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Abstract. Higher-order theory of mind is the ability to recursively model
mental states of other agents. It is known that adults in general can rea-
son adequately at the second order (covering attributions like “Alice
knows that Bob knows that she wrote a novel under pseudonym”), but
there are cognitive limits on higher-order theory of mind. For example,
children under the age of around 6 cannot correctly apply second-order
theory of mind, and it seems to be a uniquely human ability. In this
paper, we make use of agent-based models to investigate the advantage
of applying a higher-order theory of mind among agents with bounded
rationality. We present a model of computational agents in the competi-
tive setting of the limited bidding game, and describe how agents achieve
theory of mind by simulating the decision making process of their op-
ponent as if it were their own. Based on the results of a tournament
held between these agents, we find diminishing returns on making use of
increasingly higher orders of theory of mind.

1 Introduction

Humans, in many aspects, are extraordinary within the animal kingdom. They
show an impressive ability to reason about the world around them, as well as
about unobservable mental content of others, such as others’ knowledge, beliefs
and plans. This so-called theory of mind [1] is said to be unique to humans
[2]. Humans use theory of mind beyond its first-order application, concerning
other’s propositional attitudes with respect to world facts. They take this ability
to a second-order theory of mind, in which they reason about the way others
reason about mental content. For example, suppose that Alice is throwing Bob
a surprise party. Bob engages in second-order theory of mind when he knows
about the party, but is playing along with Alice so she won’t find out that he
already knows; he may make the second-order attribution “Alice doesn’t know
that I know”.

Although the ability to use higher-order (i.e., at least second-order) theory
of mind is well established for humans, both through the attribution of second-
order false belief [3] as well as in strategic games [4–6], the use of theory of mind
of any kind by non-human species is a controversial matter [see for example
2, 7, 8]. Also, research shows that even human adults have difficulty applying
higher-order theory of mind correctly [4, 5, 9].



In this paper, we consider agent-based computational models [10, 11] to in-
vestigate the advantages of making use of higher-order theory of mind. The use
of computational agents allows us to precisely control and monitor the mental
content, including application of theory of mind, of our test subjects. This allows
us to investigate the conditions under which a theory of mind would present indi-
viduals with an evolutionary advantage over individuals without such abilities.
Following the Machiavellian intelligence hypothesis [12, 13], the main driving
force behind the evolution of social cognition, such as theory of mind, would
be the competitive ability within the species (for a discussion of alternative hy-
potheses, see [9]). We therefore simulate computational agents in a competitive
game, and determine the extent to which higher-order theory of mind provides
individuals with an advantage over competitors that are more restricted in their
use of theory of mind. In particular, we consider whether the ability to use
second-order theory of mind provides individuals with advantages beyond the
use of first-order theory of mind.

The setting in which we compare the performance of the computational
agents is a newly designed competitive game of limited bidding, which is ex-
plained in Section 2. Section 3 gives a detailed description of the way agents
that are limited in their ability to explicitly represent mental content are imple-
mented for the limited bidding game. These agents are placed in competition
with one another, the results of which are presented in Section 4. We compare the
advantages of using second-order theory of mind to those obtained using first-
order theory of mind. Finally, Section 5 provides discussion and gives directions
for future research.

2 Limited bidding

2.1 Game outline

The limited bidding game (adapted from a game in [14]) is a competitive game
played by two players. At the start of the game, each player receives an identical
set of N tokens, valued 1 to N . Over the course of N rounds, players simultane-
ously choose one of their own tokens to use as a ‘bid’ for the round. Once both
players have made their choice, the tokens selected by the players are revealed
and compared, and the round is won by the player that selected the highest value
token. In case of a draw, there are no winners. The object of the game is to win
as many rounds as possible while losing as few rounds as possible. However, each
token may be used only once per game. This forces players to plan ahead and
strategically choose which of the still available tokens to place as the bid. For
example, a player that selects the token with the highest value (N) in the first
round will ensure that the first round will not result in a win for his opponent.
However, this also means that during the remaining N − 1 rounds, the token
with value N will not be available to this player.

After each round in the limited bidding game, the tokens that were played
are announced to each player. That is, at the end of each round, every player not
only knows who won the round, but also which tokens were used. This allows



players to keep track of the tokens that may still be played by their opponent.
Since our computational agents are limited in their ability to make use of theory
of mind, these agents do not have the capacity to explicitly represent common
knowledge. However, we assume that players do not hold beliefs that would be
inconsistent with common knowledge of the rules and dynamics of the limited
bidding game.

2.2 A scenario for agents with bounded rationality

Under the assumption of common knowledge of rationality, rational agents play
the limited bidding game randomly (see Appendix A), such that during each
round, a rational agent randomly plays one of the still available tokens. How-
ever, experiments with human subjects have shown contexts in which humans
regularly fail to behave as predicted by game theory [e.g. 15–19]. In reality, agents
may not be fully rational, or consider their opponent to be fully rational. When
agents repeatedly interact with the same opponent, they may show patterns of
behaviour that deviate from random play, which may be used to their opponent’s
advantage. In this section, we tentatively describe the process of playing the lim-
ited bidding game by agents that are limited in their application of theory of
mind. In the remainder, we will speak of a ToMi agent to indicate an agent that
has the ability to use theory of mind up to and including the i-th order. Also,
to avoid confusion, we will refer to agents as if they were male, and opponents
as if they were female.

Consider the situation in which a ToM0 agent meets a ToM1 opponent for the
second time in the setting of the limited bidding game. During the first round of
the game, suppose that the ToM0 agent recalls that his opponent played token
1 in the first round of the last game. When deciding what token to play, a ToM0

agent cannot make use of any theory of mind. In particular, a ToM0 agent cannot
consider the possibility that his opponent has goals that are competitive to his
own. The only information available to the agent is that his opponent sometimes
plays token 1 in the first round of the game. Against token 1, the best response
is token 2, and thus the ToM0 agent chooses to play token 2.

The ToM1 opponent, on the other hand, forms beliefs about what the ToM0

agent believes. She remembers that the last time she played against the ToM0

agent, she selected token 1 in the first round. She reasons that if the situation
were reversed, and she had been in the ToM0 agent’s position, she would conclude
that the best response against token 1 is playing token 2. From this, the ToM1

opponent concludes that the ToM0 agent will be playing token 2. Against token
2, the best response is token 3, which is the token that the ToM1 agent will
select to play.

In our setup, none of the agents is aware of the abilities of his opponent.
Through repeated interaction, a ToM1 agent may come to believe that his oppo-
nent is not a ToM0 agent, but that she does not have any beliefs at all, and plays
according to some unchanging strategy. Based on this belief, a ToM1 agents can
choose to play as if he were a ToM0 agent himself. Each agent forms and updates
his beliefs through repeated interaction, in an attempt to uncover what order



of theory of mind he should use to win the game. The need for such learning
becomes apparent for agents that make use of higher-order theory of mind. A
ToM2 agent, for example, engages in second-order theory of mind by forming
beliefs about what his opponent believes him to believe. The implicit assumption
in this modeling is that his opponent is a ToM1 opponent that is able to form be-
liefs about what he believes. When in reality she is a ToM0 opponent, the ToM2

agent therefore attributes beliefs to his opponent that she cannot represent.

3 A mathematical model of theory of mind agents

In this section, we discuss the implementation of computational agents that are
limited in their ability to make use of theory of mind while playing the limited
bidding game, similar to the agents described in Section 2.2.

Computational agents in the limited bidding game represent the game situ-
ation by its observable features, that is, the set of tokens T that is still available
to the agent and the set of tokens S that is available to his opponent. Based
on this representation (T, S), an agent has beliefs in the form of a probability
distribution b(0), such that b(0)(s;T, S) represents what the agent believes to be
the probability that his opponent will play the token with value s in situation
(T, S). A ToM1 agent furthermore attributes beliefs to his opponent in the form
of a distribution b(1), such that he believes his opponent to assign probability
b(1)(t;S, T ) to the event that he will play token t in situation (T, S). A ToM2

agent maintains an additional belief structure b(2), such that he believes his op-
ponent to believe that he assigns probability b(2)(s;T, S) to the event of her
playing token s in situation (T, S).

Since an agent’s beliefs b(i) represent probability distributions, we assume
that they are non-negative and normalized such that

∑
s∈S

b(i)(s;T, S) = 1 for

all S 6= ∅ and all orders of theory of mind i. Besides these beliefs, agents are
governed by their confidence in the predictions based on application of first- and
second-order theory of mind, c1 and c2 respectively, as well as learning speed
λ and discounting rate δ. Unlike the beliefs b(i) and confidences ci, an agent’s
learning speed λ and discounting rate δ, to be discussed later in this section, are
fixed and agent-specific traits that are beyond the agent’s ability to control.

To decide what token to use, agents make use of three basic functionalities:
a value function Φ, a decision function t∗ and a belief updating function ∆. The
value function Φ is used to obtain a measure of the expected outcome of the
game when playing token t in situation (T, S). This is achieved through

ΦT,S(t, b(i)) =
∑
s∈S

b(i)(s;T, S) · sgn(t− s) if |T | = 1∑
s∈S

b(i)(s;T, S)
(
sgn(t− s) + δ max

t′∈T\{t}
ΦT\{t},S\{s}(t

′, b(i))
)

if |T | > 1,
(1)

where sgn is the signum function. Note that the value function Φ makes use of
exponential time discounting with parameter 0 ≤ δ ≤ 1 [20, 21]. A higher value



of time discounting δ indicates that the agent is more patient, and more willing
to lose the next round if it means winning the game.

Agents use the value function Φ to weigh the likelihood of winning the current
round by playing token t against the value of the situation that results from losing
token t for the remainder of the game. Based on beliefs b(i), agents decide what
token to use according to the decision function

t∗T,S(b(i)) = arg max
t∈T

ΦT,S(t, b(i)). (2)

Through application of theory of mind, agents come to believe that their
opponent will be playing some token ŝ. The extent to which ith-order theory of
mind governs the decisions of the agent’s actions is determined by his confidence
0 ≤ ci ≤ 1 that ith-order theory of mind accurately predicts his opponent’s
behaviour. For every order of theory of mind available to the agent, he therefore
adjusts his beliefs using the belief adjustment function ∆, given by

∆(b(i), ŝ, ci)(s;T, S) =

{
(1− ci) · b(i)(s;T, S) if s 6= ŝ
ci + (1− ci) · b(i)(s;T, S) if s = ŝ.

(3)

The functions Φ, t∗ and ∆ are shared by all agents, but the type of agent de-
termines how these functions are used. A ToM0 agent selects what token to play
by using Equation (2) directly. That is, given discounting rate δ and zeroth-order
beliefs b(0), a ToM0 agent faced with situation (T, S) will play token t∗T,S(b(0)).

In contrast, ToM1 agents consider the possibility that their opponent is play-
ing as a ToM0 agent. A ToM1 agent makes use of this by determining what token
he would play if the situation were reversed. To do so, a ToM1 agent maintains
first-order beliefs b(1) that describe what he would believe in his opponent’s sit-
uation, and thus what he believes his opponent to believe. Using these beliefs, a
ToM1 agent can estimate what token his opponent will believe him to be playing
by calculating ŝ(1) = t∗S,T (b(1)).

Once a ToM1 agent has derived what token ŝ(1) he would play in his oppo-
nent’s situation, he adjusts his own beliefs b(0) to represent that he believes his
opponent to play ŝ(1). That is, using the belief adjustment function ∆, a ToM1

agent decides what token to use by calculating

t∗T,S

(
∆
(
b(0), ŝ(1), c1

))
= t∗T,S

(
∆
(
b(0), t∗S,T

(
b(1)
)
, c1

))
. (4)

Note that in this sense, the computational agents described here represent
their theory of mind according to simulation-theory of mind [22–24]. That is,
rather than forming a theory-theory of mind [1, 25] that relates observable fea-
tures of the world to unobservable mental states of their opponent through ex-
plicit hypotheses, agents simulate the mental content of their opponent in their
own mind. A ToM1 agent thus considers the mental states of his opponent by
considering her viewpoint as if it were his own, implicitly assuming that this
accurately describes her thought process. In this particular setting, this means
that a ToM1 agent makes use of his own discounting rate δ in determining ŝ(1),
and therefore assumes his opponent to have the same rate of impatience he has.



Similar to the way a ToM1 agent models his opponent as a ToM0 agent, a
ToM2 agent determines what token he would play if he were in the position of
his opponent, playing as a ToM1 agent. In order to do so, a ToM2 agent needs
to specify his opponent’s confidence in first-order theory of mind. In our exper-
iments, we have assumed that all ToM2 agents use a value of 0.8 to determine
their opponent’s behaviour playing as a ToM1 agent, resulting in the estimate

ŝ(2) = t∗S,T

(
∆
[
b(1), t∗T,S

(
b(2)
)
, 0.8

])
. This estimate is then used to update the

ToM2 agent’s beliefs a second time before he makes his choice of what token to
use. This choice can therefore be represented as

t∗T,S

(
∆
[
∆
(
b(0), t∗S,T

(
b(1)
)︸ ︷︷ ︸

ŝ(1)

, c1

)
, t∗S,T

(
∆
[
b(1), t∗T,S

(
b(2)
)
, 0.8

])
︸ ︷︷ ︸

ŝ(2)

, c2

])
. (5)

To arrive at his decision of what token to play, an agent makes use of beliefs
b(i), which are initialized randomly, and confidence levels ci, which are initialized
at zero. After each round, the actual choices of the agent t̃ and his opponent
s̃ are revealed. At this moment, an agent updates his confidence in theory of
mind based on the accuracy of its predictions. That is, given his agent-specific
learning speed 0 ≤ λ ≤ 1, a ToM1 agent updates his confidence in first-order
theory of mind c1 according to

c1 :=

{
(1− λ) · c1 if s̃ 6= ŝ(1)

λ+ (1− λ) · c1 if s̃ = ŝ(1).
(6)

A ToM1 agent thus increases his confidence in the use of first-order theory
of mind if it yields accurate predictions, and lowers his confidence if predictions
are inaccurate. A ToM2 agent additionally adjusts his confidence in the use of
second-order theory of mind c2 according to

c2 :=


(1− λ) · c2 if s̃ 6= ŝ(2)

c2 if s̃ = ŝ(1) = ŝ(2)

λ+ (1− λ) · c2 if s̃ = ŝ(2) 6= ŝ(1).

(7)

This update is similar to the updating of the confidence in first-order theory
of mind, except that a ToM2 agent does not change his confidence in second-
order theory of mind when first- and second-order theory of mind both yield
correct predictions. That is, a ToM2 agent only grows more confident in the use
of second-order theory of mind when this results in accurate predictions that
could not have been made with first-order theory of mind.

Finally, the agent also updates his beliefs b(i). For zeroth- and second-order
beliefs b(0) and b(2), an agent updates his beliefs using his opponent’s choice s̃,
while first-order beliefs b(1) are updated using his own choice t̃, such that

b(i)(s;T, S) := ∆
(
b(i), s̃, λ

)
(s;T, S) for i = 0, 2, and (8)

b(1)(t;S, T ) := ∆
(
b(1), t̃, λ

)
(t;S, T ). (9)



(a) Average performance of a focal
ToM1 agent playing against a ToM0 op-
ponent.

(b) Average performance of a focal
ToM2 agent playing against a ToM1 op-
ponent.

Fig. 1: Effects of learning speed λ on average performance in a game of 5 tokens.
Performance was determined as the average score over 50 trials, for every 0.02
increase of λ in the range 0 ≤ λ ≤ 1. Discounting rate δ was fixed at 0.9.

The agents described above implicitly assume that their opponents update
their beliefs using the same learning speed 0 ≤ λ ≤ 1 as themselves. Furthermore,
equations (8) and (9) maintain the normalization and non-negativity of beliefs,
while the confidences c1 and c2 remain limited to the range [0, 1]. Finally, agents
do not update their beliefs and confidence levels after the last round, in which
they make the degenerate choice of playing the only token still available to them.

4 Results

The agents described in Section 3 have been implemented in Java and their per-
formance has been tested in competition in a limited bidding game of five tokens.
Performance per game was measured as the difference between the number of
rounds an agent won and the number of rounds won by his opponent. Note that
since it is not possible for an agent to win more than four out of five rounds1, an
agent’s game score ranges from -3 to 3. Agents play against each other in trials
that consist of 50 consecutive games. An agent’s trial score is the average of the
agent’s game scores over all 50 games in the trial.

Figure 1 shows the advantage of making use of theory of mind as a function
of the learning speed of the focal agent (λf ) and his opponent (λo). Higher and
lighter areas represent that the focal agent performed better than his opponent,
while lower and darker areas show that his opponent obtained a higher average

1 If an agent wins the first four rounds, the final round will be won by his opponent.



score. To emphasize the shape of the surface, the grid that appears on the bottom
plane has been projected onto the surface.

Both figures show that an agent with learning speed λ = 0 cannot successfully
compete with his opponent, and obtains a negative score. Note that in this case,
the agent does not learn at all. Instead, he plays according to a fixed strategy,
irrespective of his ability to use theory of mind.

Figure 1a shows that ToM1 agents predominantly obtain a positive score
when playing against ToM0 opponents. The bright area along the line λf = λo
indicates that this advantage is again particularly high when learning speeds are
equal. In this case, the ToM1 agent’s implicit assumption that his opponent has
the same learning speed as himself is correct. Surprisingly, Figure 1a shows that
even when the ToM1 agent fails to accurately model his opponent, he will on
average obtain a positive score for any learning speed λf > 0.08.

Figure 1b shows that ToM2 agents obtain an advantage over ToM1 opponents.
However, although Figure 1b shows many of the same features as Figure 1a, such
as the brighter area along the line λf = λo, ToM2 agents playing against ToM1

agents obtain a score that is on average 0.5 lower than the score of ToM1 agents
playing against ToM0 agents. As a result, a ToM2 agent needs a learning speed
of at least λf > 0.12 in order to obtain, on average, a positive score when playing
against a ToM1 agent.

5 Discussion and future research

By making use of agent-based models, we have shown that in the competitive
setting of the limited bidding game, the ability to make use of theory of mind
presents individuals with an advantage over opponents that lack such an ability.
This advantage presents itself even when an agent fails to model his opponent
correctly, although an agent that accurately models his opponent obtains more
of an advantage than an agent that over- or underestimates the speed at which
his opponent learns from past behaviour. In competitive settings like the limited
bidding game, there may therefore be an evolutionary incentive that justifies the
application of higher-order theory of mind.

Our results also show diminishing returns on higher orders of theory of mind.
Concretely, although second-order theory of mind agents outperform first-order
theory of mind opponents, the advantage is not as high as for first-order theory of
mind agents playing against zeroth-order theory of mind agents. Further evidence
suggests that the advantage diminishes quickly for even higher orders of theory
of mind (see Appendix B). This could help explain why humans have difficulty
applying higher-order theory of mind correctly.

One possible direction for future research presents itself in the form of variable-
frame level-n theory [16]. Variable-frame level-n theory expresses theory of mind
as levels of bounded rationality, which an agent uses to model the behaviour
of his co-player in the setting of a coordination game. An agent makes use of
salience to determine what he believes his co-player to believe to be the best
course of action, and selects his own action accordingly. In our competitive set-



ting, variable-frame level-n theory could be used to shape an agent’s initial beliefs
based on the salience of the tokens with the highest and lowest values. This could
provide theory of mind agents with additional advantages early in the game.

Although we have shown that the use of theory of mind benefits individuals
in the setting of the limited bidding game, in order to represent the beliefs they
attribute to others, the higher-order theory of mind agents we describe need
additional memory capacity. Based on additional experiments, it seems that the
explicit attribution of mental content to competitors presents individuals with
advantages beyond those of an increase in memory capacity (see Appendix C).
That is, it seems that the advantage obtained by the application of theory of
mind cannot be fully explained by an increase in memory capacity.
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Appendix A Rational agents in the limited bidding game

In game theory, it is common to make the assumption of common knowledge of
rationality [26, 27]. In terms of theory of mind, this means that rational agents
possess the ability to make use of theory of mind of any depth or order. In this
section, we will explain how rational agents play the limited bidding game under
the assumption of common knowledge of rationality.

For simplicity, we consider a limited bidding game of three tokens. In such
a game, players decide what token to play at two moments: once at the start
of the game, and again once the result of the first round has been announced.
Although new information also becomes available after the second round, the
choice of which token to play in the third round is a degenerate one; at the start
of the third round both players only have one token left. Since both players have
the choice of three tokens to play in the first round, there are nine variations of
the subgame the agents play at the second round of the game. We first consider
what a rational agent will choose to do at the start of the second round.

Player 2
123 132 213 231 312 321

P
la

ye
r

1

123 (0,0) (0,0) (0,0) (-1,1) (1,-1) (0,0)
132 (0,0) (0,0) (-1,1) (0,0) (0,0) (1,-1)
213 (0,0) (1,-1) (0,0) (0,0) (0,0) (-1,1)
231 (1,-1) (0,0) (0,0) (0,0) (-1,1) (0,0)
312 (-1,1) (0,0) (0,0) (1,-1) (0,0) (0,0)
321 (0,0) (-1,1) (1,-1) (0,0) (0,0) (0,0)

Table 1: Payoff table for the limited bidding game of three tokens. Each outcome
of the game corresponds to a tuple in the table. The first value of the tuple is
the payoff for player one, the second is the payoff for player two.

Since every player tries to maximize the number of rounds won and minimize
the numbers of rounds lost, at the end of each game, each player receives a payoff
equal to the difference between the two. Table 1 lists the payoffs for both players
for each possible outcome of the game, where each outcome is represented as
the concatenation of the tokens in the order in which the player has played
them. Each payoff structure is presented as a tuple (x, y), such that player 1
receives payoff x and player 2 receives payoff y. The subgames that are played
at the beginning of the second round are represented as 2-by-2 submatrices,
highlighted by alternating background color in Table 1.

Note that whenever the first round of the game ends in a draw, the resulting
subgame is a degenerate one. In this case, both players receive zero payoff irre-
spective of the final outcome. When the first round does not end in a draw, the



resulting subgame is a variation on the matching pennies game [28]. This game
is known to have no pure-strategy Nash equilibrium. That is, there is no com-
bination of pure strategies such that each player maximizes his payoff given the
strategy of its opponent. However, there is a unique mixed-strategy Nash equi-
librium in which each player plays each possible strategy with equal probability.
If both players play either one of their remaining tokens with 50% probability,
neither one of them has an incentive to switch strategies: given that its opponent
is playing randomly, a rational agent has no strategy available that will yield a
better expected payoff than playing randomly as well.

Player 2
1 2 3

P
la

ye
r

1 1 (0.0,0.0) (-0.5,0.5) (0.5,-0.5)
2 (0.5,-0.5) (0.0,0.0) (-0.5,0.5)
3 (-0.5,0.5) (0.5,-0.5) (0.0,0.0)

Table 2: Payoff table for the limited bidding game of three tokens once the players
have derived that after the first round, both players will play randomly.

Due to the common knowledge of rationality, each player knows that both of
them have reached the conclusion that after the first round, they will both play
randomly. This means we can rewrite the payoff matrix to reflect the results of
each of the subgames, as shown in table 2. Note that this is another variation of
the matching pennies game with three strategies, also known as a stone-paper-
scissors game [28]. As before, there is no pure-strategy Nash equilibrium, but the
unique mixed-strategy Nash equilibrium is reached when both players play each
strategy with equal probability. That is, rational agents, under the assumption
of common knowledge of rationality, solve the limited bidding game by playing
randomly at each round.

This result also holds when the game is played using more than three tokens.
That is, to prevent their opponent from taking advantage of any regularity in
their strategy, rational agents play the limited bidding game randomly.

Appendix B Limits of the advantage of theory of mind

In Section 4, we have shown that ToM2 agents can obtain advantages that go
beyond those obtained by ToM1 agents. In this section, we extend the model of
Section 3 to allow for ToM3 agents. These agents possess an additional distri-
bution b(3), such that a ToM3 agent believes that his opponent believes that he
believes her to assign probability b(3)(t;S, T ) to him playing token t in situation
(T, S). These beliefs are used to determine what token the ToM3 agent would
play if he were in the position of his opponent, and playing as a ToM2 agent.



(a) Average performance of a focal
ToM2 agent playing against a ToM1 op-
ponent.

(b) Average performance of a focal
ToM3 agent playing against a ToM2 op-
ponent.

Fig. 2: Effects of learning speed λ on average performance in a game of 5 tokens.
Performance was determined as the average score over 50 trials, for every 0.02
increase of λ in the range 0 ≤ λ ≤ 1. Discounting rate δ was fixed at 0.9.

The ToM3 agent considers a ‘pure’ ToM2 agent, such that he specifies c1 = 0.0
and c2 = 0.8 for his opponent. The confidence in first-order theory of mind that
he believes her to assign to him is c1 = 0.8. This results in the estimate

ŝ(3) = t∗S,T

(
∆
[
b(1), t∗T,S

(
∆
[
b(2), t∗S,T

(
b(3)
)
, 0.8

])
, 0.8

])
. (10)

This estimate is then used to update the ToM3 agent’s beliefs a third time
before he makes his choice of what token to use. This choice therefore is

t∗T,S

(
∆
{
∆
[
∆
(
b(0), t∗S,T

(
b(1)
)︸ ︷︷ ︸

ŝ(1)

, c1

)
, t∗S,T

(
∆
[
b(1), t∗T,S

(
b(2)
)
, 0.8

])
︸ ︷︷ ︸

ŝ(2)

, c2

]
,

t∗S,T

(
∆
[
b(1), t∗T,S

(
∆
[
b(2), t∗S,T

(
b(3)
)
, 0.8

])
, 0.8

])
︸ ︷︷ ︸

ŝ(3)

, c3

})
. (11)

This agent has been implemented in Java and placed in competition with
the ToM2 agent described in Section 3. The results are shown in Figure 2b. For
convenience, the average performance of a ToM2 agent playing against a ToM1

opponent has been repeated in Figure 2a. As Figure 2b shows, a ToM3 agent
barely outperforms a ToM2 agent. The average score only exceeds 0.3 when the
ToM2 opponent has zero learning speed. Although it appears as if a ToM3 agent
can still on average obtain a positive score when his learning speed is at least
λ > 0.32, Figure 2b shows that when the ToM2 opponent has learning speed
0 < λ < 0.1, performance of the ToM3 agent may still fall below zero.



Interestingly, the poor performance of ToM3 agents playing against ToM2

opponents is partially caused by the model that the ToM2 opponent holds of the
ToM3 agent. Note that since confidence levels ci are initialized at zero, all agents
start out by playing as ToM0 agents. When a focal ToM3 agent is in competition
with a ToM2 opponent, both of them will notice that their predictions based on
first-order theory of mind ŝ(1) are correct. Through Equation (6), this causes
both agents to grow more confident in application of first-order theory of mind.
As a result, they both gradually start playing more as a ToM1 agent. When
this happens, predictions based on first-order theory of mind ŝ(1) will become
less accurate, but predictions based on second-order theory of mind ŝ(2) become
increasingly accurate, increasing confidence in the application of second-order
theory of mind through Equation (7). Both the focal agent and his opponent
will therefore start playing as a ToM2 agent. At this point, the opponent can no
longer model the focal agent. That is, she will notice that none of her predictions
are correct and start to play as a ToM0 agent again. However, when the focal
agent tries to take advantage of this by playing as a ToM1 agent, the opponent
recognizes this and once again grows more confident in her predictions based on
second-order theory of mind. This causes the ToM2 opponent to constantly keep
changing her strategy, which hinders the ToM3 agent’s efforts of trying to model
her behaviour.

Appendix C Theory of mind is more than increased
memory

The results in Section 4 show that the use of a theory of mind benefits individ-
uals in the setting of the limited bidding game. However, in order to represent
the beliefs they attribute to others, the higher-order theory of mind agents we
described in Section 3 need additional memory capacity; for every additional
order of theory of mind available to the agent, it maintains another belief struc-
ture b(i). In this section, we consider the high-memory ToM0 agent, which has

the ability to remember what token t
(−1)
T,S he played the last time in any game

situation (T, S). The high-memory ToM0 agent makes use of this by represent-

ing beliefs of the form b
(0)
Mem, such that he believes that the probability of his

opponent playing token s in situation (T, S) is b
(0)
Mem(s;T, S, t

(−1)
T,S ). That is, the

high-memory ToM0 agent has different beliefs concerning what his opponent will
play in situation (T, S) based on the last token he played in the same situation.

To determine whether the contribution of theory of mind to an agent’s perfor-
mance can be explained by additional memory alone, we placed the high-memory
ToM0 agent in competition with the ToM2 agent described in Section 3, both
of which have similar demands on memory capacity. The number of game sit-
uations in which a player makes a non-trivial choice of what token to play is
N−2∑
i=0

(
N
i

)2
. For a game of five tokens, there are 226 such situations. Since a ToM2

agent needs to maintain three belief structures b(i), a ToM2 agent needs enough



Fig. 3: Effects of learning speed λ on the average performance of a high-memory
ToM0 agent playing against a (low-memory) ToM2 opponent in a game of 5
tokens. Performance was determined as the average score over 50 trials, for every
0.02 increase of λ in the range 0 ≤ λ ≤ 1. Discounting rate δ was fixed at 0.9.

memory to represent 678 beliefs. A high-memory ToM0 agent has a richer rep-

resentation of the game, which causes him to consider
N−2∑
i=0

(N − i)
(
N
i

)2
game

situations in which he makes a non-trivial choice of what token to play. In ad-

dition to remembering his last choice t
(−1)
T,S in 226 situations, the high-memory

ToM0 agent therefore needs enough memory to represent 605 beliefs to maintain

his belief structure b
(0)
Mem.

Note that the high-memory ToM0 agent represents an unpredictable oppo-
nent for the ToM2 agent. A ToM2 agent models the behaviour of his opponent
by considering his own actions in her situation. However, the representation of
the game situation held by a high-memory ToM0 agent differs from that of his
low-memory ToM2 opponent. That is, the ToM2 opponent fails to accurately
model the high-memory ToM0 agent.

Figure 3 show the average performance of a high-memory ToM0 agent when
playing against a low-memory ToM2 opponent. Surprisingly, even though the
ToM2 opponent is unable to effectively use her theory of mind, she outperforms
the high-memory ToM0 agent whenever her learning speed λ > 0.12. On average,
a high-memory ToM0 agent scores -0.20 when playing against a ToM2 opponent.

A possible reason for the negative score of the high-memory ToM0 agents,
even though their ToM2 opponent is unable to accurately model them, may be
the length of the trials. In our setup, trials consist of 50 consecutive games, which
may not provide a high-memory ToM0 agent with sufficient information to gain
an advantage over his ToM2 opponent. In contrast, although the ToM2 opponent
incorrectly models the high-memory ToM0 agent, her model is accurate enough
to obtain a reliable advantage.


