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Chapter 1

I ntroduction

The subjed of this thesisis argumentation. We consider argumentation as a process
in which arguments suppating a onclusion are taken into acount. During the
process of argumentation, a mnclusion originally justified by some agument can
become unjustified. Thisis the result of the defeasibility of arguments.1 Our central
theme is how argumentation and the defeasibility of arguments can be formally
modeled.

In this chapter, we first introduce the central concepts used throughout the
thesis: argumentation (sedion 1), arguments (sedions 2 and 3) and defeasibility
(sedion 4). Then the reseach of the thesis is introduced. We put our reseach in
perspedive by giving a brief survey of recent related reseach (sedion 5), and by
explaining our general aims and hiases (sedion 6). The introductory chapter
concludes with the reseach goals and method (sedion 7), and an outline of the
thesis (sedion 8).

1 The process of argumentation

Argumentation is a process? Its purpose is to justify conclusions (seg e.g., Poll ock,
1987. Which conclusions are justified changes during the agumentation process
For instance, let us consider a story about John. It starts as foll ows.

John is going to work and notices that it is gill freeing. He sees ssme people
skating on the lake that he passes ead day, and he redizes that the iceis finally
thick enough After hisarrival at the office he notices that his colleggue Mary is
not there, and wonders whether she has taken a day off. Later that morning, he
meds Harry at the offee madciine. Harry tells John that whenever the ice is

1 Theterm ‘defeasibility’ wasintroduced by Hart in 1948(cf. Loui, 1995).

2 Thisisan dd ideain philosophy and can arealy be foundin the work of Aristotle (cf.
Rescher, 1977. Receitly, the importance of process for argumentation hes been
reemphasized, e.g., by Loui (1992, Vreeswijk (1993 and Lodder (1996.
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thick enough Mary takes a day off to go skating. John concludes that Mary has
indeed taken a day off.

This first part of our story about John shows the process charader of
argumentation. Which conclusions are justified depends on the stage of the
argumentation. For instance, only at the end of the story does John consider the
conclusion that Mary has taken a day off to be justified. First, John rotices that the
ice is thick enough Later this turns out to suppat his conclusion. Then he
considers the question whether Mary has taken a day off. However, at that moment
he does not conned this with the state of the ice He makes the wnnedion &fter
Harry tells him that whenever the ice is thick enough Mary takes a day off to go
skating. Only then does he conclude that Mary has taken a day off.

Justified conclusions can be used in argumentation to suppart new conclusions,
aswe can seein the foll owing continuation of our story about John.

John returns to his desk unheppily. He knows that ead time Mary takes a day
off, he cannot finish hiswork. An hour later Mary’s boss Anne, passes by. She
asks how things are going. John reluctantly tells her that he will not be éle to
finish hiswork, and explains why.

The conclusion that Mary has taken a day off is used to suppart the conclusion that
John cannot finish hiswork.

The story shows that during the process of argumentation new conclusions
become justified. New conclusions are justified by already avail able information, or
by new information. But this is not al: not only can new conclusions become
justified, but also dd conclusions can become unjustified. This is diown in our
story, which ends as foll ows.

After John hes told Anne that he will not be ale to finish his work, she laughs.
Anne says that she has forbidden Mary to take aday off. Mary isnot at her desk
becaise of ameding.

Now that John krows that Anne has forbidden Mary to take a day off, his
conclusions that Mary has taken a day off, and that he canot finish his work, are
no longer justified.

The story about John shows that justified conclusions are not necessarily true
conclusions. John's conclusion that Mary had taken a day off was justified, but
false. Falsity of justified conclusions can have two causes. First, it can be due to
false premises, and seaond it can result from a ladk of relevant information. One
example s the foll owing argument:

Amsterdam is the caital of Denmark.
So, the Danish government resides in Amsterdam.
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Even though the government of a country usually resides in the capital of the
country, this argument has a false conclusion, because its premise is false. Another
exampleis the argument

Amsterdam is the capital of the Netherlands.
So, the Dutch government resides in Amsterdam.

This second argument has a false conclusion because the information is lacking that
in the Netherlands the government of the country does not reside in the capital of
the country, in contrast with the usual situation.

Which conclusions are justified depends on the information taken into account
at the stage of the argumentation process. As a result, justified conclusions are at
best an approximation of true conclusions. Normally, the approximation becomes
better, as the justified conclusions are at successive stages based on more
information.

2 Argumentsasreconstructions

Central in argumentation are arguments which are used to justify conclusions.
Conclusions become justified if they are supported by arguments. An example of an
argument is the following:

The ice is thick enough for skating. Whenever the ice is thick enough for
skating, Mary takes a day off to go skating.
So, Mary takes a day off to go skating.

In our story, John does not explicitly give an argument that Mary has taken a day
off. However, if he were asked why he thought that Mary had taken a day off, he
would give an argument similar to the one above. The argument is a reconstruction
of how John arrived at the conclusion that Mary has taken a day off.

The structure of the example argument is depicted in Figure 1. The conclusion
is supported by an argument that consists of one step from the premises to the
conclusion. The arrow indicates that the premises support the conclusion.

Theiceisthick
enough for skating.

Mary takes a day off
Whenever theiceis to go skating.
thick enough for
skating, Mary takesa
day off to go skating.

Figure 1: The structure of an argument
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An argument from premises to conclusion consists of one or more steps. For
instance, the following argument that John cannot finish his work consists of two

steps:

Theiceisthick enoughfor skating.

Whenever the ice is thick enough for skating, Mary takes a day off to go
skating.

So, Mary takes a day off to go skating.

Whenever Mary takes aday off, John cannot finish hiswork.

So, John cannot finish hiswork.

This argument has three premises. Two o the premises are used in the first step of
the agument, and suppart the intermediate conclusion that Mary takes a day off.
The third premise is used in the second step of the agument to suppat the
conclusion that John cannot finish hiswork. The structure of the agument is sown
in Figure 2. It shows the premises, the intermediate cnclusion, and the mnclusion
of the agument.

Theiceisthick
enough for skating.
Mary takes a day off
Whenever theiceis to go skating.
tSkhI ;k mOI\L/Jlgh f(t);k John cannot finish his
ing, Mar esa
g. Vary Whenever Mary takes work.

day off to go skating. aday off, John cannot

finish hiswork.

Figure 2: A two step argument

In the story, it turns out that John's conclusions that he cannot finish his work and
that Mary takes a day off are in the end not justified. The aguments are defeaed
becaise of Anne’s prohibition. The defeasibility of argumentsis our central theme.

Summarizing, we trea arguments as rewnstructions of how conclusions are
supparted. We regard argumentation as the processof coll eding arguments in order
to justify conclusions. A property of the processof argumentation is that whether
arguments justify their conclusions can change during the process They can
bemme defeaed. Arguments that at an ealy stage in the agumentation process
justify their conclusion do not necessarily justify it at alater stage.
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3 Argumentsand proofs

In this thesis, we deal with formal models of argumentation. A well-known formal
model of argumentation is the proof theory of classical deductive logic (in its
various guises. Propositional Logic, First-Order Predicate Logic, Modal Logic).3
Proof theory deals with proofs, that in some ways resemble arguments.

For instance, a proof that resembles the argument in Figure 1 is

Thick-ice  Thick-ice » Day-off
Day-off

Informally, a proof is a series of proof steps starting from given premises. Proof
steps are instances of deduction rules. The example consists of one proof step that
is an instance of the deduction rule known as Modus Ponens:

Sentence-1 Sentence-1 - Sentence-2
Sentence-2

Here Sentence-1 and Sentence-2 are any two sentences of the logical language.

The similarity of proofs and arguments is clear. For instance, the structure of
proofs is closely related to the structure of arguments. Like an argument, a proof
supports its conclusion. Like an argument, a proof can consist of several steps from
premises to conclusion.

In one respect, however, proofs differ from arguments: arguments are
defeasible. Additional information may have the effect that an argument does no
longer justify its conclusion and becomes defeated. This does not hold for proofsin
deductive logic. Additional proofs never make other proofs unacceptable.
Therefore, the proof theory of deductive logic is inappropriate as a model of
argumentation. In this thesis, formal models of argumentation are discussed that
can deal with the defeasibility of arguments.

4 Thedefeasibility of arguments

In this section, we informally discuss four cases in which arguments may become
defeated. These are meant as illustrations of the defeasibility of arguments, and not
as ataxonomy of types of defeasibility.

4.1  Exceptionsto rules

So far, we have seen examples of arguments, but we have not yet investigated how
the steps in an argument arise. We reconsider our example.

3 Lukaszewicz (1990) and Gabbay et al. (1993) give overviews.
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The ice is thick enough for skating. Whenever the ice is thick enough for
skating, Mary takes a day off to go skating.
So, Mary takes a day off to go skating.

This is an argument that consists of a singe step. The agument above is an
instance of the following scheme:

Stuation-1. Whenever Stuation-1, Stuation-2.
So, Stuation-2.

Not only the agument above, but all i nstances of this £heme ae aguments. There
is ome kind of relation between the premises and the conclusion of the agument.
This relation is cdled a rule If a rule gives rise to accetable aguments, it is
valid.

The rule behind the agument scheme @ove is closely related to the deduction
rule Modus Ponens of classcd deductive logic (seesedion 3). If an instance of a
(valid) ruleisused as a step in an argument, we say that the rule is applied.

A charaderistic of rules is that they can have exceptions: the mnclusion of a
rule does not always follow if its condition is stisfied. In the case of an exception
to arule, arguments that contain a step warranted by that rule ae defeaed.

We have drealy seen an exception to the rule &ove, namely the cae that
Mary’s bassprohibited her to take aday off. In such a cae the rule is not applied.
Exceptionsto therule can exist, since even if Mary normally goes skating when the
iceisthick enough there can be other reasons why she does not go.

4.2  Conflicting arguments

If arguments have incompatible @nclusions, we spe& of conflicting arguments.
For instance Mary can have areason to go to work, and at the same time areason
to take aday off. Not going to work may cause problems at the office, but not
taking the day off means that she misss one of the few oppatunities to go skating.
So, Mary might consider the foll owing two arguments :

There will be problems at the office, if | take aday off.
So, | go to work.

4 One might think that ‘Whenever the iceis thick enough for skating, Mary takes a day off
to go skating’ isarule. In the agument in the text it is however a premise of the agument.
If it isconsidered to be avalid rule, it gives rise to the following argument:

Theiceisthick enough for skating.

So, Mary takes aday off to go skating.
We mme bad to this difference in chapter 4, sedion 1, where we discuss yllogistic and
enthymematic arguments.
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I missone of the few oppatunitiesto go skating, if | go to work.
So, | take aday off.

However, it isimpossble to go to work and to take aday off, so the mnclusions of
Mary’s two arguments are incompatible, and the aguments are conflicting.

In the aguments above, ‘There will be problems at the office, if | take aday
off isareason for ‘I go to work’, and ‘I missone of the few oppatunities to go
skating, if | go to work’ is areason for ‘I take aday off'. In general, we cdl the
dired predecesor of a anclusion in an argument a reason for that conclusion. In a
case such as in this example, where reasons auppart incompatible conclusions, we
say that the reasons are wnflicting.

Conflicting arguments must be distingushed from contradictory proofs in
deductive logic. If two proofs are mntradictory, anything can be proven, and there
must be afalse premise. If two arguments conflict, there is not necessrily a false
premise. It can also be the cae that one (or both) of the aguments sould be
considered defeaed. In the example &ove, probably both arguments are defeaed,
and replaced by an argument in which Mary takes her preferences into account:

There will be problems at the office, if | take aday off.

I missone of the few oppatunitiesto go skating, if | go to work.

Oppartunities to go skating are extremely rare, and the problems can be solved
tomorrow.

So, | take aday off.

4.3 Conclusiveforce

Not al arguments suppart their conclusion equally well; arguments have diff erent
degrees of conclusive force Some aguments make their conclusion more plausible
than others (*If it was Mary who told you Johnis nice, | believe heis. If Annetold
you, | don't know’). If an argument uses datisticd evidence, one conclusion can be
more probable than another (‘John's bossis probably male’). If the cnclusive
forceof an argument istoowed, it is defeaed.

The depth of an argument influences its conclusive force: a series of argument
steps is often lesscogent than one step. For instance, the agument that there will be
problems at the office is less cogent than the shorter argument that Mary takes a
day off. The mnclusive force bemmes less becaise the larger argument can be
defeaed by exceptions to both argument steps.

In the story there is an exception to the first argument step. The conclusion that
Mary has taken a day off is not supparted, becaise Anne prohibited it. As a result,
the conclusion that there will be problems at the office is then aso no longer
justified. But if it was justified to believe that Mary took a day off, there could be
ill be an exception to the second step. For instance, if a temporary employeeis
hired, it is not justified to believe that there will be problems at the office. We cal
this the sequential weakening of an argument.
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Also the number of arguments that suppat a nclusion or intermediate
conclusion influences the mnclusive force of an argument. An argument that
contains more (independent) reasons for some conclusion can become more mgent.
For instance,

Harry told you Johnis nice Pat told you Johnisnice
So, | believe heis.

can judtify its conclusion, while

Harry told you Johnis nice
So, | believe heis.

may not. We cdl thisthe parallel strengthening of an argument.
4.4  Other argumentstaken into account

Whether an argument is defeaed is influenced by the other arguments taken into
acount. We have dready seen an example: the agument that Mary takes a day off
to go skating is defeded as on as there is another argument that justifies the
conclusion that Mary’s boss forbids her to. In our story the latter argument was
adually a statement: it did not contain an argument step.>

In the example, there is an exception to the rule that Mary takes a day off to go
skating if the iceis thick enough The agument that Mary takes a day off can also
be defeaed by an argument that explicitly takes the exception into acwunt:

Theiceisthick enoughfor skating.

If theiceisthick enoughfor skating and Mary’s bassdoes not forbid her to take
aday off, Mary takes a day off to go skating.

If the iceis thick enoughfor skating and Mary’s bassforbids her to take aday
off, Mary does not take aday off to go skating.

Mary’s bossforbids her to take aday off.

So, Mary does not take aday off to go skating.

Another example of the influence of arguments on ead other is that arguments can
challenge eab other. We say that one agument chall enges another argument if the
challenged argument is defeaed in case the chalenging argument is not. For
instance, the agument

John dislikes Mary.
o, | think that Mary is not nice

5 By convention, we trea statements as arguments with trivial structure (cf. chapter 5,
sedion 21).
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might be challenged by the statement:

John and Mary had arelationship, and Mary finished it.

5 Related research

In the previous sections, we introduced the central concepts of the thesis. We
continue with an introduction to the research in the thesis, and start with a brief
survey of related research.

Recently there has been arevival of research on argumentation and defeat. This
revival has been motivated by several cross-disciplinary interests. For instance, the
following - not necessarily digoint - disciplines have stimulated the research on
argumentation and defeat:

e Logic: The research on nonmonotonic logics remains popular (Gabbay et al.
(1994b) give an overview) and now encompasses the defeasibility of arguments
asaspecial topic (cf. Nute, 1994).

e Computer science: The computational complexity of nonmonotonicity attracted
the attention of the logic programming community (e.g., Dung, 1993, 1995;
Bondarenko et al., 1993).

« Artificial intelligence: Since reasoning with defeasible arguments seems to lead
to successful behavior of people, artificial intelligence researchers try to capture
its essence (e.g., Nute, 1988; Geffner and Pearl, 1992; Simari and Loui, 1992).

e Epistemology: Questions about the justification and support of beliefs have
resulted in formal epistemological theories (e.g., Loui, 1987, 1991;
Pollock, 1987-1995).

< Argumentation theory: Notions such as counterargument and reinstatement have
been formally studied (e.g., Vreeswijk, 1991, 1993; Verheij, 1995a, b, c).

e Dialectics: Several game-like formalisms have been proposed in which two
parties are disputing an issue (e.g., Loui, 1992; Gordon, 1993a, 1993b, 1995;
Vreeswijk, 1993; Brewka, 1994; Leenes et al., 1994; Hage et al., 1994; Lodder
and Herczog, 1995).

e Legal theory: The pragmatic solutionsin legal reasoning to deal with exceptions
and conflicts have inspired researchers and have been formally analyzed (e.g.,
Hage, 1993, 1995; Prakken, 19933, b, 1995; Sartor, 1994).

This brief survey contains only a selection of recent research to give an idea of the
current activity and the diversity of perspectives. Overviews of research on
argumentation and defeat have recently been given by Bench-Capon (1995), who
focuses on artificia intelligence and law, and Loui (1995b), who focuses on
computational dialectics.
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6 General aims and biases of research

Reseach on the modeling of argumentation can have rather different aims, for
instance

e to describe ad evaluate adual human argumentation by means of empirica
investigation, e.g., in cogniti ve science or psychology;

e to apply an argumentation model in order to build intelligent computers and
programs, e.g., in computer scienceand artificial intelli gence

« toinvestigate and enhance our conceptuali zations of argumentation in order to
better understand its nature, e.g., in phil osophicd and mathematicd logic.

Of course, doing research on the modeling of argumentation, one does not normally
have only one of the dms above: even if one is mostly interested in intelli gent
computer programs, one can be inspired by acual human argumentation, and be led
to the enhancement of one’s initial model of argumentation. Nevertheless reseach
is often biased towards one or more of the mentioned aims of study.

In Figure 3, we have visualized the biases of some reseach on the modeling of
argumentation in atrianguar diagram. The three @rners of the triange crrespond
to the three @ams mentioned, and are suggestively labeled ‘Minds and humans’,
‘Macdhines and programs’, and ‘ Theories and models . Researchers or subjeds of
reseach are indicated by alabeled da.6 The doser adot is to one of the crners,
the more the mrresponding researcher or subjed of reseach is biased towards the
aim of study of that corner.”

Some reseach is mostly biased to one of the three ams. We give examples of
ead. First, we mention First-Order Predicae Logic.8 Asamodel of argumentation,
it is most appropriate & a theoreticd model, due to its nice mathematicd
properties, but less as an empiricd model or as a mmputational model. It is
therefore indicated in the upper corner. Second, Van Eemeren and Grootendorst
(Van Eemeren et al., 1981, 1987 have provided a model of argumentation
explicitly meant to analyze agumentation as it occurs in argumentative texts, and
are therefore indicated in the lower-left corner. Third, the reseach on logic
programming is clealy mostly amed at building intelligent machines,
notwithstanding its theoreticd achievements, and is therefore indicated in the
lower-right corner.

6 Severa of the indicated reseachers or subjeds of reseach are extensively discussd
later on.

7 The triangle has barycentric coordinates. One can think of the triangle & the set of
points (X, y, 2 intheplanex+y+z=1,suchthat 0<x<1,0<y<1land 0<z< 1. For
instance, the mrners of the triangle ae the points where one of the wordinatesis equal to 1
The sides of the triangle ae the points where one of the mordinatesis equal to 0. The values
of eath of the three @ordinates represent the bias level towards one of the mrners.

Van Daen (1983 and Davis (1993 giveintroductions to First-Order Predicate Logic.
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Theories and models

/_\ First Order
Predicate Logic

Reiter's

Default Logic *
CumulA
* (chapter 5)
Rescher’ . Dung'sadmissible
. esener's sets of arguments
i dialedics \
Reason-Based Logic Vreeswijk's abstract
(chapter 2) * argumentation systems
Pollock’s oscAR *
Loui’s ystem of \
defeasible inference ) )
van Eemeren o logic programming
* and Groatendorst + Lodder’s Dial.aw \
Minds and humans Machines and programs

Figure 3: Biases diagram of some reseach on modeli ng argumentation

Some reseach is equally biased towards two of the @ms, and is therefore indicated
nea the midde of one of the sides of the triangle. For instance Vreeswijk's
abstrad argumentation systems (1991, 1993 were meant both as a model for
theoreticd study and for computational application.® Pollock’s (1995 reseach on
OSCAR isindicated in the middle of the triange, sinceit equally contains elements
of al three ams: Pollock has applied his philosophicd theories on epistemology in
the cmputer program OSCAR that is designed to argue & people do (or should dg.

In order to show our aims of reseach, we have included our two main topics,
Reason-Based Logic and CumulA, in the triangle. The first, Reason-Based Logic
(see tapter 2), isindicated nea the midde of the left-side of the triangle. It was
inspired by adual human argumentation, espedaly in the field of law (see
chapter 4), but it was also developed in order to compare it with other models. The
seoond main topic of research, CumulA (see dapter 5), isindicated nea the upper
corner, since it was mainly designed as an abstrad model of argumentation, that
can be used to analyze diff erent approacdhes towards modeli ng argumentation.

Although the diagram is merely tentative and we make no claim about its
‘truth’, we nevertheless hope that the biases diagram ill ustrates how differently
biased research on modeling argumentation can be, and what the biases of our own
reseach are.

9 Vreeswijk (1995 describes the program IACAS, which was written to demonstrate his
abstrad argumentation systems.
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7 Research goalsand method

Our darting point of reseach is that the aurrently available models of
argumentation are not fully satisfactory. This garting point, although certainly not
new, remains valuable, despite the @undance of newly presented models (see
sedion 5). As Haak (1978 put it, when discussng the paradigmatic example of a
rule in argumentation, the material conditional of First-Order Predicate Logic,

‘(...) the significance of the discrepancies between ‘if' and * -’ will depend on
the answers to at least two (..) questions: for what purpose(s) is the
formali sation intended? and, does that purpase require something stronger than
the material conditional? Both (...) are degp and difficult questions.’

(Haadk, 1978 p. 39

The recent revival of reseach (cf. sedion 5) is partly due to a new answer to the
first of these questions. recent reseach often is concerned with defeasible
arguments, leading to other formalizations of rules. As for rules, new purposes of
formalizing argumentation, such as cgpturing the role of counterarguments and of
the processcharader of argumentation, lead to new models.

The purpose of our reseach is to find answers to two groups of reseach
guestions.

e What is the role of rules and reasons in argumentation with defeasible
arguments? What properties of rules and reasons are relevant for argumentation
and defea? How do these propertiesrelate?

«  What istherole of processin argumentation with defeasible aguments? How is
the defea of an argument determined by its gructure, counterarguments and the
argumentation stage?

Trying to answer these groups of questions, we study argumentation and defea
from two angles, resulting in formalisms of different nature, Reason-Based Logic
and CumulA.

Reason-Based Logic is amodel of the nature of rules and reasons, which are &
the basis of argumentation. We investigate the properties of rules and reasons that
are relevant for the agumentation and defea, and how these properties relate to
ead other. This part of the reseach is joint work with Hage, who initiated the
development of Reason-Based Logic (see tapter 2).

CumulA is a model of argumentation in stages. We investigate how the
structure of an argument is related to defea, when arguments are defeaed by
counterarguments, and how the status of argumentsis affeced by the agumentation
stage.

Thethesis has five goals:
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« Providing a model of rules and reasons, Reason-Based Logic, focusing on
properties that are relevant for the defeasibility of arguments.

« Demonstrating the usefulnessof the model by providing examplesin the field of
law.

¢ Discussing how Reason-Based Logic relatesto previously proposed models.

e Providing a model of argumentation, CumulA, that focuses on the process of
taking arguments into acount, and shows how the status of an argument is
determined by the structure of the agument, the counterarguments and the stage
of the agumentation process

e Demonstrating tow CumulA can be used to andyze other models of
argumentation.

Our method o reseach can be summarized, as foll ows:
Developing forma models of argumentation on the basis of informal examples.

The alvantage of formal models is that they are dea and predse, which is
necessry to show the intentions of the model and is useful for reveding errors and
shortcomings. A drawbadk of formal models, as put forward by Van Eemeren et al .,
discusgngthe dtradion of Toulmin'slessforma model (Toulmin, 1958, is that:

‘Studying formal logic systems requires quite alot of effort, its relevance for
pradicd purposesis not immediately apparent and the return on the df ort spent
is dight.” (Van Eemeren et al., 1987, p. 206)

Thisis felt so by many people, and indeal the feding seans to be justified by the
reseach on nonmonotonic logics, which has become a mathematicaly inclined
subjed, even thoughit wasinitially inspired by intuitive examples.

The drawbadk can partly be drcumvented by providing informa examples. We
not only do this to make the text more legible, but also as an esential ingredient of
our method: without informal examples, a formalism remains uninterpreted, and
therefore much less useful. We ae badked by Haadk (1978, who in her
‘Philosophy of logics' stresses the importance of informal interpretation and extra-
systematic judgments (p. 32ff.) for devising and evaluating aforma model.

As aresult, in this thesis, we stick to the predsion and rigor of formal models,
but precade dl formal definitions by informal examples, nealed to interpret the
formalism.

8 Outlineof thethesis

The structure of this thesis follows the reseach goals discussed in the previous
sedion.
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In chapter 2, we describe Reason-Based Logic. We determine types of facts
concerning rules and reasons that are relevant for the defeasibility of arguments,
and show their relations. Using this semantics of rules and reasons, we determine
some intuitively attractive modes of reasoning. However, these lead to the
difficulties of nonmonotonic reasoning. We show how the ideas of Reiter (1980,
1987) can be used to define rigorously which conclusions nonmonotonically follow
from a given set of premises.

Chapter 3 contains a series of examples of Reason-Based L ogic, taken from the
field of law. We give applications of Reason-Based Logic to the theory of legal
reasoning: we describe three different ways of reconstructing reasoning by analogy,
and provide an integrated view on rules and principles, which seem fundamentally
different (cf. Dworkin, 1978, p. 22ff. and 71ff.).

In chapter 4, we survey other models of rules, and compare them to Reason-
Based Logic. We do this by treating a number of issues concerning the
formalization of rules, and discussing various approaches to deal with these issues.

In chapter 5, the second part of the thesis starts with a discussion of CumulA. It
is a formal model of argumentation with defeasible arguments, focusing on the
process of taking arguments into account. The main ingredients of the formalism
are arguments, defeaters, argumentation stages and lines of argumentation.

In chapter 6, we show how CumulA can be used to analyze models of
argumentation. We investigate types of argument structure and of defeat, the role of
inconsistency and counterarguments for defeat, and directions of argumentation. As
aresult, we are able to distinguish a number of argumentation theories (based on
existing argumentation models) on formal grounds.

The thesis ends with the results and conclusions of the research (chapter 7). We
also give some suggestions for future research.



Chapter 2

Reason-Based L ogic:
a semantics of rules and reasons

In this chapter, a formalism is developed that models rules and reasons. The
formalism, called Reason-Based Logic, is a forma semantics of rules and reasons:
Reason-Based Logic specifies the types of facts concerning rules and reasons that
are relevant for the defeasibility of arguments, and makes the relations that must
hold between these facts precise.l Examples of such facts are the fact that some
rule applies, or that certain reasons outweigh other reasons. A crucial difference
with other logical formalisms is that Reason-Based Logic provides a semantics in
which such facts and their relations are made explicit.

The chapter begins with a motivation of the approach by means of examples
(section 1). After a discussion of what is meant by a formal semantics (section 2),
the formalism is introduced using the informal examples (section 3). Then a
description of the formalism follows. First the types of facts concerning rules and
reasons, as distinguished in Reason-Based Logic, are described (section 4), and
second the relations between these types of facts (section 5). Third we define which
conclusions follow from given premises (section 6).

1 Rulesand reasons by example

In the previous chapter, we introduced argumentation by concentrating on the
arguments that can justify a conclusion, and their defeasibility. In this chapter, we
focus on rules and reasons. Both are fundamental for argumentation: rules give rise
to the reasons that are used in arguments to support a conclusion. We start with a

1 Hage initiated the development of Reason-Based Logic; it was continued in close
cooperation with Verheij. Hage (1991) describes a theory of rational belief, called Reason
Based Reasoning, that already contains the basic informal ideas of Reason-Based Logic.
Verheij (1994) describes a limited version of Reason-Based Logic to get the formalism
right. Hage and Verheij (1994) describe the first full version of Reason-Based Logic that is
also formally satisfactory. The description of Reason-Based Logic in this chapter as a
specification of types of facts concerning rules and reasons and the relations between these
factsisrelated to that of Verheij (1995€). See also note 14.
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number of informa examples. Isaues related to the defeasibility of arguments
(introduced in chapter 1, sedion 4) are examined in detail .

1.1 Rulesand reasons

Mary and John are planning to have apicnic on Sunday. The evening before,
they watch the weaher report on television. According to the weaher report, it
is goingto rain the whole day. Mary and John are disappainted.

Mary and John's disappantment is the result of the foll owing argument:

Acoordingto the weaher report, it will rain all day.
So, it will rainall day.

Because of this argument John and Mary conclude that it will rain al day. Their
conclusion is in this argument supparted by the prediction in the weaher report.
‘According to the weaher report, it will rain all day’ isareason for ‘It will rain all
day’.

John and Mary would have made asimilar argument if the prediction in the
wedher report had been different. If the prediction had been that it would be a
sunry day, John and Mary would have mncluded that it will be sunry becaise of
the weaher report.

So, reasons do not arise individually, but follow a pattern. The prediction of the
wedher report gives rise to a reason, whatever that prediction is, in the following
pattern:

According to the weaher report, it will be weather type so-and-so.
So, it will be weather type so-and-so.

Each instance of this argument scheme can be an argument that supparts the
conclusion that it will be some type of weaher. Moreover, ead instance can be a
step in a larger argument. The relation between a resson and a nclusion as
expressed by such an argument scheme is what we cdl arule.? If an instance of the
scheme can adually be used as part of an argument that suppartsits conclusion (for
instance, when its condition holds) we say that the rule applies.

Not al rules give rise to argument schemes that lead to acceptable aguments.
We onsider a rule to be valid if it is generaly accepted (in some reasoning
community) that the gplicaion of the rule can gve rise to an argument that
suppartsits conclusion.3

2 Rules in Reason-Based Logic correspond to warrants in Toulmin's (1958 argument
scheme.

3 This is in contrast with the legal validity of a rule, which reqguires that the rule is
obtained by alegal procedure, such as when the rule is made by the legidator, and approved
by the parliament.
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1.2  Exclusionary reasons

After watching the weaher report, John is disappanted. He would not like to
have apicnicif it isgoingto rain al day. Mary smiles, and says that he does not
have to worry, because the weaher report on retional television is not good at
predicting the weaher in their district, due to the peauliar locd circumstances.
Therefore, there is no reason to conclude that it will rain all day.

The story illustrates the defeasibility of arguments, introduced in the previous
chapter. In chapter 1, the first example of the defea of an argument was an
exception to a rule (chapter 1, sedion 4.1): in exceptional circumstances the
conclusion of arule does not foll ow, even thoughits conditi on holds.

In the story about John and Mary, we aain encounter an example of an
exception: the weaher report on netional television is not good at predicting the
locd wedaher. Therefore, the fad that, acrding to the weaher report, it will rain
all day isnot areason that it will rain al day in this district. The rule underlying the
argument scheme

According to the weaher report, it will be weather type so-and-so.
So, it will be weather type so-and-so.

is not applicable, even thoughits condition is stisfied by the fad that, acording to
the weaher report, it will rain all day. We say that ‘ The weaher report on retional
television is not good at predicting the locd weaher’ is an exclusionary reason to
the gplicability of the rule? In case there is no exclusionary reason to the
applicability of a rule, the rule is appliceble. We will |ater see that even an
appli cable rule does not always apply, athoughit normally does (sedion 1.4).

1.3  Weighing reasons

That Saturday evening, John's father pays a visit, and the plan to have apicnic
is discussed. He grees that the weaher report on television is not good at
predicting the locd weaher, but says that he neverthel essthinks that it will rain
on Sunday. Because John's father has been a farmer for more than twenty yeas,
John and Mary take his opinion seriously. They go to bed disappantedly. The
next morning Mary looks out the window and sees that the sky is completely
cloudless She happily tells Johnthat it might not rain after all.

4 Our use of the term ‘exclusionary reason’ is closely related to Raz's (199Q p. 35ff.). Raz
focuses on reasons for ading, and he defines an exclusionary reason as a resson nd to ad
for some other reason. Our exclusionary reasons are reasons that make arule inapplicable,
evenin caseitscondtionis stisfied.
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At this paint in our story, John and Mary can make two arguments, one that it will
rain:

John's father thinks that it will rain.
So, it will rain.

and the other that it will not rain:

The sky is completely cloudless
So, it will not rain.

This is an instance of conflicting arguments (see tapter 1, sedion 4.2). Becaise
there is a reason that it will rain, and also a reason that it will not rain, John and
Mary can currently not draw a conclusion.

At bre&fast, John says heis at aloss and does not know what to think about
the weaher. He still takes his father’s opinion seriously, but agrees with Mary
that the weaher looks very good After some discusgon, John and Mary dedde
that what they seewith their own eyes provides the stronger reason, and they
conclude it will not rain.

In the story, John and Mary have weighed the conflicting reasons.®> Since John and
Mary consider the seaond reason the strongest, the agument

The sky is completely cloudless
So, it will not rain.

justifies its conclusion, whil e the agument

John's father thinks that it will rain.
So, it will rain.

does not, and John and Mary conclude that it will not rain.

Weighing can involve several reasons for and against a mnclusion. If, for
instance, the prediction of the national weaher report had been good at predicting
the locd weaher, and therefore the rule based on the prediction was not excluded,
there would have been an additional reason that it will rain. In that situation, the
reasons would again have to be weighed. John and Mary might till dedde that
what they seewith their own eyes gives a reason that is grong enoughto outweigh
both oppasing reasons, but they might also change their opinion and dedde that the
reasons provided by the weaher report and the opinion of John's father together
are stronger than the doudless &y aone.

5 Cf. Naess(1978), p. 100f.
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1.4  Reasonsconcerning the application of arule

After preparing the food, John and Mary drive off to their favorite picnic site.
They turn their locd radio station on, and at ten o’clock the weaher report
brings bad news: after a nice start of the day, it will begin raining before noon.
John and Mary know that, in contrast with the national weaher report on
television, this locd weaher report provides a strong reason that it will rain.
Nevertheless they refuse to take it into acount, against better judgment.

John and Mary’'s semingdly irrational behavior has a reason: otherwise, they would
have to conclude that it will rain, and they would certainly not enjoy their trip any
longer. As before, John and Mary consider the rule underlying the agument
scheme below to be valid:

According to the weaher report, it will be weather type so-and-so.
So, it will be weather type so-and-so.

In the case of the report on television, this rule was excluded, becaise the national
report is not good at predicting the locd weaher. This exclusionary reason does
not hold for the locd weaher report on the radio. Nevertheless John and Mary do
not take the reason that it will rain into acourt. In other words, they do not apply
therule.

Nevertheless they have a reason for applying the rule since the rule is
applicable: the condition of the rule is stisfied, and the rule is not excluded. They
also have areason against applying the rule sinceif they would apply it they would
certainly not enjoy their trip any longer. Their arguments are the foll owing:

Therule's condition is satisfied.
So, the rule gplies.

and

The trip will certainly not be enjoyable any longer if the rule is applied.
So, the rule does not apply.

Again there is a conflict of reasons, and the reasons have to be weighed. In this
case, John and Mary consider the reason not to apply the rule to be the strongest.

The seamingly irrational behavior of Mary and John shows an important
charaderistic of rule gplicaion: it is an ad, and there can be reasons for and
against performing the ad. Their behavior is only seemingly irrational: John and
Mary do have areason ot to apply the rule.

6 In chapter 3, sedion 52, ancther example of reasons against the gplicaion d aruleis
discussed taken from the field of law.
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And, for those who may wonder, Mary and John's behavior did have the right
result: the weaher stayed well during their picnic, and they had a nice dternoon.
Only when they got badk in their car, did it beginto rain heavily.

15 Overview

In the remainder of this chapter we will forget about the adual pradice of
argumentation (to which we will return in chapter 5), and focus on the rules and
reasons on which argumentation is based. The resulting model of rules and reasons
can be used to analyze agumentation. As we hope our examples have shown, such
amodel isbound to be rather complicated.

In the examples, we made the foll owing points about rules and reasons:

¢ Reaons for a wnclusion do not arise individually, but follow a pattern
represented by avalid rule.

e By the gplicaion of arule, a reason arises that supparts a onclusion in an
argument.

¢ A rule can be excluded if there is an exclusionary reason. An excluded rule is
not appliceble, even if its condition is stisfied.

e Incase of conflicting reasons, whether a conclusion foll ows depends on how the
reasons pro and con are weighed. The outcome of the weighing can change if
new reasons arise.

e The gplicdion of a rule is an ad. There can be reasons for and against
performing the ad. If arule is applicable, the fad that makes it applicable is a
reason to apply therule.

The remainder of this chapter is devoted to the daboration of these points and to
the development of aformalism cdled Reason-Based Logic that is based on them.

2 Semantics

In the previous sdion, we have informally introduced our view on the role of rules
and reasons in argumentation with defeasible aguments, by means of examples.
Thisview is at the core of Reason-Based Logic. Using these examples, we develop
the formalism Reason-Based Logic in the subsequent sedions, in acwrdance with
our method d reseach (chapter 1, sedion 7). Reason-Based Logic can be regarded
as a forma semantics of rules and reasons. In this dion, we explain what we
mean by this.

We introduce some nvenient terminology. In the world there ae facts. For
instance it can be afad that the eath is round and that there is an oak treein the
park. Fads can be expressed by sentences in some language. For instance, the fad
that the eatth is round can be expressed in English as ‘The eath is round’ and in
Dutch as ‘De aade isrond’. Not al sentences expressfads. For instance, if it isa
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faa that the eath is round, then ‘The eath is flat’ does not express a fad. A
sentence that expresses a fad is true. We cdl a part of the world that is expressed
by a sentence, whether it is true or not, a state of affairs. Both sentences ‘ The eath
isround’ and ‘The eath is flat’ express s$ates of affairs, but only one of them can
expressafad.

Not al fads ded with physicd objeds, such as the eath or oak trees. In this
chapter, for instance, we ae particularly interested in objeds related to
argumentation, such as rules and reasons. It cen be afad that one reason outweighs
another reason, or that thereis an exception to arule.

Fads are not isolated, but stand in relation to ead other. An example is the
combination of fads by conjunction: it is a fad that the eath is round and it is a
fad that there is an oak treein the park if and only if it is a fad that the eath is
round and there is an oak tree in the park. If we look at the crresponding
sentences, we obtain the foll owing:

The sentence ‘The eath isround’ istrue and the sentence ‘ There is an oak tree
inthe park’ istrueif and only if the sentence‘The eath is round and thereis an
oak treein the park’ istrue.

We give another example, that is related to argumentation: if it isafaa that Mary's
argument justifies its conclusion, then it is also a fad that there ae gplying rules
that give rise to the stepsin Mary’s argument.

We cdl a spedfication of the types of fads in some domain and the relations
that hold between these fads a semantics of that domain.” Since fads can be
expressed as entences of some language, the types of fads in a domain are
spedfied by defining an appropriate language. The relations that hold between fads
are spedfied in terms of relations between the truth values of sentences.

A well-known example is the ‘domain of the logicd connedives’, and its well-
known Tarski semantics.8 One of the types of fadsin this domain is conjunction. In
terms of sentences, ‘Sl and S2' expresses the mnjunction of the fads expressed by
‘Sl’ and 'S2'. The relation that holds between fads combined by conjunction is, in
terms of the arresponding sentences:

‘Sl istrue and ‘' S2’ istrue if and only if ‘S1L and 2" are true.
For the other logicd connedives, similar relations hold.

In the domain of the logicd connedives, the truth value of a sentence is
determined by the truth values of its building blocks, such as in the example of

7 Weuse thisterminology in analogy with that of the Tarski semanticsin formal logic (see
e.g., Davis, 1993 p. 34ff.). However, in style the semantics of rules and reasons discussed in
this chapter differs, and is comparable to the representations of the mmmonsense world, as
discus=ed by, e.g., Hayes (1985, Hobbs and Moore (1985, and Davis (1990.

8  SeeHaak (1978 p. 108f.) for a philosophicd acwurt, or any introductory text on
formal logic, e.g., Davis (1993 p. 34ff.), for aformal acourt.
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conjunction. The logicd connedives are said to be truth-functional. In other
domains this is not always the cae. For instance the truth value of the sentence
‘Johnloves Mary’ depends on the truth value of the sentence ‘John hates Mary’. In
a semantics of love and hate this relation has to be spedfied. The semantics might
for instance state that ‘ John loves Mary’ and ‘ John hetes Mary’ cannot baoth be true.

In this chapter, we describe asemantics of the domain of rules and reasons.
Also in this domain the truth value of sentences is not solely determined by the
truth value of their building blocks. An example of a relation between truth values
of sentencesin thisdomainis:

If ‘ The rule with conclusion conclusion and condition condition is excluded’ is
true, then ‘The rule with conclusion conclusion and condition condition is
valid' istrue.

Here condition and conclusion are variables that stand for the ndition and
conclusion of arule. Informally, this relation between true sentences sys that only
valid rules can be excluded.

The aove shows a second dfference between the domain of rules and reasons
and the domain of the logicd connedives: there eists a semantics of the logicd
connedives that is generally agreed upon, namely the Tarski semantics. This
semantics is © well-known that it seems to be the obviously right one, and even a
‘silly pedantic exercise’ (Davis, 1993 p. 34). In the domain of rules and reasons,
however, this is not the cae. There is no genera agreement on the dementary
concepts nor on their relations. This adds to the importance of our method o
reseach: any attempt to describe a semantics of rules and reasons sould be
acompanied by informal examples (cf. chapter 1, sedion 7).

The vdidity of rules and the eistence of reasons are the bottom line of our
treadment of argumentation: our semantics of rules and reasons does not define
which rules are valid, and which reasons exist. In our view, such fads can only be
determined by means of empiricd investigation: which reasons exist and which
rules are valid in a given reasoning community is $own by the agumentation
behavior of the reasoners in that community. Which rules are valid and which
reasons exist is not determined by logic.

Just as with other empiricdly studied damains it cannot be expeded that the
empiricd datalead to a unique and indisputable theory of rule validity. Moreover,
it will often happen that new data gives rise to a revision of the theory of rule
validity. To compli cate matters further, rule validity can change with time and there
is not always general agreement about rule validity in a community.® Therefore,

9 Even in the mathematicd community where agumentation takes the form of
mathematicd proof the idess about rule validity can change and can be the subjed of
dispute. Examples are Brouwer’s constructivist view on mathematicd proof, and more
recently the dispute éou the accetability of computers as proof toadls (cf. Stewart, 1996).



Sedion 3: Towards aformali zation 23

examples are dways based on a theory of rules and reasons that is given
beforehand as a set of premises.
To summarize, the goa of this chapter is twofold:

e We gpedfy types of fads concerning rules and reasons by defining an
appropriate language @ntaining sentences that express these types of fads
(sedion 4).

* We spedfy the relations that must hold between the types of fads, in terms of
the relations between the truth values of sentencesin this language (sedion 5).

After the formal description of the semantics of rules and reasons, we discusswhich
conclusions follow from given premises (sedion 6). In agreament with our method
(chapter 1, sedion 7), we cntinue with an introduction of the formalism, by means
of the examples from sedion 1.

3 Towardsaformalization

In the examples of sedion 1, we have encountered several types of fads concerning
rules and reasons. For instance arule can be valid, it can be gplied, and reasons
can be weighed. Reason-Based Logic is a formalism in which such fads can be
formally represented, and that makes the relations between these fads predse. In
this sdion, we use the informal examples of sedion 1 to introduce this formali sm.

3.1 Rulesandreasons

The @nclusion of an argument is suppated by reasons. For instance in the
argument

Acoordingto the weaher report, it will rain all day.
So, it will rain all day.

‘According to the weaher report, it will rain all day’ isareason for ‘It will rain all
day’ .10 As the language of Reason-Based Logic, we use the language of First-Order
Predicate Logic.11 A number of spedal function and predicate symbals are used to
expressthe notions that are typicd for Reason-Based Logic. The premise and the

10 Actually, we shoud say that the state of affairs expressed by the sentence ‘ According to
the weéeher report, it will rain all day’ is a reason for state of affairs expressed by the
sentence ‘I t will rain all day’. (Cf. the difference between states of affairs and the sentences
expressng them discussed in sedion 2) For convenience, however, we will not use this
extensive expresson.

11 For an introduction to First-Order Predicate Logic, see Van Dalen (1983 or Davis
(1993.
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conclusion of the agument above can be represented as Weather_report(rainy_day)
and Rainy_day, respedively.

In the agument, Weather_report(rainy_day) is a reason for Rainy day.12 In
Reason-Based Logic, aspeda predicate is used to expressthis fad:

Reason(weather_report(rainy_day),
rainy_day)

This ntence epresses a state of affairs that some state of affairs is a reason for
another. As a result, the sentence expressng one state of affairs, contains
references to ather states of affairs. Here we encounter an important subtlety in the
language of Reason-Based Logic: states of affairs are expressed by sentences of the
language, and referred to by terms in other sentences. For instance the state of
affairs that, acording to the weaher report, it will rain all day, is expressed by the
sentence

Weather_report(rainy_day)
and referred to by the term

weather_report(rainy_day)
in the sentence

Reason(weather_report(rainy_day),
rainy_day).

As aresult, in the language of Reason-Based Logic, there is a trandation from
sentences to terms. In order to distinguish between sentences expressng states of
affairs and terms referring to them, atypographica convention is used: a string with
an initial upper-case charader is a sentence, and a string with an initial ower-case
charader aterm (seesedion 4.3 for detail s).

We have discussed that reasons do not arise individualy, but follow a pattern
(sedion 1.1). The reason above instantiates the foll owing reason scheme:

Reason(weather_report(weather_type),
weather_type)

’

12 1t may seem sloppy that we use the same phrase ‘... is areason for ...’ in the sentence
* *Acoording to the weaher report, it will rain al day’ isareason for ‘It will rain all day’’
and in the sentence ‘Weather_report(rainy_day) is a reason for Rainy_day’. However, no
confusion can arise, since both ‘According to the weaher report, it will rain al day’ and
Weather_report(rainy_day) expressthe same state of affairs, only in dfferent language.
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Here, weather_type is avariable, representing some type of weaher.13 The reasons
matching this pattern arise by the gplicaion of a valid rule. The rule can be
represented as foll ows

rule(weather_report(weather_type),
weather_type)

The rule has a ndition weather_report(weather_type) and a nclusion
weather_type. The use of lower-case charaders sows that the rule is represented
as aterm: we tred arule @& an objed that represents a relation between condition
and conclusion. The faa that this rule is valid is expressed by the following
sentence

Valid(rule(weather_report(weather_type),
weather_type)) (1)

The rule gives rise to a reason if it applies. In our example, the rule gplies
(initially) since Weather_report(rainy_day) is true. The fad that the rule &ove
appliesis expresed as

Applies(rule(weather_report(weather_type),
weather_type),
weather_report(rainy_day),
rainy_day).

This entence epresses that the rule with conditi on weather_report(weather_type)
and conclusion weather_type applies on the basis of the fad
weather_report(rainy_day).

3.2 Exclusionary reasons

A rule normally appliesif its condition is stisfied. However, as we have seen, this
is not always the cae. For instance a rule does not apply if the rule is excluded
becaise of an exclusionary reason. We saw that ‘The wedaher report on national
television is not good at predicting the locd weaher’ was an exclusionary reason
against the gplicability of the rule (1) above. This fad is expressd by the
following sentence:

Reason(bad_local_prediction,
excluded(rule(weather_report(weather_type),

13 This siggests that a formal language with typed variables could be useful (see for
instance Davis, 1993 p. 40ff. on many-sorted logic). We will not do this, in order to make
the formalism not unnecessarily complicated.
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weather_type),
weather_report(rainy_day),
rainy_day))

Asaresult, therule (1) is excluded:

Excluded(rule(weather_report(weather_type),
weather_type),
weather_report(rainy_day),
rainy_day)

Since the rule is excluded, the rule is not applicable. In Reason-Based Logic, thisis
expressed as follows:

= Applicable(rule(weather_report(weather_type),
weather_type),
weather_report(rainy_day),
rainy_day)

In the example, the rule does not apply, and the sentence

Reason(weather_report(rainy_day),
rainy_day)

isfalse. So far, there is no reason to conclude that it will rain.
3.3  Weighing reasons

Later in our story John and Mary had two reasons concerning the weather that
Sunday:

Reason(belief_father(rainy_day),
rainy_day)

Reason(cloudless_sky,
—rainy_day)

So, Belief_father(rainy_day) is a reason for Rainy_day, while Cloudless_sky is a
reason for -Rainy_day, i.e., a reason against Rainy_day. In such a case of
conflicting reasons, the reasons must be weighed. John and Mary decide that
Cloudless_sky as a reason against Rainy day outweighs the reason
Belief_father(rainy_day). Thisis expressed as:
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Outweighs({cloudless_sky},
{belief_father(rainy_day)},
—rainy_day)

More precisely, this sentence expresses that the set of reasons containing only the
reason Cloudless_sky for —rainy_day (i.e, againgt rainy_day) outweighs the set of
reasons containing only the reason Belief_father(rainy_day) for rainy_day. Sets of
reasons are needed since there can be several reasons pointing in the same
direction.

3.4  Reasonsconcerning the application of arule

We saw that there can be reasons for and against the application of arule. In our
example, John and Mary knew that if they would apply the rule (1) and as a result
conclude that it will rain, their trip would no longer be enjoyable. That gives a
reason against the application of the rule:

Reason(trip_no_longer_enjoyable,
-~ applies(rule(weather_report(weather_type),
weather_type),
weather_report(rainy_day),
rainy_day))

However, the condition of the rule is satisfied, since Weather_report(rainy_day) is
true (after John and Mary hear the radio). The ruleis thistime not excluded, so it is
applicable. If arule is applicable, the fact that makes it applicable is a reason to
apply therule. So, there is aso areason for applying the rule:

Reason(weather_report(rainy_day),
applies(rule(weather_report(weather_type),
weather_type),
weather_report(rainy_day),
rainy_day))

John and Mary consider the reason not to apply the rule stronger:

Outweighs({trip_no_longer_enjoyable},
{weather_report(rainy_day)},
-~ applies(rule(weather_report(weather_type),
weather_type),
weather_report(rainy_day),
rainy_day))

and they do not apply therule.
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4 Typesof facts

In this section, we start with the formal definition of Reason-Based Logic.14 We
specify the types of facts concerning rules and reasons by defining a formal
language in which the different types of facts can be expressed.

The language of Reason-Based Logic (RBL) is based on that of First-Order
Predicate Logic (FOPL).1> However, there are differences since the language of
Reason-Based Logic must be appropriate to represent the types of facts concerning
rules and reasons that we have encountered.

The main differences are that the language of Reason-Based Logic contains a
number of special function and predicate symbols, and that there is a trandation
from sentences to terms.

As aresult, terms and sentences must adhere to certain constraints. Therefore,
after the definition of alphabets (section 4.1), we must distinguish between pre-
terms and pre-sentences, not adhering to the constraints, and terms and sentences,
adhering to the constraints. In section 4.2, pre-terms and pre-sentences are defined,
analogous to terms and sentences of First-Order Predicate Logic. In section 4.3, we
define the trandation from sentences to terms. In section 4.4, we then define terms
and sentences as pre-terms and pre-sentences adhering to certain constraints.
Section 4.5 contains an overview of the types of facts.

4.1  Alphabets of Reason-Based Logic

The following definition shows that an alphabet of Reason-Based Logic isidentical
to an alphabet of First-Order Predicate Logic that contains some special-purpose
function and predicate symbols.

Definition 1.
Function symbols are finite strings of symbolsa, b, c, ..., z, A, B, C, ..., Z, _
starting with a lower-case.
Predicate symbols are finite strings of symbolsa, b, c, ..., z, A, B, C, ..., Z, _
starting with an upper-case.
Variable symbols are finite strings of symbolsa, b, c, ..., z, A, B, C, ..., Z, _
starting with a lower-case.
An alphabet of Reason-Based Logic is any set consisting of

14 several versions of Reason-Based Logic have been presented over the years, e.g., by
Hage (1991, 1993, 1995), Hage and Verhelj (19944, b) and Verheij (1993, 1994, 1995¢).
The differences are mainly due to new insights or differences of focus. For instance,
Hage (1995) has extended Reason-Based Logic to incorporate reasoning with goals, while
Verheij (1994) used alimited version of Reason-Based Logic to get the formalism right. See
also note 1.

15 In the following we do not go into details of First-Order Predicate Logic, and assume
that the reader has some familiarity with it. For instance, Van Daen (1983) gives a good
introduction to the syntax and semantics of First-Order Predicate Logic.
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1. thefunction symbadl rule with arity 2, plus any number of additional function
symbals, ead assgned a natural number denotingits arity,

2. the predicae symbals Reason with arity 2, Valid with arity 1, Excluded with
arity 3, Applicable with arity 3, Applies with arity 3, and Outweighs with
arity 3, plus any number of additional predicae symbadls, eat assgned a
natural number denoting its arity,

3. variable symbals, and

4. thesymbas(,),{,},-, 0,0 -,00,+=,:and,.16

Function and predicate symbols do not need to have aunique aity.

The smallest aphabet consists of the function symbad rule with arity 2,
predicate symbols Reason with arity 2, Valid with arity 1, Excluded with arity 3,
Applicable with arity 3, Applies with arity 3, and Outweighs with arity 3, no
variable symbals, and the symbds(,),{,},-, 0,0, -, 00, =, : and ,. The largest
alphabet consists of al function predicate symboals (with all arities), al variable
symbals, and the symbals(, ), {,},-, 0,0, -, 0 0,=,:and,.

In the following, the definitions refer to a fixed aphabet of Reason-Based
Logic.

4.2 Pretermsand pre-sentences

Before we can define the terms and sentences of Reason-Based Logic, we need to
define pre-terms and pre-sentences. These ae defined in a similar way as the terms
and sentences of First-Order Predicae Logic. (The terms and sentences of Reason-
Based Logic have to adhere to certain additional constraints.)) In the following
definition, n denotes a natural number, n > 0, except when otherwise indicated.

Definition 2.

The set of pre-terms of Reason-Based Logic is the small est set such that the

following holds:

1. Any function symbal with arity 0 and any variable symbadl is a pre-term.

2. If termy, termy, ..., and term, are pre-terms and function is afunction symbol
with arity n, then function(termy, termo, ... term,) iSapre-term.

3. If termy, termy, ..., and term,, with n ### 0, are pre-terms, then -term,
(term; Otermy), (term; Otermy) and {termy, termy, ..., termy} are pre-terms.

For convenience, we use the same typographicd style for variable symbols and

metavariables. The role of the pre-terms of the forms -termi, (term:; O termy),

(termy Otermy) and {termy, termy, ..., term,} Will be explained below (sedion 4.3).
Three examples of pre-terms are:

16 Here the omma ¢, (of the normal text font) is used to separate the symbals of the
alphabet, and the omma’*,’ (of the formula font) is one of the symbadls.
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mary

father(john)

rule(weather_report(weather_type),
weather_type)

Definition 3.

The set of pre-formulasis the smallest set such that the following hold:

1. If term: and term; are pre-terms, then term; = term; isa pre-formula

2. Any predicate symbol with arity 0 is a pre-formula

3. If termy, termy, ..., and term, are pre-terms and Predicate is a predicate
symbol with arity n, then Predicate(terma, terms, ... termy) is a pre-formula

4. If Formula; and Formula, are pre-formulas, then =Formulas, (Formulay O
Formulay), (Formula; O Formulaz) and (Formula; — Formulaz) are pre-
formulas.

5. If Formula isapre-formulaand x is avariable symbol, then [x: Formula and
Ox: Formula are pre-formulas.

A pre-atomisa pre-formula of one the forms Predicate, termz = termy, or

Predicate(terms, termy, ... termy). A pre-literal is a pre-atom or a pre-atom

preceded by -. A pre-sentence is a pre-formula without free variables.1

We use the ordinary conventions to reduce the number of bracketsin formulas.
Three examples of pre-sentences and pre-formulas are:

Is_thief(mary)

Predicts(local_weather_report, rainy_day)

Valid(rule(weather_report(weather_type),
weather_type))

Shortly, we will seethat not all pre-terms and pre-sentences are terms and sentences
of Reason-Based Logic. We return to thisissue in section 4.4.

4.3 A trandation from sentencesto terms

As mentioned in section 3.1, in Reason-Based Logic, we do not only need to
express states of affairs as sentences, but also to refer to them in other sentences. In
the formal language, we use a trandation from (pre-)sentences to (pre-)terms in
order to refer to sentences.18

We use a simple trandation: to obtain the pre-term that corresponds to a
(quantifier free) pre-sentence, the first upper-case character of each predicate

17" Free variables are defined as usua.

18 This is an often-encountered technique, known as reification. For other examples, we
refer to the overview of meta-languages, reflection principles and self-reference by Perlis
and Subrahmanian (1994).
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symbol in the pre-sentence is replaced by the same character in lower-case. By the
choice of alphabet and the definition of terms, the result of thistrandation is always
apre-term.

For example, the pre-sentence

Is_thief(mary)
trandates to the term
is_thief(mary).

As the definition of pre-terms shows, the logical connectives are treated as if they
also are function symbols. In this way, the trandation can be kept as simple as it is
now. For example, the pre-sentence

Is_guilty(mary) O -=Punish(mary)
trandlates to the term
is_guilty(mary) O - punish(mary).

To stay as close as possible to the usual notation of sentences, the logical
connectives are infix function symbols. For instance, instead of writing terms of the
form O(terms, termy), we write term; Oterma.

Of course not all terms should be trandations of sentences. For instance, the
terms mary and father(john) do not correspond to sentences Mary and Father(john).
Therefore, we should divide the set of terms into two types, namely those that
correspond to sentences, and those that do not. As a result, only a subset of all
strings of characters beginning with an upper-case can be predicate symbols. For
convenience, we will not explicitly define such a subset, but assume that any string
of characters beginning with an upper-case that we encounter isin this subset.

The trandation easily extends to metavariables for (pre-)sentences and (pre-
)terms, as follows. Metavariables for pre-sentences will be denoted as strings of
italic characters beginning with an upper-case character, e.g., Fact. Metavariables
for pre-terms will be denoted as strings of italic characters beginning with a lower-
case (just as the variables of the logical language), eg., fact. Matching
metavariables for pre-sentences and pre-terms, such as Fact and fact, represent a
sentence and its trandlation to a term. This extended trandlation will turn out to be
crucial in severa of the coming definitions.
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44 Termsand sentences

In Reason-Based L ogic, there are function and predicate symbols that play a specia
role. There are constraints on their use. Formally, we define terms and formulas as
pre-terms and pre-formulas that adhere to a number of constraints.

Definition 4.
A term of Reason-Based Logic is a pre-term that adheres to the following
congtraints:
1. If rule(condition, conclusion) is a pre-term, Condition must be a digunction
of conjunctions of pre-literals and Conclusion a pre-literal.
2. If {facty, facty, ..., factn} isa pre-term, Facts, Facty, ..., and Fact, must be
digunctions of conjunctions of pre-literals.

In this definition, we use the translation from sentences to terms for the first timein
aformal definition. For instance, Condition denotes a sentence that trand ates to the
term denoted by condition.

Definition 5.

A formula of Reason-Based Logic is a pre-formula Formula that adheres to the

following constraints:

1. All pre-termsthat occur in Formula must be terms.

2. If Formula hasthe form
Reason(fact, state_of_affairs),
Valid(rule(condition, conclusion)),
Excluded(rule(condition, conclusion), fact, state_of_affairs),
Applicable(rule(condition, conclusion), fact, state_of_affairs),
Applies(rule(condition, conclusion), fact, state_of_affairs), or
Outweighs(reasonss, reasonsy, state_of _affairs),

then the following must hold:

a. Fact, State_of_affairs, Reason;, Reason, ... and Reason, must be pre-
sentences, i.e., do not contain free variables.

b. Fact must be a digunction of conjunctions of pre-literals and must be an
instance of Condition under some substitution ###, and State_of_affairs
must be a pre-literal that is an instance of Conclusion under the same
substitution ##.

c. The (pre-)termsreasons: and reasons, must both have the form {fact,,
facty, ..., factn}, with n ### 0.

Atoms and literals are formulas that are pre-atoms and pre-literals, respectively.
Sentences are pre-formulas that only contain free variables in occurrences of
terms of the form rule(condition, conclusion).
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Definition 6.

45

A language of Reason-Based Logic isthe set of formulas belonging to some
alphabet of Reason-Based Logic.

Overview of the types of facts

Aswe saw in section 3, in Reason-Based L ogic, a number of function and predicate
symbols are used to express types of facts concerning rules and reasons. Below we
provide an overview of these function and predicate symbols and their use.

rule(condition, conclusion)

Since we treat rules as objects, rules are represented as terms in Reason-Based
Logic. In thisway it is possible to express facts about rules. A term denoting a
rule has the form rule(condition, conclusion). Here condition and conclusion are
terms with free variables. The formula Condition that trandates to the term
condition must be a digunction of conjunctions of one or more literals. In other
words, Condition is quantifier free and in disunctive normal form. An instance
of Condition is a possible reason for a matching instance of Conclusion. The
formula Conclusion that translates to the term conclusion must be aliteral.

{facts, fact, ..., fact,} (forn=1, 2, ...)

These symbols are used to refer to the sets of facts that are reasons for some
conclusion. We use an unusual syntax of termsto stay as close as possible to the
normal notation of sets. The term {thief(mary), minor(mary)} refers to the set of
the two reasons expressed by the sentences Thief(mary) and Minor(mary). The
term { } (without arguments) is used to denote an empty set of reasons.

There is a problem here with different terms that denote identical sets, such
as {thief(mary), minor(mary)} and {minor(mary), thief(mary)}. Axioms should be
included in Reason-Based Logic such that formulas that only differ in such
equivalent terms for sets are equivalent. We will not do this explicitly.

We do not consider infinite sets of reasons.

Reason(fact, state_of_affairs)

A sentence of this form expresses that the fact referred to by the term fact isa
reason for the state of affairs referred to by the term state_of_affairs. The
sentence Fact (that trandates to the term fact) must be a digunction of
conjunctions of literals, and State_of_affairs (that trandates to the term fact) a
literal. If State_of affairs is an atom Atom, Fact is a reason for Atom and a
reason against - Atom; similarly, if State_of_affairs is a negated atom - Atom,
Fact isareason for - Atom and areason against Atom.
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Valid(rule(condition, conclusion))

A sentence of this form expresses that the rule with condition condition and
conclusion conclusion isvalid.

e Excluded(rule(condition, conclusion), fact, state_of_affairs)

A sentence of this form expresses that the rule with condition condition and
conclusion conclusion is excluded, for the instance Fact of the rule’'s condition
Condition. Fact must be a instance of Condition, and State_of_affairs an
instance of Conclusion.

* Applicable(rule(condition, conclusion), fact, state_of_affairs)

A sentence of this form expresses that the rule with condition condition and
conclusion conclusion is made gplicable by the fad expressed by the term fact.
If arule is applicable, it may give rise to a reason for the state of affairs
expressed by the term state_of_affairs. Fact must be an instance of one of the
diguncts of Condition, and State_of_affairs an instance of Conclusion.

* Applies(rule(condition, conclusion), fact, state_of_affairs)

A sentence of this form expresses that the rule with condition condition and
conclusion conclusion applies on the basis of the fad expressed by fact and
therefore generates a reason for the state of affairs expressed by
state_of_affairs. Fact must be an instance of Condition, and State_of_affairs an
instance of Conclusion. The predicae Applies should not be mnfused with the
predicete Applicable. The difference in meaning (introduced in the sedions 1
and 3) is made predsein the next sedion.

* Outweighs(reason_pro, reasons_con, state_of_affairs)

A sentence of this form expresses that the reasons in the set referred to by the
term reasons_pro outweigh the reasons in the set referred to by the term
reasons_con (as reasons concerning state_of_affairs). The terms reasons_pro
and reasons_con must both have the form {facty, facty, ..., fact.}, where n ### 0.
Each sentence Fact; must be adisunction of conjunctions of literals (for ead i
from 1 to n), and State_of affairs a literal. The reasons in reasons_pro are
reasons for State_of_affairs, and the reasons in reasons_con are reasons against
State_of_affairs. Equivalently, if Not_state_of affairs is the literal that is the
oppdasite of State_of_affairs, the reasons in reasons_pro are reasons against
Not_state_of_affairs, and the reasons in reasons_con are reasons for
Not_state_of_affairs.
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5 Relations between facts

In this section, we describe the relations that hold between the described facts
concerning rules and reasons. We do it in terms of the truth values of the
corresponding sentences. The basis is again First-Order Predicate Logic.1® The
relations that hold between facts (in terms of the truth values of sentences that
express the facts) as defined by First-Order Predicate Logic aso hold in Reason-
Based Logic. For instance, the following relations hold:

NoTt
For all sentences State_of_affairs,
Either State_of affairs istrue or - State_of_affairs istrue.

AND
For all sentences State_of _affairs; and State_of _affairsy,
State_of_affairs; istrue and State_of_affairs; istrueif and only if
State_of_affairs; 0 State_of_affairs, istrue.

ORrR
For all sentences State_of _affairs; and State_of _affairsy,
State_of_affairs; istrue or State_of_affairs, istrueif and only if
State_of_affairs; 0 State_of_affairs, istrue.

The relations that hold between sentences that are typical for Reason-Based Logic
are defined in a similar way. They are caled VALIDITY, EXCLUSION,
APPLICABILITY, APPLICATION, WEIGHING, and WEIGHING_AXIOMS.20 We assume in
the following that all mentioned sentences are well-formed, i.e., are sentences of the
language of Reason-Based Logic.

VALIDITY
For all sentences Condition, Conclusion, Fact and State_of_affairs,
If Excluded(rule(condition, conclusion), fact, state_of_affairs),
Applicable(rule(condition, conclusion), fact, state_of_affairs) or
Applies(rule(condition, conclusion), fact, state_of_affairs) istrue, then
Valid(rule(condition, conclusion)) istrue.

19 For convenience, we will not as usua define the relations between facts in terms of
structures and models, but in terms of truth values of sentences. Such a definition can be
given, but does not provide additional insight, while the formalism becomes more complex.

0 These relations could also be given as a set of axioms. We have chosen the present form
in order to stress that in Reason-Based Logic the standard logical connectives, such as -
and [, are not treated differently from the non-standard logical constants, such as Vvalid and
Applicable.
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Informally, VALIDITY says that arule can only be excluded, be gplicable, or apply
if itisvalid.

EXCLUSION
For al sentences Fact and State_of _affairs,
If Fact and Valid(rule(condition, conclusion)) are true, then either
Excluded(rule(condition, conclusion), fact, state_of_affairs) or
Applicable(rule(condition, conclusion), fact, state_of_affairs) istrue.

Informally, EXCLUSION says that a rule is either excluded or applicable if its
condition is satisfied. Here Fact stands for the fad that satisfies the aondition of the
rule.

APFLICABILITY

For al sentences Fact and State_of_affairs,

a. Applicable(rule(condition, conclusion), fact, state_of_affairs) istrue if and
only if Reason(fact, applies(rule(condition, conclusion), fact,
state_of_affairs)) istrue.

b. If Applicable(rule(condition, conclusion), fact, state_of_affairs) istrue, then
Fact istrue.

Informally the first part of APRLICABILITY says that if and only if a rule is
applicable, the faad that makes the rule goplicable is areason to apply the rule. The
seoond part says that a rule can only be gplicable if its condition is satisfied.
Again, Fact stands for the fad that satisfies the condition of therule.

APFLICATION
For all sentences Fact and State_of_affairs,
There aeterms condition and conclusion, such that Applies(rule(condition,
conclusion), fact, state_of_affairs) istrue if and only if Reason(fact,
state_of_affairs) istrue.

Informally thisrelation says that if and only if arule gplies, the fad that makes the
rule gplicable is areason for the rule's (instantiated) conclusion. or, equivaently,
areason against the oppasite of the rule's conclusion.

Noticethe diff erence between arule’'s being applicable and its being applied. If
arule is applicable, this only indicaes that there is a reason for applying the rule
(see APRLICABILITY, part @). In general, there can also be reasons against applying a
rule.

WEIGHING
For al sentences Pros, Proy, ...,Pro, (for some natural number n), Cony, Cona,
..., Conm (for some natural number m), State_of_affairs, and its oppcsite
Not_state_of_affairs,
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If Reason(pros, state_of_affairs), Reason(proo, state_of_affairs), ...,
Reason(pron, state_of_affairs), Reason(coni, not_state_of_affairs),
Reason(cony, not_state_of_affairs), ..., Reason(conm, not_state_of_affairs),
and also Outweighs({pro, prog, ..., pron}, {con, cona, ..., conm},
state_of_affairs) istrue, then State_of_affairs istrue, or thereisaterm con,
different from cons, con, ..., and conm, such that Reason(con,
not_state_of_affairs) istrue.

Informally the first part of this relation says that reasons make a conclusion true if
the pros outweigh the cons, provided that no con is overlooked. It is allowed that
one or more of the pros is overlooked: if a subset of the pros aready suffices to
outweigh all cons, the conclusion certainly follows if there are even more pros.2? It
may seem that a similar relation between facts is required for the case that the cons
outweigh the pros. However, since in Reason-Based Logic a reason against a state
of affairs is just a reason for the opposite state of affairs, the relation above
suffices.22

WEIGHING_AXIOMS

For al sentences Facti, Facty, ..., Fact, (for some positive natural number n),

State_of_affairs, and its opposite Not_state_of_affairs, and all terms pros and

cons,

a. Outweighs(pros, cons, state_of affairs) and Outweighs(cons, pros,
not_state_of_affairs) are not both true.

b. If Reason(fact;, state_of_affairs), Reason(fact,, state_of_affairs), ...,
Reason(fact,, state_of _affairs) are true, then Outweighs({facts, facty, ...,
factn}, {}, state_of_affairs) istrue.

The first part of this relation says that the pros as reasons for state_of_affairs
cannot outweigh the cons and the other way around at the same time. However, the
first weighing axiom does not make it impossible that - Outweighs(pros, cons,
state_of_affairs) and - Outweighs(cons, pros, state_of affairs) are both true.

Reason-Based Logic does in genera not determine which set of reasons
outweighs another set. However, for the case that all reasons point in the same
direction, i.e., al reasons are either pros or cons, the second part of the relation
gives the result: any non-empty set of reasons outweighs the empty one.

21 Thisis due to the accrual of reasons, a term used by Pollock (1991, p. 51). Accrua is
discussed more extensively later on.

22 |n other versions of Reason-Based Logic (e.g., Hage and Verheij, 1994a), the two cases
that the pros outweigh the cons and that the cons outweigh the pros, are formally
distinguished, even though there is no conceptual distinction. In the version of Reason-
Based Logic described by Verheij (1995¢€), this is acknowledged, and the two cases are no
longer formally distinguished.
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6 Conclusionsfollowing from given premises

Althoughit is not strictly part of the semantics of rules and reasons, we discussin
this sdion which conclusions follow from given premises. The given set of
premises, representing a theory of rules and reasons, is cdled a theory of Reason-
Based Logic.

The simplest approadch isto define which conclusions deductively foll ow from a
given theory analogous to First-Order Predicae Logic, as foll ows:

Definition 7. (RBL-deduction)
A theory of Reason-Based Logic is any set of sentences (in a given languege of
Reason-Based Logic). A conclusion Conclusion deductively follows from a
theory T, if the truth of the sentencesin T foll ows from the truth of the sentence
Conclusion, using the relations between fads of Reason-Based Logic.23

Definition 7 extends deduction in First-Order Predicate Logic, and alows that
conclusions are drawn on the basis of the relations between fads that hold in
Reason-Based Logic. It is posgbleto define aset of deduction rules, in the style of
First-Order Predicate Logic's natural deduction, that are sound and complete with
resped to this deductive mnsequence relation. However, this consequence relation
turns out to be weak, and intuitively attradive types of reasoning on the basis of
reasons are not cgptured by RBL-deduction.

As a result, we do not devote much attention to the deductive @nsequence
relation, and focus on a more interesting nonmonotonic consequencerelation.

We give an example of a type of reasoning that is not captured by RBL-
deduction: the @mnclusion Rainy_day does not follow from the theory that consists
of the two sentences

Weather_report(rainy_day)
Valid(rule(weather_report(weather_type),
weather_type))

Intuitively, simply applying the rule, the andition of which is stisfied, leads to the
conclusion Rainy_day. The difficulty is hidden in the world ‘simply’: the rule does
not smply apply, since for the rule to apply several semanticd constraints must be
met. Asaresult, not in al circumstances in which the theory above is true, the rule
adually applies. Formaly, the sentence

Applies(rule(weather_report(weather_type),
weather_type),

23 Normally, which conclusions follow from a theory is defined in terms of the models of
the theory. But seenote 19.
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weather_report(rainy_day),
rainy_day)

is not always true. For instance, it can be the case that the rule is excluded, i.e., in
which

Excluded(rule(weather_report(weather_type),
weather_type),
weather_report(rainy_day),
rainy_day)

istrue. Then theruleis not applicable and normally not applied.

Intuitively, however, it seems most natural that the rule is not excluded, since
there is no information in the theory that makes it excluded. Therefore, it seams
natural to all ow the foll owing type of reasoning;

If the condition of arule is stisfied, then it follows that the rule is applicable,
unlessit followsthat the rule is excluded.

This type of reasoning is an example of a nonmonotonic rule of inference It is
cdled nonmonotonic, since it can be the case that conclusions based on it must be
retraded because of newly inferred fads. For instance, it may seem now that arule
is not excluded with resped to the aurrently inferred fads, but later it may be
inferred that the rule is excluded after all. This is in contrast with the usua
monotonic rules of inference Once a onclusion based on monotonic rules of
inferenceis established, it never has to be retracted on the basis of newly inferred
fads.

The problem with nonmonotonic rules of inference is that they can only be
safely used to draw conclusions if one knows all consequences of a theory in
advance This is in conflict with the step by step construction of the set of
consequences of a theory: starting from the premises in the theory conclusions are
added step by step by drawing rew conclusions using the rules of inference As a
result, the complete set of conclusion following from a theory is only known after
all steps have been completed.

Many approaches to ded with nonmonotonic rules of inference have been
proposed. Ginsberg (1987, Lukaszewicz (1990 and Gabbay et al. (1994h have
given overviews of such research. We present an approach based on extensions that
isrelated to ideas that go badk to Reiter’s Default Logic (1980 1987).

In the definition of the nonmonotonic consequences of a theory we use aset of
sentences that can be regarded as a guessin advance of the set of consequences.
The nonmonotonic rule of inference mentioned above is then read in a dightly
different way, by referring to this guess
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If the condition of a rule is satisfied, then it follows that the rule is applicable,
unlessit is guessed that it follows that the rule is excluded.

Let now T be a theory, and S a set of sentences, that represents our guess of
consequences following from the theory T. We will define which conclusions
follow from the theory T relative to the guess set S. The following rule of inference
(related to the relation between facts EXCLUSION of section 5) holds in Reason-
Based Logic:

EXCLUSION*
For all sentences Fact and State_of_affairs,
If Fact and Valid(rule(condition, conclusion)) follow from T relativeto S,
then Applicable(rule(condition, conclusion), fact, state_of_affairs) follows
from T relative to S, unless Excluded(rule(condition, conclusion), fact,
state_of_affairs) isan element of S.

This rule of inference says that if it follows that the condition of arule is satisfied,
it follows that the rule is applicable, unlessit is guessed that the rule is excluded.

There is a second type of reasoning that is intuitively attractive, but is not
captured by RBL-deduction. Informally:

If it follows that all derivable pros outweigh all derivable cons, the conclusion
of the pros follows. If it follows that all derivable cons outweigh all derivable
pros, the conclusion of the cons follows.

This type of reasoning is however also an example of a nonmonotonic rule of
inference. Since it refers to all derivable pros and cons, one has to know the whole
set of conclusions in advance. Again we use the fixed guess set S to avoid the
difficulties. Instead of using all derivable pros and cons, the following rule of
inference (related to the relation between facts WEIGHING of section 5) uses all
reasons in the guess set S.

WEIGHING*

For all sentences Pros, Prog, ..., Pro, (for some natural number n), Cons, Cona,

..., Conm (for some natural number m), State_of_affairs, and its opposite

Not_state_of_affairs,
If Reason(pros, state_of_affairs), Reason(pro, state_of_affairs), ...,
Reason(pron, state_of_affairs), Reason(coni, not_state_of_affairs),
Reason(conz, not_state_of_affairs), ..., Reason(conm, not_state_of_affairs),
and also Outweighs({proa, prog, ..., pron}, {con, cona, ..., conm},
state_of_affairs) follow from T relativeto S, then State_of_affairs follows
from T relative to S, unlessthereis aterm con, different from cong, con, ...,
and conm, such that Reason(con, not_state_of_affairs) isan element of S.
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Finally, the conclusions that deductively follow from a theory also follow from T
relativeto S:

RBL-DEDUCTION
1. All elementsof T follow from T relativeto S.
2. All sentencesthat (deductively) follow from sentences that follow from T
relativeto Sfollow from T relativeto S.

The @nclusions that follow from a theory T relative to a guess &t S can now be
defined asin First-Order Predicate Logic by areaursive definition using the rules of
inference EXCLUSION*, WEIGHING* and RBL-DEDUCTION. The problems of such a
reaursive definition for nonmonotonic rules of inference have been avoided by
trandating these rules to monotonic rules of inference relative to the fixed set S.
We have the following ordinary reaursive definition of the cnclusions that foll ow
from atheory relative to a guess &t:

Definition 8. (S-consequences)
A guess set of Reason-Based Logic is any set of sentences (in a given language
of Reason-Based Logic). For any theory T and any guess &t S, the set of
conclusions that follow from T relative to S isthe small est set of sentences, such
that ExcLUSION*, WEIGHING* and RBL-DEDUCTION hold. The conclusions that
follow from T relative to the guess €t S, are the S-consequences of T.

If T isatheory and Sisaguess &t, there ae two cases in which the guess &t Sis
not acceptable a a set of nonmonotonic consequences of T. First the guess &t can
be too small: there ae S-consequences of T that are not in the guess &t S. Second
the guess &t can be too large: not al sentences in the guess & S are S
consequences of T. So, a guess &t is a set of honmonotonic consequences of T if
and only if the guess &t is equal to the set of consequences relative to the guess &t.
A set of honmonotonic consequences is usualy cdled an extension. We get the
foll owing fixed-point definition:

Definition 9. (extensions)
For any theory T, a set of sentences E is an extension if and only if E isequal to
the set of E-consequences of T.24

24 One can seethat this definition o extension corresponds to Reiter's (198Q 1987 if one
reads the rules ExcLusion* and WEIGHING* as defaults. For instance EXCLUSION*
corresponcs to defaults with prerequisite Fact O Valid(rule(condition, conclusion)),
justificaion Excluded(rule(condition, conclusion), fact, state_of affairs), and consequent
Applicable(rule(condition, conclusion), fact, state_of_affairs). Our set of S-consequences of a
theory T corresponds to Reiter's st (S). Of course, several unesential technicd
adaptations are necessary, such as using an RBL language.
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A theory does not necessarily have an extension, and, if it has one, the extension is
not necessarily unique. For instance, the theory that consists of the sentence

Valid(true, excluded(condition, conclusion))
has no extension. The theory that consists of the four sentences

A
B
Valid(rule(a, excluded(rule(b, conclusion))))
Valid(rule(b, excluded(rule(a, conclusion))))

has two extensions, namely one in which the first rule is excluded and the second
rule applies, the other in which the first rule applies and the second rule is
excluded.

Theories that have no or several extensions contain a paradox resembling the
well-known paradoxes of self-reference. In Reason-Based Logic, such paradoxes
are possible because of the trandation from sentences to terms (as defined in
section 4.3). We consider it the task of theories in Reason-Based Logic, rather than
of the conseguence relation of Reason-Based L ogic, to avoid these paradoxes.



Chapter 3

Reason-Based L ogic and law

This chapter contains examples of Reason-Based Logic, taken from the field of
law. The examples illustrate the basic elements of Reason-Based Logic, and give
applications to the theory of legal reasoning.

We start with a discussion of the apparent dichotomy of reasoning with rules
and reasoning with principles (section 1). Our claim is that the seeming difference
is merely a matter of degree. We support this claim by giving an integrated view on
rules and principles (section 2). Before the formal elaboration of this view in
Reason-Based Logic (section 7), we discuss how isolated rules/principles, the
weighing of reasons, exceptions and conflicts can be modeled in Reason-Based
Logic (sections 3, 4, 5 and 6, respectively). We end the chapter with an application
of our view on rules and principles to reasoning by analogy (section 8). We show
how this view gives rise to three different ways of reconstructing reasoning by
analogy.l

1 Reasoning with rulesvs. reasoning with principles
There seem to be two types of reasoning:

¢ Reasoning with rules
A ruleis applied if its condition is satisfied. If arule is applied, its conclusion
follows directly.

* Reasoning with principles
In contrast with a rule, a principle only gives rise to a reason for its conclusion
if it applies. Moreover, there can be other applying principles that give rise to
both reasons for and reasons against the conclusion. As a result, a conclusion
only follows by weighing the pros and cons.

1 The sections 1, 3, 7 and 8 of this chapter are based on the papers by Verheij and
Hage (1994) and Verheij (1996b).
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For instance, Dworkin (1978 p. 22ff. and p. 71ff.) has made astrict distinction
between rules and principlesin the field of law. According to Dworkin, rules have
an al-or-nothing charader, while principles have a dimension of weight or
importance An example of a typicd rule, he says, is the propasition ‘A will is
invalid unless sgned by threewitnesses'. An example of atypicd principle is ‘No
man may profit from his own wrong .2

There ae a least three seaming diff erences between rules and principles. The
first is that rules lead dredly to their conclusion if they are gplied, while
principles lea to their conclusion in two steps: first principles give rise to reasons,
then these reasons are weighed.

The second dfference between rules and principles appeas in the cae of a
conflict. In case of conflicting rules, that is rules with incompatible anclusions that
apply to asingle cae, therulesleal diredly to their conclusions, and thereforeto a
contradiction. In case of conflicting principles, i.e., if there ae principles with
incompatible anclusions that apply to a single cae, no such problems occur. The
application of conflicting principles only leads to reasons that plead for
incompatible cnclusions, so no contradiction is involved. In such cases, a @nflict
can involve severa distinct reasons, some of which plead for a mnclusion, others
againgt it. Weighing the pros and cons determines the final conclusion.

The third dfference is that rules lead to their conclusion in isolation, while
principles interad with other principles. For instance, additional reasons arising
from other principles can influencethe result of the weighing of reasons.

These differences are summearized in Table 1.

Rule Principle
Application Conclusion Reason
Conflict Contradiction | Weighing
Other rules/principles | Independent Dependent

Table 1: The seaming diff erences between rules and reasons

Thisleals to the question whether rules and principles are logicdly different. There
is no agreement. For instance, Dworkin has a strong opinion:

‘The diff erence between legal principles and legal rulesis alogicd distinction’
(Dworkin, 1978 p. 24)

2 As Soeteman (1991, p. 33) notes, the usage of the terms ‘rule’ and ‘principle’ is not at
al uniform. For instance, ‘Ne bisin idem’ is cdled a principle, but has a rule-like nature,
while ‘A contrad must be exeauted in good faith’ is a principle-like rule. Here, we do nad
ded with the usage of the terms ‘rule’ and ‘principle’, but with the nature of rules and
principles.
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Soeteman (1991), in his discusgon of rules and principles, takes an apparently
oppdsite stand:

‘I know of no dfference in logicd structure between rules and principles.’
(Soeteman, 1991, p. 34)3

Inded, there ae dea simil arities between rules and principles. We mention two of
them. First, rules and principles both are basicdly a onnedion of some sort
between a condition and a conclusion. The differenceis only that, in the cae of a
rule, the mnnedion seems gronger than in the cae of a principle.

Semnd, for a rule or principle in isolation the differences disappea. In
isolation, the mnclusion of both a rule ad a principle follows if the condition is
satisfied.

Because of these similarities, we daim that the seaming differences between
rules and principles are merely a matter of degree Thereisno clea border between
reasoning with rules and principles. They are the two extremes of a spedrum.# We
suppart our claim by giving an integrated representation of rules and principles in
Reason-Based Logic in sedion 5.

Some preliminaries are required. In the next sedion we informally discuss our
integrated view on rules and principles. Then we discuss how isolated
rulegprinciples, the weighing of reasons, exceptions and conflicts can be
represented in Reason-Based Logic (sedions 3, 4, 5 and 6, respedively).

2 Anintegrated view on rulesand principles
Our integrated view on rules and principlesis based on two main assumptions:

« Bothrulesand principles give rise to reasons if they are goplied.

e The differences between reasoning with rules and principles result from
different types of relationships with other rules and principles, which may
interfere.

As abasic example of the role of the relationships between rules and principles, we
discussarule and its underlying principles (sedion 2.1). Then we discussour view
on a typicd rule (sedion 2.2), a typicd principle (sedion 2.3), and a hybrid
rule/principle (sedion 2.4).

3 Translated from the original in Dutch: ‘1k ken (...) geen verschil in logische structuur
tussen regels en beginselen’.

Soeteman (1991 and Sartor (1994 p. 189 make similar claims. However, our
integrated view is more explicit, and can explain the intuitive diff erences (seesedion 7).
5 By the formal elaboration, the view can be gplied to the use of computers as todls in
thefield of law (cf. Van den Herik, 1991).
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21 Avruleanditsunderlying principles

A basic example of the relationships between rules and principles occurs when a
rule has underlying principles.

For instance, if the legidator makes a lega rule, this is often based on a
decision in which several factors are taken into account. These factors, or to use an
already familiar term, reasons, are based on other rules and principles. If these
reasons are in conflict, the legidator decides (either explicitly or implicitly) how
they have to be weighed. We say that the rules and principles taken into account by
the legidator underlie the newly made legal rule. In Figure 1, the situation is
depicted. The principles underlying the rule that can lead to a reason for the
conclusion of the rule are indicated as pro-principles, those that can lead to areason
against the conclusion are indicated as con-principles.

/7 N

| Pro-princiole 1 | | Con-orincinle1|

| Pro-princiole 2 | | Con-orincinle2|
| Pro-orincinlen | | Con-princiole |

Figure 1: A rule and its underlying principles

As an example, we take the legal rule from Dutch civil law that sale of a house
should not terminate an existing rent contract (Art. 7A:1612 BW).6 This rule has,
for instance, the following two underlying principles:

1. Somebody who lives in a house should be protected against measures that
threaten the enjoyment of the house
1. Contracts only bind the contracting parties.

The first pleads against termination of an existing rent contract; the second pleads
for termination since the new owner of the house does not have a contract with the
person (or persons) living in the house. As aresult, thereis (at least) one underlying
pro-principle, and one underlying con-principle.

Let us see what happens if the legal rule applies. Of course, its principles should
normally not be applicable too since they have aready been considered by the

6 This example is also discussed by Prakken (1993, pp. 22-23) and Verheij and
Hage (1994), in the context of analogy. The discussion here is largely taken from the latter.
We return to the example in section 8 when dealing with analogy.
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legislator. We say that the legal rule when it applies replaces its underlying
principles. As aresult, if the rule of Art. 7A:1612 BW applies, its two underlying
principles should not be applicable. The situation is shown in Figure 2.

RN
i

Figure 2: A rulereplacesits underlying principlesif it applies

If the rule did not replace its underlying principles, several reasons would arise that
already had been taken account in the rule itself. However, because of the specia
relationships of the rule with its underlying principles, the principles should not be
applicable.

22 Atypical rule

In general, the relations between rules and principles are less clear than in the case
of a rule and its underlying principles. These relationships can for instance be
determined by the weight or importance of a rule or principle, or by the degree of
pro- or con-ness. In Figure 3, we have suggested a set of interfering rules and
principles.

Rulée/principle

Rule/principle
Rule/principle
Rulée/principle

Rulée/principle
Rulée/principle

Rule/principle Rulée/principle
Rule/principle
Rule/principle

Rulée/principle

Ruléefprinciple

Figure 3: A set of interfering rules and principles
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Assume that the rule/principle in the upper left corner isin fact atypica rule. In our
view on rules and principles, if this typical rule applies, it blocks al interfering
rules/principles. This situation is shown in Figure 4.

|

Y

Rule/principle

X/

|
i

[ R
e | [

i

Figure 4: A typical rule applies
As aresult, the conclusion of the rule follows directly.
2.3 Atypical principle
If the rule/principle in the upper left corner were a typical principle, it would not

block any of the interfering rules/principles in case it applies. The situation is
shown in Figure 5.

Rulée/principle

Rulée/principle

Rule/principle
Rule/principle

Rule/principle

Rule/principle

Rulelprinciple Rule/principle
Rulée/principle

Rulée/principle

Rule/principle

I

Rulée/principle

Figure 5: A typical principle applies
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As aresult, the conclusion of the principle does not follow directly, but only after
weighing the reasons arising from the other rules/principles.

24 A hybrid rule/principle

Typical rules and typical principles are the extreme cases. Most rules/principles are
hybrid: they are neither a typical rule, nor a typical principle. A hybrid
rule/principle blocks some, but not all interfering rules/principles. The situation that
the rule/principle in the upper left corner were a hybrid rule/principle and appliesis
shown in Figure 6.

]

]

Rule/principle

ot

Rulée/principle

Figure 6: A hybrid rule/principle applies

As aresult, the conclusion of the hybrid rule/principle does not follow directly, but
only after weighing the reasons arising from the other rules/principles, that are not
blocked.

In section 7, this informal sketch of an integrated view on rules and principles
will be formalized in Reason-Based Logic. As preliminaries, we discuss how
isolated rules/principles, the weighing of reasons, exceptions and conflicts are
modeled in Reason-Based Logic (sections 3, 4, 5 and 6, respectively).

3 Anisolated rule/principlein Reason-Based L ogic

We start our discussion of rules and principles in Reason-Based Logic with the case
of an isolated rule/principle. Thiswill be spelled out in detail to illustrate the main
elements of Reason-Based Logic.

As an example we use the lega rule that a person driving a car after drinking
too much acohol should be fined a considerable amount of money. (It does not
matter that we use an isolated rule as an example, since in our view there is no
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difference in representation between an isolated rule and an isolated principle.)
Asaime that we have:

A person driving a ca after drinking too much alcohol should be fined a
considerable anount of money.
Johnisdriving Hs car after drinking too much alcohol.

If we interpret the first sentence & arule, the gplicaion of this rule must lead to
the mnclusion:

John should be fined a mnsiderable anount of money.
This can be represented by the foll owing threeRBL sentences:’

Valid(rule(driving_with_alcohol(person),
should_be_fined(person)))

Driving_with_alcohol(john)

Should_be_fined(john)

For this representation it does not matter whether the RBL rule mncerning driving
with alcohol stems from a rule or from a principle: both rules and principles are
represented in Reason-Based Logic as RBL rules.

We show that if the first two sentences are asaumed to be true, the truth of the
third sentence follows. We refer to the relations between fads, such as EXCLUSION
and WEIGHING, as discussd in chapter 2, sedion 5. Instead of using the
nonmonotonic rules of inference (chapter 2, sedion 6) and the crresponding
technicditi es of extensions, we make some ‘normality assumptions’, such as that a
ruleis not excluded.

First we note that the cndition of the RBL rule mncerning driving with alcohol
is stisfied because Driving_with_alcohol(john) is assumed to be true.8

The first normality assumption is that the rule is not excluded:

- Excluded(rule(driving_with_alcohol(person),
should_be_fined(person)),
driving_with_alcohol(john),
should_be_fined(john))

Since there ae no fads that lead to the exclusion of the rule, this assumption is
reasonable.

7 Other formalizaions are posdble. The trandation from natural to formal language is a
roblem that we do nd discusshere.
Recdl the mnvention onthe trandation from formulas to terms (chapter 2, sedion 4.3).
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Using this assumption, the rule is applicable becaise of the relation between
fads cdled EXCLUSION:

Applicable(rule(driving_with_alcohol(person),
should_be_fined(person)),
driving_with_alcohol(john),
should_be_fined(john))

APFLICABILITY makes that the fad that satisfies the condition of the ruleis areason
for the rule’ s applicaion:

Reason(driving_with_alcohol(john),
applies(rule(driving_with_alcohol(person),
should_be_fined(person)),
driving_with_alcohol(john),
should_be_fined(john)))

In order to use WEIGHING to conclude that the rule gplies, we have to make
another normality assumption, namely that there is no reason against the gplication
of the rule:®

-~ [Fact_against_application:
Reason(fact_against_application,
- applies(rule(driving_with_alcohol(person),
should_be_fined(person)),
driving_with_alcohol(john),
should_be_fined(john)))

By WEIGHING_AXIOMS we have

Outweighs({driving_with_alcohol(john)},
{}
applies(rule(driving_with_alcohol(person),
should_be_fined(person)),
driving_with_alcohol(john),
should_be_fined(john)))

9 The gpeaance of the following sentence may suggest that the quantification over the
variable fact_against_application isonly over a spedfic part of the domain, namely only over
thaose terms that correspondto fads. However, the quantification is over the whole domain.
By the definition d a language of Reason-Based Logic (chapter 2, sedion 4), a similar
effed is obtaned: a language ntains no sentences of the form Reason(fact,
state_of_affairs) in which Fact does not correspondto an instance of the mndtion o some
rule rule(condition, conclusion).
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and therefore also, by WEIGHING,

Applies(rule(driving_with_alcohol(person),
should_be_fined(person)),
driving_with_alcohol(john),
should_be_fined(john))

Using APPLICATION, the rule concerning driving with alcohol now gives,

Reason(driving_with_alcohol(john),
should_be_fined(john))

We have to make a third normality assumption, namely that there are no reasons
against Should_be_fined(john):

- [Jact_against_fining:
Reason(fact_against_fining,
=should_be_fined(john))

Using WEIGHING_AXIOMS and WEIGHING a second time we find that

Outweighs({driving_with_alcohol(john)},

{}
should_be_fined(john))

and finally that
Should_be_fined(john)

aretrue.
At three steps in the discussion above, we had to make a normality assumption.
In summary, we assumed that

e Theruleisnot excluded.
¢ Thereisno reason against application of therule.
e Thereisno reason against fining John.

These assumptions can be avoided using the nonmonotonic inference rules of
Reason-Based Logic discussed in chapter 2, section 6. It can be shown that the
theory consisting of the sentences

Valid(rule(driving_with_alcohol(person),
should_be_fined(person)))
Driving_with_alcohol(john)
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has a unique extension that contains
Should_be_fined(john)

and does not contain sentences contradicting the assumptions. The extension is the
closure under RBL-deduction (definition 7 in chapter 2, section 6) of the set that
consists of the following sentences:

Valid(rule(driving_with_alcohol(person),
should_be_fined(person)))
Driving_with_alcohol(john)
Applicable(rule(driving_with_alcohol(person),
should_be_fined(person)),
driving_with_alcohol(john),
should_be_fined(john))
Reason(driving_with_alcohol(john),
applies(rule(driving_with_alcohol(person),
should_be_fined(person)),
driving_with_alcohol(john),
should_be_fined(john)))
Outweighs({driving_with_alcohol(john)},
{}
applies(rule(driving_with_alcohol(person),
should_be_fined(person)),
driving_with_alcohol(john),
should_be_fined(john)))
Applies(rule(driving_with_alcohol(person),
should_be_fined(person)),
driving_with_alcohol(john),
should_be_fined(john))
Reason(driving_with_alcohol(john),
should_be_fined(john))
Outweighs({driving_with_alcohol(john)},
{}
should_be_fined(john))
Should_be_fined(john)

In the remainder of this chapter, we do not mention normality assumptions or
extensions.
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4 Weighing reasonsin Reason-Based L ogic

In this dion we describe an example of weighing reasons in Reason-Based Logic
in detail. We asume that the foll owing sentences are true:

Robhing someone should be punished.
John hesrobhed Peter.

If we interpret the first sentence a a principle, we obtain a reason why John should
be punished. Since there ae no aher reasons, it follows that John should be
punished.

Now asaume that the foll owing sentences are dso true:

Minor first offenders sould not be punished.10
Johnisaminor first offender.

We find a second reason relevant concerning punishing John, but this time areason
against the fad that John should be punished.

So, there is a @nflict of reasons. Without further information, Reason-Based
Logic does not enforce the @nclusion that John should be punished o that he
should not. Both are passble. Only if it is true that one of the reasons outweighs the
other, a conclusion foll ows.

We asame that the reason that John is a minor first offender outweighs the
reason that John hes robbed Peter:

‘Johnisaminor first offender’ as areason for not punishing John outweighs the
reason ‘John has robbed Peter’.

In Reason-Based Logic this can be represented as foll ows:
Valid(rule(robbed(person1, person2),

should_be_punished(person1)))11
Robbed(john, peter)

10 |n the natural language version d this sntenceit is ambiguous what the scope of ‘not’
is. As the forma version shows, we mean ‘It shoud na be the cae that minor first
offenders are purished’, and nd ‘It shoud be the cae that minor first offenders are not
purished’.

11 A representation d the mndtion o this rule that is Smewhat closer to its natural
language ourterpart would be person2: Robbed(personl, person2). However for
simplicity the definition d the language of RBL (chapter 2, sedion 4) prohibits quantifiers
in the ondtions of rules. The mndtion d the rule withou the eistential quantifier asit is
used here leals to similar consequences as the cndtion with the quantifier, since it can
only befulfill ed if the variable person2 is instantiated.
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Valid(rule(is_minor_first_offender(person),
=should_be_punished(person)))

Is_minor_first_offender(john)

Outweighs({is_minor_first_offender(personl)},
{robbed(personl, person2)},
=should_be_punished(personl))

Using similar normality assumptions as in the example of section 3, it can be shown
that both rules apply:

Applies(rule(robbed(personl, person2),
should_be_punished(personl)),
robbed(john, peter),
should_be_punished(john))
Applies(rule(is_minor_first_offender(person),
=should_be_punished(person)),
is_minor_first_offender(john),
=should_be_punished(john))

Applying the two rules leads to two reasons, one for and one against punishing
John:

Reason(robbed(john, peter),
should_be_punished(john))

Reason(is_minor_first_offender(john),
=should_be_punished(john))

Assuming that there are no other relevant reasons for punishing John, and using the
information about the relative weight of the reasons, the relation between facts
WEIGHING gives:

= Should_be_punished(john)
It can be the case that additional reasons give rise to another conclusion. We will
discuss what can happen if there is a second reason for punishing John. We add the
following facts:

Injuring someone should be punished.
John hasinjured Peter.

These can be represented as:
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Valid(rule(injury,
injured(personl, person2),
should_be_punished(person1)))
Injured(john, peter)

Now a second reason for punishing John arises:

Reason(injured(john, peter),
should_be_punished(john))

As a result, we cannot make the assumption that there are no other reasons for
punishing John than Robbed(john, peter).

Right now, WEIGHING cannot be used to conclude whether John has to be
punished or not, since there is no information about how the reasons are to be
weighed.

It is possible that the additional reason does not change the result of weighing:
the reason against punishing outweighs the two reasons for punishing. It should be
noted that to reach a conclusion it does not suffice that the reason against punishing
outweighs each of the two for punishing on its own. In that case,

Outweighs({is_minor_first_offender(personl)},
{injured(person1l, person2)},
=should_be_punished(personl))

is also true, but WEIGHING can till not be used: that would require weighing
information about al three reasons together. In order to use WEIGHING it is
required that

Outweighs({is_minor_first_offender(personl)},
{robbed(personl, person2), injured(personl, person2)},
= should_be_punished(personl))

istrue. In that case the conclusion that John should not be punished follows (using
an appropriate normality assumption).

An interesting case, characteristic for reasoning with reasons, occurs if the two
reasons for punishing John together outweigh the reason against punishing him:

Outweighs({robbed(personl, person2), injured(personl, person2)},
{is_minor_first_offender(person1)},
should_be_punished(personl))

In this case, WEIGHING leads to the opposite conclusion, viz. that John should be
punished:
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Should_be_punished(john)

The two pros can together outweigh the n, even if ead pro on its own is
outweighed by the con. This phenomenon hes been cdl ed accrual of reasons.12

5 Exceptionsin Reason-Based L ogic

In this sdion, we show how exceptions can be modeled in Reason-Based Logic.
We say that there is an exception to a rule (or principle), if the rule's (or
principle’s) condition is stisfied whil e its conclusion does not hold. It can be the
cese that there is another rule/principle the cnclusion of which is incompatible
with the conclusion of the rule/principle under consideration. In that case we speek
of a conflict of rules/principles.13 Conflicts of rules/principles are discussd in the
next sedion.

In Reason-Based Logic, there ae two main medhanisms to model exceptions to
a rule/principle, namely by exclusionary reassons and by reasons against the
application of arule.24 We discussthese in the foll owing two subsedions.

5.1 Exceptionsand exclusionary reasons

Legal rules often, if not always, have scope restrictions that are not explicitly
mentioned in the rule itself. For instance in the legal rule that we drealy
encountered about driving with alcohol,

A person driving a ca after drinking too much alcohol should be fined a
considerable anount of money.

it is not explicitly mentioned in which country the rule is valid. It may be objeced
that this is due to the particular formulation chosen here, but aso in the litera
wordings in a statute the country will normally not be mentioned at all, or only in a
separate sedion, where it is dated that the aticles in the statute ae only valid in a
particular country.

In Reason-Based Logic, exclusionary reasons can be used to model implicit
scope restrictions. For instance,

12 pollock (19914, p. 51) uses this term. He writes that it is a natural suppgition that
ressons acaue, but then surprisingly rejeds it. We mme bad to Pollock’s opinion in
chapter 6, sedion 2

13 Cf. the distinction between uncercutting and rebutting exceptions (Poll ock, 1987-1995:
in bah cases there is an exception to a rule/principle, but in case of a rebutting exception
thereis also a cnflict of ruleg/principles.

14 The first mechanism has courterparts in many logica formalisms (cf. Prakken’s (1993h
p. 84ff.) overview of exceptions), the secondistypicd for Reason-Based Logic.
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Valid(rule(in_country(country) O - country = holland,
excluded(rule(driving_with_alcohol(person),
should_be_fined(person)))))1>

will have the effect that if John was driving in Germany, represented as
In_country(germany),

the rule concerning driving with acohol is excluded. As a result, the rule
concerning driving with acohol is not applicable, does not apply, and does not lead
to the conclusion that John should be fined. (Of course, it is possible that the same
conclusion nevertheless follows due to another valid rule, e.g., a German rule of
law, that is not excluded.)

Scope restrictions for a class of rules can be represented by explicit knowledge
on the origin of the rules. For instance, using the explicit knowledge on which
articles rules are based and which articles are in the penal code, al rules that are
based on articlesin the penal code are restricted to Holland by the following:

Valid(rule(in_country(country) O - country = holland
Obased_on(rule, article) O in_penal_code(article),
excluded(rule)))

An obvious objection to this type of representation of exceptions, viz. outside the
rule, is that since they are often explicitly available they can be made part of the
rule during the trandation of the legal rule to its formal counterpart. For instance,
thiswould lead to the following representation:

Valid(rule(driving_with_alcohol(person) Oin_country(holland),
should_be_fined(person)))

There are drawbacks to this approach, as is generally accepted (see chapter 4).
First, it can easily lead to very long rule conditions, most of which have to be
repeated in many rules and are almost always unimportant for a particular case. For
analogous reasons, in actual codifications of legal rules scope restrictions are not
explicitly stated in each rule. Second, the dissimilarity in structure of the informal
and the formal representation is unnecessarily enlarged.16 As aresult, trangation in
either direction becomes harder, which is particularly a problem in a constantly

15 We have made a simplification here, since facts are often dependent on a situation or
case. For instance, a rule can apply to a case. As a result, many predicates would need an
extra variable for cases. For convenience we leave cases implicit. For instance, in the
following In_country(country) means that the case at hand is in the country represented by
country.

16 Cf. the desirability of an isomorphic representation of the law (see e.g. Bench-Capon
and Coenen, 1992).
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changing domain, such as the law. Third - and this is a drawbadk that cannot be
overcome - not al exceptions to lega rules are eplicitly available since it is
impossble to anticipate dl casesin which aruleis not applicable.

The third pdnt brings us to the second way of representing exceptions in
Reason-Based Logic.

5.2  Exceptionsand reasons against application

When a lega rule is made by the legidlator, not all cases that fal inside the
definition set by alegal rule can be foreseen, if not fundamentaly, then at least in
pradice We do not trea the phil osophicd side of these matters, but give a oncrete
example.

It can happen that there is a case that falls within the rule’s condition and to
which the rule is applicable, but to which the rule should not apply for some other
reason. For instance gplication of the rule might be against its purpose.

We as3ume that there is a rule that forbids deeping in the railway station. The
rule has as its purpose to prevent tramps from occupying the station as their place
to spend the night. An old lady that wants to mee a friend at the station dozes off
when the evening train turns out to be late. Should the prohibition apply to this
lady?1?

The foll owing two sentences describe the case:

Valid(rule(sleep_in_station(act),
forbidden(act)))
Sleep_in_station(lady’s_act)

We ssume that applicetion of the rule aout the sleguing prohibition in the case of
the lady is against the rule’'s purpose:

Application_against_purpose(rule(sleep_in_station(act),
forbidden(act)),
sleep_in_station(lady’s_act),
forbidden(lady’s_act))

Hence, we need a general rule stating that if application is against the purpose of a
rule, thisis areason not to apply therule:

Valid(rule(application_against_purpose(rule, fact, state_of_affairs),
-applies(rule, fact, state_of_affairs)))

17 This exampleisinspired by Fuller's (1958 p. 664). The formulation tere is taken from
Hage and Verheij (1994, b).
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Sincethe condition of the rule &out the slegoing prohibition is stisfied, we have a
reason to apply it (by APALICABILITY):

Reason(sleep_in_station(lady’s_act),
applies(rule(sleep_in_station(act),
forbidden(act)),
sleep_in_station(lady’s_act),
forbidden(lady’s_act)))

But we dso have areason against application:

Reason(application_against_purpose(rule(sleep_in_station(act),

forbidden(act)),

sleep_in_station(lady’s_act),

forbidden(lady’s_act)),

-~applies(rule(sleep_in_station(act),

forbidden(act)),

sleep_in_station(lady’s_act),

forbidden(lady’s_act)))

We suppose that the reason against application of the rule because of its purpose
outweighs the reason for appli caion because of the gpli cability of the rule:

Outweighs({application_against_purpose(rule(sleep_in_station(act),
forbidden(act)),
sleep_in_station(lady’s_act),
forbidden(lady’s_act))},
{sleep_in_station(lady’s_act)},
-~ applies(rule(sleep_in_station(act),
forbidden(act)),
sleep_in_station(lady’s_act),
forbidden(lady’s_act))

We now conclude

-~ Applies(rule(sleep_in_station(act),
forbidden(act)),
sleep_in_station(lady’s_act),
forbidden(lady’s_act))

Because the rule aout the sleging prohibition is not applied, it does not lead to
the prohibition of the lady’s deeping.
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6 Conflictsin Reason-Based L ogic

We speak of a conflict of ruleg/principles, if there is a group of rules/principles the
conclusions of which are incompatible, while their conditions are satisfied. There
are two main mechanisms in Reason-Based Logic to deal with conflicts of rules and
principles, namely by means of exclusionary reasons and by means of weighing
reasons.

6.1 Conflictsand exclusionary reasons

When dealing with conflicting legal rules, several types of so-called conflict rules
are used in law: specific priority clauses for pairs of rules, or for classes of rules,
and genera rules such as Lex Superior, Lex Posterior, and Lex Specialis. The
effect is that one or more of the conflicting rules are excluded and that in the end
thereis no conflict left.

Such conflict rules can be represented in Reason-Based Logic by means of
exclusionary reasons. For instance, following Prakken (1993b), if there is a contract
with features of lease of business accommodation and of another type of contract,
and there is a conflict between a legal rule dealing with such lease contracts and
one dealing with contracts of the other type, the first rule prevails according to
Section 7A: 1624 of the Dutch civil code. This legal rule might be represented as
follows:

Valid(rule(deals_with_lease_of business_accommodation(rulel)
Oapplies(rulel)
O deals_with_contracts_of_another_type(rule2)
Oin_conflict(rulel, rule2),
excluded(rule2)))

More generally, explicit knowledge about prevalence can be used, for instance:

Valid(rule(applies(rulel)
Oin_conflict(rulel, rule2)
O prevails_over(rulel, rule2),
excluded(rule2)))

Using the latter rule about prevalence, a conflict rule such as Lex Posterior can be
represented as follows:

Valid(rule(more_recent(rulel, rule2),
prevails_over(rulel, rule2)))
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It has to be specified when rules are in conflict. It can for instance be specified that
rules are in conflict when they have opposite conclusions.18

In practice, it can happen that conflict rules are themselves involved in a
conflict. For instance, a rule can be of earlier date and of higher authority than
another rule. Since the conflict rules are themselves represented as rules in Reason-
Based Logic, such conflicts of conflict rules can be approached in the same way as
conflictsin general.

6.2 Conflictsand weighing reasons

The second mechanism to deal with conflicting rules/principles is by the weighing
of the resulting reasons.1® An example was already discussed in section 4 of this
chapter.

Not al rules and principles involved in a conflict lead to conflicting reasons,
since there can be rules/principles that do not apply because of exclusionary
reasons, or reasons against their application. If after such simplifications of the
conflict there is till a conflict of reasons, information about their relative weight
can resolve the conflict and lead to a final conclusion. So, there are several layers
in which a conflict of rules/principles is smplified before the resulting reasons are
weighed. Figure 7 gives an overview.

Valid rules with conclusion Valid rules with conclusion
State_of affairs -State_of _affairs

Rules with satisfied conditig

Applicgolerules

Applying rules

Figure 7: Not al conflicting RBL rules lead to conflicting reasons.

It may seem strange that the applying RBL rules are not indicated as a subset of the
applicable rules. In section 8.3 on the analogous application of a rule, we will see
an example of an RBL rule that applies, whileit is not applicable.

18 The need for specifying when rules are in conflict can be considered a drawback since it
puts a heavy burden on the domain theory. However, it can also be considered an advantage
since it can make the notion of conflict more manageable.

19 This mechanism can only deal with conflicts of rules/principles with opposite
conclusions, due to the notion of weighing as modeled in Reason-Based Logic.



Section 7: Rules and principlesin Reason-Based Logic 63

As a final remark about dealing with conflicts of rules/principles in Reason-
Based Logic, we stress that Reason-Based Logic does not resolve al conflicts, and
merely provides different means to represent conflict-resolving information. For
instance, the following set of sentences does not have an extension in Reason-
Based Logic dueto an unresolved conflict of rules:

A

B

Valid(rule(a, c))
Valid(rule(b, d))
-C [0O-D

However, there is no inconsistency (in the sense of RBL-deduction), and the
conflict is resolved if the sentence Excluded(rule(a, c), a, c) or the sentence
Excluded(rule(b, d), b, d) is added.

7 Rulesand principlesin Reason-Based L ogic

We now return to our integrated view on rules and principles, as introduced in
section 2. Recall that our view was based on two assumptions:

« Both rulesand principles give rise to reasons if they are applied.

e The differences between reasoning with rules and principles result from
different types of relationships with other rules and principles, which may
interfere.

In section 7.1, we discuss our basic example of the role of the relationships
between rules and principles, namely a rule with underlying principles. In
section 7.2, we return to the differences between rules and principles as discussed
in section 1.

7.1 Aruleand itsunderlying principles
In section 2.1, we discussed the Dutch legal rule of Art. 7A:1612 BW that sale of a
house should not terminate an existing rent contract. This rule can be represented in

Reason-Based Logic as follows:

Valid(rule(sale_house,
ought_to_be_done(continuation_contract)))

We considered two principles underlying this rule, namely a pro-principle that
somebody who lives in a house should be protected against measures that threaten
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the enjoyment of the house, and a con-principle that contracts only bind the
contracting parties. These principles can be represented as RBL rules as follows:

Valid(rule(protects_inhabitants(act),
ought_to_be_done(act)))

Valid(rule(-party_bound_by_contract,
—-ought_to_be_done(continuation_contract)))

The fact that these principles underlie the rule of Art. 7A:1612 BW is represented
as:

Underlies(rule(protects_inhabitants(act),
ought_to_be_done(act)),
rule(sale_house,
ought_to_be_done(continuation_contract)))
Underlies(rule(-party_bound_by_contract,
-ought_to_be_done(continuation_contract)),
rule(sale_house,
ought_to_be_done(continuation_contract)))

The rule and its underlying principles are schematically shown in Figure 8.

Art. 7A: 1612 RW

/N

Protection of inhahitants Rindina scone of contracts

Figure 8: Therule of Art. 7A:1612 BW and its underlying principles

If a house with renting inhabitants is sold, the two principles lead to conflicting
reasons, since continuation of an existing rent contract protects the inhabitants of a
house, while the new owner is not bound by the contract with the inhabitants. We
have

Protects_inhabitants(continuation_contract)
= Party_bound_by_contract

and therefore the two RBL rules about the protection of inhabitants and about the
binding scope of contracts lead to the conflicting reasons.

Reason(protects_inhabitants(continuation_contract),
ought_to_be_done(continuation_contract))
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Reason(-party_bound_by contract,
-ought_to_be_done(continuation_contract))

However, by making the legal rule of Art. 7A:1612 BW, the legidator has balanced
the conflicting principles, and decided how the reasons generated by them should
be weighed against each other. Therefore, if we have the fact
Sale_house
therule of Art. 7A:1612 BW should lead to the conclusion
Ought_to_be_done(continuation_contract)
without the interference of the two underlying principles: the rule of Art. 7A:1612

BW replaces its underlying principles if it applies (see section 2.1), and the two
principles should not be applicable. The required situation is shown in Figure 9.

Art. 7A: 1612 RW

/N

Protecti itants Rindinos T fracts

Figure 9: Therule of Art. 7A:1612 BW replaces
its underlying principlesif it applies

In Reason-Based Logic, replacement can be modeled using exclusionary reasons.
We need the following rule:

Valid(rule(underlies(rulel, rule2) O applies(rule2),
excluded(rule1)))20

Since we can conclude

Applies(rule(sale_house,
ought_to_be_done(continuation_contract)),
sale_house,
ought_to_be_done(continuation_contract))

20 Henry Prakken has correctly noted that rule2 also excludes rulel in case there is
another rule or principle that does not underlie rule2, but nevertheless interferes. As a
result, there can be no interaction of the other rule or principle with rulel if rule2 applies.
This does not always seem desirable, and deserves further study. Interestingly, in this
situation rule2 is not atypical rule.
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we find:

Excluded(rule(protects_inhabitants(act),
ought_to_be_done(act)),
protects_inhabitants(continuation_contract),
ought_to_be_done(continuation_contract))
Excluded(rule(-party_bound_by contract,
-ought_to_be_done(continuation_contract)),
= party_bound_by_contract,
-ought_to_be_done(continuation_contract))

The principles about the protection of inhabitants and about the binding scope of
contracts do no longer lead to reasons. As a result, the rule of Art. 7A:1612 BW
leads without interference to the conclusion

Ought_to_be_done(continuation_contract),
just asrequired.
7.2  Thedifferences between rulesand principles

We can now finish our integrated view on rules and principles as represented in
Reason-Based Logic. Asin the case of arule that replaces its underlying principle,
a typical rule is an RBL rule that leads to exclusionary reasons against the
applicability of any interfering rule or principle. A typical principle isan RBL rule
that does not exclude any interfering rule/principle. Interfering rules and principles
aretypically rules and principles with equal or opposite conclusion.

Thisisin line with our two main assumptions:

* Both rulesand principles give rise to reasons if they are applied. The difference
between the two is that an applying rule not only generates a reason for its
conclusion, but also exclusionary reasons for the principles it replaces.

« The differences between reasoning with rules and reasoning with principles
result from different types of relationships with other rules and principles,
interfering with them: rules lead to exclusionary reasons to interfering rules and
principles, while principles lead to reasons that are weighed in case of a
conflict.

Itisclear that in this view there is no clear border between rules and principles. For
instance, an isolated rule cannot be distinguished from an isolated principle. Only if
there are interfering rules and principles, gradual differences can be seen. On the
one extreme there is the typical principle that, if it applies, does not generate
exclusionary reasons for any of the rules and principles that interfere with it. On the
other extreme there isthe typical rule that, if it applies, excludes all interfering rules
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and principles. In between the two extremes there are many degrees of hybrid
rules/principles, some more principle-like, others more rule-like.

In section 1, we discussed three differences between rules and principles. First,
it seemed that rules lead directly to their conclusion if they apply, while principles
lead to reasons that have to be weighed. This difference has disappeared since in
our view both rules and principles generate reasons. Therefore both rules and
principles first lead to reasons that are then weighed. Nevertheless, also in our
view, rules seem to lead directly to their conclusion. This is the result of the fact
that in the case of an applying rule no weighing of reasons is necessary since al
interfering rules and principles are excluded. Therefore, the step from reason to
conclusion seems immediate.

Second, it seemed that conflicting rules lead to a contradiction if they apply,
while conflicting principles merely lead to conflicting reasons. In our
representation, no real contradiction can arise by the application of rules with
opposite conclusions, since rules just as principles only generate reasons. Moreover
if an apparent rule givesrise to areason that conflicts with another reason, thisis a
signthat it is not atypical rule, but has a somewhat more principle-like character.

Third, it seemed that rules lead to their conclusion in isolation, while principles
interact with other principles: additional relevant reasons arising from other
principles can influence the result of weighing. In our view, this seeming difference
is beside the point since rules in isolation do not differ from principles in isolation.
The rule-like character of a rule can only be appreciated if there are interfering
rules or principles.

8 Analogy in Reason-Based L ogic

The last topic that we discuss is reasoning by analogy.2! As an application of our
integrated view on rules and principles, we describe three different ways of
reconstructing reasoning by analogy. To avoid misunderstanding, we stress that our
approach to reasoning by analogy is not based on cases?? but on rules and
principles. Instead of using the similarity and dissimilarity of cases as criteria to
justify reasoning by analogy, we use the relationships between rules and principles.

We assume that in reasoning by analogy there is a rule that does not apply
because its condition is not satisfied, but that nevertheless its conclusion holds on
the basis of additional information about the relationships between the rule and
other rules and principles. We distinguish three forms of reasoning to analyze
reasoning by analogy:

e Application of principles that underlie the origina rule that does not apply
itself.

21 This section is based on Verheij and Hage (1994).
22 e, for instance, Ashley (1990), Yoshino et al. (1993) and Tiscornia (1994).
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e Applicaion of an analogous rule/principle that has the same underlying
principles asthe original rule that does not apply.

* Anaogous applicaion of the original rule, i.e., application of the rule with a
‘non-standard’ justification, based on, for instance, a principle.

We do not claim that these threeforms of reasoning are dways cases of reasoning
by analogy, but that they are useful means to analyze agiven case of reasoning by
analogy. Below we use one example, and analyze it by the three mentioned forms
of reasoning.

8.1  Application of underlying principles

In the first form of reasoning by analogy, the principles apply that underlie the
origina rule that does not apply itself.

The example we use is based on Art. 7A:1612 BW. It was also used in the
sedions 2.1 and 7.1 to explain the replacement of the principles underlying a rule.
Again, we have one rule and two underlying principles:

Valid(rule(sale_house,
ought_to_be_done(continuation_contract)))
Valid(rule(protects_inhabitants(act),
ought_to_be_done(act)))
Valid(rule(-party_bound_by_contract,
—-ought_to_be_done(continuation_contract)))
Underlies(rule(protects_inhabitants(act),
ought_to_be_done(act)),
rule(sale_house,
ought_to_be_done(continuation_contract)))
Underlies(rule(-party_bound_by_contract,
-ought_to_be_done(continuation_contract)),
rule(sale_house,
ought_to_be_done(continuation_contract)))

Here we aume that a house with renting inhabitants is not sold, but donated. So,
we have the fads:

- Sale_house
Donation_house

As aresult, the condition of the rule of Art. 7A:1612BW is not satisfied, and the
rule does not apply. But just asin the cae of sale, continuation of the existing rent
contrad is a way to proted the inhabitants, while the new owner is not bound by
the eisting contrad:
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Protects_inhabitants(continuation_contract)
- Party_bound_by_contract

Therefore, the conditions of the principles about the protection of inhabitants and
about the binding scope of contracts are satisfied. Since the rule of Art. 7A:1612
BW does not apply, the replacement rule

Valid(rule(underlies(rulel, rule2) Oapplies(rule2),
excluded(rulel)))

does not give exclusionary reasons for the two underlying principles. They apply
and giveriseto the reasons:

Reason(protects_inhabitants(continuation_contract),
ought_to_be_done(continuation_contract))

Reason(-party_bound_by contract,
-ought_to_be_done(continuation_contract))

The situation is shown in Figure 10.

N

Protection of inhahitants Rindina scone of contracts

Figure 10: The principles underlying the rule of Art. 7A:1612 BW apply

S0, in the case of donation two reasons arise that are based on the same principles
as those taken into account by the legislator, when the original rule was made.

There are good reasons to assume that the weighing of these reasons has the
same outcome as in the reasoning of the legidator:

Outweighs({protects_inhabitants(continuation_contract)},
{=party_bound_by_contract},
ought_to_be_done(continuation_contract))
and leads to the same conclusion that the contract should be continued:
Ought_to_be_done(continuation_contract)
In this analysis, two principles applied in the case of donation. They are precisely

the two principles that were replaced in the case of sale. The case of donation is
therefore in a sense of the same kind as the case of sale. Therefore we speak of a
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form of reasoning by analogy. If only some of the underlying principles apply, or
more goals and principles are relevant, we cainot always ek of a cae of
reasoning by analogy. The cae might even be solved dfferently, since the reasons
might be weighed differently.

8.2  Application of an analogousrulée/principle

In the second form of reasoning by analogy, a analogous rule/principle gplies that
has the same underlying principles as the original rule. This leals to another
analysis of the same example.

In our example the analogous rule/principle might be:

Valid(rule(donation_house,
ought_to_be_done(continuation_contract)))

The legal dedsion maker that wants to base his reasoning on this rule has to justify
its validity. This justification can be based on the same reasons as the ones used by
the legislator when he made Art. 7A:1612BW:

Reason(protects_inhabitants(continuation_contract),
valid(rule(donation_house,
ought_to_be_done(continuation_contract))))
Reason(-party_bound_by contract,
=valid(rule(donation_house,
ought_to_be_done(continuation_contract))))

In this line of reasoning, the two reasons are not relevant for the mnclusion that the
contrad should be mntinued, but for the validity of the new RBL rule @out
donation. In their new role, the reasons might be weighed the same way as before:

Outweighs({protects_inhabitants(continuation_contract)},
{=party_bound_by_contract},
valid(rule(donation_house,

ought_to_be_done(continuation_contract)))

The onclusion isthat the RBL rule @out donation isvalid.

It may seam that there is a problem here with the separation of powers: while
the legidator can make rules, the legal dedsion maker cannot. However, this
problem is only seeming, and due to the different meanings of rule validity in law
and in reasoning. We use the term ‘rule validity’ in the latter sense. For rule validity
in that sense the separation of powersisirrelevant.23

23 |n Verheij and Hage (1994, we put it differently: we wrote that the legal dedsion maker
can orly validate lega principles (and nd lega rules) becaise of the separation o powers.
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If the rule about donation applies, the principles about the protection of
inhabitants and about the binding scope of contracts are again replaced by the rule
about donation and do not apply. An overview of the relations of the rules and
principlesinvolved in this reasoning is shown in Figure 11.

Arl > W Donation

X

Protecti itants Rindinos T fracts

Figure 11: The rule about donation applies having the same underlying
principles asthe original rule of Art. 7A:1612 BW

Since the rule about donation has the same underlying principles as the rule of Art.
7A:1612 BW we say that aruleis applied analogous to the origina rule.

8.3  Analogous application of the original rule

The third form of reasoning by analogy is typical for Reason-Based Logic, since it
involves reasons for and against applying arule.

In this third analysis of the example, the rule of Art. 7A:1612 BW is not
applicable, since its condition is not satisfied, just as in the previous two analyses.
As aresult, the standard reason for applying the rule, based on the relation between
facts APPLICABILITY (chapter 2, section 5), does not arise. However, a rule that is
not applicable can apply, since there can be other reasons that lead to its
application.

In our case, the reasons are again those for and against the continuation of the
contract having anew role. They now are represented as follows:

Reason(protects_inhabitants(continuation_contract),
applies(rule(sale_house,
ought_to_be_done(continuation_contract)),
sale_house,
ought_to_be_done(continuation_contract)))
Reason(-party_bound_by contract,
—-applies(rule(sale_house,
ought_to_be_done(continuation_contract)),

However, in the line of reasoning described in the text the two underlying principles are
replaced if the RBL rule about donation applies. Otherwise the reasons arising from these
principles would be taken into account twice. As aresult, the RBL rule about donation has a
rule-like character.
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sale_house,
ought_to_be_done(continuation_contract)))

Here the reasons protects_inhabitants(continuation_contract) and
- party_bound_by_contract are reasons for and against applying the rule of Art.
7A:1612 BW, respectively. Again the result of weighing these reasons might be the
samein this new role, asin section 8.2:

Outweighs({protects_inhabitants(continuation_contract)},
{=party_bound_by_contract},
applies(rule(sale_house,

ought_to_be_done(continuation_contract)),
sale_house,
ought_to_be_done(continuation_contract)))

As aresult, we can conclude that the rule of Art. 7A:1612 BW applies, even though
its condition is not satisfied and it is not applicable:

Applies(rule(sale_house,
ought_to_be_done(continuation_contract)),
sale_house,
ought_to_be_done(continuation_contract))

Since the rule of Art. 7A:1612 BW applies, it replaces its underlying principles by
the replacement rule, just as any applying rule: the principles about the protection
of inhabitants and about the binding scope of contracts are excluded and do not
apply. Figure 9 shows the relations of the rules and principles involved (but does
not show the reasons in their new role). These relations are the same as in the case
of normal rule application. Since in this example the rule does apply, but not for the
standard reason that its condition is satisfied, we cal this analogous rule
application.



Chapter 4

Formalizing rules:
a compar ative survey

In the chapters 2 and 3, we have described our approach to formalizing rules:
Reason-Based Logic. In this chapter, we discuss a number of other approaches, and
compare them to ours. We focus on issues concerning rules that arise because of
the defeasibility of arguments.1

In section 1, we make some general remarks on rules and their role in
argumentation. In section 2, we treat the classic formalization of rules as material
conditionals, and to what extent this formalization can cope with a number of issues
related to the defeasibility of arguments. Section 3 continues with a discussion of
approaches to dealing with the relevance of rule conditions for rule conclusions.
We discuss approaches to dealing with exceptions to rules in section4, and
approaches to dealing with rule conflicts in section 5. In section 6, we look at
reasoning about rules.

We wish to stress that many of the observations in this chapter are not original .2
However, we have added some originality by focusing on different issues instead of
on specific formalisms. We have selected a number of well-known and influential
formalisms, and use them to explain general approaches to the issues. In this way,
the approach to formalizing rules of Reason-Based Logic is put in perspective.

1 Rulesin argumentation
In this section, we explain our view on rules. We start with the relation between

rules and arguments. Some remarks on syllogistic and enthymematic arguments
follow. The section ends with a discussion of ordinary rule application.

1 Nute (1980) and Sanford (1989) describe other interesting topics, such as counterfactual
conditionals.

2 We have especidly benefited from the discussions by Haack (1978), Prakken (19934,
chapters 5 and 7) and Makinson (1994).
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1.1 Rulesand arguments

We recdl our interpretation of rules and their relation to arguments (see &so
chapter 1, sedion 4.1 and chapter 2, sedion 1.1). As our starting point, we take
informal arguments as they occur in pradice, e.g.,

Mary isborn in Magstricht.
So, Mary pronounces the letter g softly.
So, people can tell that Mary is from the south of the Netherlands.

We present arguments in an idedized form, with clealy distinguished steps. Each
step consists of areason and a mnclusion, as foll ows:

Reason.
So, Conclusion.

Arguments can consist of several steps. In that case, the mnclusion of one step is
the reason of the next. The example agument consists of two steps. The first step
has the reason ‘Mary is born in Maagtricht’ and the conclusion ‘Mary pronounces
the letter g softly’, the second step the reason ‘Mary pronounces the letter g softly’
and the conclusion ‘People can tell that Mary is from the south of the Netherlands'.

The steps in the agument can also occur in other arguments. For instance, the
first step in the agument above dso occurs in the foll owing argument:

Mary isborn in Magstricht.
So, Mary pronounces the letter g softly.
So, people from Amsterdam may find Mary’s acceit amusing.

In other words, steps in an argument are independent of the particular argument in
which they occur. Each step can be used in an argument because there exists me
relation between the reason and the mnclusion of the step. This relation between
reason and conclusion as expressed by the agument step, iswhat we cdl arule.

Often argument steps follow a pattern. For instance, the first argument above
can be made for anyone who is born in Maastricht. We have the following
argument scheme:

Personisbornin Magstricht.
So, Person pronounces the letter g softly.
So, people can tell that Person is from the south of the Netherlands.

The steps in the agument scheme can be used in an adtual argument independently
of the particular person mentioned. Person isavariable, that can befill ed in at will:
whoever the person Person is, Mary, Peter, or Fred, the scheme gives rise to an
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accetable agument. Also the relation between reason and conclusion in a step in
such an argument schemeis cdled arule, but thistimeit isarule with avariable.
There ae few things about rules of reasoning that are generally agreed upon.
However, a common starting point is that a rule has a condition and a mnclusion.
The mndition and the onclusion of a rule mrrespond to the reason and the
conclusion in an argument step, respedively. So, an argument step of the form

Reason.
So, Conclusion.

corresponds to a rule with condition Reason and conclusion Conclusion. It may
seem inconsistent terminology to use two terms, ‘reason’ and ‘condition’ for
corresponding things. However, there is a difference if the mndition of arule is
used as a reason in an argument, the reason is assumed to hold, while for the
validity of aruleit isirrelevant whether its condition holds.

1.2  Syllogistic and enthymematic arguments

If in introductory texts on classcd deductive logic examples of informal arguments
are given, they typicdly look as follows (e.g., Purtill, 1979 Copi, 1982 espedally
p. 235ff.):

1. Johnisathief. If Johnisathief, then he should be punished.
So, John should be punished.

2. Either Johnis married to Mary or John is married to Edith. John is married to
Mary.
So, Johnis not married to Edith.

They are used to introduce logicd connedives, such as‘If ... then ... and ‘Either ...
or .... Inordinary language, one dso finds the foll owing, closely related arguments
that do not contain these mnnedives:

1'. Johnisathief.
So, John should be punished.

2'. Johnis married to Mary.
So, Johnis not married to Edith.

These aguments result from the aguments 1 and 2 above by omitting one of the
premises. From the point of view of clasdcd logic, the first two arguments are
complete, while in the second two one of the premisesis missng. The aguments 1’
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and 2 are cdled enthymematic, in contrast with their syllogistic counterparts 1 and
2, that explicitly contain all premises (Copi, 1982 pp. 235, 253).3

In this thesis, we have given examples of arguments that resemble the syll ogistic
type of argument and of arguments that resemble the enthymematic type. This may
seam inconsistent. However, the gparent inconsistency disappeas if it is noted
that the distinction between syllogistic and enthymematic aguments only has
meaning relative to a set of rules. For instance the syll ogistic aaguments above ae
complete, relative to the rules (or rule schemes) Modus Ponens and Digunctive
Syllogism underlying the agument schemes:

Sate of affairs,. If State of affairs,;, then Sate of affairs,.
So, Sate of affairs,.

Either Sate of affairs, or Sate of affairs,. Sate of affairs,.
So, not State of affairs,.

Relative to these rules, we can distinguish the syllogistic aguments 1 and 2, in
which all premises are explicitly stated, and the enthymematic arguments 1’ and 2,
in which one or more premises are missng.

The example aguments 1’ and 2, that are enthymematic with resped to Modus
Ponens and Digunctive Syllogism, are syllogistic with resped to the rules that
underlie the agument schemes

Personisathief.
So, Person should be punished.

and

Person, ismarried to Persons.
So, Person; is not married to Person.4

Clealy, our interpretation of rules is closely related to the warrants in
Toulmin's (1958 argument scheme.>

We have taken some dfort to state our interpretation of the notion ‘rule’ as
clealy as possble, for two reasons. First, we think that reseach on the
formalization of reasoning with defeesible aguments dould be thoroughy

3 The distinction between syllogistic and enthymematic arguments was aready made by
Aristotle (cf. Copi, 1982.

It is ometimes objeaed that the rules underlying these aguments refer to the meaning
of the phrases used. This ignores the fad that also a rule such as Modus Ponens refers to the
meaning of its phrases, namely the meaning of ‘If ..., then ..., which as we will seeis not
uncontroversial.

5 Toumin's argument scheme has recently inspired several reseachers (cf., eg.,
Bench-Capon, 1995.
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grounded in intuitions, simply becaise that research is inspired by the intuitive
diff erences between adual reasoning and, for instance, deductive reasoning. Thisis
in line with our general method o research (chapter 1, sedion 7)

Seoond, different intuiti ons can cause much confusion. Therefore, we stressthat
our interpretation of rules differs from several other interpretations in the literature,
such asrules of inference, material conditionals, or default rules. Indeed, thereisno
single, generally accepted interpretation of the notion ‘rule’. In fad, a significant
part of the reseach on defeasible reasoning can be regarded as a seach for the
meaning, or, better, for diff erent meanings of the notion ‘rule’.

1.3 Ordinary ruleapplication

In any interpretation of rules, they can in some sense be gplied: if there isarule,
the condition of which holds, the @nclusion of the rule follows. Here ‘holds' and
‘follows can be interpreted in many ways, for instance & ‘be true', ‘be derivable’,
or ‘be justified by an argument’. The latter interpretation will be our intuitive
guideline in this chapter.

Since we will be deding with several different formalisms, a notational
convention is useful. If the conclusion Conclusion follows from the asaumptions
Assumption;, Assumptiony, ..., Assumption,, we write:

Assumptions, Assumptiony, ..., Assumption,  Conclusion

Our guiding interpretation of this notation is as follows: assuming Assumption,
Assumption,, ..., Assumption,, the @nclusion Conclusion is justified (by some
argument).

Using this notation, ordinary rule gplication is denoted as foll ows:

Rule, Condition |~ Conclusion

Here Rule denotes that there is a valid rule that has Condition as its condition and
Conclusion asits conclusion.

In First-Order Predicae Logic (see e.g., Van Daen (1983 or Davis (1993),
there is an obvious candidate to formali ze rules, namely the material conditional .6
A rule with condition Condition and conclusion Conclusion can be represented as
the material conditional Condition — Conclusion, and ordinary rule gplicaion can
be interpreted in two well-known (and equivalent) ways, namely semanticdly and
proof-theoreticdly:

If Condition — Conclusion and Condition are true, then Conclusion is true.
From Condition - Conclusion and Condition, Conclusion is derivable.

6 The material conditional is often caled the material implication. Sanford (1989, joining
Quine, explains why thisis uncareful use of language.
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These ae usualy formally represented as foll ows:

Condition - Conclusion, Condition | Conclusion
Condition — Conclusion, Condition |- Conclusion

In our notational convention, both become:
Condition — Conclusion, Condition |~ Conclusion

We dtress that the symbol |~ does not give preference to a semanticdly or a
syntadicdly defined consequencerelation.

In the chapters 2 and 3, we discussed another candidate to formalize rules,
namely the rule of Reason-Based Logic. In comparison with the complexity of the
rule of Reason-Based Logic, the material conditional is attradively simple.
Therefore animportant question arises. Why is the material conditional approach to
rules unsatisfadory? That is the subjed of the next sedion.

2 Rulesasmaterial conditionals

In this edion, we discuss the material conditional approach to rules. First we
discussthe relevance of rule @nditions for rule conclusions and the paradoxes of
the material conditional. Then we discussthe behavior of the material conditional
with resped to exceptions and conflicts. The sedion ends with a discusgon of the
problems of the material conditional related to reasoning about rules.

2.1 Relevance and the paradoxes of the material conditional

If we formalize rules as material conditionals, the first problems that we encounter
concern the relevance of the andition for the conclusion.
Therule of our example above, that al owed the agument steps of the scheme

Personisbornin Magstricht.
So, Person pronounces the letter g softly.

shows the relevance of the cndition of a rule for its conclusion. The fad that
someone is born in Maastricht is relevant for the fad that someone pronounces the
letter g softly, in the sense that under normal circumstances the second follows
because the first holds. This relevance is a @mnsequence of the way the world is:
people born in Maastricht, normally pronounce the letter g softly. As a result, the
demand of the relevance of a rule’'s condition for its conclusion is in principle a
matter of the domain theory.

For instance, a domain theory that contains a rule with condition ‘The sky is
blue' and conclusion ‘Amsterdam is the caital of the Netherlands' does not med
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the relevance demand. However, the relevance demand is not only a matter of the
domain theory, but also of the allowed inferences. We show this using the material
conditional as an example. It turns out that material conditionals have properties
that are not in line with the relevance demand.

For instance, if we assume that Mary is not born in Maastricht, the material
conditional with condition Mary_is_born_in_Maastricht and conclusion
Mary_pronounces_the_letter_g_softly follows:

= Mary_is_born_in_Maastricht i Mary_is_born_in_Maastricht —
Mary_pronounces_the_letter_g_softly

In fact, any material conditional with condition Mary_is_born_in_Maastricht
follows, for instance:

= Mary_is_born_in_Maastricht i~ Mary_is_born_in_Maastricht —
- Mary_pronounces_the_letter_g_softly

= Mary_is_born_in_Maastricht i~ Mary_is_born_in_Maastricht —
There_is_life_on_Mars

= Mary_is_born_in_Maastricht i~ Mary_is_born_in_Maastricht —
- Mary_is_born_in_Maastricht

The examples have been chosen in such a way that the conditions of the material
conditionals become decreasingly relevant for their conclusions. Interpreted as
rules that give rise to acceptable arguments, these material conditionals become
increasingly absurd. For instance, in our interpretation, the last example reads as
follows. Assuming that Mary is not born in Maastricht, there is a rule that makes
the argument

Mary isborn in Maastricht.
So, Mary is not born in Maastricht.

acceptable.
These examples are due to the first of the following so-called paradoxes of the
material conditional (cf., e.g., Haack, 1978, p. 37):

~ARA-B
B~A-B
FA-B)OB - A

Examples of the second are;

Mary_pronounces_the_letter_g_softly ~ Mary_is_born_in_Amsterdam -
Mary_pronounces_the_letter_g_softly
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Mary_pronounces_the_letter_g_softly ~ There_is_life_on_Mars -
Mary_pronounces_the_letter_g_softly

Interpreting the latter, we find: assuming that Mary pronounces the letter g softly,
thereis arule that makes the argument

Thereislife on Mars.
So, Mary pronounces the letter g softly.

acceptable.
An example of the third paradox is:

k (There_is_life_on_Mars - Mary_pronounces_the_letter_g_softly) O
(Mary_pronounces_the_letter_g_softly — There_is_life_on_Mars)

Interpreting this, we find that there is either arule that makes the argument

Thereislife on Mars.
So, Mary pronounces the letter g softly.

acceptable, or arule that makes the argument

Mary pronounces the letter g softly.
So, thereislife on Mars.

acceptable.

The examples show that the material conditional does not behave well with
regard to relevance. Even if we are careful and assume only material conditionals
which have conditions that are relevant for their conclusions, we obtain many other
material conditionals for free which lack that property. This has been recognized
for long, and is generally considered a drawback of the formalization of rules as
material conditionals. For instance, the paradoxes of the material conditional led
C.l. Lewis to the definition of the strict conditional (that turned out to have similar
paradoxes of its own),” and Anderson and Belnap to the development of their logic
of relevance.8

Some approaches to dealing with relevance are discussed in section 3.

7 Cf. Haack (1978, p. 37) and Sanford (1989, p. 68ff.).
8  Cf. Haack (1978, p. 37, p. 198ff.) and Sanford (1989, p. 129ff.).
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2.2  Exceptionstorules

Another source of problems for the material conditional are exceptions to rules. We
have drealy seen several examples of exceptions in the previous chapters (chapter
1, sedion 4.1, chapter 2, sedion 1.2, chapter 3, sedion 5).

There ae two intuitive requirements for reasoning with rules with exceptions:

STANDARD CASE
If there is a rule the @ndition of which holds, then the rule’s conclusion
follows.

EXCEPTION CASE
If there is a rule the condition of which holds, and there is an exception to the
rule, then the rule’s conclusion does not foll ow.®

If we model rules as material conditionals, we get the foll owing:

STANDARD CASE

Condition, Condition - Conclusion |~ Conclusion
EXCEPTION CASE

Condition, Condition - Conclusion, Exception [~Conclusion

The latter isclealy fase. We recdl the property cdl ed monotonicity:

If Assumptions ~ Conclusion,
then Assumptions, More_assumptions |~ Conclusion.

It follows immediately that a reasoning formalism that meets the two requirements
above canot be monotonic. Since First-Order Predicae Logic is monotonic, we
conclude that reasoning with rules with exceptions cannot be represented in it.

It may at first seam strange, but the requirement in the standard case, makes
reasoning with rules with exceptions nonmonotonic, and not the requirement in the
exception case. In the standard case, one jumps to the conclusion of the rule, while
there might be an exception. It would be more caeful to add the asaumption that
there is no exception, as foll ows:

CAREFUL STANDARD CASE
If there is a rule the condition of which holds, and there is no exception, then
the rule’ s conclusion foll ows.

Clealy, this careful requirement does not lead to nonmonotonicity. For instance,
the deductive cmnsequencerelation of Reason-Based Logic (chapter 2, beginning of

9 Of course, the rule's conclusion can hdd, as aresult of other information.
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sedion 6) is careful in this ense. However, as we drealy discussed there, this
caefulnessleads to awedk notion of consequence
Other approaches to deding with exceptions to rules are discussed in sedion 4.

2.3 Ruleconflicts

A third source of problems for the formalization of rules as material conditionals
are rule mnflicts. We have dready seen several examples in the previous chapters
(chapter 1, sedion 4.2, chapter 2, sedion 1.3, chapter 3, sedion 6). We mention
two types of unwanted behavior of the material conditi onal.

The first type of unwanted behavior is that, if there is a mnflict of material
conditionals, i.e., their conclusions are incompatible and their conditions stisfied,
anything follows. Formally,

Conditions, Condition,, Condition; — Conclusion, Condition, — -~ Conclusion ~
Anything

For instance, interpreting rules as material conditionals, we find: if thieves are
punishable, minor first offenders are not punishable, and Johnis a minor thief, then
Fermat’s theorem is true. This easy way of settling Fermat’s theorem is of course
useless $nce we can aso conclude that it is false. Clealy, this behavior of the
material conditional is unwanted if one accets the eistence of rule anflicts.
Intuitively, a onflict of rules dould not lead to a ntradiction from which
anything foll ows. We have the foll owing intuiti ve property:

RULE CONFLICT
If there ae rules with incompatible cnclusions, the mnditions of which hold,
no contradiction foll ows.

The second type of unwanted behavior of the material conditional occurs even if
the anditions of rules with incompatible conclusions are not satisfied. We have the
following:

Condition; — Conclusion, Condition, — =~ Conclusion |~ Condition, —
- Conditiony

For instance, if thieves are punishable and minor first off enders are not, then minor
first offenders are not thieves. It would be very nice for governments if simply
announcing that minor first offenders are not punishable would have this effed.
Intuitively, it is unwanted that rules with incompatible @nclusions leed to other
rules, as naively as above. The property is related to the property of the so-cdled
contraposition of the material conditional:

Condition — Conclusion  ~Conclusion — = Condition
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This property can easily lead to strange results. For instance, if we have that
suspects are presumed innocent, do we also have that those who are not presumed
innocent are not suspect?

Both types of unwanted behavior show that rules easily allow for too many
conclusions. First, we saw that a conflict of rules should not lead to a contradiction;
second, that arule should not lead to its contraposition.

This is opposite to the situation in the case of exceptions, where we saw that
rules sometimes allow too few conclusions: in the standard case, we want to jump
to aconclusion, even if there might be an exception.

In Figure 1, the tension between too few and too many conclusions is suggested.
The set of dtrict conclusions that follow from a set of assumptions is often
considered too small. As aresult, one wantsto enlarge that set by allowing tentative
conclusions. On the other hand, if one enlarges the set too much, the boundary of
consistency is crossed.10 Since thisis also unwanted, one wants to constrain the set
of tentative conclusions, in order to maintain consistency.

\ Boundary of consistency

Tentative conclusions?

Strict conclusions

Figure 1: The tension between too few and too many conclusions

As the figure shows, an acceptable set of tentative conclusions that follow from a
set of assumptions includes the set of strict conclusions, and is included in some
consistent set.

Other approaches to dealing with rule conflicts are discussed in section 5.

10 The figure suggests that there is a clear, unique, boundary of consistency. This is of
course not the case: there can be many different maxiconsistent sets. However, this is
unessential for what the figure attempts to depict.
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24  Reasoning about rules

As a fourth source of problems for formalizing rules as material conditionals, we

discussreasoning about rules. We distinguish two types of reasoning about rules:

reasoning with rules as conclusions, and reasoning that involves fads about rules.11
Asaume that we mnsider the aguments

It israiningand | did not bringarain coat.
So, my clothes get wet.

and

My clothes get wet.
So, | will fed uncomfortable.

to be accetable. It seans reasonable to conclude that aso the agument

It israiningand | did not bringarain coat.
So, | will fed uncomfortable.

is acceptable. As a result, the following argument, in terms of the rules that give
rise to these aguments, is accetable:

‘Ifitisrainingand | did not bringarain coat, my clothes get wet’ isavalid rule.

‘If my clothes get wet, | fed uncomfortable’ isavalid rule.

So, ‘If itisrainingand | did not bringarain coat, | will fed uncomfortable’ isa
valid rule.

This argument is an example of reasoning about rules, in which the onclusion of
the agument is a rule. Other examples have fads about rules as their conclusion.
There can be an argument concerning exceptions, e.g.,

Johnisdriving on a German highway.
So, there is an exception to the rule ‘If John drives faster than 120 kil ometers
per hour, he can be fined'.

or priority relations between rules, e.g.,

John krows Mary well.

Alex hardly knows Mary.

So, the rule ‘If John says Mary is nice, then Mary isnice prevails over the rule
‘If Alex saysMary is not nice then Mary isnot nice in case of a mnflict.

11 Wwewill I ater see(sedtion 6) that in Reason-Based Logic this distinction dsappeas.
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If rules are formalized as material conditionals, the first type of reasoning about
rules, in which a rule occurs as a @nclusion, can apparently be dedt with. For
instance, the first example we gave orresponds to the following property of
material conditionals, cdled transiti vity:

A-BB-CHA-C

However, this can hardly be considered as reasoning about rules, since it is not
based on information about the particular rules involved. Transitivity is a property
that holds for general material conditionals, and does not depend on any particular
information for particular material conditionals.

Moreover, rules do not aways have the property of transtivity. A
counterexample is the foll owing. Asaume we have the two argument schemes:

Person livesin Curaca.
So, Person is Dutch.

and

Person is Dutch.
So, Person livesin Europe.

Even if these aguments are accetable, the agument scheme

Person livesin Curaca.
So, Person livesin Europe.

need not be accetable, since Curaca is in the Caribbean region, and not in
Europe. The fad that the property of transitivity does not hold for the agumentsin
this case is the result of the fad that the rule ‘If someone is Dutch, he lives in
Europe’ can have exceptions. Since material conditionals have the property of
trangitivity, the rules underlying the example aguments cannot be formalized as
material conditionals.

For the other type of reasoning about rules, involving fads about rules (e.g.,
about exceptions, conflicts or priorities), modeling rules as a material conditional is
clealy inadequate, sincethis would require that it is possble to expressfads about
material conditionals in the objed language. This is not possble in standard First-
Order Predicate Logic.

Other approaches to deding with reasoning about rules are discussed in
sedion 6.
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3 Reevance

In order to avoid the problems of the material conditional with regard to relevance,
a speda syntadic form should be used, reserved for the representation of rules. In
thisway, it is possble to spedfy the properties of rules from scratch.

We discussthree gproaches that follow thisidea The first is to fixate the set of
rules. The second isto tred rules as gedal sentences. The third is to trea rules as
spedal objeds.

3.1 Fixating a set of rules

As an example of the first type of approach, in which the set of rulesis fixated, we
discussReiter’s Default Logic (Reiter, 1980 1987). We start with a summary of his
definiti ons.

Reiter's Default Logic uses the language of First-Order Predicae Logic; for
simplicity we use that of Propasitional Logic here. The essumptions are encoded as
a pair of sets (F, A), where F is a set of sentences and A is a set of default rules.
Such apair of sets (F, A) iscdled atheory.

A default rule has the form

a: By, Bz Bl Y,

where a, 1, B2, ---,Bn, and y are sentences. Here a is the prerequisite of the default
rule, B4, B2, ---, Bn @e the justificaions of the rule, and y is the mnsequent of the
default rule. Representing a rule @& a default rule, the cndition of a rule
corresponds to the prerequisite of a default rule, and the conclusion of arule to the
consequent of the default rule. The role of the justificaions of a default rule is
discussed in sedion 4.2.

An extension of atheory (F, A) isaset of sentencesE, suchthat E=E, 0 E; O
E, 0 E; 0 ...,where

Ey,=F, and
Ei.1=Th(E) O { y|thereisana : By, B2, ...,Bn/ YO A, such that a O E;, and
forall j: =B, O E} for anyi > 012

The definition of the E; depends on E. Intuitively, the definition of an extension
makes use of E as an advance guess of the mnsequences of a theory (F, A), and
then chedks whether this guesscan be gradualy constructed using the default rules
in A starting from the fixed information F.13

12 For a set of sentences S, Th(S) denctes the set of logicad consequences of S in
Propasitional Logic.

13 The same technique was used in the definition o the nonmondonic consequence
relation d Reason-Based Logic (chapter 2, sedion 6).
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Thereisan equivaent fix-point definition of extensions: E isan extension if E =
I"(E), where the operator I is defined as follows. Let S be aset of sentences. Then
I(S) isthesmallest set I of sentences, such that:

FOT,and
r=Th(r), and
Foral a: By, Bz ....Bn/yOA: Ifa Ol andforal j: =3;0S, thenyOT.

(For dl S, thereis asmallest set with these three properties: it is the intersedion of
all setsfor which the properties hold.)

Not all default theories (F, A) have an extension, and if a default theory has an
extension, it is not necessrily unique. A sentence that is an element of all
extensions of a default theory is sid to follow skeptically from the theory; a
sentencethat is an element of (at least) one of the extensions foll ows credulously.

Reiter's darting point is the incompleteness of the information that we have
about the world. He proposes to use default rules as ‘rules for extending an
underlying incomplete first-order theory’. Apparently, he thinks of (default) rules as
spedal rules of inference separate from the other available information. This is
refleded in the formalism proposed. A default theory is defined as the combination
of two sets: a set of first-order sentences, representing ordinary, but incomplete
information about the world, and separately a set of default rules, representing
information to extend the incomplete information about the world. Reiter then
defines extensions of a default theory as sts of first-order sentences.

We return to our discusson of relevance Formalizing rules as Reiter’s default
rules, it is clea that the problems of the material conditional with regard to
relevance ae solved. Since extensions cannot contain default rules, no default rule
can be the mnsequence of a default theory. As a result, if a default rule has
condition that are not considered relevant for their conclusions, it is only a flaw of
the default theory.

This is of course a cude way of solving the problems of relevance The
‘advantage’ is at the same time one of the main drawbads of Reiter's Default
Logic: there ae no provisions whatsoever to represent relations between rules, or
to reason about rules (see 4so sedion 6).

3.2 Rulesas special sentences

The second approad is less crude than the first, and treds rules as gedal
sentences. The logicd languege is extended with a spedal connedive to represent
rules, as in conditional logics, as for instance defined by Anderson and
Belnap,14 Nute (1980 1994 and Delgrande (1988. After extending the language
with a rule-representing connedive, e.g., >, the properties of the mnnredive ae

14 see eg., Haak (1978 p. 198f.) and Sanford (1989 p. 12f.).
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specified on the meta-level by axioms and rules of inference. Some of them
might be:

FA>A
A>C,B>CK(AOB)>C
A>B,(AOB)>CKA>C

The choice of such axioms and rules of inference is a delicate matter (which led to
a large amount of research), and highly depends on which interpretation of rules
one hasin mind. For instance,

A>BHAOC>B

should hold for strict rules, but not for rules that can have exceptions.

This approach has the advantage that it is possible to represent not only rules,
but also certain relations between them, namely those that can be expressed using
other connectives of the logical language, asin (A >B) O(B > C)) - (B > C). Of
course, the axioms and rules of inference that guide this reasoning must be chosen
carefully, in order to meet the demand of relevance. For instance, a rule of
inference such as

A>BHA - B

could lead to the same unwanted results as with the material conditional, and would
therefore probably be a bad choice. However, by carefully choosing axioms and
rules of inference, it is in this approach in principle possible to deal with the
problems of relevance.

3.3 Rulesas special objects

The third approach is to treat rules as special objects, and is used in Reason-Based
Logic (chapter 2). Just as in the previous approach, rules can be represented in the
logical language. In Reason-Based Logic, they have the form:

rule(condition, conclusion)

However, there is an important difference with the previous approach: rules are not
treated as sentences in the language, but as terms, since rules are considered as
special objects. The properties of these rules-as-objects can be represented as

sentences of the logical language. For instance, the validity of aruleis expressed as

Valid(rule(condition, conclusion))
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RBL rules also have properties that are spedfied on the meta-level (described in
chapter 2, sedion 4). For instance, an excluded rule the condition of which is
satisfied is not appliceble:

Condition, Excluded(rule(condition, conclusion), fact, state_of_affairs) i~
- Applicable(rule(condition, conclusion), fact, state_of_affairs)1®

Nevertheless in comparison with the nditional logic approad, the properties
spedfied on the meta-level leave much room for the spedficeion of the rule
properties in the logicd language. We @me badk to this in sedion 6, where we
discussreasoning about rules.

In Reason-Based Logic this approach has been chosen, becaise we regard many
of the properties of rules as part of the domain theory. This has the advantage that it
is possble to represent different types of rules with different properties. For
instance, the properties of strict rules are dealy different from those of rules that
can have exceptions. In Reason-Based Logic, such properties can flexibly be
represented in the domain theory. For instance, a domain theory can be such that
the relevance of the rule's condition for its conclusion is implied by the rule's
validity. In general, high demands are made on the domain theory.

An alternative goproach to represent types of rules with different properties
would be to use different syntadic structures for ead type of rules. Since the
properties are then represented at the meta-level (as discussed in sedion 3.2), this
approach is alittl e lessflexible then the gproach discussed here.

4 Exceptionstorules

In this sdion, we discussapproacies to deding with rules with exceptions. We do
this in two parts. First, we discuss different approaches to the representation of
exceptions. Seoond, we discuss approaches to deding with exceptions and
defeasible reasoning.

4.1  Representing exceptions
We discussthree gproaches to the representation of exceptions to rules. The first

uses negative rule onditions. The second uses identifiers of rules and a speda
predicate. The third treasrules as eda objeds.

15 Recdl that there is a translation from sentences (e.g., Condition) to terms (e.g.,
condition), as described in chapter 2, sedion 43.
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Negative rule conditions

The first approach to the representation of an exception is as an additional negative
condition of amaterial conditional, as follows:

Condition
O - Exception
- Conclusion

There are two drawbacks with representing exceptions as negative conditions. The
first isthat an additional exception would require a change of the rule itself:

Condition
O - Exception
O -Exception’
- Conclusion

The second drawback is that there is no formal difference between the condition of
arule and its exceptions. For instance, the material conditional

AO-BO-C - D

can represent a rule with condition A, conclusion D, and exceptions B and C, but
also arule with condition A 0-B, conclusion D, and exception C.

Both drawbacks conflict with the intuition that a rule is characterized by its
condition and conclusion. What we would like is a system in which the existence of
an additional exceptionto aruleissimply an additional fact about that rule.

Rule identifiers and exception predicates

The second approach to the representation of exceptions solves this disadvantage.
It is characterized by the use of rule identifiers and a special purpose predicate.16 A
rule is represented as a material conditional, but has an extra condition to represent
that it has no exception, for instance as follows:

(O Condition O -Exception(identifier) . Conclusion

Different rules should have different identifiers. Exceptions can now be represented
asfollows:

16 The use of exception predicates stems from the early days of the research on
nonmonotonic logics. Prakken (1993a, p. 84ff.) gives an extensive overview of different
variants of this technique, in different logical formalisms.
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(+) Exception - Exception(identifier)

In this representation, an additional exception does not require a tange of (0, but
can be represented as an additional asaumption:

Exception’ -~ Exception(identifier)

If such amaterial conditional representing an exception isitself arule that can have
exceptions, this can easily be represented by giving it its own identifier and
exception clause. For instance, the material conditional (+) becomes:

Exception 0 - Exception(identifier2) - Exception(identifier)

The problem with this approach to the representation of exceptions is that it is
rather ad hoc. The meaning of ‘rule and ‘exception’ are unclea and
underspedfied. For instance, is a material conditional of the form (O a rule? But
then, what does the identifier of the rule refer to? Maybe the identifier is the rule?
Does - Exception(identifier) imply that there is a rule with the identifier identifier?
Taking these questions <erioudy, we arive & the third approach to the
representation of exceptions.

Rules as special objects

The third approach to the representation of exceptions is to trea rules as peda
objeds that can have properties. One of the properties of arule can be that there is
an exception to the rule. So, the eistence of an exception to arule is considered as
a fad about the rule. Additional exceptions do not change the rule itself, but are
simply represented as additional fads about the rule.

This approach to the representation of exceptions is used in Reason-Based
Logic (chapter 2). We discussed the structure of rules and several types of fads
concerning rules. Rules have a ondition and a @nclusion:

rule(condition, conclusion)
Rules can be valid, applicable and excluded, and can apply:

Valid(rule(condition, conclusion))

Applicable(rule(condition, conclusion), fact, state_of_affairs)
Excluded(rule(condition, conclusion), fact, state_of_affairs)
Applies(rule(condition, conclusion), fact, state_of_affairs)

The general properties of rules are defined by the relations that hold between these
(and ather) types of fads. The properties of rules (or classs of rules) are spedfied
in the logicd language. In contrast with the previous approach using rule
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identifiers, in this approac it is made explicit what is meant by ‘rule’ and by
‘exception’ .17

4.2  Exceptionsand nonmonotonicity

Attempts to ded with nonmonotonic reasoning have bemme a vast field of
reseach. Here we focus on rules with exceptions, and discussthree gproaches.18
The first is based on maxiconsistent sets. The second uses default rules. The third
uses counterarguments.

Maxiconsistent sets

The first approach is based on maxiconsistent sets, as for instance used in Podle's
Logica Framework for Default Reasoning (Podle, 1988.1° We start by giving a
brief overview of the definiti ons we need.

Pode's framework uses the language of First-Order Predicate Logic; for
simplicity we use that of Propasitional Logic. Asaimptions are encoded in atheory,
defined as a pair of sets (F, A), where F and A are both sets of sentences. F
represents the strict asaumptions, A the default assumptions. An extension of (F, A)
is the set of conseguences of a maximal scenario, where ascenario is a mnsistent
set F O D with D a subset of A.

A theory (F, A) has one or several extensions. Just as in Reiter’s Default Logic
(Reiter, 1980 1987, a credulous and a skeptical consequence notion can be
defined.

Maxiconsistent sets can be used to ded with reasoning with exceptions. For
simplicity, we use asimple representation of rules here. A rule and its exception
clauseis represented as the foll owing material conditi onal:

(1) Condition O - Exception(identifier) — Conclusion.

(Below the number (1) is used to refer to this material conditional.) Rules are
elements of the strict assumptions F, and dfferent rules sould have different
identifiers. As default assumptions, we have that rules have no exceptions.
Formally thisis achieved by including asaumptions of the foll owing form:

- Exception(identifier)

17 |n ReaonBased Logic, there ae even different ways of representing exceptions, as
discussed in chapter 3, sedion &

18 Many of the observations in this ®dion rave been made before (cf., eg.
Prakken, 19931). Seencte 2.

19 Wwe stressthat we only use the maxiconsistent sets of Poole's framework (1988 here,
and not hisway to ded with rules, described in the same paper.
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in the default information A, for all identifiers identifier corresponding to a rule
ocaurring in F. In the following, if F = {Assy, Assy, ..., Assq}, A is as above, and
Concy, Concy, ..., and Concn, are dements of al extensions of the theory (F, A), we
write:

Assi, AsSy, ..., Ass,  Concy, Concy, ..., Concny

Exceptions can now be represented by an exception rule in the strict information, as
foll ows:

(2) Exception — Exception(identifier).

If there is no exception, the default assumption that there is no exception does not
lead to a contradiction, so we have

Condition, (1), (2) i Conclusion, ~Exception(identifier)
In the case of an exception, the exception rule (2) gives the following:
Condition, Exception, (1), (2) ~ Exception(identifier)

Since - Exception(identifier) does not follow, the @nclusion of the rule does not
follow, in other words:

Condition, Exception, (1), (2) #~Conclusion

Since this corresponds to the two intuitive reguirements STANDARD CASE and
EXCEPTION CASE discussed in sedion 2.2, everything seems to work out fine.

However, a problem arises if there ae exceptions to the exception rule itself.
Exceptions to exceptions are a @mmon phenomenon. In such a cae the mnclusion
of the rule should follow in spite of the exception. We ald a third intuitive
requirement

EXCEPTION-TO-EXCEPTION CASE
If there is a rule the condition of which holds, there is an exception to the rule,
and there is an exception to the exception, then the rule’s conclusion foll ows.

In order to med this requirement, we need to represent exceptions to the exception

rule. Therefore the exception rule (2) above is replaceal by the following rule, that

can have exceptions:

(3) Exception O-Exception(identifier2) — Exception(identifier).

Furthermore we have an exception to the exception:



94 Chapter 4: Formalizing rules. a mmparative survey

(4) Exception_to_exception - Exception(identifier2).

Since there is only one etension containing -Exception(identifier) and
Exception(identifier2), we obtain the corred behavior in case of an exception to an
exception:

Condition, Exception, Exception_to_exception, (1), (3), (4) i~ Conclusion

Unexpededly, we have lost the arred behavior in the exception case: the
theory (F, A) with F = {Condition, Exception, (1), (3), (4)} and A as above
has two extensions. One extension contains both Exception(identifier) and
- Exception(identifier2), as desired. The other contains -Exception(identifier), and
Conclusion, but remains slent about whether the exception rule is applicable: it
contains neither - Exception(identifier2) nor Exception(identifier2). It should be
noted that in an extension containing - Exception(identifier) the inclusion of
- Exception(identifier2) is blocked since that would give a inconsistency
with (3). The exception rule (3) just demands that an extension that contains
Exception, can only contain one of the sentences -Exception(identifier) and
- Exception(identifier2). This demand is met in both extensions.

What iswrongisthat the seand extension does not contain the faa that thereis
no exception to the rule with identifier identifier2, only in order to maintain
consistency. The first extension contains the faad that there is an exception to the
rule identifier because there is an exception. Intuiti vely, we want that the goplication
of arule can only be blocked by expilicit information in the extension.

Default rules

The second approach that we discussuses Reiter’s (1980 1987) default rules. We

use the definitions discussd in sedion 3.1. Default rules have, apart from a

condition and a mnclusion, a justificaion. This justification is used to block the

application of arulein case it follows that there is an exception. We do not have to

asaime by default that thereis no exception to arule, asin the previous approach.
Rules are represented as default rules as follows:

(5) Condition : ~Exception(identifier) / Conclusion

Again it isasumed that diff erent rules have diff erent identifiers. An exception rule
isrepresented as:

(6) Exception : =Exception(identifier2) / Exception(identifier)
An exception-to-exception ruleis represented as:

(7) Exception_to_exception : = Exception(identifier3) / Exception(identifier2)
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It turns out that the representation of rules and exceptions in this way meds the
requirements, including that of the exception-to-exception case. To see the
difference with the maxiconsistent set approach, we look what happens in the
exception case that was problematic there.

We start with the default theory (F, A), where F = { Condition, Exception} and
A= {(5), (6), (7)}. We propose two sets of sentences E and E* as guesss for
extensions. They correspond to the two extensions in the maxiconsistent set

approach:

E = Th(F O { Exception(identifier)} )20
E* = Th(F O {-Exception(identifier2), Conclusion})

The set E isindead an extension, sincewe have:

Ey,=F, and
E; = Th(F O {Exception(identifier)}) = E, and
E =Ey, foradli>1.

and therefore E = Di E;, asrequired. But the set E* is not an extension. We have:

E*o=F, and
*, = Th(F O {Conclusion}), and
E*, =E* forali> 1

As aresult Di E*, = E*1, which is a proper subset of E*. Since no information in
the ssaumptions supparts that there is no exception to the rule identifier2, the
sentence - Exception(identifier2) cannot be an element of an extension.

We mnclude that this approach using default rules can adequately ded with the
threerequirements for reasoning with rules with exceptions.

Counterarguments

The third approach that we discussuses counterarguments. We base the discusson
here on Pollock’s Theory of Defeasible Reasoning (19871995. We start by giving
adescription of some of his definiti ons, adapted to suit our neels.

An argumentation theory is a pair of sets (Args, Defs), such that Defs is a set of
pairs of elements of Args. The dements of Args are cdl ed arguments, the dements
of Defs defeaters. If (a, B) is an element of Defs, the agument a is sid to defeat
the agument 3. Poll ock then defines levels, as follows:

20 Here Th(S) denates the deductive closure of S, i.e., the set of al deductive mnsequences
of S.
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e All argumentsarein at level 0.
e Anargument isin at level n + 1if and only if it isin at level 0 and it is not
defeaed by any argument that isin at level n.

An argument is ultimately undefeated if and only if thereisalevel such that it isin
at that level and at all higher levels. An argument is ultimately defeated if and only
if thereisalevel such that it isout at all higher levels. An argument is provisionally
defeated if and only if it is neither ultimately undefeaed nor ultimately defeaed.

Pollock’s Theory of Defeasible Reasoning can be used to represent reasoning
with rules with exceptions as foll ows.21 We define atheory of reasoning as a pair
of sets (Facts, Rules), where Facts are dements of some language L and Rules
have the form Condition — Conclusion, where Condition and Conclusion are
elements of the language. It is asaumed that the language L contains identifiers for
the rulesin Rules, and has a predicate to represent exceptions. For instance, the fact
that there is an exception to the rule Condition - Conclusion with identifier id,
might be expressed as foll ows:

Exception(id)

For a theory of reasoning (Facts, Rules), we can define an argumentation theory
(Args, Defs), as follows. The set Args consists of al fads and al loopfree dains
of rules garting from the fads. The set Defs consists of pairs of arguments (a, ),
such that the agument a ends with Exception(id), where id is the identifier of arule
in the agument f3.

As an example, we ssume that the set Rules consists of the following three
rules, with identifiersidy, id2 and id3, respedively:

Condition - Conclusion
Exception - Exception(id1)
Exception_to_exception — Exception(id2)

We discuss what happens in the standard, the exception and the exception-to-
exception case. In the standard case, the set of fads only contains Condition. In that
case, the only arguments are Condition and Condition - Conclusion, and thereis no
defeder. As a result, both arguments are in a al levels, and are ultimately
undefeded.

In the exception case, the set of fads consists of Condition and Exception. There
are two new arguments, namely Exception and Exception - Exception(id1). Now
there is one defedaer, namely (Exception - Exception(idl), Condition -
Conclusion). We have:

21 Herewe do nd follow Poll ock.
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The arguments Condition, Condition - Conclusion, Exception and Exception —
Exception(idl) arein at level 0.

The arguments Condition, Exception and Exception - Exception(id1) arein at
level 1, and at all higher levels.

So, the arguments Condition, Exception and Exception - Exception(idl) are
ultimately undefeated, and the argument Condition — Conclusion is ultimately
defeated. The latter argument is of course defeated by the argument Exception -
Exception(id1).

In the exception-to-exception case, the set of facts consists of
Condition, Exception and Exception_to_exception. The new arguments are
Exception_to_exception and Exception_to_exception - Exception(id2). The new
defeater is  (Exception_to_exception -  Exception(id2), Exception -
Exception(id1)). We have:

The arguments Condition, Condition - Conclusion, Exception, Exception -
Exception(id1), Exception_to_exception and Exception_to_exception -
Exception(id2) arein at level 0.

The arguments Condition, Exception, Exception_to_exception and
Exception_to_exception - Exception(id2) arein at level 1.

The arguments Condition, Condition — Conclusion, Exception,
Exception_to_exception and Exception_to_exception - Exception(id2) are
inatlevel 2, and at al higher levels.

So, all arguments are ultimately undefeated, except the argument Exception -
Exception(id1), that is ultimately defeated. The latter argument is defeated by the
argument Exception_to_exception - Exception(id2).

5 Ruleconflicts

In this section, we discuss approaches to dealing with rule conflicts. We do thisin
two parts. First, we discuss different approaches to the representation of conflict
resolving information. Second, we discuss approaches to dealing with conflicts and
consistency maintenance.

5.1 Representing conflict resolving information

We start with a discussion of approaches to the representation of conflict resolving
information. We distinguish three types of conflicts: conflicts of pairs of rules,
bipolar multiple conflicts, and general multiple conflicts. For each type of conflict,
we discuss a corresponding type of conflict resolving information: rule priorities,
weighing, and general conflict resolution, respectively.
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Conflicts of pairs of rulesand rule priorities

The simplest, and most common, type of rule conflict is the conflict of two rules:
there are two rules with opposite conclusions and the conditions of both rules are
satisfied.

If there is a conflict of a pair of rules, often one of the rules prevails over the
other. We have seen several examples in chapter 3, section 6.1. As aresult of such
priority information, the conflict is resolved. The prevailing rule leads to its
conclusion, while the other rule does not. Clearly, the conflict of rules leads to a
special type of exception to the non-prevailing rule. As a result, rule priorities can
be represented using the techniques already discussed in section 4.1 on representing
exceptions.

Assume that we have two rules with incompatible conclusions represented as
the following two material conditionals:

Condition; 00~ Exception(identifier1) — Conclusion
Condition, 00 - Exception(identifierz) - ~Conclusion

Assume moreover that the first prevails over the other. This priority information
can now be represented as follows:

Condition; 0 -~ Exception(identifier;) — Exception(identifierz)

Abbreviating Condition; O -~ Exception(identifier;) as Applicable(identifier)) (for i = 1
or 2), we obtain the following sentence:

Applicable(identifier:) — Exception(identifiers)
It may be tempting to represent the priority information as the following sentence:
Applicable(identifier;) — - Applicable(identifierz)

However, thisis an incorrect representation, since this sentence is symmetric in the
two rules, asits equivalent

- Applicable(identifier;) O - Applicable(identifier,)
clearly shows.
Bipolar multiple conflicts and weighing
The second type of rule conflict that we discuss are bipolar multiple conflicts: two

groups of rules have equal conclusions in each group, but incompatible conclusions
across the groups, while the conditions of the rules are satisfied.
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For instance, the following material conditionals represent a bipolar conflict of
agroup of n rules and agroup of mrules (where n and m are natural numbers):

Conditiony; O~ Exception(identifier;;) — Conclusion

Condition:, O~ Exception(identifier;) - Conclusion
Condition,; 00 - Exception(identifier,;) - —~Conclusion

Conditionom O -~ Exception(identifierom) - —~Conclusion

We have seen examples in which such a conflict cannot be resolved by priority
information on pairs of rules, but by priority information on groups of rules
(chapter 2, section 1.3; chapter 3, section 4).

The priority technique used for pairwise conflicts can be extended to the case of
bipolar multiple conflicts. For instance, if the first group of n rules above prevails
over the second group of m rules, this can be represented as follows:

Applicable(identifiery1) O... O Applicable(identifiersn) — Exception(identifierzy) O
... O Exception(identifierzm)

In Reason-Based Logic (chapter 2), a representation similar to this one is possible.
However, Reason-Based Logic provides a second way of representation, using the
weighing of reasons. The priority of the first group of rules over the second is
represented as the fact that the reasons that result from the first group of rules
outweigh the reasons from the second group:

Outweighs({conditionas, ..., conditionin},
{conditionyy, ..., conditionzm},
conclusion)

The two techniques seem to lead to similar results. However, there is a technical
difference. The two expressions representing conflict resolving information are not
equivalent, because the weighing expression only helps to resolve the conflict if
there is no other rule with conclusion -~ conclusion (cf. the relations between facts
described in chapter 2, section 5), while the generalized priority expression helpsto
resolve the conflict also in that case. The use of the weighing expression reflects
the intuition that the bipolar multiple conflict should only be resolved if al rules of
the losing side, i.e., those with conclusion - conclusion, have been considered. In
the more familiar terminology of reasons, the weighing information only should
have effect if al counterreasons have been considered.

As aresult, the explicit representation of the weighing of reasons as in Reason-
Based Logic seems to be closer to the examples of accrua of reasons, that led to
the distinction of bipolar rule conflicts.
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General multiple conflicts and general conflict resolution

As athird type of rule mnflict, we discussgenera rule @nflicts: thereisagroup of
rules with incompatible mnclusions, the mnditions of which are satisfied. For
instance, we might have:

Condition; 00 - Exception(identifier1) — Conclusion,

Condition, 00 - Exception(identifier,) - Conclusion,
=(Conclusion; O... O Conclusiony)

We have seen two spedal cases of resolutions of such a general rule conflict:

1. One of the rules might prevail over another.
1. A subgroup of rules might prevail over another subgroup of rules with
incompatible conclusion.

The most general type of conflict resolution would require the representation of the
prevalence of any subgroup over any other subgroup, formally:

Prevails({identifier1, ..., identifierin},
{identifierzy, ..., identifieram})

We do not know a formalism in which this is explicitly done, athough it is a
natural generalizaion of the two discussed representation techniques, i.e., using
exceptions and using weighing, to the case of general multiple anflicts.

5.2  Conflictsand consistency maintenance

Since there is not always sufficient information to resolve rule onflicts, many
techniques have been proposed to prevent the unwanted effeds of contradiction by
means of consistency maintenance. Here we discussthreesuch techniques. We start
with Reiter's normal and semi-normal default rules (Reiter, 1980 1987, then we
discussVreeswijk’s use of conclusive force (Vreeswijk, 1991, 1993, and we finish
with Pollock’s coll edive defea (Pollock, 1987).

Normal and semi-normal default rules

The first approach to consistency maintenance in case of rule @nflicts that we
discuss are the normal and semi-normal default rules of Reiter's Default Logic
(Reiter, 1980 1987). In sedion 4.2, we dready discussed how default rules (Reiter,
1980 1987 can be used to represent rules with exceptions. There, a rule was
represented as a default of the foll owing form:
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Condition : =Exception(identifier) / Conclusion

If two default rules of this form are in conflict, there is no extension. An example is
the theory (F, A) defined as follows:

F = { Condition1, Conditiony}
A = {Condition; : =Exception(identifier;) / Conclusion,
Condition. : =Exception(identifierz) / = Conclusion}

As aresult, using the skeptical consegquence relation of Default Logic, everything
follows from such a theory. This behavior resembles the behavior of an
inconsistency in classical logic.

There is another type of default rule that can never give rise to this behavior:
default rules of thistype are called normal default rules, and have the form

Condition : Conclusion / Conclusion.

Informally, a default rule leads to its conclusion if its condition is satisfied, unless
that would lead to an inconsistency. Normal defaults have the nice formal property
that atheory that only contains normal default rules always has an extension.

Reiter (1980, 1987) claimed that normal default rules were sufficient in
practice. However, as was aready noted by Reiter and Criscuolo (1981, 1987),
normal default rules are not aways sufficient. We saw above that non-normal
default rules are needed to represent rules with exceptions.

In order to catch the benefits of both, a combined form can be used, as follows:

Condition : =Exception(identifier), Conclusion / Conclusion

Default rules that have their conclusion as one of their justifications are called
semi-normal. Informally, a default rule of this form leads to its conclusion if its
condition is satisfied, unless Exception(identifier) or -Conclusion would also
follow.

Two conflicting rules will now give rise to two extensions. For instance, the
theory (F, A) with

F = { Condition1, Conditiony}
A = {Condition; : =Exception(identifier;), Conclusion / Conclusion,
Condition. : =Exception(identifierz), = Conclusion / = Conclusion}

has two extensions E; and E»:

E; = Th({ Condition;, Conditionz, Conclusion})
E, = Th({ Condition;, Conditionz, =~ Conclusion})
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In ead extension, only one of the rules has led to its conclusion. Intuitively, the
two extensions can arise because there ae two orders in which the defaults can be
used: first drawing the mnclusion of rule identifiers blocks using rule identifier.,
while first drawing the conclusion of identifier, blocks using rule identifier;.

However, a theory with only semi-normal default rules does not always have an
extension, as the theory (F, A) with

F = {Condition;, Condition,, Conditions}

A = {Condition; : ~Exception(idy), Exception(idz) / Exception(idy),
Condition; : ~Exception(idz), Exception(ids) / Exception(ids),
Conditions : =Exception(ids), Exception(id.) / Exception(id.)}

shows.
Conclusive force

The semnd approach to consistency maintenance in case of conflicts that we
discuss is Vreeswijk’'s use of the anclusive force of arguments. We give a
simplified overview of some definitions of Vreeswijk’'s (1991 1993 Abstrad
Argumentation Systems.

Vreeswijk starts with the definition of an argumentation system as a triple
(Language, Rules, <). Here Language is any set containing a speda element [,
denoting contradiction. This st is cdled the language of the agumentation system.
The set Rules is a set of rules, that have the form Condition, ..., Condition, -
Conclusion. The conclusive force relation < is a strict order on arguments, that are
treelike chains of rules.

He proceals with the definition of defeasible entail ment and extensions, which
uses the notion of conflict. A set of arguments Arguments is in conflict with an
argument Argument (relative to a set Assumptions 0O Language), if Argument and
elements of Arguments are parts of a larger argument with conclusion O and with
premises in the set Assumptions. A relation | between sets of sentences of the
language and arguments is cdled a defeasible entailment relation if the following
holds for all setsFacts 0 Language and arguments Argument:

Assumptions ~ Argument if and only if one of the following tolds:
1. Argument isan element of Assumptions
2. Argument has the form Argument, ..., Argument, — Conclusion, and for
every set of arguments Arguments, such that Assumptions ~ Argument’ for
al elements Argument’ of Arguments, we have:
If Arguments isin conflict with Argument (relative to Assumptions),
then there isa Argument’ in Arguments, such that Argument’ < Argument.

(This is not a definition of the relation ~ by reaursion on arguments, since ~
appeas on both sides of the ‘if and only if' . Such a definition would be unexpeded
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since i~ is nonmonotonic.) An extension of a set Assumptions is then defined as a
set of arguments Arguments, such that Arguments = { Argument | Assumptions |~
Argument} .

How can Vreeswijk’s formalism be used to maintain consistency in case of rule
conflicts? In Vreeswijk’s formali sm, conflicts of rules occur as conflicts of the final
steps of arguments. Informally, Vreeswijk’s definition hes the result that such
conflicts between arguments are resolved by ‘throwing away’ one agument that is
involved in the conflict.

To choose ar argument, the mnclusive force relation is used: an argument
cannot be thrown away if it is gronger than any of the other arguments involved in
the oonflict. Since there can till remain more than one agument that can be
chosen, multiple extensions can arise.

Collective defeat

As a third approach to consistency maintenance in case of rule onflicts, we
mention Poll ock’s coll edive defea (Poll ock, 1987).

He propcses to withhold from drawing a cnclusion in case there is an
unresolved conflict of rules. He adieves this by considering al arguments with
conflicting last steps as defeaed in case of an urresolved conflict: the aguments
are collectively defeated.

In Reason-Based Logic (chapter 2), there is a variant of colledive defed: if
there ae @nflicting reasons, but there is no weighing information avail able, no
conclusion follows. As a result, while Pollock’s colledive defea can maintain
consistency for general multiple rule mnflicts, Reason-Based Logic uses a form of
colledive defea in the spedfic case of bipolar multi ple conflicts.

6 Reasoning about rules

Below, we discussthree gproadchesto deding with reasoning about rules. The first
isto tred rules as gedal sentences. The second is to use rule identifiers. The third
istotred rules as pedal objeds.

6.1 Rulesas special sentences

The first approach to deding with reasoning about rules is to trea rules as gedal
sentences, as in conditional logics (e.g., Nute, 1980 1994 Delgrande, 1988. In
conditional logics, the properties of a spedal connedive ae spedfied on the meta-
level. We dready discussed the oonditional logic gpproach in sedion 3.2 on
relevance There, we mentioned conditi onal logics because they make it possble to
take the requirement of relevance into acount. But conditional logics aso are
regarded as logics that can trea reasoning with rules.
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For instance, assume we want to represent a transitive type of rule. Then one of
the defining properties of the rule-representing conditional would be:

A>B,B>CFA>C

This rule of inference makes it possible to derive the conditional A > C from the
conditionalsA >B and B > C.

If we wish to represent a type of rule that is not transitive, one of the defining
properties of the conditional representing the rule type, might have the following
weaker property:

A>B,(AOB)>CKA>C

By choosing the defining properties, we can specify different forms of reasoning
about rules.

However, there are two limitations. The first limitation is that in this way it is
impossible to distinguish classes of rules unless each class of rules is represented
by a syntactically different conditional. As a result, properties of rules of different
kinds, such as transitive and intransitive rules, can only be represented at the meta-
level, and not, more flexibly, at the logical level.

The second limitation is that in conditional logics, it is impossible to represent
facts about rules, other than that they are valid or invalid. As aresult, although it is
possible to represent the first type of reasoning about rules distinguished in
section 2.4, i.e., reasoning with rules as conclusions, it is not possible to represent
the second type, i.e., reasoning with facts about rules.

6.2 Ruleidentifiers

The second approach to dealing with reasoning about rules is an attempt to deal
with these limitations, and is the technique of rule identifiers, already discussed as
one of the techniques to represent exceptionsin section 4.1.

This technique can be used in a more general way to dea with reasoning about
rules. To represent exceptions to rules the rule identifiers were only used in the
special purpose predicate Exception(identifier). However, rule identifiers can also
be used as parameters for other predicates. For instance, the conclusion of a priority
argument says that some rule prevails over another rule. If the identifiers of these
rules are identifier; and identifier,, this can be represented as follows:

Prevails(identifiers, identifierz)

As aresult, if this technique is used, it is possible to represent the second type of
reasoning about rules distinguished in section 2.4, i.e., reasoning with facts about
rules, but it is not clear how to represent the first type, i.e., reasoning with rules as
conclusions. This limitation is the result of the fact that the approach is unclear
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about the status of rules and identifiers, as was aready noted in section 4.1 on
representing exceptions.

6.3 Rulesas special objects

The latter brings us to the third approach to dealing with reasoning about rules,
namely to consider rules as special objects, as in Reason-Based Logic (chapter 2).
This approach was also discussed in section 3.3 on relevance and section 4.1 on
representing exceptions.

Aswe will see, this approach can be regarded as an integration of the two other
approaches, keeping the benefits of both. To recall, rules are treated as objects, that
are represented as follows:

rule(condition, conclusion)

Transitivity of rules can now be represented as

Valid(rule(a, b)), Valid(rule(b, c)) i Valid(rule(a, c))

Transitivity of rules can be restricted to a certain class of rules by explicitly
mentioning such a class, here named transitive_class:

Class(transitive_class, rule(a, b)), Class(transitive_class, rule(b, c)),
Valid(rule(a, b)), Valid(rule(b, c)) I Valid(rule(a, c))

Facts about rules are stated using the complete rule, instead of using only an
identifier. The former is more expressive. For instance, whereas for the
representation of an exception to aruleit is sufficient to use an identifier, asin

Excluded(identifier),

for the representation of the validity of a rule the complete rule, including its
condition and conclusion are needed, asin the following sentence:

Valid(rule(condition, conclusion))
As explained in chapter 2, section 3.1, this approach requires a trandation from
sentences to terms. This trandation is already necessary in order to draw a
conclusion from avalid rule, asin ordinary rule application:

Valid(rule(condition, conclusion)), Condition ~ Conclusion

For details on the formal definition of such a trandation, the reader is referred to
chapter 2, section 4.3.
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In this approach, the properties of rules can be specified both on the meta-level
and on the level of the logical language. As a result, the meta-level can be used to
specify the general properties of rules that are considered most basic, such as rule
application and its relation to exceptions, while the level of the logical language
can be used to specify the specific properties of specific rules in a specific case or
domain.

Therefore, this approach can deal with both types of reasoning with rules that
were distinguished in section 2.4, in contrast with the conditionals and identifiers
approach.



Chapter 5

CumulA:
a model of argumentation in stages

The previous chapters dealt with the nature of the rules and reasons that are at the
basis of argumentation. In this chapter, we investigate the process of argumentation
itself. We focus on arguments and their defeat. This leads to a formal model of
argumentation in stages, called CumulA.1

In section 1, we introduce argumentation with defeasible arguments and give an
overview of CumulA. In section 2, arguments and their structure are treated. In
section 3, we discuss how the defeat of arguments is formalized using defeaters. In
section 4, the stages of argumentation are characterized. Section 5 deals with lines
of argumentation and argumentation diagrams. Section 6 gives a number of
examples.

1 Argumentation in stages

Below, we first give an informal introduction of the key terminology, related to
arguments and defeat as it is used in this chapter. Second, we give an overview of
the formal model CumulA.

1.1 Argumentsand defeat

The goal of argumentation is to find (rationally) justified conclusions (cf., e.g.,
Pollock, 1987). For instance, if a colleague enters the room completely soaked and
tellsthat it is raining outside, | would of course conclude that it is wise to put on a
raincoat. My conclusion is rationally justified, since | can give support for it,
namely the fact that my colleague is completely soaked and tells me that it is
raining. If | were asked why | concluded that it is wise to put on araincoat, | could
answer with the following argument:

1 The name CumulA is an abbreviation of Cumulative Argumentation, but was chosen
since it reminds of a certain type of cloud, the cumulus. The forma model is based on
previous work (Verheij, 1995a, b, c). However, most definitions are new or have been
changed considerably.
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A colleague is completely soaked and tellsthat it is raining.
So, it is probably raining.
So, it iswiseto put on araincoat.

Such an argument is a reconstruction of how a conclusion can be supported. The
argument given here consists of two steps. In general, an argument can support its
conclusion if the steps in the argument are based on rules (see also chapter 4,
section 1). Here we do not answer the question which argument steps can give rise
to arguments that support their conclusion and which do not, or, in other words,
which steps are based on rules and which are not. We assume that the rules
allowing argument steps are somehow given.2

An argument that supports its conclusion does not always justify it. For
instance, if in our example | look out the window and see wet streets, but otherwise
a completely blue sky, | would conclude that the brief shower is over. So, while at
the time my colleague entered it was justified for me to conclude that it is wise to
put on a raincoat, it is not justified anymore after looking out the window. In this
case, we say that the argument is defeated. In the example, the argument

A colleague is completely soaked and tellsthat it is raining.
So, it is probably raining.

does not justify its conclusion because of the argument

The streets are wet, but the sky is completely blue.
So, the shower is over.

In this case the argument that it is probably raining is defeated by the argument that
the shower is over. The new information that the shower is over has the effect that
the argument does not justify its conclusion, but does not change the fact that in
principle the argument supports its conclusion.3

Our example hasillustrated two points about argumentation, that form the basis
of our model:

1. Argumentation is a process (see aso chapter 1, section 1), in which at each
stage new arguments are taken into account.

2 Webelievethat in the end the rules and reasons on which argument steps are based are a
special kind of memes (cf. Dawkins, 1989). An interesting account of the relation between
rationality and evolution is given by Rescher (1988, p. 176ff.).

3 It should be recalled that in our use of termi nology justification of a conclusion does not
imply truth of the conclusion (cf. chapter 1, section 1).
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1. Each argument that is taken into acount has either one of two statuses: the
argument is either undefeaed or defeded, indicéing that the agument justifies
its conclusion, or not, respedively.4

Our example showed that the status of an argument can depend on the structure of
the agument, the ounterarguments that are taken into acwmunt, and the
argumentation stage.

e The structure of the argument
The two-step argument that it is wise to put on a raincoat is defeaed because
aready its first step, in which it is concluded that it is probably raining, is
defeeted.

e Counterarguments
The agument that the shower is over defeds the agument that it is probably
raining.

¢ Theargumentation stage
The agument that it is probably raining is only defeaed oncethe agument that
the shower is over has been taken into acurt.

1.2  Overview of CumulA

In this chapter, a formal model of argumentation with defeasible aguments is
developed. This model is cdled CumulA. Formally, it builds on Lin and Shoham’s
Argument Systems (Lin and Shoham, 1989 Lin, 1993, Vreeswijk's Abstrad
Argumentation Systems (Vreeswijk, 1991, 1993, and Dungs Argumentation
Frameworks (Dung 1993 1995. Key definitions in CumulA are those of
arguments, defeaters, argumentation theories, stages and lines of argumentation.

e Arguments
Argumentsin CumulA are treelike structures that represent how a onclusionis
supparted. Arguments are the subjed of sedion 2. Our compaosite aguments are
not, as usual, only constructed by subordination, but also by coordination. For
instance, Lin and Shoham (Lin and Shoham, 1989 Lin, 1993 and Vreeswijk
(1991 1993 use subordination, but not coordination in their argumentation
models. We investigate how the aordination of argumentsisrelated to defed.

4 Cf. Pollock (19871995 and Vreeswijk (1991, 1993. Prakken (1993, b) considers a
third status: an argument can be defensible aguments, which means that it is neither
undefeaed na defeaed.



110 Chapter 5: CumulA: amodel of argumentation in stages

Defeaters

Defeders indicate which arguments can defed which other arguments. They
consist of a set of challenging arguments and a set of challenged arguments. If
the dhalenging arguments of a defeder are undefeaed, they defea its
challenged arguments.> Defeders are treded in sedion 3. We show that our
defeaers can represent a wide range of types of defea. Our defeaers are
formally related to Dung s (1995 attadks. However, our defeaers can represent
how the structure of arguments is related to defed, and can represent more
general types of defea in which groups of arguments chall enge other groups of
arguments.

Argumentation theories

Argumentation depends on the language that is used, on the aguments that can
suppat conclusions, and on which arguments defea which other arguments.
This information is represented as an argumentation theory. An argumentation
theory consists of a set of sentences (together forming the language), a set of
rules that give rise to arguments, and a set of defeaer schemes that determine
which arguments defea which other arguments. In order to define forward and
badkward lines of argumentation (seebelow), an argumentation theory does not
fix the premises of the aguments, as for instancein Lin and Shoham's (Lin and
Shoham, 1989 Lin, 1993 and Vreeswijk’'s (1991, 1993 argumentation
models. Argumentation theories are charaderized at the end of sedion 3.

Stages

A stage in the agumentation process is charaderized by the aguments that
have been taken into acount, and by the defea status of these aguments, either
undefeded o defeded. Which stages are dlowed is determined by an
argumentation theory. A stage nsists of a pair of sets, one of them
representing the aguments that are undefeded at the stage, the other the
arguments that are defeaed at the stage. The union of these sets represents
which arguments have been taken into acount. Stages are discussd in sedion
4. Vreeswijk’'s (1991, 1993 argument structures are mmparable to our stages.
However, they are representations of the aguments currently undefeaed, and
not of al arguments currently taken into acount, whether undefeaed or
defeaed.

Lines of argumentation

Argumentation can proceal in many ways, depending on the obtaining goals,
protocols and strategies of argumentation. This leads to dfferent lines of
argumentation. A line of argumentation is a sequence of conseautive

5 Our notion d defed is counterargument-triggered, as, eg., Dung's (1995, and nd
inconsistency-triggered, as, e.g., Vreeswijk's (1991, 1993. We discussthis distinction more
extensively in chapter 6, sedion 4
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argumentation stages. In a line of argumentation, arguments are gradualy
constructed. At ead stage in a line of argumentation, the aguments taken into
acount have adefea status. However, the status of an argument can change
during a line of argumentation. Which lines of argumentation are possble is
determined by an argumentation theory. We dso define agumentation diagrams
that represent several possble lines of argumentation as alowed by an
argumentation theory. Lines of argumentation and argumentation diagrams are
defined in sedion 5. Our lines of argumentation are related to Vreeswijk's
(1991, 1993 argumentation sequences. However, since our argumentation
theories do not fix the dlowed premises, in our lines of argumentation
arguments can be constructed not only forwardly, but also badkwardly.

We have to make adisclaimer here: our definition of lines of argumentation does
not prescribe how argumentation should proceed, but only attempts to describe
which lines of argumentation are possble.® We return to thisissuein sedion 5.3.
2 Argumentsand their structure
This ®dion deds with the structure of arguments. We trea arguments as treelike
structures of sentences, similar in form to logicd proofs. After an informal
discusdon of elementary and compaosite agument structures (sedions 2.1 and 2.2),
we give aformal definition of arguments in sedion 2.3. The sedion ends with the
definition of initials and narrowings of arguments (sedion 2.4).
2.1 Elementary argument structures
The simplest type of argument is the statement. Examples of statements are:

The sky isblue.
and

The film was good

In principle, any (assertive) sentence can be used as a statement, so schematicaly
statements have the following trivial structure:

Sentence.

6 Recently severa protocols prescribing (or at least constraining) lines of argumentation
have been propcsed, espedally in a diadlogicd setting (see e.g., Gordon 1993, 1993h
1995 Brewka, 1994 Lodder and Herczog, 1995.
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Some would hesitate to cdl statements arguments, because of their trivial structure.
Since statements can be cnsidered as the beginning of al argumentation, it will
turn out convenient to include statementsin the definiti on of arguments.

The smplest type of argument with non-trivial structure is the single-step
argument, for instance:

The sunis dining.
So, it isabeautiful day.

Schematicdly, a singe-step argument has the foll owing structure:

Reason.
So, Conclusion.

A reason in an argument can consist of a several subreasons, as for instance in the
foll owing argument that has two subreasons:

Alex has an appdntment at eight with Johnin Maastricht, John has an
appantment at seven with Mary in Amsterdam.
So, John cannot keegp bath appantments.

Schematicdly, we have:

Subreason;, Subreason,, ..., Subreason,,.
So, Conclusion.

We use different terms ‘subreason’ and ‘reason’, since only the combination of the
subreasons provides a reason that supparts the conclusion. It should be noted that
this is in contrast with everyday language, where the distinction between
subreasons and reasonsis not made, and bah are cdl ed reasons.

2.2 Composite argument structures

Arguments can be combined. There ae two basic ways to combine aguments into
more complex structures, namely subordination and coordination.”

¢ Subordination of arguments
If asinge-step argument has a mnclusion that is the same & one of the reasons

or subreasons of another argument, arguments can be subordinated. We have
already seen an example of subordination, namely:

7 We use the same agument structure & Van Eemeren et al. (1981 1987, but our
terminology is different. Our coordinated arguments correspondto their multi ple aguments.
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A colleague is completely soaked and tellsthat it is raining.
So, it is probably raining.
So, it iswiseto put on araincoat.
This argument is the result from the subordination of the arguments

A colleague is completely soaked and tellsthat it is raining.
So, it is probably raining.

and

It is probably raining.
So, it iswiseto put on araincoat.

Schematically,
Reason.
So, Conclusion,.
So, Conclusions,.

¢ Coordination of arguments

If two arguments have the same conclusion, they can be coordinated. For
instance, if the arguments

The sun is shining.
So, itisabeautiful day.

and

The sky isblue.
So, itisabeautiful day.

are coordinated, we obtain

The sun is shining; The sky is blue.
So, it isabeautiful day.

Schematically, we have

Reason,; Reason,.
So, Conclusion.
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It should be noted that, in contrast with the subreasons mentioned earlier, each
reason in a coordinated argument supports the conclusion on its own. To
distinguish reasons and subreasons, reasons are separated by semicolons, while
subreasons are separated by commas.8 For instance, an argument can have the
following structure:

Subreason;;, Subreason;,; Subreason,;, Subreason,,.
So, Conclusion.

Here Subreason;; and Subreason;, together form a reason for the conclusion,
while Subreason,; and Subreason,, form a separate, second reason for it.

By repeating these two ways of combining arguments, the structure of arguments
can become arbitrarily complex.

2.3  Definition of arguments

In our model of argumentation, we abstract from the language, and therefore treat a
language simply as a set without any structure. Here we follow Lin and Shoham
(Lin and Shoham, 1989; Lin, 1993), who use an unstructured language closed
under negation, and Vreeswijk (1991, 1993), who uses an unstructured language
containing a special sentence denoting contradiction.

Rules in a given language consist of a condition and a conclusion, which are
formally a set of sentences and a sentence of the language, respectively. Since in
our model all arguments are defeasible, we do not distinguish rules that give rise to
strict arguments and rules that give rise to defeasible arguments.

Definition 1.
A language is any set, the elements of which are called the sentences of the
language.® If Subreasons is a non-empty finite subset of alanguage Language
and Conclusion is an element of Language, then
Subconditions - Conclusion
isarule of the language Language.19 The set of rules of alanguage Language
is denoted as Rules(Language).

Fixing a language Language, we obtain the following formal definition of
arguments in the language. Our definition of arguments in a language is related to

8  This convention is similar to the conventions in the logical programming language
Prolog. In fact, a simple correspondence can be given between trees of Prolog clauses and
our arguments.

As elements of a set Language, sentences are just unspecified sets. We need one formal
property to avoid ambiguity: there are no sentences Sentencey, ..., and Sentence, (for some
natural number n), such that Sentenceg O ... O0Sentencen.

10" within set theory, arule can be defined as an ordered pair (Subreasons, Conclusion).



Section 2: Arguments and their structure 115

the definitions of Lin and Shoham (Lin and Shoham, 1989; Lin, 1993) and
Vreeswijk (1991, 1993), but does not presuppose a set of rules. Moreover, our
definition alows not only the subordination, but also the coordination of
arguments. Later (definition 4) we define the rules of an argument.

Definition 2.
The set of arguments in the language Language is the smallest set such that the
following hold:
1. If Sentence isasentence of the language Language, then
Sentence
isan argument. The conclusion of the argument Sentence is Sentence.
2. If Conclusion isan element of Language and Argumenty, ..., Argument, are
arguments, then
{{Argumenty, ..., Argument,}} - Conclusion
isan argument. The conclusion of this argument is Conclusion.
3. If {Arguments;} - Conclusion, ..., {Argumentsn} - Conclusion are
arguments, then
{Argumentsy, ..., Arguments,} — Conclusion
isan argument. The conclusion of this argument is Conclusion.
The conclusion of an argument Argument is denoted as Conclusion(Argument).

The first part of the recursive definition allows statements as arguments, the second
allows subordination of arguments, and the third coordination. The previously
discussed argument structures are all captured by this definition. An overview is
given in Table 1. The abundance of brackets { } is required to distinguish reasons
and subreasons: reasons are represented as sets, and coordinated reasons as sets of
sets 11

It may seem that there is an ambiguity between a rule and a single-step
argument. However, a rule has the form SetOfSentences - Sentence, where
SetOfSentences is a set of sentences, while a single-step argument has the form
SetOfSetsOfSentences — Sentence, where SetOfSetsOfSentences is a set of sets
of sentences.1?

11 We use sets instead of sequences, as used by Lin and Shoham (Lin and Shoham, 1989;
Lin, 1993) and Vreeswijk (1991, 1993), since changing the order of reasons or subreasons
does not change an argument.

2 Here we need the property mentioned in note 9.
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Informal argument structure

Formal argument structure

Sentence.

Sentence

Reason.

{{Reason}} - Conclusion

So, Conclusion.

Subreason;, ..., Subreason,,.
So, Conclusion.

{{Subreasony, ..., Subreasonn}} — Conclusion

Reason.
So, Conclusion;.
So, Conclusions,.

{{{{Reason}} - Conclusioni}} - Conclusion;

Reason,; Reason,.
So, Conclusion.

{{Reasoni}, {Reason,}} — Conclusion

Subreason,;, Subreason; ,;
Subreason,;, Subreason,,.
So, Conclusion.

{{Subreasoni1, Subreasoni,},
{Subreason.1, Subreason.}}
- Conclusion

Subreason; , ...,SJbreasonlnl; {{Subreasony, ..., Subreasonin,},

Subreasonyy, ..., SUbreasony, . | {Subreasonm, ..., Subreasonmn 1}
So, Conclusion. - Conclusion

Table 1: Overview of informal and formal argument structures

The foll owing definitions of the premises and the rules of an argument foll ows the
reaursive structure of the definition of arguments. Vreeswijk's (1991 1993
definitions are similar in style.

Definition 3.

If Argument is an argument, the set of premises of the agument, denoted as

Premises(Argument), is defined reaursively as follows:

1. Premises(Sentence) = {Sentence}, where Sentence is a sentence

2. Premises({{Argument;, ..., Argumentn}} — Conclusion) =

Premises(Argument;) O ... O Premises(Argument,),

where Argumenty, ...,and Argument, are aguments (for some natural
number n), and Conclusion is a sentence
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3. Premises({Argumentss, ..., Argumentsn} — Conclusion) =
Premises[Arguments;] O ... O Premises[Argumentsn],13
where Arguments;, ...,and Arguments, are sets of arguments (for some
natural number n), and Conclusion is a sentence

Definition 4.
If Argument is an argument, the set of rules of the agument, denoted as
Rules(Argument), is defined reaursively, as foll ows:
1. Rules(Sentence) = 0, where Sentence is a sentence
2. Rules({{Argumenty, ..., Argument,}} - Conclusion) =
{{Conclusion(Argumenty), ..., Conclusion(Argument,)} - Conclusion}
O Rules(Argumenty) O ... O Rules(Argumenty),
where Argumenty, ...,and Argument, are aguments, and Conclusion isa
sentence.
3. Rules({Argumentss, ..., Argumentsn} — Conclusion) =
Rules[Arguments;] O ... O Rules[Argumentsy],
where Argumentss, ...,and Arguments, are sets of arguments, and
Conclusion is a sentence

Rules are not the same & dnge-step arguments. the single-step argument
{{Subreason;, ..., Subreasonn}} - Conclusion has one rule, namely {Subreason;,
..., Subreason,} - Conclusion.

Next we define agument schemes and their instances. Argument schemes are
basicdly arguments that can contain wildcards. An instance of an argument scheme
isobtained by ‘fillingin’ eat occurrence of the wildcard O

Argument schemes are useful to denote aguments that have a @mmon part,
such as the same final step. For instance, al arguments with an equal final step,
informally denoted as

So, Reason.
So, Conclusion.

are represented by the agument scheme {{{fReason}} - Conclusion.

In the definition of argument schemes, the wildcard O has different roles
depending on its position in the agument scheme. The agument scheme
[Conclusion represents an argument with conclusion Conclusion. Some of the
instances of [Conclusion are Conclusion and {{Reason}} - Conclusion. In {0} -
Conclusion, the wildcard represents any argument. Some instances are {{Reason}}
- Conclusion and {{{{Reason:}} - Reasonz}} - Conclusion. In {{} - Conclusion,

13 For afunction F and a set Set that is a subset of the domain of F, F[Set] denotes the
image of Set under F.
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the wildcard represents any (finite) set of arguments. Some instances are
{{Reason:}} - Conclusion and {{Reasoni}, {Reason;}} — Conclusion.
Formally, argument schemes and their instances scheme are defined as follows.

Definition 5.

The set of argument schemes in the language Language is the smallest set such

that the following hold:

1. If Sentence is an element of Language, then Sentence, (Sentence, and O
are argument schemes.

2. If ArgumentSchemey, ..., ArgumentScheme, are argument schemes, then
{{ArgumentScheme, ..., ArgumentSchemen}} — Conclusion and {} -
Conclusion are argument schemes.

3. If {ArgumentSchemesi} - Conclusion, ..., {ArgumentSchemes,} -
Conclusion are argument schemes, then {ArgumentSchemes, ...,
ArgumentSchemes,} - Conclusion isan argument scheme.

Definition 6.
Theinstances of an argument scheme ArgumentScheme in the language
Language, denoted as Instances(ArgumentScheme), are defined recursively, as
follows:14
1. Instances(Sentence) = {Sentence}
Instances([Bentence) =
{Argument | Argument is an argument of Language with conclusion
Sentence}
Instances(D) = {Argument | Argument is an argument of Language}
2. Instances({{ArgSchemey, ..., ArgSchemen}} —» Conclusion) =
Instances(ArgSchemes) O ... O Instances(ArgSchemen)
Instances({{} — Conclusion) =
{Arguments - Conclusion | Arguments is a set of arguments of
Language}
3. Instances({ArgSchemess;, ..., ArgSchemes;} - Conclusion) =
Instances[ArgSchemes;] O ... O Instances[ArgSchemesy]

Any argument is an argument scheme, whose only instance is the argument itself.
2.4 Initialsand narrowings of arguments
In this section, we discuss the initials and the narrowings of an argument. They are

purely determined by the structure of the argument.
Arguments can have other arguments as initial parts. For instance, the argument

14 This definition is recursive in the structure of arguments, just as the definitions of
premises, rules and argument schemes. For brevity, we do not explicitly state that Sentence
is asentence, that Argument; isan argument (fori =1, ..., n) etc.
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A colleggue is completely soaked and tell sthat it israining.
So, it is probably raining.
So, it iswiseto put on araincoat.

has the agument

A colleggue is completely soaked and tellsthat it israining.
So, it is probably raining.

asaninitial part. Formally the initials of an argument are defined as foll ows.

Definition 7.
If Argument is an argument, the set of initials of the agument, denoted as
Initials(Argument), is defined reaursively as foll ows
1. Initials(Sentence) = O
2. Initials({{Argumenty, ..., Argument,}} — Conclusion) =
Initials(Arguments) O ... O Initials(Argument,) O {Argumenty, ...,
Argumentn}
3. Initials({Arguments;, ..., Arguments,} - Conclusion) =
Initials({Argumentsi} — Conclusion) O ... O Initials({Argumentsn} —
Conclusion)

The initials of an argument are dso arguments. The definition shows that an
argument is not an initial of itself and that all arguments, except for statements,
have initials.

If the conclusion of an argument is supparted by a mordinate agument with
Separate reasons, one or more of the reasons can be removed from the agument.
For instance, if the reason ‘ The sunis dining' is removed from the agument

The sunis ining; The sky is blue.
So, it isabeautiful day.

we obtain the agument

The sky isblue.
So, it isabeautiful day.

The latter argument is cdled a narrowing of the former. Only if one dlows the
coordination of arguments, it is posdble to define the narrowings of an argument.
Formally, the narrowings of an argument are defined as foll ows.

Definition 8.
If Argument is an argument, the set of narrowings of the agument, denoted as
Narrowings(Argument), is defined reaursively as foll ows:
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1. Narrowings(Sentence) = 0
2. Narrowings({{Argument;, ..., Argument,}} — Conclusion) =

{{{Narrowings, ..., Narrowingn}} - Conclusion |

Narrowing; O Narrowings(Argument;) for all i = 1, ..., n}

3. Narrowings({Argumentsg, ..., Arguments,} — Conclusion) =

{W - Conclusion | 0 O W O {Argumentst, ..., Arguments,}}1°
If Argument; isanarrowing of Argument,, then Argument; is a broadening of
Argument;.

The definition shows that in a narrowing of an argument the final conclusion is
supported by less reasons than in the argument itself (part 3 of the definition). In a
narrowing of an argument, also the intermediate conclusions can be supported by
less reasons (part 2 of the definition).

The narrowings of arguments are also arguments. If follows from the definition
that arguments are not narrowings of themselves, and that not all arguments have
narrowings. The conclusion of a narrowing of an argument is equal to the
conclusion of the argument. As a result, no narrowing of an argument is at the same
time aninitial of the argument.

3 Defeat and defeaters

In the previous section, we saw that arguments are in form comparable to proofs.
However, there is a mgjor difference between arguments and proofs. While proofs
justify their conclusions under al circumstances, arguments do not: arguments can
be defeated.

In this section, we dea with the defeat of arguments. We distinguish severa
types of defeat and corresponding defeaters. These indicate which arguments can
defeat which other arguments (sections 3.1 to 3.5). Then we discuss the role of
defeater schemes (section 3.6). This leads to the formal definition of defeaters and
defeater schemes (section 3.7).

3.1 Undercutting defeat

The first type of defeat that we discuss is defeat by an undercutter.16 As an
example, we consider the following (single-step) argument:

The object looks red.
So, the object isred.

15 v 0w meansthat V is aproper subset of W.
16 Pollock (1987-1995) has argued for the distinction between defeat by an undercutter and
by arebutter (discussed in section 3.2).
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In principle this argument supports its conclusion, but suppose that we also have
the following argument (a statement):

The object isilluminated by ared light.

Taking both arguments into account, the argument that the object is red does no
longer justify its conclusion. Because the object is illuminated by a red light, the
fact that it looks red is no longer a reason for the conclusion that the object is red.
(Of course the object can still be red, but we cannot justify this by the fact that it
looks red.) We say that the fact that the object is illuminated by a red light
undercuts the argument that the object isred.1?

In our formal model, thisfact is represented as follows:

llluminated_by_a_red_light [{{Looks_red}} - Is_red]
This is an example of a defeater, the formal definition of which follows later.18
Informally, the defeater represents that if the argument on the left,
lluminated_by_a_red_light, is undefeated, it defeats the argument on the right
{{Looks_red}} - Is_red.19 To emphasize that the latter argument becomes defeated,
it is put between sguare brackets| 1.
3.2 Rebutting defeat

The second type of defeat is rebuttal .20 For instance, if John likes French fries, but
ison alow calorie diet, we have the following two arguments:

John likes French fries.
So, he orders French fries.

and

17 The example has been used a severa occasions by Pollock as an illustration of
undercutting defeat (e.g., Pollock, 1986, p. 39ff.; 1994).

8 In our terminology, a defeater is not itself an argument or a reason that challenges
another argument (as for instance Pollock uses the term), but a relation between challenging
and challenged arguments.

19 Note that the arguments Illluminated_by a_red_light and {{Looks_red}} — Is_red do not
have inconsistent conclusions. The example shows an important choice underlying the
CumulA model: the defeat of arguments is in CumulA not inconsistency-triggered, but
counterargument-triggered (see note 5). Not inconsistency, but counterargument
(represented by defeaters) is the primitive notion in CumulA. We come back to this
distinction in chapter 6, section 4.

20 Seenote 16.
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Johnison alow calorie diet.
So, he does not order French fries.

Assuming that people who are on a diet try to suppress their eating impulses, John
probably does not order fries, since the latter argument would be more important.
In this case, the former argument is defeated by the latter. Formally, this would be
represented by the following defeater:

{{On_low_calorie_diet}} — Not_order_fries [{{Likes_fries}} » Order_fries]

The argument on the left, {{On_low_calorie_diet}} - Not_order_fries, defeats the
argument in square brackets on the right, {{Likes_fries}} - Order_fries. If, asin this
example, an argument defeats an argument with opposite conclusion, we speak of
rebutting defeat.

3.3 Defeat by sequential weakening

The third type of defeat is defeat by sequential weakening. An example of this is
the following argument, based on the well-known sorites paradox:21

This body of grains of sand is a heap.
So, this body of grains of sand minus 1 grainis a heap.
So, this body of grains of sand minus 2 grainsis a heap.

So, this body of grains of sand minusn grainsis a heap.

Each single step of the argument is correct, but clearly the argument cannot be
pursued indefinitely, since in the end there is no grain of sand left. For n large
enough, the argument above does clearly not justify its conclusion and should be
defeated. The important point here is that it is impossible to choose a single step
that makes the argument defeated. Only because the step is repeated too often, the
argument is weakened below the limit of acceptability, and is defeated.

Since argument steps normally can be chained, we need a way to represent the
fact that certain sequences of steps can lead to the defeat of an argument. A
defeater representing the situation of our example has the following form:

[Body_of_sand_is_heap — Body_of sand_minus_1_grain_is_heap
- Body_of_sand_minus_2_grains_is_heap

- Body_of_sand_minus_n_grains_is_heap]

For convenience, we have left out the brackets{ }.

21 Read (1995, p. 173ff.) discusses philosophical issues related to the sorites paradox.
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In the example, there is an argument that is clearly defeated because it contains
an unacceptable sequence of steps, but that does not contain one single argument
step that is to blame. In such a case, we speak of defeat by sequential weakening of
the argument.22

3.4  Defeat by parallel strengthening

The fourth type of defeat is defeat by parallel strengthening. Assume that John has
committed an offense, but is a minor first offender. As a result, the judge might
consider the following argument:

John is aminor first offender.
So, John should not be punished.

If for instance John has robbed Alex, the judge might consider this an argument
that rebuts the following argument with opposite conclusion:

John has robbed Alex.
So, John should be punished.

In the case of rebuttal the judge decided not to punish John. The judge might
decide analogoudly if John had injured Alex in afight.

However, if John has both robbed Alex and injured him in a fight, the judge
might decide differently. Since there are now two reasons for punishing John,
coordination of the arguments gives us the following composite argument:

John has robbed Alex; John injured Alex in afight.
So, John should be punished.

This argument might defeat the argument that John should not be punished. In that
case, the argument that John should be punished defeats another argument, while its
narrowings do not. A defeater representing thisis the following:

{{Robbed}, {Injured}} - Punished [{{Minor_first_offender}} — Not_punished]

The argument {{Robbed}, {Injured}} - Punished defeats the argument
{Minor_first_offender}} - Not_punished.?3 In this example the defeat of the
argument not to punish John can be explained by the parallel strengthening of the
argument to punish him. We speak of defeat by parallel strengthening if an

22 Theterm istaken from Verheij (1995c).
23 |n Reason-Based Logic, this example would involve the weighing of reasons (chapter 2,
sections 1.3 and 3.3). Cf. Verheij (1994).
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argument that has narrowings defeas another argument, while the narrowings
themselves do not.24

3.5 Collective and indeter ministic defeat

All examples of defeders that we have seen consisted of asingle challenging and a
single dhallenged argument. Such defeders are cdled simple. However, there ae
cases in which groups of arguments must be considered. We discusstwo types of
situations in which this is the cae, namely collective defeat and indeterministic
defeat. It turns out that in order to represent these types of defeda, we neel
compound defeders, that consist of groups of challenging and challenged
arguments.

Colledive and indeterministic defea occur if there is a number of arguments
that can clealy not al justify their conclusions, for instance because their
conclusions cannot all hold, but neither of which is clealy defeaed by any of the
others. We give an example.

It can be the cae that an employer wants to hire two persons if they are
qudified. If Johnis qualified, the enployer can make the foll owing argument:

Johnis qudified. So, Johnis hired.

On its own, this argument can be undefeaed, but now assume that not only John,
but also Alex and Mary are qudified for the job. As aresult, the enployer can aso
make the foll owing two arguments:

Alex isqualified. So, Alex ishired.
Mary is qualified. So, Mary is hired.

Since the enployer only wants to hire two persons, the three aguments cannot all
be undefeaed.

If there is no additional information to resolve this conflict of arguments, two
approaches can be distinguished that nevertheless ‘magicdly’ resolve the conflict:
colledive and indeterministic defed.

In the first approach to deding with the unresolved conflict of arguments,
colledive defea,25 al arguments are onsidered defeated. We spesk of colledive
defea if a group of arguments is defeaed as a whole, while the aguments in the

24 The example given here is also an example of rebutting defea, showing that the
discussed types of defea can overlap.

25 The term ‘colledive defed’ stems from Pollock (1987). Our colledive defea
generdlizes his. Pollock’s colledive defed is a general principle to preserve mnsistency. It
makes groups of otherwise undefeaed, but conflicting arguments defeaed. Our colledive
defea is optional, depending on the compound dfeaers of a particular argumentation
theory, and can occur for any group d arguments, not only conflicting.
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group would on their own not be defeaed. A defeder representing the situation in
our example wuld have the foll owing form:

[{{John_is_qualified}} — John_is_hired,
{{Alex_is_qualified}} — Alex_is_hired,
{{Mary_is_qualified}} — Mary_is_hired]

In this defeaer, all arguments are inside the square bradkets indicding that they are
defeaed as a group. We say that this defeder is right-compound, sinceit has more
than one challenged argument.

A defeaer such as the one &ove represents that the aguments inside the square
bracets are defeaed as a group, and not simply that they are dl three defeaed.
The latter would be represented by the following threesimple defeaers:

[{{John_is_qualified}} — John_is_hired]
[{{Alex_is_qualified}} - Alex_is_hired]
[{{Mary_is_qualified}} - Mary_is_hired]

The difference with the compound defeaer above is that the compound defeaer
only represents that the group of threeshould be defeaed if otherwise neither of the
arguments in the group would be defeaed. If the agument that Mary is hired for
the job is defeaed for another reason (i.e., becaise of another defeaer), for
instance, that she prefers ajob somewhere dse, the cmmpound defeaer above does
not anymore imply the defea of the agument that Johnis hired for the job. Only if
all three aguments would atherwise be undefeaed, the compound defeaer results
in their defea as a group. The three simple defeaers would not have the same
effed: they represent that the aguments are defeaed anyway.

The seoond approach to deding with the unresolved conflict of arguments is
indeterministic defea. In this approad, the mnflict is resolved by considering one
of the agumentsin the conflict defeded. Sincethere ae several choices that can be
made, neither of which is better than the others, the @nflict is ‘indeterministicaly’
solved: ead choice of a defeaed argument is allowed. In the example, there ae
threesolutions, represented by the foll owing defeders:

{{John_is_qualified}} — John_is_hired, {{Alex_is_qualified}} - Alex_is_hired
[{{Mary_is_qualified}} — Mary_is_hired]

{{Alex_is_qualified}} - Alex_is_hired, {{John_is_qualified}} —» John_is_hired
[{{Mary_is_qualified}} — Mary_is_hired]

{{Mary_is_qualified}} - Mary_is_hired, {{John_is_qualified}} — John_is_hired
[{{Alex_is_qualified}} - Alex_is_hired]

Each defeder represents that two of the aguments challenge the third, and can
result in its defed if they are both urdefeded. We say that this defeaer is left-
compound, sinceit has more than one chall enging arguments.
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3.6 Defeater schemes

We have ecountered severa examples of defeaers. They all contained
representations of full arguments. As we will see thisis not always convenient. As
an example, we reconsider the agument that an objed is red because it looks red.
This argument was defeaed by the statement that the objed isill uminated by ared
light. We had the foll owing defeaer:

llluminated_by_a_red_light [{{Looks_red}} - Is_red]

But it can of course dso be the cae that the fad ‘The objed isilluminated by ared
light’ is not merely put forward as a statement, but is itself supparted by some non-
trivial argument, for instance a foll ows:

Ralph says that the objed isilluminated by ared light.
So, the objed isilluminated by ared light.

If this argument is not defeaed, it defeas the agument that the objed is red, just
like the statement ‘The objed is illuminated by ared light' did. It does not matter
how the cnclusion that the objed is illuminated by a red light is justified. By
whatever argument that conclusion is justified, it defeas the agument that the
objed looks red.

Similarly, it can be the case that the agument step that the objed isred becaise
it looks red isitself part of alarger argument, for instance & foll ows:

The objed refleds light of a particular wave length.
So, the objed looks red.
So, the objed isred.

This argument is defeaed too if the conclusion that the objed is illuminated by a
red light isjustified. (It should be noted that this does not imply that the agument

The objed refleds light of a particular wave length.
So, the objed looks red.

is defeaed. The cnclusion that the objed looksred is gill justified.)

This leads to the notion of defeater schemes. We want to represent that any
argument that justifies the mnclusion that the objed is illuminated by a red light,
defeas any argument that ends with the agument step that the objed is red becaise
it looksred. A defeder scheme representing thislooks as foll ows:

Olluminated_by_a_red_light [{{{L.ooks_red}} - Is_red]
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Instead of arguments, a defeaer scheme @ntains argument schemes, such as
Olluminated_by a_red_light and {{{Looks_red}} - Is_red. The defeaer above will
have the dfed that any argument that is an instance of Olluminated_by_a_red_light
challenges any instance of {{{Looks_red}} - Is_red.

In our example, this is just as required, since the agument scheme
{{{Looks_red}} - Is_red hasbath

{{Looks_red}} - Is_red
and

{{{Reflect_light_of_particular_wave_length}} - Looks_red}} - Is_red
asinstances.
3.7  Definition of defeater s and argumentation theories

Having finished the description of different types of defed, we mme to the formal
definition of defeaers. We have seen several examples, al captured by the
foll owing definiti on.

Definition 9.
If ChallengingArguments, ..., ChallengingArgument,, ChallengedArgumenty, ...,
ChallengedArgument, are aguments, then
ChallengingArgumenty, ..., ChallengingArgument,
[ChallengedArguments, ..., ChallengedArgumenty)
isadefeater. The aguments ChallengingArguments, ..., ChallengingArgument,
are the challenging arguments of the defeaer, the aguments
ChallengedArguments, ..., ChallengedArgumentr, the challenged arguments of
the defeaer. A defeaer with at most one dhallenging and at most one
challenged argument is simple, otherwise compound. A defeaer that has more
than one challenging argument is left-compound, a defeaer with more than one
chall enged argument right-compound.

Intuitively, the defeder ChallengingArgument;, ..., ChallengingArgument,
[ChallengedArguments, ..., ChallengedArgumenty] represents the fad that the
arguments ChallengingArgument;, ..., and ChallengingArgument, defea the
arguments ChallengedArguments, ..., ChallengedArgumentm, if they are themselves
not defeaed.

Our defeders are related to Dungs (1993 1995 attacks. However, our
defeders take the structure of argumentsinto acount, and donot consist of asinge
challenging and a single challenged argument, but of a group of challenging and a
group of chall enged arguments.
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We aready discussed the need for defeater schemes. They contain argument
schemes instead of arguments. Defeater schemes and their instances are formally

defined as follows.

Definition 10.

If ChallengingArgSchemey, ..., ChallengingArgSchemey,

ChallengedArgSchemey, ..., ChallengedArgSchemen, are argument schemes,

then

ChallengingArgSchemey, ..., ChallengingArgScheme,
[ChallengedArgSchemey, ..., ChallengedArgSchemen]
is adefeater scheme. If each argument scheme in the defeater schemeis
replaced by one of its instances, the resulting defeater is an instance of the

defeater scheme.

Just as arguments are a specia kind of argument schemes, defeaters are a special

kind of defeater schemes, with as only instance the defeater itself.

We have described several types of defeat. In Table 2, we give an overview of

these types of defeat and their corresponding defeater schemes.

Type of defeat

Corresponding defeater scheme(s)

Undercutting defeat

(Conclusion; [[Reason - Conclusion:]

Rebutting defeat

[Pro - Conclusion [(Con - Not_conclusion]

Defeat by sequential | [[(Sentence; - ... — Sentencey]

weakening

Defeat by parallel {{fReasony}, ..., {{Reason,}} - Conclusion;
strengthening [CConclusiony]

Collective defeat [@Conclusiony, ..., OConclusiony]
Indeterministic [(Conclusion; [[(Tonclusiony, ..., CConclusiony],
defeat

OConclusion, [(Conclusiony, ..., OConclusiony.d],

Table 2: Types of defeat and their corresponding defeater schemes

The types of defeat in this table are not digoint, in the sense that there can be

defeaters that are instances of defeater schemes of different types.




Sedion 4: Stages of the agumentation process 129

Argumentation depends on which arguments can suppart conclusions and on the
situations in which arguments defea other arguments. This is gedfied by an
argumentation theory. A natural way to spedfy the aguments is by the rules from
which they are mnstructed. A natural way to spedfy defea situationsis by defeaer
schemes. This gives us the foll owing definiti on.

Definition 11.
An argumentation theory is atriple (Language, Rules, DefeaterSchemes), such
that Language is alanguage, Rules isa set of rules of the language Language,
and DefeaterSchemes is a set of defeaer schemes of the language. Any
argument that has only rulesin Rules is an argument of the agumentation
theory. Any instance of a defeaer scheme in DefeaterSchemes is a defeater of
the agumentation theory.

Our argumentation theories correspond to Lin and Shoham’s argument structures
(Lin and Shoham, 1989 Lin, 1993, Vreewijk’'s (1991 1993 abstrad
argumentation systems, and Dung's (1993 1995 argumentation frameworks. Lin
and Shoham and Vreeswijk include aset of premises. In CumulA, however, an
argumentation theory does not spedfy premises, since in CumulA’s lines of
argumentation the premises can change (see sedion 5). Dung s definitions do not
spedfy a set of premises either, but for the reason that they fully abstrad from the
structure of arguments.

4 Stages of the argumentation process

In the previous two sedions, we discused arguments and defeaers. They play a
central role in argumentation: arguments represent how conclusions can be
supparted and defeaers represent which arguments can defea other arguments. In
this edion, we discuss how defeaers determine the status of the aguments taken
into acoourt, i.e. which of them are defeaed and which are undefeaed. In the next
subsedion we trea how the status of an argument relates to the status of itsinitials
and narrowings (sedion 4.1). Then we describe some notions that charaderize the
effeds of a defeder (sedion 4.2). Theredter we dcaraderize the status of
arguments in an argumentation stage (sedion 4.3). In sedion 4.4, the stages of an
argumentation theory are formally defined.

4.1 Initials, narrowings and defeat

In this ®dion, we encounter three general requirements that must hold for any
defea status assgnment of the aguments that are taken into acourt at a stage of
the agumentation process

Every argument that is taken into acournt has one of two statuses: it can be
either undefeaed o defeaed. By definition, an urdefeaed argument justifies its
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conclusion, while a defeated argument does not. So, the first requirement is simply
that no argument can be defeated and undefeated at the same time. Obvioudly, an
argument cannot both justify and not justify its conclusion.

The second requirement relates the statuses of an argument and its initials: if an
initial of an argument is defeated, the argument is itself defeated. For instance, if
the argument

The object looks red.
So, the object isred.

is defeated and does not justify the conclusion that the object isred, the argument

The object looks red.
So, the object isred.
So, the object attracts the attention.

is also defeated and cannot justify the conclusion that the object attracts the
attention. (On the other hand, it is possible that the latter argument is defeated,
while the former is not.) Generally, an argument can not justify its conclusion if an
intermediate conclusion is not justified. In other words, an argument never
withstands defeat better than itsinitials.

The third requirement relates the statuses of an argument and its narrowings: if
a narrowing of an argument is undefeated, the argument is itself undefeated. For
instance, if the argument

The sun is shining.
So, itisabeautiful day.

is undefeated and justifiesits conclusion that it is a beautiful day, the argument

The sun is shining; The sky is blue.
So, itisabeautiful day.

cannot be defeated and not justify that same conclusion. Intuitively, an argument
does not withstand defeat worse than an argument containing less reasons.26 Only
one of the narrowings of an argument needs to be undefeated in order to make it
undefeated. For instance, the argument

The sky isblue.
So, it isabeautiful day.

26 pollock (1991) has argued against this so-called accrual of reasons. In chapter 6,
section 2, we give our reply.
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can be defeated (by some other argument), while the two arguments above are
undefeated. Adding a reason can never make an argument defeated, but sometimes
can make an argument undefeated, asin a case of defeat by parallel strengthening.

Summarizing we have the following three requirements for any defeat status
assignment:

1. Each argument is either undefeated or defeated.
1. If aninitial of an argument is defeated, the argument is defeated.
1. If anarrowing of an argument is undefeated, the argument is undefeated.

4.2 Reevant, triggered, respected and inactive defeaters

Defeaters play a central role in the determination of the defeat status of arguments.
By default, an argument is undefeated, but defeaters can change this default status.
Recall that defeaters indicate when undefeated arguments can defeat other
arguments. We discuss four notions that are important for the effects of defeaters: a
defeater can be relevant, triggered, respected and inactive.

As an example, we take the defeater

Ralph’s_testimony - llluminated_by_a_red_light [Looks_red - Is_red]

A defeater only can have effectsif all argumentsin it have been taken into account.
If only the argument Looks_red - Is_red has been taken into account, the defeater
above has no effect. Only if the argument Ralph's_testimony -
lluminated_by_a_red_light is also taken into account, can the argument Looks_red
- Is_red be challenged. If al argumentsin a defeater have been taken into account,
the defeater isrelevant.

A relevant defeater can only lead to the defeat of its challenged arguments if the
challenging arguments are undefeated. Returning to our example, it can turn out
that Ralph is lying, with the result that the argument Ralph’s_testimony -
llluminated_by_a_red_light does not justify its conclusion, and is defeated (on the
basis of some other defeater). Even though the argument that the object is
illuminated by ared light is taken into account, it does not challenge the argument
that the object is red, since it is itself defeated. If al challenging arguments of a
relevant defeater are undefeated, the defeater istriggered.

Normally, if a relevant defeater is triggered, the challenged arguments are
defeated. In  our example, if the argument Ralph's_testimony -
llluminated_by_a_red_light is undefeated, the argument Looks_red - Is_red is
defeated. In general, if al chalenged arguments of a triggered defeater are
defeated, the defeater is respected.

There is one situation in which a defeater of which the challenging arguments
are undefeated do not lead to the defeat of its challenged arguments. This can only
happen in a case of collective defeat (see section 3.5), represented by a right-
compound defeater, when the challenged arguments are not defeated as a group,
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because some of them (but not al) are challenged arguments of another respected
defeater.
As an example, we take the following two defeaters:

[John_is_qualified — John_is_hired, Mary_is_qualified - Mary_is_hired]
Mary_prefers_another_job [Mary_is_qualified — Mary_is_hired]

Here Mary_prefers_another_job represents that Mary prefers another job than the
one for which both John and Mary are qualified. If now the two arguments

John_is_qualified — John_is_hired
Mary_is_qualified — Mary_is_hired

are taken into account, only one of the defeaters is relevant (the first), and should
result in the defeat of both arguments. But if also the statement

Mary_prefers_another_job

is taken into account, the situation changes. Both defeaters are relevant. Since the
argument Mary_prefers_another_job is not even challenged in one of the defeaters,
it is undefeated and defeats the argument Mary_is_qualified — Mary_is_hired. But
now the other defeater, that represents collective defeat, should not lead to the
defeat of John_is_qualified - John_is_hired, since one of its challenged arguments
is already defeated by another defeater. In this situation, we say that the defeater is
inactive, otherwise active. Only active defeaters can lead to the defeat of their
challenged arguments.

4.3 Stagesand defeat

The stages of the argumentation process are characterized by the arguments that
have been taken into account, and by the status the arguments have. The status of
the arguments taken into account is determined by the defeaters of the
argumentation theory. In this section, we discuss how.

An argument can be defeated in two ways: directly and indirectly. An argument
is directly defeated if it is a challenged argument of a triggered active defeater. As
an example, we consider the red light example again. We have the simple defeater

llluminated_by_a_red_light [Looks_red - Is_red]
Assume that two arguments have been taken into account:

llluminated_by_a_red_light
Looks_red - Is_red
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Clealy, the defeder is relevant. The agument Illluminated_by_a_red_light cannot
be defeaed, since there is no defeaer in which it is challenged. As a result, the
defeaer is triggered, and also adive, sinceit is not left-compound. As a result, the
argument Looks_red - Is_red is diredly defeded by the agument
llluminated_by_a_red_light.

An argument is indirectly defeated if it has a defeaed initial or broadening.
Indired defea corresponds to the requirements on the statuses of arguments and
their initials and narrowings (sedion 4.1). For instance, if in the example aove the
argument

Looks_red — Is_red - Attracts_attention

were dso taken into acount, it would be defeaed, because itsinitial Looks_red —
Is_red would have been defeaed.

An argument can be bath diredly and indiredly defeaed. For instance if the
argument

John_is_color_blind
were taken into acaount, and the theory contained the defeaer scheme
John_is_color_blind [Os_red — Attracts_attention],

the agument Looks_red - Is_red - Attracts_attention would be both diredly
defeaed, by the agument John_is_color_blind, and indiredly, by the (dired) defea
of itsinitial Looks_red - Is_red.

We have now discussed al ingredients of our definition of an argumentation
stage. A stage is charaderized by the aguments that are taken into acount and by
their statuses. As aresult, a stage is defined as a defea status assgnment, that must
obey the requirements of sedion 4.1. Furthermore, which arguments have the status
undefeaed and which defeaed is determined by the defeaers, as foll ows:

An argument has the status ‘defeaed’ if and only if the agument is diredly or
indiredaly defeaed.

4.4  Definition of stages

We have seen that the status of initials and narrowings of an argument can have an
effed on the status of the agument itself. The range of a set includes all arguments
that can have such effeds for the aguments of the set. Formally, the range of a set
of argumentsis defined as foll ows.
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Definition 12.
Therange of a set of arguments Arguments, denoted as Range(Arguments), is
the small est set of arguments Range, such that the following Hold:
1. Arguments isasubset of Range.
2. Any initial of an argument in Range is an element of Range.
3. Any narrowing of an argument in Range is an element of Range.
A set of argumentsthat is equal to itsrange is arange of arguments.

We have discussed three requirements that are the result of the relations of the
status of an argument and the statuses of its initials and narrowings. These
requirements lead to the foll owing definition of a defeat status assignment.

Definition 13.
A defeat status assignment of arange of arguments Range has the form
UndefeatedArguments (DefeatedArguments),

such that the foll owing Hold:

1. The agumentsin Range are predsely the agumentsin
UndefeatedArguments and DefeatedArguments, but no argument is both in
UndefeatedArguments and in DefeatedArguments.

2. Noinitial of an argument in UndefeatedArguments is an element of
DefeatedArguments.

3. No narrowing of an argument in DefeatedArguments is an element of
UndefeatedArguments.

The set Range, equal to the union of UndefeatedArguments and

DefeatedArguments, is the range of the defed status assgnment.

Notation: A defea status assgnment of afinite range of arguments will often

be denoted as

UndefeatedArguments, ..., UndefeatedArgument,
(DefeatedArguments, ..., DefeatedArgumentm)

Our defed status assgnments are formally related to Pollock’s (1994 1995 partia
status assgnments, but have adifferent use. Pollock uses datus assgnments to be
able to ded with certain problem cases. We use status assgnments gnce they
enable the definition of argumentation stages.

The second requirement in the definition of defea status assgnments is well-
known and has a counterpart (in different forms) in many argumentation models
that take the subordination of arguments into acount, such as the models of Lin
and Shoham (Lin and Shoham, 1989 Lin, 1993 and Vreeswijk (1991, 1993. The
third requirement is, as far as we know, new in CumulA since in other models the
coordination of arguments is not taken into acournt. It represents how the
coordination of argumentsisrelated to defed.

Next we define when a defeaer is relevant, triggered, respeaed and (in)adive.
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Definition 14.
A defeater ChallengingArguments [ChallengedArguments] isrelevant for a
defeat status assignment UndefeatedArguments (DefeatedArguments) if all
argumentsin ChallengingArguments and ChallengedArguments are in the range
of the defeat status assignment.

Definition 15.
A defeater ChallengingArguments [ChallengedArguments] istriggered in the
defeat status assignment UndefeatedArguments (DefeatedArguments) if it is
relevant and ChallengingArguments is a subset of the range of
UndefeatedArguments.

Definition 16.
A defeater ChallengingArguments [ChallengedArguments] is respected in the
defeat status assignment UndefeatedArguments (DefeatedArguments) if
ChallengingArguments is a subset of the range of UndefeatedArguments and
ChallengedArguments is a subset of the range of DefeatedArguments.

Definition 17.
A defeater ChallengingArguments [ChallengedArguments] isinactive in the
defeat status assignment UndefeatedArguments (DefeatedArguments) if it is
relevant and there is a respected defeater ChallengingArguments’
[ChallengedArguments’], such that some, but not al, argumentsin
ChallengedArguments are an element of, or have an initial or broadening in
ChallengedArguments’. A relevant defeater is active if it is not inactive.

As immediate consequences of these definitions, triggered defeaters are always
relevant, and respected defeaters are always triggered (and therefore rel evant).
The following definition captures the direct and indirect defeat of arguments.

Definition 18.
The argument Argument is defeated by the arguments ChallengingArguments in
the defeat status assignment UndefeatedArguments (DefeatedArguments) if
thereis atriggered active defeater ChallengingArguments
[ChallengedArguments], such that
1. ChallengedArguments contains Argument, or
2. ChallengedArguments contains an initial or broadening of Argument.
In the first case, the argument Argument is directly defeated by the arguments
ChallengingArguments; in the second case, indirectly.

We finally have arrived at the formal definition of argumentation stages.
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Definition 19.

An argumentation stage of an argumentation theory (Language, Rules,
DefeaterSchemes) is a defea status assgnment of arange of argumentsin the
language Language with rulesin Rules,

UndefeatedArguments (DefeatedArguments),
such that the following Holds:

Argument is an element of DefeatedArguments if and only if Argument is

defeaed by argumentsthat are dements of UndefeatedArguments.
The premises and conclusions of the aguments in the range of the
argumentation stage ae the premises and the conclusions of the agumentation
stage, respedively. The mnclusions of argumentsin the range of the
argumentation stage that are not an initial of another argument in the range, are
the final conclusions of the agumentation stage. The mnclusions of the
arguments in UndefeatedArguments are the justified conclusions of the
argumentation stage; the anclusions of arguments in DefeatedArguments the
unjustified conclusions.

The wnstraint says that the aguments in DefeatedArguments are eadly the
arguments that are (diredly or indiredly) defeaed. It turns out that a given range of
arguments can correspond to zero, one or several argumentation stages of a theory.
Sedion 6 contains examples.

Our stages are similar to Vreeswijk’'s (1991, 1993 argument structures. On a
formal level, the definitions differ since the gproaches to defea in Vreeswijk's
model and in CumulA are different (see dapter 6, sedion 4). Moreover, the
intuitions behind Vreeswijk’'s arguments gructures and CumulA’s argumentation
are different: Vreeswijk’s argumentation structures represent the aguments that are
currently undefeaed, while CumulA’s dages represent both the airrently
undefeded arguments and the airrently defeaed arguments. Verheij (1995h c)
argues that the latter is more general and closer to the idea of gradually taking
argumentsinto acourt.

Verheij (1996) investigates the relations of CumulA’s dages (in a restricted
form) and Dung s (1993 1995 admissble sets of arguments. As Verheij (1996a)
shows, there ae dose relationships on the formal level. However, Dungs
admisgble sets are seamingly not meant to model stages of the agumentation
process Verheij (1996) gives examples and formal relations that show that the
stages approach generalizes the almissble sets approac, and models the intuition
of gradually taking arguments into acount.

5 Linesof argumentation and argumentation diagrams

We mnsider argumentation as a process in which arguments are taken into
acount, and are asdgned a defea status. Now that we have described the stages of
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this process we will discuss lines of argumentation, that are intuitively series of
conseautive agumentation stages.

We tred the mnstruction of arguments in a line of argumentation and the
change of status of argumentsin a line of argumentation. We finish with the formal
definiti on of lines of argumentation and argumentation diagrams.

5.1 Construction of arguments

In aline of argumentation, arguments are gradually constructed. Since we @nsider
a line of argumentation as a sequence of argumentation stages, the gradual
construction of arguments means that the range of the stages in a line of
argumentation gradually changes. We distinguish six elementary ways to construct
new arguments from the aguments taken into acount at some stage, leading to a
new stage. We dso mention how these wnstructions affed the premises and
conclusions of the stage.

First, at any stage in a line of argumentation a new statement can be introduced.
Moreover, a line of argumentation can start with a statement. For instance the
initial statement might be:

It israining.

As mentioned ealier (e.g., in sedion 2 on arguments), we trea statements as
arguments with trivial structure. At this gage of the line of argumentation, where
only the statement ‘It israining istaken into acourt, we have one premise and one
conclusion that coincide, namely ‘It israining'. In general, if at some stage anew
statement is introduced, at the new stage a(coinciding) premise and conclusion are
added to those of the original stage. 27

Seoond, a forward step can be alded to an argument taken into account. This
means that the mnclusion of the agument is used to suppart a new conclusion. For
instance, the statement that it is raining can be used to suppart whether to put on a
raincoat or not. We obtain the foll owing single-step argument:

It israining.
So, it iswiseto put on araincoat.

If aforward step is added to an argument, the premises do not change, but a new
conclusion isintroduced. In the example, the new conclusion is ‘It iswise to put on
araincoat’.

Third, a backward step can be alded to an argument. This means that the
premise of the agument is supparted by a new premise. For instance, if | amin a
room that has no windows, | might not take the statement that it is raining for

27 |t can of course be the cae that such a premise or conclusion is not new becaise it was
dready apremise or conclusion d another argument taken into acourt.
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granted, and look for suppart of the conclusion that it is raining. For instance, the
foll owing single-step argument can suppart that conclusion:

A colleggue is completely soaked and tellsthat it israining.
So, it israining.

If a badkward step is added to an argument, a premise is replaced by one or more
new premises, whil e the conclusions remain the same. In the example, ‘It israining
is no longer a premise, and is replacal by the premise ‘A colleggue is completely
soaked and tellsthat it israining'.

Fourth, a broadening step can be alded to an argument. This means that the
conclusion of a (non-trivial) argument is suppated by an additiona reason. For
instance, it might be the cae that the @nclusion that it is raining gets additional
suppatt by the weaher report on the radio. In that case, the previous argument can
be broadened to the foll owing argument:

A colleggue is completely soaked and tells that it is raining; The weaher-report
on the radio saysthat israining.
So, it israining.

If a broadening step is added to an argument, the cnclusions of the original stage
remain the same, while new premises are introduced. In the example, ‘ The weaher-
report on the radio saysthat israining isanew premise.

Fifth, two arguments can be combined by subordination if one of the aguments
taken into acount has a premise that is the cnclusion of the other. In this way, an
argument taken into acount can be used to suppat the premise of another
argument. For instance, the agument

A colleggue is completely soaked and tell sthat it israining.
So, it israining.

can be subordinated to the agument

It israining.
So, it iswiseto put on araincoat.

Thisresultsin the agument
A colleggue is completely soaked and tellsthat it israining.

So, it israining.
So, it iswiseto put on araincoat.
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In a cae of subordination, a premise and a cnclusion of the origina stage can be
dropped at the new stage.28 In the example, the premise ‘It israining is dropped.

Sixth, two arguments can be combined by coordination if they have the same
conclusion. For instance, the aguments

A colleggue is completely soaked and tellsthat it israining.
So, it israining.

and

The weaher-report on the radio says that is raining.
So, it israining.

can be mordinated, resultingin the agument

A colleggue is completely soaked and tell s that it is raining; The weaher-report
on the radio saysthat israining.
So, it israining.

In a cae of coordination, the premises and conclusions of the original stage remain
the same & the new stage.
Summarizing, we distinguished six types of argument construction:

Introducing a new statement

Adding aforward step

Adding a backward step

Adding a broadening step
Subordinating one agument to another
Coordinating two arguments

PR R e

Each of these types has an inverse, that can be considered as a type of argument
deoonstruction. For instance, the inverse of the introduction of a statement is the
withdrawal of a statement. However, we focus on argument construction.29

5.2 Changeof status
Argumentation stages are charaderized by the aguments taken into acount and by

their status. It is charaderistic for argumentation with defeasible aguments that the
status of arguments can change in aline of argumentation.

28 |t can of course be the cae that such a premise or conclusion is not dropped because it
is gill apremise or conclusion o another argument taken into acourt (cf. note 27).

29 Tedhnicdly, as we will see we will define lines of argumentation in terms of argument
construction. Argument deconstruction can be @nsidered as backtracking in a line of
argumentation.
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A basic example of the change of status is reinstatement. In a cae of
reinstatement, an argument is undefeaed at some stage, defeaed at a second, later
stage, and again urdefeaed at athird, again later stage. For instance, the agument

The_object_looks_red — The_object_is_red
can first be undefeaed, then defeaed by the statement
Ralph_says_the_object_is illuminated_by red_light,
and again urdefeaed by the statement
Ralph_is_a_liar.

Reinstatement depends on the order in which arguments are taken into acount. For
instance, if in some line of argumentation the statement that Ralph is a liar was
taken into acount first, the agument that the objed is red would not become
defeaed.

If we abbreviate the three aguments above & a, 3 and y, respedively, al li nes
of argumentation, corresponding to the six orders in which the three aiguments can
be taken into acount, can be summarized in a so-cdled argumentation diagram
(Figure 1). The nodes in the diagram correspond to argumentation stages. The 0
corresponds to the stage with empty range, at which no arguments have been taken
into acount. If an argument is defeaed in a stage, it is denoted in bradkets. The
arrows indicate the transition from one stage to the next in aline of argumentation.
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Figure 1: Reinstatement

The diagram shows that in only one of the lines of argumentation the agument a is
reinstated, namely in the line of argumentation in which first a, second 3, and third
yistaken into account.

In a line of argumentation, the status of an argument can change ayain and
again. Thisleals to the notion of the status of an argument ‘in thelimit’. If in aline
of argumentation from some stage onwards the status of an argument remains
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congtant, either undefeaed or defeaed, the agument is sid to be undefeaed o
defeaed in the limit, respedively.30

5.3  Definition of lines of argumentation and argumentation diagrams

Shortly we define lines of argumentation and argumentation diagrams. We need
some auxili ary definitions.

In order to capture the six ways of argument construction that we discussed, we
observe that they have a @mmon charaderizing property: the structure of the initial
arguments is refleded in the structure of the newly constructed argument. The
structural refledion of an argument in another is made predse in the following
definiti on.

Definition 20.

The maximal argument scheme of an argument is defined reaursively as

foll ows:

1. Themaximal argument scheme of an argument of the form Sentence is
[Bentence.

2. The maximal argument scheme of the form {{Argumenty, ..., Argument,}} -
Conclusion is {{MaxArgSchemey, ..., MaxArgSchemen}} —» Conclusion,
where MaxArgScheme; is the maximal argument scheme of Argument;, for
ali=1,..,n

3. The maximal argument scheme of {Arguments;, ..., Argumentsp} —
Conclusion is{MaxArgSchemess;, ..., MaxArgSchemesn} - Conclusion,
where {MaxArgSchemes;} - Conclusion isthe maximal argument scheme of
{Arguments;} — Conclusion, forali =1, ...,n.

An argument Argument is structurally reflected in an argument Argument’ if

there is an argument in the range of Argument’ that is an instance of the

maximal argument scheme of Argument.

The maxima argument scheme is just the agument itself, but with ‘wildcarded
premises. The term ‘maximal argument scheme’ is used becaise the maximal
argument scheme of an argument is the agument scheme that has a (the) maximal
set of instances among the agument schemes that have the agument as an instance

We can now define the succesors of a stage, lines of argumentation and
argumentation diagrams. The following definition implicitly refers to an
argumentation theory (Language, Rules, DefeaterSchemes).

Definition 21.
A stage Stage: has a stage Stage: asits successor if all argumentsin the range
of Stage, are structurally refleced in a stage Stage.. A line of argumentation is

30 |n Pollock’s Theory of Defeasible Reasoning (Pollock, 1987-1995 and Vreeswijk's
Abstrad Argumentation Systems (Vreeswijk, 1991 1993 asimilar notionis defined.
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a sequence of argumentation stages Stages, Stagey, ..., Stagen, ... (not
necessrily finite), such that for all natural numbersi Stagei.1 is asuccesor of
Stagei. A line of forward argumentation is a line of argumentation that consists
of stages with a mnstant set of premises. A line of backward argumentationisa
line of argumentation that consists of stages with a wnstant set of conclusions.
An argumentation diagramis a set of lines of argumentation.

In aline of argumentation, there is no constraint on the status of the aguments.31 A
stage can have zeo, one or several successors. In fad, stages will often have many
SUCCESIS.

Our definitions of successrs and lines of argumentation are related to
Vreeswijk's definition of successors and argumentation sequences, respedively.
However, they differ in threeways. First, the goproadhes to defea in Vreeswijk’'s
model and in CumulA are different (see dapter 6, sedion 4). Seand, Vreeswijk's
argumentation sequences represent how the set of arguments that are airrently
undefeded changes in argumentation, while CumulA’s lines of argumentation
represent how the set of arguments taken into acwount, whether undefeaed or
defeaed, changes, and how the statuses of the aguments change. Third, CumulA’s
lines of argumentation are more general than Vreeswijk’s argumentation sequences
since the latter have fixed premises. Vreeswijk's argumentation sequences are
therefore omparable to CumulA’s forward lines of argumentation. The relation
between succesrs in Vreeswijk's argumentation sequences is smpler than the
relation between succesor stages in CumulA’s forward lines of argumentation.
This is due to the fad that CumulA’s dages are representations of al arguments
currently taken into acount, whether undefeded or defeded, while Vreeswijk's
argument structures are only representations of the aguments currently undefeaed.
The alvantages and d sadvantages of the two approaches deserve further study.

We stressthat the definition of stages above is not a constructive definition of
the successors of a stage. It does provide a onstruction of the arguments in the
ranges of the succesor stages, but not of the statuses of these aguments. It is
probably not essy to define the relation between the statuses of the agumentsin the
range of a stage and in the range of a successor, since a dange of status of one
argument can affed the status of a cacade of other arguments.

Nevertheless CumulA’s lines of argumentation represent how argumentation
with defeasible aguments proceels. More predsely, they represent how
argumentation can proceed, and not how such argumentation should proceed. We
give an example of the distinction: both a line of argumentation in which
counterarguments are systematicdly negleded, and one in which at ead stage

31 Henry Prakken has pointed out to me that in cases of multi ple stages with equal range, a
constraint on the status of arguments sams appropriate. Since eab of the multiple stages
represents a choice of status, it seems natural that the choice shoud be kept constant in the
succesor stages. The problem is that the choice cana always be kept constant. As a result,
it shodd be made predse how the choice ca be kept ‘as constant as posshle’. We leave
this problem for future reseach.
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arguments are dhallenged by counterarguments that are newly taken into acourt,
fit in the definition above. The second seams closer to how argumentation should
proceal. However, a line of argumentation of both types can serve apurpose. A
line of argumentation of the first type can help to find al arguments suppartting a
fixed pant of view, while one of the second type can lead more dficiently to
justified conclusions.

Which lines of argumentation are preferred with resped to spedfic purposes
and standards, eg., efficiency, can be regarded as constraints on lines of
argumentation. Such constraints define agumentation protocols. Because of the
generality of CumulA’s lines of argumentation, it seams likely that very different
protocols can be defined on them. Reseach on protocol in the ontext of
argumentation with defeasible aguments has only recently started (seenote 6), and
isapromising direction of future research.

We finish this dion with the definition of forward and badkward extensions.
Intuitively, a forward extension is the result of colleding as many arguments as
possble from a given set of premises. A badkward extension is the result of
colleding as many arguments as possble, suppating a given set of conclusions.

Definition 22.
A forward extension of a set of sentences Premises is an argumentation stage
UndefeatedArguments (DefeatedArguments) with premisesin Premises that
has no succesor stage with premisesin Premises. A forward extension
UndefeatedArguments (DefeatedArguments) of a set of sentences Premises is
complete if itsrange cntains al arguments with premisesin Premises. A
backward extension of a set of sentences Conclusions is an argumentation stage
UndefeatedArguments (DefeatedArguments) with conclusions in Conclusions
that has no succesr stage with conclusionsin Conclusions. A badkward
extension UndefeatedArguments (DefeatedArguments) of a set of sentences
Conclusions is complete if its range mntains all arguments with conclusionsin
Conclusions.

A set of sentences can have ze&o, one, or severa forward and badkward extensions
(posshbly with empty range).

The definition of forward extensions has counterparts in many argumentation
models, but the distinction between forward and backward extensions is to our
knowledge new. Formally our definitions of extensions and complete extensions
are dose to Dungs (1993 1995 preferred and stable extensions,
respedively.32 Verheij (19968) shows the formal relations between Dungs
definitions and our definitions (for a version of CumulA, restricted to unstructured
arguments and simple defeaers). It turns out that there ae subtle distinctions and

32 gince Dung (1993 1995 considers unstructured arguments, there is no dstinction
between forward and badkward extensions.
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that the definiti on of extensions above crresponds somewhat better to the intuition
that in an extension as many arguments are taken into acourt as possble.

6 Examples

In this sdion, we discuss a humber of examples of argumentation theories in
CumulA. The examples are meant as an illustration of the formal definitions
of CumulA.

6.1 Sequential weakening and parallel strengthening

In the sedions 3.3 and 34, we discussed examples of sequential wedkening and
paralel strengthening. Here we describe the agumentation theories corresponding
to the examples.

First, we trea the sequential weakening example @out hegps of sand, based on
the sorites paradox. The following argumentation theory represents it, for a fixed
natural number n:

Language = {Heap(i)|i=0,1, 2, ... }
Rules = {Heap(i) - Heap(i+1)]i=0,1,2, ...}
DefeaterSchemes = {{[Heap(i)] | i>0}
O {[(Heap(i) — Heap(i+1) — ... — Heap(i+n)]|]i=0,1, 2, ...}33

Here Heap(0) abbreviates Body of sand_is_heap, Heap(l) abbreviates
Body of sand_minus_1 grain_is_heap, and for eadh i = 2, 3, ..., Heap(i)
abbreviates Body_of_sand_minus_i_grains_is_heap. The rules sy that a body of
sand that is one grain fewer than a heg is also a hegp. The first set of defeaer
schemes represents that only the original body of sand is considered a hegp without
further argumentation. The second set of defeaer schemes represents that any
argument that contains a sequence of n steps of the rule is defeaed.34 The defeder
exadly represents that such an argument becomes defeaed because it contains too
many steps.
The only statement that can be undefeaed is

0o: Heap(0)

33 For convenience we have left ot the brackets{ }.

34 The choice of n determines the ‘risk’ we accet: for n nd too large, say ten, in orly a
few cases a body of sand is wrongly judged a hea, but at the same time in a few cases
reasoning can help us to determine that a body of sand is a heg. For n large, say a hilli on,
we will more often wrongly judge abody of sand a heg, but aso reasoning can help us
more often. This trade-off between making mistakes and achieving the right results is
paramourt in reasoning with defeasible aguments.
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Therefore the only arguments of this theory that might be undefested are,
fori=0,1,2,..:

Q;: Heap(0) - Heap(1) - ... - Heap(i)

If the arguments o, Ay, ... are consecutively taken into account, the resulting line of
argumentation is the following sequence of stages:

Qo
Op a3
Op 01 O3

Qo Oz ... Ong (Olp)
Olp Ol ... Oy (O Olper)

All arguments that contain a sequence of n steps are defeated. The first of these is
the argument a,,. As aresult, according to this theory, it is justified that the body of
sand isaheap if a most n - 1 grains are taken away from the original heap.

If, for some natural number iy, the conclusion Heap(io) could be justified by
some other argument than a;, the argument could be extended by n - 1 steps. It
would be an undefeated argument different from the defeated Qi -1, and thereby
justify that the original body of sand minusiy + n - 1 grainsis a heap.

Second, we treat the parallel strengthening example about punishing John. The
following argumentation theory representsit:

Language = {Robbed, Injured, Minor_first_offender, Punished, Not_punished}
Rules = {{Robbed} - Punished, {Injured} - Punished,
{Minor_{first_offender} - Not_punished}
DefeaterSchemes =
{{{Oviinor_{first_offender}} — Not_punished [{{{Robbed}} - Punished],
{{Minor_first_offender}} — Not_punished [{{dnjured}} - Punished],
{{fRobbed}, {Onjured}} - Punished
[{{™Minor_first_offender}} — Not_punished]}
O {[Punished], [Not_punished]}

The three rules say that John is punished if he has robbed, that John is punished if
he has injured someone, and that John is not punished if he isaminor first offender.
The first two defeaters represent that any argument that ends in
{{tMinor_first_offender}} - Not_punished rebuts any argument that ends in
{{fRobbed}} - Punished or {{{Injured}} — Punished. The third defeater represents
that any coordinated argument that ends with {{{Robbed}, {{Injured}} - Punished
rebuts any argument that ends in {{{Minor_first_offender}} - Not_punished. The
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last two defeaters represent that the statements that John is punished and that John
is not punished are defeated.
The following are the (non-statement) arguments of this theory:

oy {{Robbed}} - Punished

ay:  {{Injured}} - Punished

B: {{Minor_first_offender}} » Not_punished
. {{Robbed}, {Injured}} - Punished

The arguments a; and a, are the narrowings of the argument ay,. In Figure 2, the
main lines of argumentation with these arguments are shown.
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Figure 2: Parallel strengthening

The diagram shows that the arguments a; and a, only remain undefeated in a line
of argumentation if they are both taken into account before 3 is.

6.2  Conflicting arguments: collective or multiple stages

It is often the case that arguments arise that have incompatible conclusions.
Sometimes additional information can be used to resolve the conflict, for instance
there can be information about the preference of the arguments.3> However, it
remains possible that there is not sufficient information to resolve the conflict. In
that case, the conflict can be resolved by choosing one or more of the arguments
involved in the conflict. Two general approaches to dealing with such situations
have been proposed in the literature. The first is to discard al arguments in the
conflict, as Pollock (1987) does, the second is to discard some of the argumentsin
such a way that the conflict is resolved, while as few arguments as possible are
discarded, as for instance Vreeswijk (1991, 1993) does. Since in the latter case,

35 In chapter 3, section 6, it is discussed how such conflict-resolving information can be
represented in Reason-Based Logic. In chapter 4, section 5, other approaches of dealing
with conflicts are treated.
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there is normally no unique choice of arguments to discard, multiple solutions can
arise.36

Both approaches have their merits, and seem reasonable in certain cases.3”
Therefore, in CumulA, both approaches can be dealt with, the first by collective
defeat, and the second by multiple stages, i.e., different stages with equal range. As
an example, we look at the following arguments:

John has stolen. So, heis punished.

John isaminor first offender. So, he is not punished.

It is nice to have apicnic in the woods. So, we go to the woods.
Itisniceto have apicnic at the sea. So, we go to the sea.

The first two of these arguments have incompatible conclusions, the second two
also. In thefirst conflict, it seems best to consider both arguments defeated without
further information. In the second conflict, it can be argued that one of the two
arguments should be defeated, each choice being equally good. Both are modeled
in the following argumentation theory (Language, Rules, DefeaterSchemes):

Language = {Has_stolen, Is_punished, Minor_first_offender, Is_not_punished,
Nice_in_the_woods, Go_to_the_woods, Nice_at_sea, Go_to_the_sea}
Rules = {Has_stolen - Is_punished, Minor_first_offender - Is_not_punished,

Nice_in_the_woods - Go_to_the_woods, Nice_at_sea - Go_to_the_sea}
DefeaterSchemes = {[(0s_punished, 0s_not_punished],

(Go_to_the_woods [[1Go_to_the_sea], 0Go_to_the_sea

[0Go_to_the_woods]}

The main arguments of this theory are:
a: Has_stolen - Is_punished

B: Minor_first_offender - Is_not_punished
Y. Nice_in_the_woods - Go_to_the_woods

36 These solutions correspond to what are often called extensions. In the literature, three
perspectives on multiple extensions have been proposed, as Makinson (1994, p. 38) notes:
the skeptical perspective, the liberal (or credulous) perspective, and the choice perspective.
The skeptical perspective focuses on the intersection of the extensions, the liberal
perspective on their union, and the choice perspective on a selected extension. In CumulA,
we prefer the latter perspective since the skeptical perspective is closely related to collective
defeat, as Pollock (1992, p.7) remarks, which can be dealt with using a compound defeater
(cf. section 3.5), while the liberal perspective does not help to resolve conflicts: the union of
the multiple extensions that arise to resolve some conflict, again contains the conflict.

7 For instance, Pollock (1994; 1995, pp. 62-64) argues that while in epistemic reasoning
unjustified choices are unreasonable, in practical reasoning it is sometimes better to make
some choice than none. Since he focuses on epistemic reasoning, he prefers the collective
defeat approach.
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0. Nice_at_sea - Go_to_the_sea

The two conflicts are handled in different ways: the conflict of the aguments a and
B is dedt with by the cmmpound defeaer [Os_punished, Os_not_punished], while
the onflict of the aguments y and & is dedt with by two simple defeders,
(0Go_to_the_woods [0Go_to_the_sea] and 0Go_to_the_sea [0Go_to_the_woods].
Figure 3 shows two argumentation diagrams of this theory. On the left, the
arguments o and (3 are taken into acount, and are olledively defeaed. On the
right, y and o are taken into acmurt, resulting in two stages with the same range.
(They are separated by a ammma.) There ae two stages with al four arguments as

range, namely (a B) y (d) and (a B y) d.

lol lol
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Figure 3: Colledive defea and multi ple stages

Although the example agumentation theory is tail or-made for the four mentioned
arguments, it shows how general argumentation theories can be defined, in which
there is one dassof arguments that are mlledively defeaed in cases of conflict,
and another classof arguments that lead to multi ple stages in cases of conflict.

To finish the example of colledive defea and multiple stages, we show what
happens if there ae alditional arguments that chall enge one of the agumentsin the
conflict. For instance, there might be two additi onal arguments

€. Severe_crime
¢: Stormy_weather

and two additional defeaers

[(Severe_crime [[(Minor_first_offender - Is_not_punished]
[(Stormy_weather [[IGo_to_the_seal].

In the cae of colledive defea and in the cae of multiple stages, one of the
arguments involved in the mnflict is reinstated. Taking into acount the agument €
that John's crime was svere, has the dfed that a, challenged by ¢, is defeaed, and
that as a result a and B are not colledively defeaed. Taking into acount the
argument ¢ that the weaher is gormy, has the dfead that y, challenged by ¢, is
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defeded, and that as a result y and & do not give rise to multiple stages. Figure 4
shows the crresponding argumentation diagrams.

0. 0.
ey T > AR N
o LB € V... .0 . . C
Ve T S e v Vo T Y
(aB)_ (e  Be v(3), (V) 3 MC 8t
~~~~~ s v Trteave
(@)Be (V) 3

Figure 4: Reinstatement of conflicting arguments

The diagrams shows that colledive defea and multiple stages gill occur if € and ¢
are not taken into acourt.

6.3  Stable marriages

Dung (1995 discusses the so-cdled stable marriage problem in terms of
argumentation. In this problem, there is a number of people, some of which love
someone dse, and some of which are married or, more generally, have alove dfair.
However love is not always answered, and people do not always have alove dfair
with the one they love. As a result, love dfairs are not necessrily stable. For
instance, if John loves Mary, and Mary has a love dfair with Alex, the dfair of
Mary and Alex is in danger, since John will strive for an affair with Mary.
However, this threa to Mary and Alex’s love dfair is overcome if Mary loves
Alex: in that case, she will not answer John's attempts. The problem is now to
determine which colledions of love dfairs are stable.38

We examine the case that thereisa‘love drcle': there ae n persons persony, ...,
person, (with nlarger than 2), and for i = 1, ..., n, person; loves personi:1, and
person, loves person;. In this stuation, the fad that person; loves personi:1 is a
threa to the dfair which personi.1 has with personi:.. This case can be trandated to
an argumentation theory (Language, Rules, DefeaterSchemes), as foll ows.

Language = {Loves(person;, personi.1), Affair(person;, personi.1) | i isan integer
modulo n}39

Rules = {Loves(person;, personi+1) — Affair(person;, personi.1) | i isan integer
modulo n}

38 Dung (1999 discusses the sightly more general problem, in which ead person hes
linealy ordered the other persons acwrding to hisor her ‘love preference .
39 Here‘i moduo n means‘the remainder of the integer divisioni/n’.
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DefeaterSchemes = {Loves(person;, personi+1) [[Affair(personi+1, personi+2)] | i
isan integer modulo n}

We mnsider the foll owing arguments, for i an integer modulo n:
Q;: Loves(person;, personi+1) — Affair(personi, personi+1)

These aguments represent that if person; loves personis1, person; strives for an
affair with person;s1.

In the cae there ae four persons (i.e., n = 4), there ae two stable situations, in
which al four persons have an affair: either person; and person, have an affair, and
persons and persons have a affair, or person, and persons have an affair, and
person: and persons have an affair. Figure 5 shows the resulting argumentation
diagram, for n = 4, that ends in two stages with egual range, that correspond to the
two intuiti ve solutions.
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Figure 5: The four-persons case

In the three-persons case (i.e., n = 3), there is no stable solution: any love dfair will
be threaened.4? This instability is refleded in the crresponding argumentation
diagram (Figure 6). It turns out that there is no stage in which all three aguments
are taken into acount. Any pair of arguments can be taken into acount, but the

third argument cannot be. In the figure this is indicaed by three question marks
27241

40 Note that for n oddat least one of the love dfairsinvolvestwo persons of the same sex.
41 The fad that there is no stage with all three aguments corresponds in Dung's (1995
approach to the fad that there is no stable extension. The stage gproach gives more
information abou the agumentation theory than Dung's approach since there ae stages
with lessthan three aguments. SeeVerheij’s (1996) comparison d the two approaches for
details.
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The stages in Figure 6 have a meaning in terms of argumentation. For instance,
in the stage a, (o) the argument a is not challenged, since the argument a5 is not
yet taken into account. The argument a, is challenged by Loves(personi, persony).
As a result, a; judtifies Affair(person:, personz), while o, cannot justify
Affair(personz, persons).
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Figure 6: The three-persons case

The three-persons and four-persons cases directly generalize to the cases of any
odd and even number of persons, respectively. In the odd case, there is no overall
stable solution, in the even case there are two.

6.4 Theneuroticfatalist

In the three-persons case above, we saw that not all ranges of argumentation
theories correspond to a stage. However, in that example there were maximal
subranges that did correspond to a stage, viz. the two-argument subranges. We now
show an argumentation theory that has a range, such that there is no maximal
subrange that correspondsto a stage.

As an example, we consider the story of the neurotic fatalist. There is one thing
our fatalist has been certain of for months: if the world does not end today, it will
end tomorrow. Each morning after sunrise he admits that he was wrong the day
before, and that the world does not yet end today, but that he nevertheless believes
that the world will end the next day.

The arguments of the neurotic fatalist can be formalized in the following
argumentation theory:

Language = {World_ends(day;), -World_ends(dayi) |i=0, 1, 2, ... }
Rules = {~World_ends(day;) - World_ends(dayi+1) | i=0, 1, 2, ... }
DefeaterSchemes = {{-World_ends(dayi) [OWorld_ends(day;))] | i >}

We consider the following arguments, for i any natural number:

a;: =World_ends(dayi)) - World_ends(dayi+1)
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At day O, our fatdist considers the agument o, that the world ends at day 1. It is
undefeded. The next day he mnsiders the agument ay: the world dd not end at
day 1, so it ends at day 2. The agument o, defeas the agument a,. At ead new
day, he takes a new argument q; into acourt, that defeas all previous arguments,
since, for ead i, the agument a;., challenges the agument a;.

We get the following stages if the aguments g, 04, 05, O3, ... are onseadtively
taken into acoount:

Oo

() ay

(0o 0y) O
(ap 0y ) O3

In Figure 7, an overview of these stagesis given in an argumentation diagram of the
theory.

do
v
(ao) o1
v
(00 1) a2
v
(0o a1 a2) as
v

\%

Figure 7: The cae of the neurotic fatali st

Althoughthe agumentation theory itself may not be mnsidered sensible, the theory
is technicdly interesting since there is no stage with al arguments q; in its range,
nor a maximal subrange that corresponds to a stage. Neverthelessthere ae several
sensible stages. This can be seen as foll ows.

Asaume first that there is a maximal subrange Subrange. If Subrange is finite,
thereis a natural number i that is the maximum of the indicesi of the aguments q;
in Subrange. But then the stage (a1 a5 ... orio) 0; +1 has larger range, which
contradicts the asumption. Therefore we can assume t%at Subrange isinfinite. It is
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impossible that al arguments a; in Subrange are defeated, since in this
argumentation theory an argument can only be defeated by an undefeated argument.
Therefore, let i be the smallest natural number i, such that o; is not defeated.
However, if Qi is not defeated, all argumentsthat challengeit, i.e., al a; withi > iy,
must be defeated. But that isimpossible, since then for each argument a; there must
be an undefeated argument that challenges a;, and such an argument must have an
index larger than i. This contradicts the choice of i.






Chapter 6

Analyzing argumentation models
using CumulA

After the description of the agumentation model CumulA in chapter 5, we show
how CumulA can be used to analyze &isting argumentation models. We start with
a discusson of distinctions that can be made between argumentation models. We
make these distinctions predse by showing their formal counterparts for CumulA’s
argumentation theories. After cgpturing elements of a number of existing
argumentation models in CumulA’s argumentation theories, we gply the
distinctions to these agumentation theories.

In sedion 1, we discuss types of arguments. In sedion 2, we tred argument
structure and defea. We distinguish sentencetype, step-type and compaosite-type
defed. In sedion 3, we @nsider individual and groupwise defea. In sedion 4, we
charaderize triggers of defead. We distingush inconsistency-triggered and
counterargument-triggered defea. In sedion 5, we ded with diredions of
argumentation. We distinguish forward, badkward and hidirediona argumentation.
In sedion 6, we cature dements of several magjor argumentation models in
CumulA’s argumentation theories.! In sedion 7, the distinctions made ae gplied
to these agumentation theories. In this way, the agumentation theories capturing
elements of existing argumentation models can be compared on formal grounds.

1 Typesof arguments
Several types of arguments, that have been proposed in argumentation models, can
in CumulA (chapter 5) be distinguished by their structure.

Thefirst type of arguments are the statements, that have trivial structure:

Satement.

1 We stress that we give no formal relations between the agumentation models and
CumulA’s argumentation theories.
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Many argumentation models do not ded with structured arguments. For instance,
Pode's Logica Framework for Default Reasoning (Poole, 198872 uses gedal sets
of sentences without structure. In Dung s Argumentation Frameworks (Dung 1993
1995, arguments are structurel essobjeds, that can attadk ead other.

The second type of arguments are the single-step arguments, which have the
simplest non-trivial structure:

Reason.
So, Conclusion.

For instance, in Propasitional and First-Order Predicate Logic,3 the semantica and
proof-theoreticd consequence relations, denoted as £ and |-, respedively, which
are often interpreted as arguments (e.g., Purtill, 1979 Copi, 1982, have this
structure.

The third type of arguments are the aguments that are cnstructed by
subordination, such asthe agument:

Reason;.
S0, Reason,.
So, Conclusion.

This argument structure is most common. For instance, in Lin and Shoham’'s
Argument Systems (Lin and Shoham, 1989 Lin, 1993 and Vreeswijk’'s Abstrad
Argumentation Systems (Vreeswijk, 1991 19934 arguments are explicitly
congtructed by subordination. Also the proofs of several proof theories for
Propasitional or First-Order Predicate Logic have this gructure. Less obvioudly,
this dructure is aso at the heat of Reiter's Default Logic (Reiter, 198Q 1987),°
Bondarenko et al.’s Assumption-Based Framework for Non-Monotonic Reasoning
(Bondarenko et al., 1993, and Loui and Chen's Argument Game (Loui and
Chen, 1992. Pollock’s linear arguments in his Theory of Defeasible Reasoning
(1995 p. 39)6 can be regarded as having this gructure.”

See &so chapter 4, sedion 42.

See eg., Van Dalen (1983 or Davis (1993.

See &so chapter 4, sedion 52.

See &so chapter 4, sedions 3.1, 4.2 and 52.

See &so chapter 4, sedion 42.

Pollock (1995 p. 39) defines linea arguments as finite sequences of sentences, ead of
which is either a premise or suppated by a previous member of the sequence The structure
of linea argumentsis not only ambiguous, as Pollock (1995 p. 87) nates, but is ©omewhat
lessexpresgve than that of subardinated arguments, because it canna distinguish dfferent
ocaurrences of the same sentence in an argument. For instance the aguments
{{{A}} - B}} - C and {{{{A}} - B, A}} - C in CumulA both correspondto the linea
argument A, B, C.

~No b WwWN
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The fourth type of arguments are the aguments that are mnstructed by both
subordination and coordination of arguments, for instance:

Subreason; ;, Subreason;,; Subreason,;, Subreason,,.
So, Conclusion.

Thisis the agument structure that is used in CumulA. In the agumentation theory
of Van Eemeren and Grootendorst (Van Eemeren et al., 1981, 1987, red-life
arguments are remnstructed and evaluated using the mentioned argument
structure.8 Van Eemeren and Grootendorst have included bah subordination and
coordination in their model since both can be found in argumentative texts. In the
next sedion, we ague for the need of coordination, espedaly for defeasible
arguments because of defea by pararall el strengthening and the acecual of reasons.

We mention a fifth type of argument structure that occurs, for instance in
natural deduction proofs of Propasitional and First-Order Predicae Logic, and in
Pollock’s Theory of Defeasible Reasoning (Pollock, 19871995: arguments with
suppositions. For instance, such arguments occur if the natural deduction rule of
inference - -Introduction is used in a proof or argument:

A proof of Q with suppasitionsinaset S 0 {Q} can be extended to a proof of
P - Q with suppasitionsin the set S.

Here, a proof is considered relative to a set, the suppasitions of the proof. The rule
of inference- -Introduction above shows that the set of suppdsitions can change.
After theintroduction of P - Q, the suppasition Q can be withdrawn.

If one reads ‘argument’ instead of ‘proof’, this rule of inference becomes a type
of argument construction, as Pollock does. To include this type of argument
congtruction in his argumentation model, Pollock (1995 p. 86ff.) constructs
arguments not from sentences (as in CumulA), but from sentences relative to a set
of suppasitions, formally an ordered pair of a sentence and a set of sentences (P, S).
For instance, the rule of inference — -Introduction becomes: ©

An argument supparting (Q, S T {Q}) can be extended to an argument
suppating(P - Q, S).

We have not included this type of argument in CumulA for two reasons. First, we
think that the intuition of an argument without suppasitions is easier to grasp than
the intuition of an argument with suppositions. Whereass arguments without
suppasitions can be thouglt of as consisting of steps that represent the suppart of a

8  The terminology of Van Eemeren and Grootendarst differs from ours. Their multiple
arguments correspondto CumulA’s coordinated arguments (cf. chapter 5, note 7).

We paraphrase Pollock’s ‘rule of inference graph formation’ cdled condtionalizaion
(Pollock, 1995 p. 90).
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state of affairs (expressed by a sentence) by another state of affairs (expressed by
another sentence), arguments with suppasitions cannot be thought of that way. This
is dueto the fad that some

‘... natural deduction rules have an indired, even quasi-metalogicd charader’
(Haad, 1978 p. 19).

This does of course not diminish the importance of the aguments with suppasitions
based on retural deduction rules, and their role in argumentation certainly deserves
further study.

Seowond, arguments with suppaositions behave unexpededly if they are
defeasible, as Vreeswijk (1993 p. 185f.) shows. He gives a technicd example in
which arguments that should be undefeaed nevertheless become defeded if the
rule of - -Introduction is adopted. Vreeswijk's conclusion is that it is best to leave
arguments with suppasitions out of theories of argumentation with defeasible
arguments for now until we have abetter understanding of the behavior of more
simply structured defeasible aguments. Since, to the best of our knowledge, the
problems pointed out by Vreeswijk have not been solved, we have alopted the
same nclusion.

2 Argument structure and defeat

The structure of an argument can determine whether an argument is defeaed. In
this sdion, we trea different types of structure-based defea, as they are found in
existing argumentation models. We show how the types of defea can be
distinguished in CumulA.

The first and simplest type of structure-based defea is the trivial type of no
defeat at al. The prototypicd examples of argumentation models that have no
defea are the dasdcd deductive logics, such as Propasitional and First-Order
Predicae Logic. In CumulA, an argumentation theory has no defea if it has no
defeder schemes.

The seaond type of structure-based defed is sentence-type defeat. The defea of
an argument is of sentence-type if the defea depends on sentences occurring in the
argument. For instance, an argument

Reason.
So, Conclusion.

might be defeaed because of an (undefeaed) statement that denies the mnclusion,
such as:

Not_conclusion.
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This is a cae of sentencetype defea: any argument containing the sentence
Conclusion is defeaed if the statement Not_conclusion is undefeaed. A defeaer
scheme representing thisin CumulA has the form

Not_conclusion [[Xonclusion].

The dallenged argument scheme Conclusion has any argument with conclusion
Conclusion as an instance If any argument with conclusion Not_conclusion
chall enges any argument with conclusion Conclusion, this would be represented by
the defeaer scheme

[Not_conclusion [(Conclusion].

We say that the two mentioned defeaer schemes are of sentence-type, which means
that all their argument schemes have astatement as an instance An argumentation
theory has ntence-type defed if it has entence-type defeaer schemes.

Argumentation models with sentencetype defead are Pode's Logicd
Framework for Default Reasoning (Pode, 1988, and Lin and Shoham’s Argument
Systems (Lin and Shoham, 1989 Lin, 1993. Also Dungs Argumentation
Frameworks (Dung 1993 1995 can be regarded as having sentence-type defea
since dl arguments are structureless

Bondarenko et al.'s Asumption-Based Framework for Non-Monotonic
Reasoning (Bondarenko et al., 1993 describe a spedal kind of sentence-type
defea, that we cdl assumption-type defeat. There is a spedal set of assumptions,
that can be used as premises of arguments. If there is an urdefeaed argument that
has the denial of an assumption as its conclusion, al arguments with that
asaumption as a premise ae defeaed. A defeaer scheme representing this in
CumulA has the form

[Not_assumption [Assumption].

This defeaer scheme has no consequences for arguments that do not have
Assumption as a premise, even if Assumption occurs in the agument elsewhere. A
sentence-type defeaer scheme, as the one &ove, that has only statements as
challenged arguments, is of asumption-type. An argumentation theory has
asaumption-type defea if it has defeaer schemes of asaumption-type.

The third type of structure-based defea is step-type defeat. The defea of an
argument is of step-type if the defea depends on a step occurring in the agument.
For instance, an argument

Reason.
So, Conclusion.
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might be defeaed because there is an (undefeaed) statement that does not deny the
conclusion, but undercuts the agument step (cf. chapter 5, sedion 3.1):

Undercutter

This is a cae of step-type defea: any argument containing the agument step
‘Reason. So, Conclusion’ is defeaed if the conclusion Undercutter is justified. A
defeaer scheme representing thisin CumulA has the foll owing form:

(Undercutter [{{{Reason}} — Conclusion].

Another example of step-type defea is rebuttal (cf. chapter 5, sedion 3.2): an
argument

Reason;.
So, Conclusion.

is defeaed because there is an (undefeaed) argument that supparts the denial of its
conclusion:

Reason,.
So, Not_conclusion.

Any argument containing the step ‘Reason;. So, Conclusion’ is defeaed if an
argument containing the step ‘Reason;. So, Conclusion’ is undefeaed. A defeaer
scheme representing thisin CumulA has the foll owing form:

{{fReasony}} - Not_conclusion [{{{Reasoni}} » Conclusion]

The latter two defeaer schemes are of step-type: al their argument schemes have a
single-step argument as an instance that is not of sentence-type. An argumentation
theory has gep-type defed if it has 2ep-type defeaer schemes.

The fourth type of structure-based defed is composite-type defeat. We speek of
compaosite-type defea if the defea of an argument depends on a composite
structure occurring in the agument. In chapter 5, sedions 3.3 and 3.4, we discussed
two kinds of composite-type defea: defea by sequential weakening and defea by
parallel strengthening. We recdl that in defea by segquential weekening an
argument is defeaed because it ends in some sequence of steps. A defeaer scheme
representing that any argument ending with the two-step sequence ‘Reason. So,
Conclusion;. So, Conclusion,’ is aways defeaed has the foll owing form:

[{{{{{Reason}} - Conclusion:}} - Conclusion]
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In defea by parallel strengthening an argument is defeaed becaise some agument
that has narrowings (chapter 5, sedion 2.4) is undefeaed. A defeaer representing
that any argument in which two reasons Reason; and Reason, suppat the
conclusion Conclusion defeas any argument in which the reason Reasons supparts
Not_conclusion has the foll owing form:

{{{fReasoni}, {{Reasony}} - Conclusion [{{{Reasons}} — Not_conclusion]

The latter two defeders are of composite-type, meaning that they are neither of
sentence-type nor of step-type.l® An argumentation theory has composite-type
defea if it has composite-type defeaer schemes.

Most existing argumentation models do not have wmposite-type defea. An
exception is Vreeswijk’'s Abstrad Argumentation Systems (Vreeswijk, 1991
1993. In Vreeswijk’s formalism defea depends on a cnclusive force relation on
full arguments. However, since Vreeswijk only uses subordination to construct
composite aguments and no coordination, his formalism only can model defea by
sequential weakening and not defea by parall el strengthening.

Defea by paralel strengthening requires the cordination of arguments. It is
based on the natural idea of acaual of reasons:1l A conclusion can be better
suppated if there ae more independent reasons for it. Although several people
have made the paint that reasons can acaue,12 it remains controversial.

For instance, Pollock (1991a, 1995 pp. 101-102) explicitly argues against
acaua. He thinks acaua is a natural ideg but then gves an example that makes
him doubt that reasons acaue. The example goes as follows. If someone testifies
that the president of Slobovia has been assassnated, that is a reason that the
president is assassnated. Accrual would imply that testimonies of different people
make the fad that the president is assassnated more aedible. Pollock points out
that this does not generally hold and depends on contingent fads. For instance, if
testimonies are indead independent, they make the president’s assassnation more
credible. However, the testimonies are not necessarily independent: we can imagine
a ommunity in which people only confirm ead other’s lies. In that case, more
ressons based on testimonies do not give increasing suppat to the president’s
assasdnation: more than one testimony would even make the asasdnation
unjustified.13

10 Defeaer schemes of composite-type shoudd na be onfused with compound dfeaer
schemes. Compound dfeaer schemes are defeaer schemes that contain more than ore
challenging or more than ore challenged argument scheme (chapter 5, sedions 3.5 and 37).
See &so the next sedion onindividual and groupwise defea.

11 pollock (1991, p. 51) uses this terminology.

12 Chrondogicdly: Naess(1978 in argumentation theory, Hage (1991 in lega reasoning,
Pinkas (1991 in reura computing, Brewka and Gordon (1994 and Gabbay (1994
pg. 196-198) in formal logic, Visser (1995 p. 177) in Al and law.

13 A similar, moreredistic, exampleisthe following, by Henry Prakken. Johnlikesto walk
if it is Sunday. John dees not like to walk if it is either hot or raining. If it is either hot or
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As a solution, Pollock proposes that different independent reasons for a
conclusion are subsumed in a new composite reason. In our opinion, this approach
probably can be made to work - Pollock does not give details. However, the
example does not necessitate Poll ock’s approacdh, while the gproach does throw
away the intuitively attradive idea of acaual of reasons. Both in chapter 2 on
Reason-Based Logic and in chapter 5 on CumulA, we have presented formalisms
that capture acecual and still can ded with examples sich as Pollock’s. For
instance, Pollock’s example is cgptured in CumulA by the following compound
defeder scheme:

[{{OTestimony1}, {{Testimonyz}} —» Assassination]

Moreover, properties charaderistic for acaual, such as the property that if a
narrowing of an argument is undefeded, the agument itself is undefeaed
(chapter 5, sedion 4.1), and the property that, if the pros outweigh the cns,
additional pros do not change the balance (chapter 2, sedion 5), can eaily be
overlooked.

3 Individual and groupwise defeat

The defea of an argument often depends on other arguments. Mostly the defea of
an argument depends on one other argument, but not aways. In this sdion, we
distinguish argumentation models by the number of arguments that determine
defed.

First, the defea of an argument can depend only on itself, and not on any other
argument. We cdl this self-defeat. For instance an argument that has a
contradiction as its conclusion often is considered defeaed, for instancein Lin and
Shoham’s Argument Systems (Lin and Shoham, 1989 Lin, 1993. In CumulA, this
could be represented by a defeaer scheme of the foll owing form:

[(Contradiction]

Another example is an argument that is defeaed becaise it contains sme sequence
of steps, as in defea by sequential wedkening (chapter 5, sedion 3.3). If an
argumentation theory has defeaer schemes, the instances of which have no
challenging and one challenged argument, we say the agumentation theory has
self-defea.

raining on Sunday, he does nat like to walk. If it is hot and raining on Sunday, he likes to
walk. The difficulty is here that the reasons ‘It is hot' and ‘It is raining’ together are
apparantly weger, in contrast with the principle of acaual. Since we doase to ke the
intuitively attradive principle of acaual, we propcse to ded with this example by
considering ‘I't is hot and raining’ as a new reason, and nd only as the wordination o two
reasons.



Sedion 3: Individua and groupwise defea 163

Seowond, the defea of an argument can depend on one other undefeaed
argument. We cdl this simple defeat. Examples are aguments that are defeaed by
an urdercutter or by a rebutter, as distinguished in Pollock’s Theory of Defeasible
Reasoning (Pollock, 19871999. In CumulA, defed by an urdercutter or rebutter
isrepresented by defeaer schemes, such as the foll owing two:

(Undercutter [{{{Reason}} - Conclusion]
{{fReasony}} - Not_conclusion [{{{Reasoni}} » Conclusion]

Both defeder schemes are simple since their instances have & most one
challenging and at most one challenged argument (chapter 5, sedion 3.7). If an
argumentation theory has smple defeaer schemes, we say it has smple defed.

Third, the defea of an argument can depend on more than one undefeaed
argument. We cdl this left-compound defeat (because of the form of the
corresponding defeaer schemes). An example is an argument that is defeaed
becaise its conclusion conflicts with the cnclusion of other arguments, as for
instance in Podle's Logicd Framework for Default Reasoning (Podle, 1988 and
Lin and Shoham's Argument Systems (Lin and Shoham, 1989 Lin, 1993. If
Conclusions, ... Conclusion,.. and Conclusion, are anflicting, this can in Cumul A
be represented by a defeaer scheme of the foll owing form:

Conclusiony, ..., Conclusionn.1 [(Conclusiony]

This defeaer scheme is left-compound since its instances have more than one
challenging argument (chapter 5, sedion 3.7). If an argumentation theory has |eft-
compound defeaer schemes, we say it has |l eft-compound defed.

Fourth, the defea of an argument can depend on other defeaed arguments. We
cdl this right-compound defeat. An example is an argument that is defeaed
together with other arguments because their conclusions are mnflicting, as the
colledive defea of arguments in Pollock’s Theory of Defeasible Reasoning
(Pollock, 19871995. If Conclusion;, ... Conclusionn,: and Conclusion, are
conflicting, this can in CumulA be represented by a defeaer scheme of the
following form:

[(Conclusiony, ..., BConclusiony.1, OConclusiony]
This defeder is right-compound since its instances have more than one dallenged

argument (chapter 5, sedion 3.7). If an argumentation theory has right-compound
defeaer schemes, we say it has right-compound defea.
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4  Triggersof defeat

Argumentation models can differ in the way the defea of arguments is triggered.
Two triggers of defea can be distinguished: inconsistency and counterarguments.
We cdl the resulting types of defea inconsistency-triggered and counterargument-
triggered defea, respedively.14

Inconsistency-triggered defeat has the longest tradition and is related to the
ealy work on nonmonotonic reasoning. Its basic intuition is that the defea of
arguments is at heat the maintenance of the mnsistency of argument conclusions.
Many variants have been proposed. For instance, one of a (minimal) set of
arguments with conflicting arguments can be onsidered defeaed, as in Pode€'s
Logicd Framework for Default Reasoning (Poole, 1988 and Lin and Shoham's
Argument Systems (Lin and Shoham, 1989 Lin, 1993. If Conclusions, ...
Conclusion,.; and Conclusion, are anflicting, this can in CumulA be represented
by n (left-compound) defeaer schemes of the foll owing form:

[Conclusiony, ..., OConclusion;.;, (Conclusioni., ..., OConclusion,
[BConclusioni]

This leads to indeterministic defead since eab of these defeders represents an
arbitrary choice of a defeaed argument (chapter 5, sedion 3.5).1° In Vreeswijk’s
Abstrad Argumentation Systems (Vreeswijk, 1991, 1993, the choice of a defeaed
argument is restricted by a conclusive force relation: an argument in a minimal set
of arguments with conflicting conclusions cannot be mnsidered defeaed if it has
stronger conclusive forcethan one of the other argumentsin the set.

If an argumentation theory has defeder schemes the instances of which consist
of arguments with conflicting conclusions (with resped to some gpropriate sense
of inconsistency), we say the agumentation theory has inconsistency-triggered
defed.

Counterargument-triggered defeat is based on another intuition: defed is the
result of arguments challenging other arguments. The purest version of
counterargument-triggered  defea  is Dungs formalism of Argumentation
Frameworks (Dung 1993 1995. Dung studies a binary attack relation between
arguments. In CumulA, his attadks can be represented as defeaers of the following
form:

Argument; [Argumenty]

14 The distinction between inconsistency-triggered and counterargument-triggered defea
correspondsto Verheij’'s (1995, b) distinction between indired and dred defed.

15 As aresult, indeterministic defea leads to multiple extensions, as in many models of
nonmmonaonic reasoning. Cf. the overviews by Ginsberg (1987, Lukaszewicz (1990 and
Gabbay et al. (1994h. See 4so chapter 5, sedion 62.
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Attads are represented as defeaers and not as defeaer schemes snce Dung treds
arguments as dructureless objeds. As a result his arguments correspond to
statements in CumulA. If an argumentation theory has defeaer schemes the
instances of which do not consist of arguments with conflicting conclusions (with
resped to some gpropriate sense of inconsistency), we say the agumentation
theory has counterargument-triggered defea. Clealy, general argumentation
theoriesin CumulA have munterargument-based defed.

In away, counterargument-triggered defea is more general than inconsistency-
triggered defea. Whereas inconsistency-triggered defea can naturally be catured
as a speda case of counterargument-based defea (as in the examples above), not
all counterargument-triggered defea can as naturally be catured as a speda case
of inconsistency-triggered defea.

The distinction between inconsistency-triggered and counterargument-based
defea can be remgnized if one nsiders rebutting and undercutting defed.
Rebutting defea is by its nature an example of inconsistency-triggered defea, but
can as we have seen raturally be catured in the defeaer schemes CumulA, which
has counterargument-triggered defea. Undercutting defed is by its nature an
example of counterargument-triggered defed, and can returaly be catured in
CumulA’s defeaer schemes, but not as naturally in inconsistency-triggered defed.

For instance, Vreeswijk (1993 pp. 51-:53) claims that it is possble to
incorporate undercutting defea in his Abstrad Argumentation Systems, which have
inconsistency-triggered defea. However, in order to incorporate undercutting
defea, Vreeswijk has to adapt his argumentation model, as follows. He introduces
a defeasible mnditional > in his language. In a cae of undercutting defed,
Vreeswijk forces an inconsistency between the @nditional and its negation. The
use of defeasible mnditionalsis a fine gproad to undercutting defea, and is very
similar to the gproach of Reason-Based Logic (chapter 2), but requires an
adaptation of the formalism. Moreover, Vreeswijk hinges on two thoughs: he
incorporates undercutting defea using defeasible anditionals and rebutting defea
using argument defea. However, we have seen that it is possble to capture both
undercutting and rebutting defea using defeasible conditionals (as for instance in
Reason-Based Logic), and using argument defea (as for instancein CumulA).

5 Directions of argumentation

Argumentation models can differ in the diredion of argumentation they describe.
We distinguish static, forward, backward and hidiredional argumentation.

Satic argumentation occurs in argumentation models that do not trea
argumentation as a process No sequences of stages are mnsidered, but only stages
that are in some sense maximal. The extensions of Reiter's Default Logic (Reiter,
1980 1987 and Pode€'s Logicd Framework for Default Reasoning (Poole, 1989
can be regarded as such spedal stages.
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Forward argumentation is the most common among existing argumentation
models. Argumentation starts from a fixed set of premises. Arguments are
constructed by adding forward steps. In forward argumentation, the goal is to find
conclusions supparted by arguments with given premises. For instance Lin and
Shoham’s Argument Systems (Lin and Shoham, 1989 Lin, 1993, Vreewijk's
Abstrad Argumentation Systems (Vreeswijk, 1991, 1993 and Bondarenko et al.’s
Asaimption-Based Framework for Non-Monotonic Reasoning (Bondarenko et al.,
1993 are models of forward argumentation. In CumulA, forward argumentation
means that aline of argumentation only contains dages with premisesin afixed set.

Backward argumentation is less common. Argumentation starts from a set of
conclusions. Arguments are cnstructed by adding badkward steps. In badkward
argumentation, the goal is to find premises for arguments suppating gven
conclusions. For instance Loui and Chen's Argument Game (Loui and
Chen, 199216 is a model with badkward argumentation. In CumulA, badkward
argumentation means that a line of argumentation only contains dages with
conclusionsin afixed set.

Bidirectional argumentation is the natural generalizaion of forward and
badkward argumentation. Argumentation does not start form a fixed set of premises
or conclusions. Arguments are both forwardly and badckwardly constructed. In
bidiredional argumentation, the goal is neither only to find conclusions nor only to
find premises, but a mixture of both. Except for CumulA, we know of no
argumentation model of bidiredional argumentation.1?

6 Capturing elements of argumentation modelsin CumulA

In the previous <edions, we have discused several ways to dstingush
argumentation models. We explained how these distinctions can be made for
CumulA argumentation theories. To be ale to use the distinctions to compare
existing argumentation models, we show how elements of a number of major
argumentation models can be catured in argumentation theories of CumulA. We
stress that we do not give forma relations between argumentation models and
CumulA’s argumentation theories. The presented argumentation theories cgpturing
elements of existing argumentation models are meant to ill ustrate CumulA and our
views on other argumentation models, and not to show strict formal relations.

Our seledion of argumentation models is influenced by our focus, as made
explicit by the CumulA model. Each seleded argumentation model has been
influential, or shows a spedfic charaderistic of argumentation that fall s within our
focus. We have seleded Propasitional Logic, Pode's Logicd Framework for

16 Recently, avariant of Loui and Chen’s Argument Game has been implemented by Kang.
17 Pollock (1995 p. 153 describes forward and badward argumentation in another sense:
he keeps both alowed premises and desired conclusions fixed. In hbidiredional
argumentationin our sense, neither premises nor conclusions are fixed.
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Default Reasoning (Poodle, 1988, Lin and Shoham's Argument Systems (Lin and
Shoham, 1989 Lin, 1993, Reiter's Default Logic (Reiter, 1980 1987, Pollock’s
Theory of Defeasible Reasoning (Pollock, 19871995, Vreeswijk’'s Abstrad
Argumentation Systems (Vreeswijk, 1991, 1993, Bondarenko et al.’s Assumption-
Based Framework for Non-Monotonic Reasoning (Bondarenko et al., 1993,
Dungs Argumentation Frameworks (Dung 1993 1995, and Loui and Chen's
Argument Game (Loui and Chen, 1992).18

We do not discussall argumentation modelsin full detail, but capture dements
that fall within our focus in CumulA. Some aquaintance with the discussed
argumentation modelsis asaumed.

6.1 Propositional Logic

We have seleded Propgasitional Logic as an example of an argumentation model
without defea. An argumentation theory capturing elements of Propasitional Logic
in CumulA can be defined as foll ows:

Language = Lp, the language of Propasitional Logic.
Rules = {{Sentencey, ..., Sentencen} — Sentencens1 |
Sentencey, ..., Sentencen EpL Sentencensi},
where g denotes the consequencerelation of Propasitional Logic.
DefeaterSchemes = .

The rules of the agumentation theory correspond to logicd consequence in
Propasitional Logic. There ae no defeaer schemes.

Mostly only single-step arguments are mnsidered, although proof theories for
Propasitional Logic can be interpreted as descriptions of subordinated arguments
from a restricted set of rules. Accounts of Propcsitional Logic normaly do not
describe a ounterpart of our lines of argumentation. Only maximal sets of
conclusions from a set of premises are mnsidered. These ae similar to CumulA’s
forward extensions (restricted to single-step arguments).

This example shows that it is not necessary to explicitly distinguish classes of
strict and defeasible aguments, as is done in many argumentation models, e.g. in
Lin and Shoham's Argument Systems (Lin and Shoham, 1989 Lin, 1993 and
Vreeswijk’'s Abstrad Argumentation Systems (Vreeswijk, 1991, 1993. If required,

18 Obvious omissons are the models of Nute (1988, Geffner and Peal (1992, Simari and
Loui (1992, Gordon (1993, 1993h 1995, Lodder and Herczog (1995, extending the
work of Hage et al. (1994, and Prakken and Sartor (1996. All describe significant
reseach, relevant for argumentation, but with a focus different from CumulA’s. Nute
focuses on a Prolog implementation, Geffner and Peal on integration o argumentation and
the so-cdled e-semantics, Simari and Loui on the mathematics of argumentation and
spedficity, Gordon ondialogue in legal argumentation, Lodder and Herczog on dalogues
and commitment, and Prakken and Sartor on defeasible priorities.
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an argumentation theory can incorporate aset of arguments that cannot be defeaed
because the theory does not have defeaer schemes that could cause their defeat. 19

6.2 Podé€'sLogcal Framework for Default Reasoning

We have seleded Poole's Logicd Framework for Default Reasoning sinceit is the
purest example of consistency maintenance An argumentation theory capturing
elements of Poadle's Framework in CumulA can be defined as foll ows:

Language = Lp, the language of Propasitional Logic.
Rules = {{Sentencey, ..., Sentencen} — Sentencens1 |
Sentencey, ..., Sentencen EpL Sentencensi},
where g denotes the consequencerelation of Propasitional Logic.
DefeaterSchemes = {Sentencey, ..., Sentencen.1 [Sentencen] |
Sentencey, ..., Sentencen-1, Sentencen ke [},
where O denotes contradiction in Propasitional Logic.

The rules correspond to ordinary logicd consequence in Propcsitional Logic, asin
the agumentation theory for Propgasitional Logic eéove. The defeaer schemes sy
that an argument is challenged by other arguments if the agument’s conclusion is
inconsistent with the conclusions of the other arguments.

In Poole's Framework, only single-step arguments are cnsidered. Podle's
Framework does not contain a @unterpart of our lines of argumentation. Pode's
extensions are similar to Cumul A’ s forward extensions.

6.3 Linand Shoham’s Argument Systems

Lin and Shoham's Argument Systems are related to Poole's Logicd Framework for
Default Reasoning, since both ded mainly with consistency maintenance We have
seleded Lin and Shoham’'s Argument Systems, since in this argumentation model it
is reaognized that the defea of arguments can be studied independent of the
spedfic language and argument rules, and that for the study of argument defed it is
useful to consider speda sets of structured arguments, such as sts of arguments
closed under initials.

An argumentation theory cgpturing elements of Lin and Shoham’'s Argument
Systemsin CumulA can be defined as follows:

Language = Atoms [J - Atoms,
where Atoms is any set and = Atoms isthe set {- Atom | Atom is an element
of Atoms} (digoint from Atoms).

Rules isany set of rules of the language.

19 |f moreover strict arguments always soud defea defeasible aguments in case of a
conflict, additional defedersare required.
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DefeaterSchemes = {CAtom [[-Atom], -~ Atom [[Atom] | Atom is an €lement
of Atoms}.

Lin and Shoham abstrad from the language used. It is a set of sentences closed
under negation. The set of rulesis arbitrary. The defeaer schemes represent that an
argument chall enges another if it has oppaite amnclusion.

Lin and Shoham consider subordinated arguments, and forward lines of
argumentation.

6.4 Reiter'sDefault Logic

Reiter's Default Logic is sleded since it rightly remains influential. It should be
regarded as an argumentation model avant la lettre. An argumentation theory
cgpturing elements of Reiter’s Default Logic in CumulA can be defined as foll ows:

Language = Lp, the language of Propasitional Logic.
Rules [ {{Sentencey, ..., Sentencen} — Sentencen+ |
Sentencey, ..., Sentencen EpL Sentencensi},
where . denotes the consequencerelation of Propasitional Logic.
DefeaterSchemes O
{O- Justification [{ {Conditiony, ..., OConditionn}} —» Conclusion] |
{Conditiony, ..., Condition,} — Conclusion isan element of Rules} .20

For convenience, we restricted the language to Propasitional Logic. The set of rules
is a superset of the set of rules corresponding to ordinary logicd consequence. As
in Default Logic, rules have so-cdled justificaions. A rule can only be used if its
justification is not denied. This leals to defeaer schemes of a spedal form: an
argument justifying the negation of a justification of some rule dalenges an
argument that ends with a step corresponding to the rule. So, a default Condition,
..., Condition, : Justifications, ..., Justificationm / Conclusion of Default Logic
corresponds to a rule {Conditions, ..., Condition,} — Conclusion in Rules and
defeaer schemes [ Justification; [{{CCondition,, ..., (Conditiona}} — Conclusion],
for i = 1 to m, in DefeaterSchemes. (So, defaults that only differ in their
justifications are not distinguished.)

Reiter’'s Default Logic implicitly describes sibordinated arguments and no
forward lines of argumentation. Reiter's extensions are similar to CumulA’s
forward extensions.

20 Lin and Shoham (Lin and Shoham, 1989 Lin, 1993 and Dung (1995 show how
Reiter's (1980 1987 Default Logic can be trandated to their argumentation models. In
contrast with us, they also prove formal relations.
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6.5 Pollock’s Theory of Defeasible Reasoning

Pollock’s Theory of Defeasible Reasoning is probably the most worked-out
argumentation model. It has been developed and adapted since 1987 An
argumentation theory cgpturing elements of Pollock’s theory in CumulA can be
defined as follows:

Language = Lp, the language of Propasitional Logic.
Rules [ {{Sentencey, ..., Sentencen} — Sentencen+1 |
Sentencey, ..., Sentencen EpL Sentencensi},
where g denotes the consequencerelation of Propasitional Logic.
CollectiveDefeat 0 DefeaterSchemes O Undercutters O Rebutters O
CollectiveDefeat,
where
CollectiveDefeat =
{[{(Bubreasoniyi, ..., (Bubreasonni} — Conclusion, ...,
{Bubreasonim, ..., (Subreasonn,m} — Conclusionm) |
Conclusion, ..., Conclusion, is minimally inconsistent},
Undercutters =
{XConclusion; [{{Bubreasony, ..., (Subreason,} - Conclusionz]},
and
Rebutters =
{{CBubreasoniy, ..., (Subreasonn:1} — Conclusiony
[{(Subreasoniy, ..., (Bubreasonny} — Conclusion;] |
Conclusions, Conclusion; Ep [}

Again, the set of rules is a superset of the rules corresponding to ordinary logicd
consequence. The defeaer schemes are of three forms. those representing
colledive defea (restricted to arguments with inconsistent conclusions),
undercutting defea, and rebutting defea (see hapter 5, sedion 3.5, 3.1, and 32,
respedively). Since Pollock uses colledive defea as a general means to preserve
consistency, the set of defeder schemes is a superset of the set of defeder schemes
representing coll edive defea.
Poll ock describes sibordinated arguments and forward lines of argumentation.

6.6 Vreeswijk's Abstract Argumentation Systems

Vreeswijk’'s Abstrad Argumentation Systems have been seledted since Vreeswijk’s
argumentation model has influenced the development of CumulA (see dapter 5).
Vreeswijk’'s model can be regarded as a refinement of Lin and Shoham’s Argument
Systems. An argumentation theory cepturing elements of Vreeswijk’'s Abstrad
Argumentation Systemsin Cumul A can be defined as foll ows:

Language is any set, containing O, denoting contradiction.
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Rules isany set of rulesin the language.
DefeaterSchemes O {Argumenty, ..., Argumenta.1 [Argumenty] |
Thereisarule {Conclusion(Arguments), ..., Conclusion(Argument,)} - O}.

Just as Lin and Shoham’'s Argument Systems and CumulA, Vreeswijk’s model is
independent of a spedfic language; Vreeswijk’'s language only contains a spedal
element denoting contradiction. The set of rulesis arbitrary. The defeaer schemes
of Vreeswijk’s model represent that an argument is challenged by other arguments,
if the agument’s conclusion is inconsistent with the @nclusions of the other
arguments. The defeaer schemes resemble those of the theory capturing elements
of Lin and Shoham’'s Argument Systems. However, there ae three differences.
First, Vreeswijk notion of inconsistency is ssmewhat more general than Lin and
Shoham'’s $nceit includes inconsistency of more than two arguments. Second, only
a subset of the defeaer schemes is used. Which defeder schemes are seleded
depends on Vreeswijk's conclusive force relation, included in eat Abstrad
Argumentation System, in the following way: for arguments Arguments, ...,
Argument,, such that there is a rule {Conclusion(Argument;), ...,
Conclusion(Argument,)} — 0O, the faad that for somei, 1 <i < n, Argument; has less
conclusive force than Argument, implies that Argument;, ..., Argumentn.i
[Argument,] is not in DefeaterSchemes.2l Third, the defeaer schemes
corresponding to Vreeswijk’s model are of compaosite-type, whereas those of Lin
and Shoham’s model are of sentencetype. This is the result of the fad that
Vreeswijk’s conclusive forcerelation is arelation between full arguments.

Vreeswijk's model describes aubordinated arguments and forward lines of
argumentation.

6.7 Bondarenko et al.’s Assumption-Based Framework

Bondarenko et al.’s Assumption-Based Framework for Non-Monotonic Reasoning
have been seleded since the formalism has a spedfic type of defea, that is worth
distinguishing: assuumption-type defed. An argumentation theory cgpturing this
spedfic dement of Bondarenko et al.’s Assumption-Based Framework in CumulA
can be defined as foll ows:

Language = Atoms [J - Atoms,
where Atoms is any set and = Atoms isthe set {- Atom | Atom is an element
of Atoms} (digoint from Atoms).

Rules isany set of rulesin the language.

DefeaterSchemes 0 {TAtom [-Atom], (= Atom [Atom] | Atom is an element
of Atoms}.

21 |t coud be interesting to establish formal conredions between properties of a
conclusive forcerelation and thase of the crrespondng set of defeaer schemes.
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This theory isrelated to the one cgturing elements of Lin and Shoham’'s Argument
Systems. The language is a set closed under negation and the set of rules is
arbitrary. However, the defeaer schemes differ subtly from those in the theory
capturing elements of Lin and Shoham's, in two ways. First, the dallenged
arguments in the instances of the defeaer schemes are statements. As a result,
argument defea of a non-statement argument is aways indired (see tapter 5,
sedions 4.3 and 4.4), becaise of the defea of a premise of the agument. The
defeaer schemes are of asaumption-type (see sedion 2). Seamnd, not all defeaer
schemes of the given form nead to be included in the agumentation theory. If
[(Atom [-Atom] (or (~Atom [Atom)) is included, =Atom (or Atom, respedively) is
cdled an assumption of the theory. Intuitively, an assuumption can be the premise of
an urdefeaed argument, unlessits negation is justified.

Bondarenko et al.’s model implicitly describes aibordinated arguments and
forward lines of argumentation.

6.8 Dung's Argumentation Frameworks

Dund s Argumentation Frameworks have been seleaded since Dung has brought the
abstrad study of argumentation and defed to its extreme. Dung rotices that the
basis of defea is the dtadk relation between arguments. As a result, he focuses on
that relation, independent of the structure of the aguments involved. This is an
important step towards a better understanding of argumentation and defed.

An argumentation theory capturing elements of Dundgs Argumentation
Frameworks in Cumul A can be defined as foll ows:

Language isany set.
Rules = .
DefeaterSchemes O {Statement; [Statementz]}

As Lin and Shoham’'s Argument Systems, Vreeswijk's Abstrad Argumentation
Systems and CumulA, Dungs model is independent of a spedfic language.
Moreover, Dung abstrads from the structure of arguments. As a result, the set of
rulesis empty. The defeaer schemes - adually defeaers - are dl simple defeaers.

Dung considers unstructured arguments, corresponding to CumulA’s
statements, and no lines of argumentation. Verheij (1996a) investigates the formal
relations between Dung s model and the stages approach of CumulA.

6.9 Loui and Chen’s Argument Game

Loui and Chen's Argument Game has been seleded since it shows a charaderistic
of argumentation not found in any of the other discussed argumentation models:
badkward argumentation. The Argument Game is a two-player card game, designed
as a model of argumentation. One of the players tries to justify a mnclusion by
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means of an urdefeaed argument, the other tries to challenge the agument. As a
result, the mnclusion isfixed, whil e the premises vary throughout the game.

An argumentation theory capturing elements of Loui and Chen's Argument
Game in CumulA can be defined as foll ows:

Language = Atoms [J - Atoms,
where Atoms is any set and = Atoms isthe set {- Atom | Atom is an element
of Atoms} (digoint from Atoms).

Rules isany set of rulesin the language.

DefeaterSchemes O {TAtom [[(=Atom], (- Atom [[Atom] | Atom is an element
of Atoms}

Surprisingly, this argumentation theory is the same & the one cgturing elements of
Lin and Shoham’s Argument Systems. This $ows that the underlying rotions of
argument and defed are the same in both models. However, argumentation is
different in both models, since Loui and Chen consider badkward lines of
argumentation. Moreover, other diff erences between the models have disappeaed,
since we only focus on the underlying model of argumentation, and have therefore
abstraded from the game dements of the Argument Game, such as bidding and the
different roles of the players.

The aguments of Loui and Chen's Argument Game ae nstructed by
subordination. The game models badkward lines of argumentation with a singe
fixed conclusion.

7 A comparison of argumentation models

After cepturing elements of several argumentation models as argumentation
theories in CumulA in the previous sedion, we now apply the distinctions
discused in the sedions 1 to 5 to those agumentation theories. An overview is
givenin table 1. The table shows diff erences and simil ariti es.

We have shown the generdity of CumulA by capturing elements of seleded
argumentation models in CumulA. Previoudly, Lin and Shoham (Lin and
Shoham, 1989 Lin, 1993 and Dung (1995 have catured other seledions of
argumentation models in their formalisms. We stressthat, in contrast with us, they
have dso proven formal relations.

Lin (1993 has also classfied formalisms of nonmonotonic reasoning, using a
distinction based on intuition. He distinguished two classs, namely sentence-based
and argument-based formali sms. His distinction seemsto be dose to aur distinction
of sentence-type and composite-type defed. Interestingly, in a footnote, Lin (1993
note 1, p. 254 remarks that Default Logic (Reiter, 1980 should probably be
clasdfied in both caegories. We ae aleto clarify the position of Default Logic by
clasdfyingit in the intermediate dassof step-type defed.
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Table 1: A comparison of argumentation models
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Since we focused on the agumentation theories cagpturing elements of
argumentation models in CumulA, we were @le to establish a number of
distinctions on formal grounds in contrast with Lin's distinction based on intuiti on.
As aresult, we have shown similarities and differences between the agumentation

models.






Chapter 7

Results and conclusions

In chapter 1, sextion 7, we discussed the research questions and goals of the thesis.
In this final chapter, we summarize the results and conclusions. We do thisin three
parts: rules and reasons (section 1), legal reasoning (section 2), and diaectical
argumentation (section 3). We close with some suggestions for future research
(section 4).

1 Rulesand reasons

Our first group of research questions (chapter 1, section 7) was the following:

What is the role of rules and reasons in argumentation with defeasible
arguments? What properties of rules and reasons are relevant for argumentation
and defeat? How do these properties relate?

In order to answer these questions, we have presented a forma model of rules and
reasons as they are used in argumentation: Reason-Based Logic. The formalismisa
formal semantics of rules and reasons; it focuses on the types of facts relevant for
argumentation with defeasible arguments, and the relations between these facts.

We established the following types of facts concerning rules and reasons that
are relevant for argumentation with defeasible arguments:

¢ The state of affairs state-of-affairs; is a reason for the state of affairs state-of-
affairs,.

e Thereisavaid rule with condition condition and conclusion conclusion.

¢ Therule with condition condition and conclusion conclusion is excluded for the
instance fact of its condition.

e Therulewith condition condition and conclusion conclusion is made applicable
by the fact expressed by the instance fact of its condition.

e The rule with condition condition and conclusion conclusion applies on the
basis the fact expressed by the instance fact of its condition.

e The reasons reasons-pro for the conclusion conclusion outweigh thr reasons
reasons-con against it.
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In chapter 2, the relations between these types of fads are daborated in the
formalism Reason-Based Logic.
In Reason-Based Logic, there ae threemain mechanismsthat leal to defed:

=

An exclusionary reason makes a rule inappliceble (cf. Raz, 1990).

1. Reasons for a conclusion do not lead to that conclusion if the reasons against
the conclusion outweigh the reasons for it (cf. Naess 1978.

1. A rule does not apply if the reasons against applying the rule outweigh the

reasons for applyingit.

In chapter 2, these ae worked out in detail. The use of exclusionary reasons is
closely related to the use of exception predicates, well-known in the research on
nonmonotonic reasoning (cf., e.g., Prakken, 1993. Although there ae severd
formalisms that model some form of weighing of reasons, Reason-Based Logic is,
as far as we know, the first in which weighing is treaed qualitatively instead of
guantitatively. We know of no ather formalism that models reasons for and against
applyingarule.

Once ajain we stressthat there is no single generally agreed upon interpretation
of the notions ‘rule’ and ‘reason’. As the many versions of Reason-Based Logicl
show, thisis not even the cae if one restricts oneself to the rules and reeasons of
argumentation with defeasible aguments.

Therefore our formalism is acaompanied by many examples in order to make
the interpretation of the notions rule and reason as clea as passble (cf. our method
of research, described in chapter 1, sedion 7).

Apart from the particular form of Reason-Based Logic as presented in this
thesis, we have made three general contributions to the reseach on the
formali zation of rules and reasons:

1. We have separated the semantics of rules and reasons, as used in argumentation
with defeasible aguments, from the definition of a defeasible mnsequence
relation. Although this is dmilar to the preferential-model semantics for
nonmonotonic oonsequence relations (Shoham, 1988 Kraus et al., 199Q
Makinson, 1994, there is a difference in Reason-Based Logic, the fads
concerning rules and reasons related to defea are explicitly represented in the
logicd languege, while the preference relation (that determines
nonmonotonicity) of a preferential-model semantics is sparated from the
logicd language. In this way, the definition of defeasible reasoning in Reason-
Based Logic bemmes less ad hoc, and is based on explicit standards (cf.
chapter 2, sedion 6).

1. We have shown that it is advantageous to consider rules as peda objeds and
to use atrandation from sentences to terms (cf. chapter 2, sedion 4). In this

1 E.g., Hage (1991, 1993 1995, Hage and Verheij (1994, b), Hage et al. (1993, Verheij
(1994 199%), Verheij and Hage (1994).
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way, it becomes posshble to represent fads about rules, and to reason with them.
As aresult, we ould keep the merits of two competing approaches: the use of
rule identifiers and the use of speda-purpose @nditionals. Our approach
enhances the al hoc use of rule identifiers, which was introduced in order to
represent fads about rules. At the same time, our approach can represent the
validity of rules, which is an advantage of the use of spedal-purpose
conditionals in contrast with the use of rule identifiers (cf. chapter 4).

1. We have separated the generation of a reasson and the generation of a
conclusion, which can both occur when the cndition of aruleis stisfied. First,
this clarifies the relation of rules and reasons, and second, this all ows diff erent
levels where defeasibility can occur (cf. chapter 3, sedions 5 and 6).

2 Legal reasoning

Legal reasoning hes been an important inspiration during the development of
Reason-Based Logic. Legal reasoning provides good examples for Reason-Based
Logic, sincein the law several pragmatic solutions have been developed to deding
with exceptions to rules, dedingwith rule mnflicts, and reasoning about rules. As a
result, the usefulness of Reason-Based Logic can be shown using examples from
thefield of law.

In chapter 3, we have formalized several examples of legal reasoning in
Reason-Based Logic. Apart from diff erent ways of deding with exceptions to rules
and rule oonflicts, which are spedfic for Reason-Based Logic, we have given two
applicaions of Reason-Based Logic to the theory of legal reasoning, namely to
integrating rules and principles, and to reasoning by analogy:

1. We have presented an integrated view on rules and principles, and have shown
that rules and principles can be regarded as the extremes of a spedrum of
hybrid rules/principles. Thisintegrated view isin contrast with Dworkin’s drict
distinction between rules and principles (cf. Dworkin, 1978.

1. We have given threediff erent ways of recnstructing reasoning by analogy: (1)
applicaion of principles that underlie the original rule, (2) applicaion of an
analogous rule/principle that has the same underlying principles as the original
rule, and (3) analogous application of the original rule, i.e., the gplicaion of
the rule with non-standard justification. The first of these ways of reconstruction
of reasoning by analogy foll ows diredly from the integrated view on rules and
principles. The secmnd is a familiar interpretation of analogy, except that we
have made the nature and justification of the analogy explicit in terms of
underlying principles. Thethird istypicd for Reason-Based Logic.

Since we have given formal elaborations in Reason-Based Logic, the insights can
be gplied to the use of computers as toadls in the field of law (cf. Van den
Herik, 1997).
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3 Dialectical argumentation
The second group of research questions (chapter 1, sedion 7) was the foll owing:;

«  What istherole of processin argumentation with defeasible aguments? How is
the defea of an argument determined by its gructure, counterarguments and the
argumentation stage?

In order to answer these questions, we developed a formal model of dialedicd
argumentation, CumulA, in chapter 5.

We have focused on the process of taking arguments into acount, and on the
defeasibility of arguments. CumulA is a model in which the defea status of an
argument, either undefeaed or defeaed, depends on:

1. the structure of the agument;
1. counterarguments;
1. the agumentation stage.

We discussead below.

In CumulA, the structure of arguments is modeled asin, e.g., the agumentation
theory of Van Eemeren et al. (1981, 1987. Both the subordination and the
coordination of arguments are posshle. In CumulA, it is explored how the structure
of arguments can lea to their defea. To our knowledge, CumulA is the only
formalism that explores how the mordination of arguments influences defea (cf.
the definitions of the narrowings of arguments in chapter 5, sedion 2.4, and of
defea status assgnments in chapter 5, sedion 4.4).

In CumulA, the influence of counterarguments on defed is modeled using
defeaers. Defeders indicae when arguments can defea other arguments. We have
shown that defeaers can be used to represent a wide range of types of defea:
undercutting and rebutting defea, as distingushed by, e.g., Pollock (1987, defea
by sequential weakening and by parallel strengthening, as distinguished by Verheij
(199%), and colledive and indeterministic defea, related to the well-known
skepticd and credulous approadhes in nonmonotonic reesoning (cf. Ginsberg,
1987. However, these types of defea were not previoudly integrated in one
formalism (cf. chapter 5, sedion 3).

Argumentation stages represent the aguments taken into acount and the status
of these aguments, either defeded o undefeded. CumulA’'s lines of
argumentation, formally sequences of stages, give insight into the influence that the
process of taking arguments into acount has on the status of arguments. For
instance, by means of argumentation diagrams, which gve an overview of possble
lines of argumentation, phenomena that are charaderistic for argumentation with
defeasible aguments, such as the reinstatement of arguments, are explicitly
depicted.
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In chapter 6, we have analyzed a number of existing argumentation models.
First, we made several formal distinctions between argumentation theories.

« Four types of arguments were distinguished in CumulA by their structure:
statements, single-step arguments, arguments that are constructed by
subordination, and arguments that are constructed by subordination and
coordination.

« Four types of defeat were distinguished by the structure of the challenging and
challenged arguments involved: no defeat, sentence-type defeat (with, as a
special case, assumption-type defeat), step-type defeat, and composite-type
defeat.

« Five types of defeat were distinguished by the number of challenging and
challenged arguments involved: no defeat, self-defeat, simple defeat, left-
compound defeat, and right-compound defeat.

« Two types of defeat were distinguished by different ways in which defeat is
triggered: inconsi stency-triggered and counterargument-triggered defeat.

e Four types of direction of argumentation were distinguished: static
argumentation, forward argumentation, backward argumentation, and bi-
directional argumentation.

Second, we have shown the generality of CumulA by capturing elements of
selected argumentation models in CumulA. Previously, Lin and Shoham (Lin and
Shoham, 1989; Lin, 1993) and Dung (1995) have captured other selections of
argumentation models in their formalisms. However, we have not proven formal
relations, in contrast with Lin and Shoham and Dung.

Third, we have shown similarities and differences between the argumentation
theories capturing argumentation models by applying the distinctions above.
Previoudly, Lin (1993) made a distinction related to our distinction of sentence-type
and composite-type defeat. However, his distinction was based on intuition, while
ours is based on forma grounds. Moreover, we have made several other
distinctions.

To conclude, CumulA has shown that

1. it is advantageous to consider arguments structured both by subordination and
by coordination if argumentation with defeasible arguments is model ed;

1. the defeat of arguments can be described in terms of their structure,
counterarguments, and the stage of the argumentation process;

1. both forward and backward argumentation can be formalized in one model.

4 Futureresearch

A first direction of future research will be the integratation of the ideas behind
Reason-Based Logic and CumulA. Whereas Reason-Based Logic lacks a process
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model of argumentation, like that of CumulA, CumulA lacks a rich language, like
that of Reason-Based Logic. Because of the already existing connections between
the two models, e.g., the admission of the accrual of reasons, this direction of
research could be fruitful, and could lead to a better understanding of
argumentation with defeasible arguments.

A second direction of future research will be the implementation of Reason-
Based Logic and CumulA. Early versions of Reason-Based Logic have been
implemented in Prolog (Hage, 1993; Verheij, 1993, 1995€), but have become
outdated by the later theoretical enhancements. CumulA has not been implemented,
but seems to be well-suited, due to its process-orientation. Moreover, it is
promising that Dung (1995) has shown close connections between argumentation
and logic programming.

A third direction of future research will be the practical assessment of the
mostly theoretically motivated ideas on legal reasoning, as presented in this thesis.
Probably, the actual legal practice will necessitate several adjustments and
compromises. Thereis a detailed plan to test the theoretical ideas against the actual
practice in the legal domain of tort.2

2 The Dutch National Program for Information Technology and Law (ITeR) has recently
provided funding for this project, that will be carried out at the Department of Metgjuridica
of the Universiteit Maastricht.
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Summary

The subject of this thesisis argumentation. We consider argumentation as a process
in which arguments supporting a conclusion are taken into account. During the
process of argumentation, a conclusion originally justified by some argument can
become no longer justified. This is the result of the defeasibility of arguments, a
term introduced by Hart in 1948 (cf. Loui, 1995a). Our central theme is how
argumentation and the defeasibility of arguments can be formally modeled.

The purpose of our research is to find answers to two groups of research
guestions.

e What is the role of rules and reasons in argumentation with defeasible
arguments? What properties of rules and reasons are relevant for argumentation
and defeat? How do these properties relate?

«  What istherole of processin argumentation with defeasible arguments? How is
the defeat of an argument determined by its structure, counterarguments and the
argumentation stage?

Trying to answer these groups of questions, we study argumentation and defeat
from two angles, resulting in formalisms of different nature, Reason-Based Logic
and CumulA.

Reason-Based Logic is amodel of the nature of rules and reasons, which are at
the basis of argumentation. We investigate the properties of rules and reasons that
are relevant for the argumentation and defeat, and how these properties relate to
each other.

CumulA is a model of argumentation in stages. We investigate how the
structure of an argument is related to defeat, when arguments are defeated by
counterarguments, and how the status of arguments is affected by the argumentation
stage.

Thethesis has five goals:

e Providing a model of rules and reasons, Reason-Based Logic, focusing on
properties that are relevant for the defeasibility of arguments.

* Demonstrating the usefulness of the model by providing examplesin the field of
law.

¢ Discussing how Reason-Based Logic relates to previously proposed models.

e Providing a model of argumentation, CumulA, that focuses on the process of
constructing arguments, and shows how the status of an argument is determined
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by the structure of the argument, the counterarguments and the stage of the
argumentation process.

e Demonstrating how CumulA can be used to andyze other models of
argumentation.

Each of these goals corresponds to a chapter. In chapter 2, we describe Reason-
Based Logic. We determine types of facts concerning rules and reasons that are
relevant for the defeasibility of arguments, and show their relations. Using this
semantics of rules and reasons, we determine some intuitively attractive modes of
reasoning. However, these lead to the difficulties of nonmonotonic reasoning. We
show how the ideas of Reiter (1980, 1987) can be used to define rigorously which
conclusions nonmonotonically follow from a given set of premises.

Chapter 3 contains a series of examples of Reason-Based L ogic, taken from the
field of law. We give applications of Reason-Based Logic to the theory of legal
reasoning: we describe three different ways of reconstructing reasoning by analogy,
and provide an integrated view on rules and principles, which seem fundamentally
different (cf. Dworkin, 1978, p. 22ff. and 71ff.).

In chapter 4, we survey other models of rules, and compare them to Reason-
Based Logic. We do this by treating a number of issues concerning the
formalization of rules, and discussing various approaches to deal with these issues.

In chapter 5, the second part of the thesis starts with a discussion of CumulA. It
is a formal model of argumentation with defeasible arguments, focusing on the
process of taking arguments into account. The main ingredients of the formalism
are arguments, defeaters, argumentation stages and lines of argumentation.

In chapter 6, we show how CumulA can be used to analyze models of
argumentation. We investigate types of argument structure and of defeat, the role of
inconsistency and counterarguments for defeat, and directions of argumentation. As
a result, we are able to distinguish a number of existing argumentation models on
formal grounds.

The thesis ends with the results and conclusions of the research (chapter 7). We
also give some suggestions for future research.

The contributions of the thesis are as follows:

1. We have separated the semantics of rules and reasons, as used in argumentation
with defeasible arguments, from the definition of a defeasible consequence
relation. In this way, the definition of defeasible reasoning becomes less ad hoc,
and is based on explicit standards (cf. chapter 2, section 6).

2. We have shown that it is advantageous to consider rules as special objects and
to use a trandation from sentences to terms (cf. chapter 2, section 4). In this
way, it becomes possible to represent facts about rules, and to reason with them.
As aresult, we could keep the merits of two competing approaches: the use of
rule identifiers and the use of specia-purpose conditionals. Our approach
enhances the ad hoc use of rule identifiers, that was introduced in order to
represent facts about rules. At the same time, our approach can represent the
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validity of rules, which is an advantage of the use of spedal-purpose
conditionalsin contrast with the use of rule identifiers (cf. chapter 4).

. We have separated the generation of a reason and the generation of a
conclusion, that both can occur when the cndition of arule is stisfied. First,
this clarifies the relation of rules and reasons, and second this all ows diff erent
levels where defeasibility can occur (cf. chapter 3, sedions 5 and 6).

. We have presented an integrated view on rules and principles, and have shown
that rules and principles can be regarded as the extremes of a spedrum of
hybrid rules/principles (cf. chapter 3, sedions 2 and 7). This integrated view is
in contrast with Dworkin's drict distinction between rules and principles (cf.
Dworkin, 1978. The view isformally elaborated in Reason-Based Logic.

. We have given threediff erent ways of reconstructing reasoning by analogy (cf.
chapter 3, sedion 8): (1) applicaion of principlesthat underlie the original rule,
(2) applicdion of an analogous rule/principle that has the same underlying
principles asthe original rule, and (3) analogous application of the original rule,
i.e., the goplication of the rule with non-standard justification.

. We have shown how the dfed of the accua of reasons on the defea of
arguments can be dedt with in a formal model. In Reason-Based Logic, we
focused on the weighing of sets of reasons (chapter 2); in CumulA, we focused
on the mordination of arguments and defea by paralée strengthening
(chapter 5).

. We have provided the model of argumentation CumulA, in which the defea of
arguments is determined by the structure of arguments, counterarguments, and
the stage of the agumentation process We have shown that CumulA’s
defeaers can represent a wide range of types of defea, that were not previously
integrated in one formalism (cf. chapter 5).

. We have used CumulA to analyze agumentation models. First, we have made
severa formal distinctions between argumentation theories. Second, we have
captured elements of a number of existing argumentation models in CumulA’s
argumentation theories. Third, we have gplied the distinctions to the resulting
argumentation theories. As a result, we were &le to show similarities and
differences between the agumentation theories capturing argumentation models
by applying the formal distinctions above (chapter 6).






Samenvatting

Het onderwerp van dit proefschrift is argumentatie. We beschouwen argumentatie
as ee proces. Tijdens dit proces worden redeneringen gemnstrueed ter
ondersteuning van een conclusie. Gedurende dit proces kan een conclusie
aanvankelijk wel en later niet mea gerechtvaadigd zijn doar een redenering. Dit
komt doar de weelegbaeaheid van redeneringen (Eng. defeasibility of arguments).
Ons centrale thema is hoe agumentatie en de weealegbaaheid van redeneringen
formed kan worden gemodell ead.

Ons onderzoeksdoel is het vinden van antwoorden op ¢k twee groepen
onderzoeksvragen.

e Wat is de rol van regels en redenen in argumentatie met weelegbare
redeneringen? Welke @genschappen van regels en redenen zijn relevant voor
argumentatie en weelegging? Hoe verhouden deze eégenschappen zich tot
elkaa?

e« Wat is de rol van het argumentatieproces bij argumentatie met weelegbare
redeneringen? Hoe wordt de weelegging van een redenering bepadd doa de
structuur van de redenering, andere redeneringen, en het argumentati estadium?

Ter beantwoording van de vragen bestuderen we agumentatie en weealegging
vanuit twee gezchtspunten. Dit leidt tot formalismen van verschillende aad,
Reason-Based Logic en CumulA.

Reeason-Based Logic is een model van de aad van regels en redenen, die de
basis vormen van argumentatie. We onderzoeken welke @genschappen van regels
en redenen relevant zijn voor argumentatie en weelegging, en hoe deze
eigenschappen zich tot elkaa verhouden.

CumulA is een model van argumentatie in stadia. We onderzoeken hoe de
structuur van een redenering zich verhoudt tot weelegging, wannee andere
redeneringen een redenering weerleggen, en hoe het argumentatiestadium de status
van een redenering beinvioedt.

Het proefschrift hedt vijf doelen:

e Het beschrijven van een model van regels en redenen, Reason-Based Logic,
gericht op eigenschappen die relevant zijn voor de wealegging van
redeneringen.

¢ Het aatonen van de bruikbaaheid van het model doa het geven van juridische
voorbedden.
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e Het laten zien van de verbanden van Reason-Based Logic met eeadere
voorgestelde modell en.

e Het beschrijven van een argumentatiemodel, CumulA, dat gericht is op het
proces van het construeren van rederingen en dat laa zien hoe de status van een
redenering wordt bepadd doa de structuwr van de redenering, andere
redeneringen, en het argumentatiestadium.

¢ Het aantonen van de bruikbaaheid van CumulA bij het analyseren van andere
argumentatiemodell en.

Elk doel wordt behandeld in een hoofdstuk. In hoofdstuk 2 beschrijven we Reason-
Based Logic. We bepalen feittypen voor regels en redenen die relevant zijn voor de
weelegbaaheid van argumentatie, en laten de relaties tussen de feittypen zien.
Gebruik makend van deze semantiek van regels en redenen bepalen we enkele
intuitief aantrekkelijke redeneawijzen. Deze redeneawijzen leiden ecter tot de
problemen van niet-monotoon redeneren. We laten zien hoe de ideeé van Reiter
(1980 1987 kunren worden gebruikt voor een formele definitie van de mnclusies
die de niet-monotone gevolgen zijn van gegeven premisen.

Hoofdstuk 3 bevat een reeks voorbedden van Reason-Based Logic in het redt.
We geven twee toepasingen van Reason-Based logic in de redhtstheorie. Ten
egste bedrijven we drie manieren om redeneren naa anaogie te reconstrueren.
Ten tweede geven we e@ geintegreade kijk op regels en beginselen, die
fundamented van elkaa lijken te verschill en (cf. Dworkin, 1978 p. 22ff. en 71ff.).

In hoofdstuk 4 geven we e overzicht van modellen van regels en vergelijken
zemet Reason-Based Logic. We doen aan de hand van een aantal problemen bij de
formalisering van regels te en behandelen benaderingen om met deze problemen
om te gaan.

In hoofdstuk 5 begint het tweede ded van het proefschrift met de beschrijving
van CumulA. Het is een formed model van argumentatie met weelegbare
redeneringen, gericht op het geleidelijk construeren van redeneringen. De
belangrijkste ingrediénten van het formalisme 7jn redeneringen, weeleggers (Eng.
defeaers), argumentatiestadia en betogen (Eng. lines of argumentation).

In hoofdstuk 6 laten we Zen hoe CumulA gebruikt kan worden voor het
analyseren van argumentatiemodellen. We onderzoeken typen redeneringen en
weealegging aan de hand van de structuur van redeneringen, de rol van
inconsistentie en tegenargumenten in weelegging en argumentatierichtingen. Zo
kunren we e aantal bestaande agumentatiemodellen op formele gronden van
elkaa onderscheiden.

Het proefschrift eindigt met de resultaten en conclusies van het onderzoek
(hoofdstuk 7). We geven ook enkele suggesties voor toekomstig onderzoek.

De bijdragen van het proefschrift zijn als volgt:

1. We hebben de semantiek van regels en redenen, zoals die gebruikt worden in
argumentatie met weerlegbare redeneringen, onderscheiden van de definitie van
ea wegalegbare-gevolgtrekkingsrelatie. Zo wordt de definitie van weelegbaa
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redeneren minder ad hoc en kan ze gebaseerd worden op expliciete standaarden
(cf. chapter 2, sedion 6).

. We hebben laten zien dat het voordelig is om regels als gedale objeden te
beschouwen en een vertaling tusen zinnen en termen te gebruiken (cf.
chapter 2, sedion 4). Zo wordt het mogelijk om feiten over regels te
representeren en over regels te redeneren. Als gevolg hiervan konden de
voordelen van twee benaderingen worden behouden: het gebruik van
regelnamen en het gebruik van een spedale @nditionele ansdructuur. Onze
benadering verbetert het gebruik van regelnamen, dat was geintroduceed om
feiten over regels te representeren. Tegelijkertijd kan onze benadering de
geldigheid van regels representeren. Dit was een voorded van het gebruik van
een spedae onditionele Znsgructuur tegenover het gebruik van regelnamen.
(cf. chapter 4).

. We hebben het onstaan van een reden en het trekken van een conclusie van

elkaa gescheiden. Beide kunren pladsvinden as aan de voorwaade van ean
regel isvoldaan. Ten easte verheldert dit de relatie tussen regels en redenen en
ten tweeade kan weealegging op verschill ende niveaus voorkomen (cf. chapter 3,
sedions5 and 6).

. We hebben een geintegreerde kijk op regels en beginselen gegeven en laten zien
dat regels en beginselen beschouwd kunren worden als de extremen van een
spedrum van hybride regels/beginselen (cf. chapter 3, sedions 2 and 7). Deze
geintegreade kijk contrasteat met Dworkin's dricte onderscheid tussen regels
en beginselen (cf. Dworkin, 1978. De kijk wordt formed uitgewerkt in Reason-
Based Logic.

. We hebben drie manieren beschreven om redeneren naa analogie te
reconstrueren (cf. chapter 3, sedion 8): (1) als de toepassng van beginselen die
aan de oorspronkelijke regel ten grondslag liggen, (2) as de toepassng van een
analoge regel of beginsel met dezdfde onderliggende beginselen as de
oorspronkelijke regel, en (3) de analoge toepassng van de oorspronkelijke
regel, d.w.z. de toepassng van de regel met niet-standaard rechtvaadiging.

. We hebben laten zien hoe met het effed van de ophoping van redenen (Eng.
acaual of reasons) op e wealeggding van redeneringen formed kan worden
omgegaan. In Reeason-Based Logic waren we gericht op het wegen van
verzamelingen redenen (chapter 2); in CumulA waren we gericht op de
nevenschikking van redeneringen en weelegging doar parallele versterking
(chapter 5).

. We hebben het argumentatiemodel CumulA voorgesteld. Hierin wordt de
weealegging van redeneringen bepadd doa hun structuur, doa andere
argumenten en doa het argumentatiestadium. We hebben laten zien dat
CumulA’s weeleggers (Eng. defeders) een breed scaa van typen weealegging
kunren representeren. Deze typen zijn nog niet eader in een formalisme
geintegreed (cf. chapter 5).

. We hebben CumulA gebruikt om bestaande agumentatiemodellen te
analyseren. Eerst hebben we e@ aantal formele onderscheidingen gemaékt voor
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CumulA’s argumentatietheorieén. Daana hebben we dementen van een aantal
bestaande agumentatiemodell en beschreven in CumulA’s
argumentatietheorieén. Tendotte hebben we de gemadte onderscheidingen
toegepast op deze agumentatietheorieén. Op dezemanier was het mogelijk om
op grond van de genoemde formele onderscheidingen overeenkomsten en
verschill en tussen deze agumentatietheorieén te laten zien.
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