke cans from the table and
put them into the trash box located on the table. To accom-
plish this task, the robot should detect the pose as well as
the label of all objects. Then, the robot grasps and manipu-
lates all the coke cans from the table while keeping the rest
of the objects from different categories on the table (Figure
8.c). A video for this robotic demonstration is available at:
https://youtu.be/otxd8D8yYLc

6. Conclusion
We propose a non-parametric hierarchical Bayesian model
called Local Hierarchical Dirichlet Process (Local-HDP) for
interactive open-ended 3D object category learning and recog-
nition. Each object is initially represented as a bag of visual
words and then transformed into a high-level conceptual top-
ics representation.

We have conducted an extensive set of experiments in
both offline and open-ended scenarios to validate our ap-
proach and compare its performancewith state-of-the-art meth-
ods. For the offline evaluations, we mainly used 10-fold
cross-validation (train-then-test). Local-HDP outperformed
the selected state-of-the-art (i.e., RACE, BoW, LDA, Local-
LDA, and HDP) by a large margin, achieving appropriate
computation time and object recognition accuracy. In the
case of open-ended evaluation, we have developed a sim-
ulated teacher to assess the performance of all approaches
using a recently proposed test-then-train protocol. Results
show that the overall performance of Local-HDP is better
than the best results obtained with the other state-of-the-art
approaches.

Local-HDP can autonomously determine the number of
topics, even though finding a good choice for the number of
topics is not a trivial task in LDA-based approaches. More-
over, the number of topics in Local-LDA should be defined
in advance and is the same for all object categories, which
may lead to overfitting or underfitting of the model. Local-
HDP has resolved this issue by finding the number of topics
for each category based on the intra-category variation of ob-
jects. Adapting online variational inference to the proposed
approach enables Local-HDP to approximate the posterior
for large datasets rapidly.

In order to demonstrate the applicability of the proposed
approach in real-time robotic applications, two robotic demon-
strations have been conducted using a UR5e robotic arm.
These experiments showed that the robot was able to learn
new object categories using very few examples over time by
interacting with non-expert human users.

In the continuation of this work, we would like to inves-
tigate the possibility of using the proposed method for gras-
pable part segmentation of 3D objects. This way, we can
address the problem of 3D object recognition and affordance
detection (i.e., detecting graspable parts) simultaneously.
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