
Checking the Validity of Rule-Based

Heng ZHENG a,1, Minghui XIONG b and Bart VERHEIJ a

aArtificial Intelligence, University of Groningen, The Netherlands
b Institute of Logic and Cognition, Sun Yat-sen University, Guangzhou, China

Abstract. One puzzle studied in AI & Law is how arguments, rules and
cases are formally connected. Recently a formal theory was proposed for-
malizing how the validity of arguments based on rules can be grounded
in cases. Three kinds of argument validity were distinguished: coherence,
presumptive validity and conclusiveness. In this paper the theory is im-
plemented in a Prolog program, used to evaluate a previously developed
model of Dutch tort law. We also test the theory and its implementation
with a new case study modeling Chinese copyright infringement law. In
this way we illustrate that by the use of the implementation the process
of modeling becomes more efficient and less error-prone.

Keywords. Artificial Intelligence and Law, Rule-based Reasoning, Case-
based Reasoning, Argumentation Modeling, Prolog

1. Introduction

The recent case model formalism [1] is a hybrid theory showing connections be-
tween cases, rules and arguments [2]. The formalism defines different ways in
which rule-based arguments can be valid in cases: arguments can be coherent,
conclusive or presumptive. The formalism has been applied to model Dutch tort
law, showing how a rule-based legal domain can be grounded in legal cases. In this
way, a formal connection is established between the civil law tradition focusing
on rules and the common law tradition focusing on cases.

The present paper provides a computational version of the case model for-
malism. A Prolog program is presented that can computationally check whether a
case model is correct, whether rule-based arguments are valid (in the three kinds
of validity coherence, conclusiveness and presumptiveness), and whether defeating
circumstances are rebutting, undercutting or undermining. The computational
tool can be used to support the manual modeling of a complex legal domain,
making that more manageable. As an example, we provide a new domain model,
namely Chinese copyright infringement law, both formally (as a case model) and
computationally (in Prolog).

1Corresponding Author: zhengh48@mail2.sysu.edu.cn.

Arguments Grounded in Cases:
A Computational Approach

Legal Knowledge and Information Systems
M. Palmirani (Ed.)

© 2018 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-935-5-220

220

c a s e (model num (1) , case num (101) , [not (dmg)]) .
. . .
c a s e (model num (1) , case num (104) , [not (dut) ,dmg, unl , imp , not (cau)]) .
c a s e (model num (1) , case num (105) , [dut , dmg, unl , imp , cau , vrt , not (vst) , not (vun) , i f t

, not (i l a) , not (i c o) , not (ju s) , prp]) .
. . .
c a s e (model num (1) , case num (114) , [not (dut) ,dmg, not (unl) , vrt , not (vst) , j u s]) .
. . .
c a s e o rd e r (model num (1) , [case num (101) , case num (102) , case num (103) , case num

(104) , [case num (105) , case num (106) , . . . , case num (113)] , . . .]) .

Listing 1: Definition of the Dutch tort law case model in Prolog

2. The implementation of case model formalism in Prolog with case studies

We have implemented the case model formalism in Prolog. We use the previously
developed model of Dutch tort law [2] as an illustration. Cases are represented
as Prolog lists, of which the elements consist of strings and their negations (rep-
resented using not/1). Case models are represented as lists of cases and their
ordering, where case models and cases are referred to using identifiers.

Listing 1 provides a part of the representation of the case model for Dutch
tort law (model num(1)). The full model consists of the 16 cases discussed in [2].
The ordering is represented as a list of cases and lists of cases, each representing
an equivalence class of the total preorder, in decreasing level of preference. Hence
the first element of this list represents the case or cases that are maximal in
the total preorder. Here there is one maximal case case num(101): not(dmg),
representing that there are no damages. When an equivalence class consists of
several cases, such as [case num(105),...,case num(113)], it is represented as a list
of cases (actually: of case identifiers).

The predicate case model valid/1 (with a case identifier as single argument)
checks whether all cases are consistent, incompatible and different. Checking
whether the ordering of cases is total and transitive is not directly represented
since we use an explicit representation of the total preorder as a list of equivalence
classes. In this representation another validity check is helpful, namely whether
each case of which an identifier appears in the ordering is defined and whether
each case identifier of a defined case appears in the ordering exactly once. This
check has been implemented using the predicate ordering valid/1.

Arguments are represented by a list of premises and a list of conclusions. The
three kinds of validity of arguments can be checked using the predicates coher-
ent/1, conclusive/1 and presumptively valid/1, each taking an argument (repre-
sented using argument/2) as input. Coherence is checked by first determining the
case made by an argument, found by appending the list of premises to the list
of conclusions, and then checking whether there is a case in the case model that
contains all elements of the case made by the argument.

The conclusiveness of an argument is checked by first checking whether the
argument is coherent and then checking, if all cases in the case model that contain
the argument’s premises also contain its conclusions.

An argument’s presumptive validity is checked by determining a maximally
preferred case that witnesses the argument’s coherence (i.e., finding a case in

H. Zheng et al. / Checking the Validity of Rule-Based Arguments Grounded in Cases 221

dut

vst

¬prp
dmg

unl

jus

vrt

jus

vst

vun

imp

ift

ila

ico

cau

presumptively valid([dmg,unl,imp,cau],[dut]).

rebutting attack(argument([dmg,unl,imp,cau],[dut]),[vst,not(prp)]).

presumptively valid(argument([vrt],[unl])).

rebutting attack(argument([vrt],[unl]),[jus]).

presumptively valid(argument([vst],[unl])).

rebutting attack(argument([vst],[unl]),[jus]).

conclusive(argument([vun],[unl])).

conclusive(argument([ift],[imp])).

conclusive(argument([ila],[imp])).

conclusive(argument([ico],[imp])).

Figure 1. The Dutch tort law model: argument structure (left); in Prolog (right)

which both the premises and conclusions of the argument hold and that is maximal
in the ordering with this property) and then checking for each case in which the
argument’s premises hold whether that case is of equal or lower ordering.

Attack of arguments has been implemented using the predicates success-
ful attack/2, rebutting attack/2, undercutting attack/2 and undermining attack/2.
The predicate successful attack/2 takes an argument and defeating circumstances
(as a list) as input. The predicate checks whether the argument is presumptively
valid and whether the argument to the same conclusions but from the premises
with the defeating circumstances appended is not presumptively valid.

The three kinds of attack—rebutting, undercutting and undermining—are
defined in terms of successful attack as follows. Rebutting attack requires a suc-
cessful attack of an argument such that also the argument from the premises to
the opposite of the argument’s conclusion is presumptively valid. Note that this
only makes sense for arguments with a single element as conclusion as we use no
Prolog expression for the negation of a series of conclusions. Successful attacks
that are not rebutting attacks are undercutting. Undermining attack is a special
kind of successful attack, namely an attack of an argument with a tautology as
premise. In the program, a tautology is represented as an empty Prolog list [].

The Prolog program can be used to validate hand-made domain models, such
as the case model for Dutch tort law of [2]. In Figure 1, we show the argument
structure that is valid in the hand-made formal case model of that paper (left).
On the right, we show Prolog clauses that all evaluate to true given the Prolog
version of that case model (partially shown in Listing 1). In other words, the
model is computationally validated.

Another case study is about Chinese copyright infringement. The article of Copy-
right Infringement in Chinese Criminal Law [3] is below:

Article 217 Whoever, for the purpose of making profits, commits any of the following acts
of infringement on copyright shall, if the amount of illegal gains is relatively large, or if
there are other serious circumstances, be sentenced to fixed-term imprisonment of not more
than three years or criminal detention and shall also, or shall only, be fined; if the amount
of illegal gains is huge or if there are other especially serious circumstances, he shall be

H. Zheng et al. / Checking the Validity of Rule-Based Arguments Grounded in Cases222

sentenced to fixed-term imprisonment of not less than three years but not more than seven
years and shall also be fined:
(1) reproducing and distributing a written work, musical work, motion picture, television
programme or other visual works, computer software or other works without permission of
the copyright owner;
(2) publishing a book of which the exclusive right of publication is enjoyed by another
person;
(3) reproducing and distributing an audio or video recording produced by another person
without permission of the producer; or
(4) producing or selling a work of fine art with forged signature of another painter.

According to the articles related to Art. 217 in Chinese criminal law [3], and
relevant official judicial interpretations [4], there is a defeating circumstance: the
action was not belong to “without permission of the copyright owner”.

In the light of Art. 217 and the judicial interpretations related to it, a case
model based on Verheij’s case model formalism with a similar modeling approach
to the Dutch tort law model in [2] can be built. We use the elementary propositions
in Table 1, shown with their formal abbreviations. The full model has 30 cases.
A selection of the cases is shown in its case list version in Table 2. The model
has identifier model num(2). In the text below, cases are numbered 1, 2, 3, ...
corresponding to cases 201, 202, 203, ... in the Prolog version.

From Chinese copyright infringement, we can analyze the argument structure
as in the diagram in Figure 2 (left). This argument structure shows multiple

Table 1. Elementary propositions in the copyright infringement model with abbreviations

ifg there is a copyright infringement

fpp the act was for the purpose of making profits

rad the act was reproducing and distributing something

ite the act concerned the items in Art. 217:1

pco the act was without permission of the copyright owner

npo the act was not belong to ”without permission of the copyright owner”

epr a book is published of which the exclusive right of publication is enjoyed by another person

avp a audio or video recording is produced by another person without permission of the producer

psa a work of fine art with forged signature of another painter is produced or sold

ils the amount of illegal gains is large or other serious circumstances

ihe the amount of illegal gains is huge or other especially serious circumstances

crc the person commits the crime of copyright infringement

l3fti the person shall be sentenced to fixed-term imprisonment of at most three years

cdt the person shall be sentenced to criminal detention

fin the person shall be fined

m3fti the person shall be sentenced to fixed-term imprisonment of not less than three years but not
more than seven years

cpb the defendant satisfies the conditions of probation

pbt the defendant will be put on probation

Table 2. The Chinese copyright infringement case model (selection)

Case 1 ¬rad,¬ite,¬pco,¬epr,¬avp,¬psa,¬ifg

Case 2 rad,ite,pco,npo,¬ifg

Case 3 rad,ite,pco,¬npo,¬epr,¬avp,¬psa,ifg,¬fpp

Case 4 rad,ite,pco,¬epr,¬avp,¬psa,ifg,fpp,ihe,¬ils,crc,m3fti,¬l3fti,¬cdt,fin

Case 5 rad,ite,pco,¬epr,¬avp,¬psa,ifg,fpp,¬ihe,ils,crc,¬m3fti,¬l3fti,¬cdt,fin

Case 6 rad,ite,pco,¬epr,¬avp,¬psa,ifg,fpp,¬ihe,ils,crc,¬m3fti,l3fti,¬cdt,fin,cpb,pbt

Case 7 rad,ite,pco,¬epr,¬avp,¬psa,ifg,fpp,¬ihe,ils,crc,¬m3fti,¬l3fti,cdt,fin,cpb,pbt

Case 8 rad,ite,pco,¬epr,¬avp,¬psa,ifg,fpp,¬ihe,ils,crc,¬m3fti,l3fti,¬cdt,fin,¬cpb,¬pbt

Case 9 rad,ite,pco,¬epr,¬avp,¬psa,ifg,fpp,¬ihe,ils,crc,¬m3fti,¬l3fti,cdt,fin,¬cpb,¬pbt

... ...

Case order Case 1 > Case 2 = Case 3 > Case 4 = Case 5 = Case 6 = Case 7 = Case 8 = Case 9

H. Zheng et al. / Checking the Validity of Rule-Based Arguments Grounded in Cases 223

eprnporad & ite & pco rad & avp psa

ifg

fpp

crcihe ils

l3fti & fin cdt & fin

cpb

fin

cpb

m3fti & fin pbt pbt

presumptively valid(argument([rad,ite,pco],[ifg])).

presumptively valid(argument([crc],[ils])).

presumptively valid(argument([crc,ils],[l3fti,fin])).

rebutting attack(argument([rad,ite,pco],[ifg]),[npo]).

conclusive(argument([crc,ihe],[m3fti,fin])).

conclusive(argument([ifg,fpp],[crc])).

conclusive(argument([crc,ils,l3fti,fin,cpb],[pbt])).

conclusive(argument([crc,ils,cdt,fin,cpb],[pbt])).

Figure 2. The Chinese copyright infringement model: argument structure (left); in Prolog (right)

rule-based steps and an exception-based attack. The structure is valid in the
case model we built. Following the definitions of the case model formalism, the
arguments in Figure 2 (right) can be extracted in the model. The Prolog program
confirms the validity of these arguments. These Prolog queries are evaluated as
true, which means the results of the Prolog program correspond to our analysis
of the Chinese copyright infringement model.

3. Conclusion

The results of this paper show that an implementation of the case model formalism
can be used to support the modeling of a legal domain with a complex argument
structure involving combined support and attack2. In this way, we have shown a
computational connection between cases, rules and arguments, applied to the civil
law system of the Netherlands and to criminal law in the Chinese legal system.
AI and legal reasoning technology needs to combine rule-based reasoning, case-
based reasoning and argumentation together, paving the way for argumentation
technology that bridges cases and rules, as it is common in the law.

References

[1] B. Verheij. Correct Grounded Reasoning with Presumptive Arguments. In L. Michael and
A. Kakas, editors, 15th European Conference on Logics in Artificial Intelligence, JELIA
2016. Larnaca, Cyprus, November 9–11, 2016. Proceedings (LNAI 10021). Springer, Berlin,
2016.

[2] B. Verheij. Formalizing Arguments, Rules and Cases. In Proceedings of the Seventeenth
International Conference on Artificial Intelligence and Law (ICAIL 2017), 2017.

[3] The National People’s Congress of the People’s Republic of China. Criminal
Law of the People’s Republic of China. http://www.npc.gov.cn/englishnpc/Law/2007-
12/13/content 1384075.htm, 2011.

[4] The Supreme People’s Court of The People’s Republic of China, The Supreme People’s
Procuratorate of the People’s Republic of China, and The Ministry of Public Security
of the People’s Republic of China. Judicial interpretation on the application of law in
handling criminal cases involving infringement of intellectual property rights (in Chinese).
http://www.court.gov.cn/fabu-xiangqing-2903.html, 2011.

2The full program code and the Chinese copyright infringement model are available at
https://github.com/Zhe333/Appendix.git

H. Zheng et al. / Checking the Validity of Rule-Based Arguments Grounded in Cases224

