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Abstract
Life is made up of a long list of decisions. In each
of them there exists quite a number of choices and
most of the decisions are effected by uncertainties
and preferences, from choosing a healthy lunch and
nice clothes to choosing a profession and a field of
study. Uncertainties can be modeled by probabilities
and preferences by utilities. A rational decision maker
prefers to make a decision with the least regret or the
most satisfaction. The principle of maximum expected
utility can be helpful in this issue. Expected utility
deals with problems in which agents make a decision
under conditions in which probabilities of states play a
role in the choice, as well as the utilities of outcomes.

Argumentation formalisms could be an option to
model these problems and to pick one or several alter-
natives.

In this paper, a new argument-based framework, nu-
merical abstract dialectical frameworks (nADFs for
short), is introduced to do so. First, the semantics of
this formalism, which is a generalization of abstract
dialectical frameworks (ADFs for short), based on
many-valued interpretations are introduced, includ-
ing preferred, grounded, complete and model-based
semantics. Second, it is shown how nADFs are expres-
sive enough to formalize standard decision problems.
It is shown that the different types of semantics of an
nADF that is associated with a decision problem all
coincide and have the standard meaning. In this way,
it is shown how the nADF semantics can be used to
choose the best set of decisions.
Keywords: argumentation, abstract dialectical frame-
works, utility, probability, decision problem, expected
utility theory

1. Introduction

During life, people are faced with a long series of decisions.
A good decision may lead to a cure for a disease, to an
investment in a proper project by a business person, to a
judgment in a crime case, and to a fair debate. Definitely,
different decisions that are made by an agent yield different
consequences. At the moment of decision making, we are
usually not certain of what is the consequence of our deci-

sions, but we may know the set of possible consequences
that our decision can lead to. That is, we usually make
decisions under uncertainty. The uncertainty mostly arises
because of external factors that are out of control of agents,
which are called state such as the probability of needing to
undergo emergency surgery.

Assume that Maryam wants to travel abroad. She wants
to decide whether or not to buy an international health in-
surance by spending 100 euros. The decision depends on
some factors. Here, the external factor is the probability
of having to undergo emergency surgery abroad. For ex-
ample, if Maryam had a heart attack recently, the need for
health insurance abroad is higher than for healthy people.
Maryam’s decision leads to either: 1) buying an interna-
tional insurance for 100 euros and needing it when she is
abroad; 2) losing 100 euros because of buying an inter-
national health insurance and not needing it; 3) needing
an emergency surgery without any insurance, that is, she
has to spend at least 10,000 euros; 4) not buying interna-
tional health insurance and not needing it, that is, spending
nothing. Another factor with crucial importance in making
decisions is the preferences that Maryam has on different
consequences, which are called outcomes. Maryam prefers
not to spend any money for an insurance and not to undergo
emergency surgery to other outcomes, however, in the case
that she needs emergency surgery abroad, she prefers to
spend 100 euros rather than at least 10,000 euros.

Maryam can choose among actions (buying an inter-
national health insurance or not), but she does not have
any control over the states (having to undergo emergency
surgery abroad or not). However, the probability of occur-
rence of each state has an effect on her decision. Actually,
if a state of the world can be affected by an agent, it is not
a state in the sense of decision theory. An agent has control
but not belief over actions, however, over states she/he has
belief but no control.

A theory concerned with making the best decision under
uncertainty is called expected utility theory [32, 33, 25, 12,
18, 21, 24]. The expected utility of each decision or action
is the weighted average of utilities of the possible outcomes,
where utility is a numerical measure of preference of out-
comes from an agent point of view, representing the agent’s
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desire. These utilities are weighted by the probability of
the state that leads to that outcome for a specific action.

Although there exist many formalisms, solvers and au-
tomated methods in decision theory such as influence dia-
grams [19, 22, 27], because of the importance of decision
making in human life and wide variety of decision prob-
lems, new approachs of modeling and evaluating them are
required.

Argumentation is a reasoning model that can help to se-
lect one or several alternative actions, or explain an already
adopted decision. Several efforts have been put into the
study and definition of argumentation formalisms within
which the values or preferences of agents are of crucial im-
portance for everyday reasoning [1, 3, 4, 5, 15, 20, 29, 31].
One might wonder whether an argumentation formalism
can be considered for modeling and solving decision prob-
lems. Motivated by this question, we will here introduce an
argumentation formalism to represent problems in which
both the probability of states and utility over outcomes play
a role in making decisions. Then in our future work, we
generalize abstract dialectical framework (ADF) solvers
to numerical abstract dialectical frameworks (nADFs) to
make a decision automatically.

The main goal of this paper is to investigate how an argu-
mentation formalism can accommodate a decision problem.
We model scenarios with utility, using a formalism of ar-
gumentation that will allow us to compute the maximum
expected utility of a problem with the help of semantics of
that argumentation framework. To this end, we introduce
numerical Abstract Dialectical Frameworks (nADFs for
short), which are a generalization of abstract dialectical
frameworks, introduced first in [8] and then revised in [9],
as a generalization of Dung’s argumentation frameworks
(AFs) [14]. An nADF shows how the structure of argu-
ments can be constructed from a given knowledge base and
how arguments interact with each other. In argumentation
formalisms like AFs and ADFs the area that deals with eval-
uating arguments is called semantics. Semantics are criteria
used to select subsets of available arguments that satisfy
desirable properties. We follow the same way in our work
to choose the best action in the nADF which is constructed
based on a decision problem. We do not claim whether our
results will make decision theory computationally more
efficient. The reasons why we combined decision theory
with ADFs are as follows:

• Argumentation theory can shed light on the process
of decision making, from modeling to evaluating a
problem. ADFs are expressive formalisms in that area.

• Decision theory uses the well-known tools of proba-
bilities and utilities, of which the relation with argu-
mentation theory are still to be well-understood.

In nADFs as well as ADFs, each argument is associated
with an acceptance condition. However, in contrast with

ADFs, the language used to define acceptance conditions
of nADFs is a variation of propositional logic allowing
numerical calculation.

This paper is organized as follows. In Section 2 we sum-
marize the relevant background. In particular, we provide
a short reminder on decision problems, expected utility
theory and ADFs. In Section 3, the structures of numerical
abstract argumentation frameworks, which are generaliza-
tion of ADFs, are introduced. Semantics of nADFs are
defined based on many-valued interpretation on rational
numbers of the unit interval. In Section 4, we investigate
how nADFs can be used to model decision problems, that
is, how an nADF can be constructed from a given decision
problem. Then, we show that in the constructed nADF all
semantics collapse to the same set of interpretation. More-
over, it is shown how this unique interpretation can be used
to choose the best action. Finally, in Section 5 we will sum-
marize and conclude the presented results and refer to the
open questions we would like to address next. Moreover,
we compare nADFs with two argumentation formalisms,
ADFs and weighted abstract dialectical frameworks [11],
which form a generalization of ADFs.

2. Background

In this section we summarized, decision problems, expected
utility theory and abstract dialectical frameworks.

2.1. Decision Problems

Decision making under uncertainty infuses the life of every
decision maker, which can be an individual, an organization
or a society. To say that a decision is made by a decision
maker, called an agent, means an action among the set
of actions A is chosen to be done. Uncertainty in decision
making means an available action may lead to the set of out-
comes O. The outcome of each decision is also influenced
by some external factors which are called states S .

Following the example introduced in the introduction,
Maryam can choose whether to buy a health insurance.
The consequences of her decision depend on whether she
gets emergency surgery abroad. That is, Maryam’s deci-
sion depends on the probability of getting an emergency
surgery. Beyond the probability of states, Maryam’s deci-
sion depends on her preferences on the consequences. For
instance, she prefers not to buy a health insurance and not to
get a surgery to other consequences. However, she prefers
to spend 100 euros to buy a health insurance rather than
to spend at least 10,000 euros to get emergency surgery.
The basic model of decision under uncertainty is a table
or matrix in which the columns are labeled with states and
the rows are labeled with actions and the consequence of
picking an action in each state is an outcome, as depicted
in Figure 1. The notation o1 �p o2 means an agent strictly

247



Probabilities, Utilities and Decisions in ADFs

state→ s1 s2 · · · sn
act ↓
a1 o11 o12 · · · o1n
...

am om1 om2 · · · omn

Figure 1: The table of a decision-making problem

prefers o1 to o2, o1 ∼p o2 means o1 and o2 are equally pre-
ferred by an agent or an agent is indifferent between o1 and
o2, and o1 �p o2 means o1 is preferred at least as much as
is o2. The preference relation �p over the set of outcomes
is called rational iff it is transitive and complete. The tech-
nical name for the value of a possible outcome is utility.
In [6, 28], utility is interpreted as a measure of pleasure or
happiness. Contemporary decision theorists typically inter-
pret utility as a measure of preference [32, 33, 26]. That
is, it is not the case that an agent prefers outcome o1 over
o2 because o1 generates a higher utility than o2. But for an
agent, o1 has a higher utility than o2 because she/he prefers
o1 to o2.

Definition 1 Given �p a rational order over the finite set
of outcomes O. A function u : O→ R is called a utility
function that represents �p if, for every two outcomes o1
and o2, u(o1) ≥ u(o2) iff o1 �p o2.

In Cantor’s result characterizing dense order, dating from
around 1895, it is presented that a binary relation �p over a
finite set can be represented by a real-valued function u if
and only if �p is a rational order. Note that in the current
paper, utility functions are defined over [0,1]∩Q, in which
Q denotes the set of rational numbers. A decision problem
is formally defined in Definition 2.

Definition 2 A decision problem is a tuple (A,S ,O, p,u)
where:

• A is a finite set of actions that can be chosen by an
agent;

• S is a finite set of states;

• O is a finite set of outcomes;

• p is a probability function on states, p : S → [0,1]
such that Σs p(s) = 1;

• u is a utility function on outcomes, u : O→ [0,1]∩Q.

The criterion that deals with the analysis of situations
where individuals must make a decision without know-
ing which outcomes may result from that decision (act) is
called expected utility, which was first introduced by Daniel
Bernoulli in his work on a paradox of probability [2]. Ex-
pected utility theory (EUT) states that a decision maker

chooses among actions A under uncertainty by comparing
the expected utility [18, 21, 33] of each action computed
as the sum of the utilities of outcomes which are weighted
by states respective probability. EUT is a standard theory
of individual choice under uncertainty. The expected utility
theory says the higher the expected utility of an action is,
the better to be chosen. The expected utility of each act
a ∈ A depends on two features of the problem: The value
of each outcome o ∈ O forms an agent’s standpoint, the
utility of an outcome, u(o); and the probability of each state
s conditional on action a and outcome o is represented as
p(s|a,o).

Definition 3 Let A be a set of acts that could be chosen
by an agent, S a set of states, and O a set of outcomes. The
expected utility of a ∈ A is defined as:

EU(a) = Σo∈O p(s|a,o)u(o)

In expected utility theory, probability can be interpreted
as subjective estimate by the individual or as objectively
obtained from relevant (past) data. The former is a measure
of individual degrees of belief as described in [23, 25].
However, probability can be interpreted as an objective
chance as in [33, 32]. In the current work, p(s|a,o) is the
probability of state s that, when combined with the act a,
leads to the outcome o. The principle of maximum expected
utility (MEU) says that a rational agent should choose the
action that belongs to the set of actions with maximum
expected utility. An action a belongs to the set of maximum
expected utility if for each a′ ∈ A, EU(a) ≥ EU(a′).

2.2. Abstract Dialectical Frameworks

An abstract dialectical framework (ADF) is a directed graph
in which nodes represent statements, positions or argu-
ments. Links indicate relations among nodes that can be
beyond simple attack. The conditions under which a node
n is accepted are indicated by an acceptance condition
Cn attached to the argument, which is a function from a
subset of par(n) to one of the truth value t or f, where
par(n) = {a | (a,n) ∈ L}. ADFs are defined formally as fol-
lows.

Definition 4 [8, 9, 10] An abstract dialectical framework
(ADF) is a tuple D = (N,L,C) where:

• N is a finite set of nodes (arguments, statements, posi-
tions);

• L ⊆ N ×N is a set of links;

• C = {Cn}n∈N is a collection of total functions Cn :
(par(n)→ {t, f})→ {t, f}.

Acceptance conditions in finite cases can be equivalently
represented as propositional formulas using atoms from
par(n), that is, C is {ϕn}n∈N , a collection of propositional
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formulas ϕn. Thus, ϕn represent a truth function Cn as a
propositional formula i.e., whenever v : par(n)→ {t, f} is a
truth function, then Cn(v) is the evaluation of ϕn under v.

Definition 5 Let D = (N,L,C) be an ADF, a three-valued
interpretation v is a function that maps each argument to
either true (t), false (f) or undecided (u). It is called a
two-valued interpretation (or a total interpretation) if all
arguments are mapped to either t or f.

The truth values {t, f,u} are partially ordered by information
ordering ≤i such that u<i t and u<i f and no other pair in <i.
The pair ({t, f,u},≤i) is a complete meet-semilattice with
the meet operator u, such that, tu t = t, fu f = f, and returns
u otherwise. The meet of two interpretations v and w is then
defined as (vuw)(n) = v(n)uw(n) for all n ∈ N. LetV3 be
the set of all three-valued interpretations of D. The ordered
pair (V3,≤i) is a partially ordered set (poset) in which an
interpretation w ∈ V3 is at least as informative as another
interpretation v ∈ V3, denoted by v ≤i w, if v(n) ≤i w(n) for
each n ∈ N. The set of all total interpretations that extends v
is denoted by [v]2 = {w ∈V2 | v≤i w} such thatV2 is a set of
all total interpretations. When the logical language which is
used in acceptance conditions is a language of propositional
logic, for any interpretation v we have Cn(v) = v(ϕn). That
is, the acceptance condition Cn evaluates v just as partial
evaluation of ϕn under v.

Semantics for ADFs are introduced based on character-
istic operator ΓD over three-valued interpretations, which
maps interpretations to interpretations. For an ADF D,
given an interpretation v (for D) ΓD is defined as follows:

ΓD(v) = v′ such that v′(n) =
�
{Cn(w) | w ∈ [v]2}

That is, given an interpretation v, for each argument n, the
operator returns the meet of all total extension of v on n.

It is shown in [9] that the semantics of ADFs are gen-
eralization of AFs semantics. Different semantics reflect
different types of point of view about the acceptance of
arguments. Semantics of ADFs are based on the concept
of admissibility. In ADFs an admissible interpretation does
not consist of any unjustifiable information.

In particular, an interpretation v for a given ADF D is
called admissible iff v ≤i ΓD(v); it is complete iff v = ΓD(v);
it is grounded iff is the ≤i-least fixed-point of ΓD; it is
preferred iff it ≤i-maximal admissible (resp. complete); it
is two-valued model iff it is two-valued and ∀n ∈ N : v(n) =

v(ϕn).
The intuition of semantics which are defined in ADFs

are as follows. An interpretation is called preferred if it
represents maximum information about arguments with-
out losing admissibility. An interpretation is complete if
it exactly contains justifiable information. In addition, an
interpretation is grounded if it collects all the information
that is beyond any doubt. Further, an interpretation is two-
valued model if it exactly consists of justifiable information

and does not contains any argument with undecided truth
value.

3. Numerical Abstract Dialectical
Frameworks

In many argumentation situations it is natural to assume
n-valued acceptance degree of arguments, for n > 3. For
instance, if one wants to investigate in a given semantics
(preferred, complete, . . . ) whether the probability of a state
is below/above of some threshold in an interpretation.

In this section we introduce a modification of ADFs
called numerical abstract dialectical frameworks (nADFs).
nADFs enhance ADFs by allowing numerical acceptance
conditions of arguments and arithmetical computations
among them. The logic used to define the acceptance condi-
tions of arguments in nADFs is a variation of propositional
logic, defined in Definition 6.

Definition 6 This logic contains:

• a countably infinite number of variables: x1, x2, . . .;

• a countably infinite number of constants which are
called propositional atoms: a,b, s, . . .;

• truth constants: > and ⊥;

• the connectives of propositional logic: ∧,∨,¬;

• binary function symbols: ⊕ and ⊗;

• a binary predicate symbol � that takes entities in the
domain of discourse as input while outputs are either
1 (True), 0 (False), or u (unknown or undecided).

The set of terms {t1, t2, . . .} is inductively defined by the
following rules:

• any variable and any propositional atom is a term;

• applying of each binary function of the language on
two terms t1 and t2 also results in a term, for instance,
t1⊗ t2;

• nothing else is a term.

The set of formulas is inductively defined by the following
rules:

• any formula of propositional logic is also a formula;

• for arbitrary terms t1 and t2, t1 � t2 is a formula;

• nothing else is a formula.

Note that interpretations of the connectives and function
symbols of Definition 6 are given below in Section 3.1. An
nADF is introduced in Definition 7.

Definition 7 Let V be [0,1]∩Q. An nADF is a tuple U =

(N,L,C, i) in which the following hold:
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• N is a finite set of nodes;

• L ⊆ N ×N is a set of links;

• C = {Cn}n∈N is a collection of total functions called
acceptance conditions over V, that is, Cn : (par(n)→
V)→ V;

• i is a function called input function , i : N′→ V where
N′ ⊆ N.

Note that this definition is a generalization of Definition 4 of
ADFs. In the current work, the Cn correspond to formulas
of the language introduced in Definition 6 indicated by ϕn.
Note that the set of links L is also implicitly determined by
the acceptance conditions.

An nADF, just like an ADF, is a directed graph in which
nodes indicate arguments or statements and links represent
relations between statements. Each node n has an attached
formula, denoted by ϕn, of the logical language introduced
in Definition 6, which is a language of propositional logic
with new binary functions: ⊕ used for the plus function
and ⊗ used for the times function, plus a binary relation
� used for the preference relation. In Definition 7, i is a
partial function on nodes; however, i(n) does not appear in
the acceptance conditions. It is used to indicate the input
value of n and i(n) is called input value of n. Input function
i is used in the computation of semantics of nADFs. In our
setting, i(n) will be used to represent the probabilities of
states and the utilities of outcomes. In general, if i(n) is
defined in an nADF, this does not mean that the degree of
acceptance of ϕn is i(n) or the initial value of n is i(n), but
the input value that is considered for n is i(n). For instance,
an atom n can be used to show the number of heart-beats
per minute and i(n) indicates the normal number of heart-
beats per minute. The input value of normal heart-beats i(n)
can be compared with a person’s number of heart-beats n
or can be used in an equation to decide whether a person’s
heart beats normally, but it does not mean that n is assigned
the value i(n). Example 1 is an abstract nADF with three
arguments. Their values in an interpretation are computed
in Example 3. In Section 4 we give a concrete example in
terms of decision making.

Example 1 Let U = ({a,b,c},L, {ϕa,ϕb,ϕc}, {i(b) =

1/5, i(c) = 4/5}) be an nADF in which ϕa = a, ϕb =

b ∨ ¬a, ϕc = (a ⊗ c) � b, depicted in Figure 2. In this
nADF, function i is defined on b and c and this means
that the input value of b is 1/5 and the input value of c is
4/5. The acceptance condition of a says that the degree
of acceptance of a depends only on a. The acceptance
condition of b says the degree of acceptance of b depends
on the degree of acceptance of b and ¬a. The acceptance
condition of c is composed from the predicate � on terms;
a⊗ c and b.

nADFs are also used to answer queries, for instance, in Ex-
ample 1 an nADF can be used to clarify for which amount

a b

c

a b⊕¬a

(a⊗ c) � b

Figure 2: nADF of Example1

of a the acceptance condition of c is 1 (true). The com-
putation of acceptance degrees of nodes is introduced in
Section 3.1.

3.1. Semantics of nADFs

Semantics of nADFs indicate the degree of acceptance of
each argument and they are introduced based on many-
valued interpretation given below.

Definition 8 A many-valued interpretation v for an nADF
U is a function mapping each argument to a rational
number in the unit interval or to undecided (u), namely
v : N→ Vu such that Vu = ([0,1]∩Q)∪{u}.

The definition is a generalization of three-valued interpre-
tation of ADFs (Definition 5). That is, an interpretation
assigns a rational number between 0 and 1 or u to the nodes
of an nADF. The intuition of 0, 1 and u is that an argument
is false (rejected), true (accepted) or unknown (undecided),
respectively. Any number between 0 and 1 assigned to an
argument shows the degree of acceptance. Interpretations
can be extended to assign a degree of acceptance to each
acceptance condition. The evaluation of the acceptance con-
dition of each argument n under a given interpretation v is
a partial evaluation of ϕn under i-correction v introduced
in Definition 9.

Definition 9 Let U = (N,L,C, i) be an nADF and let v be
a many-valued interpretation. The i-correction of v under
U denoted by v is defined such that v(n) = i(n) if i is defined
on n ∈ N in U and v(n) = v(n) otherwise.

The evaluation of non-standard connectives, functions and
the predicate � under the i-correction of a given interpreta-
tion v in a given nADF U is as follows.

Definition 10 Given an nADF U = (N,L,C, i), let v be a
many-valued interpretation. The partial evaluation of ac-
ceptance conditions under v is defined inductively as fol-
lows, in which v is the i-correction of v under U, lowercase
a, b are propositional atoms, uppercase A, B are formulas
and t1, t2 are terms.
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v(A∧B) := min{v(A),v(B)},
v(A∨B) := max{v(A),v(B)},
v(¬A) := 1−v(A),
v(a⊗b) := v(a)×v(b),
v(a⊕b) := v(a) + v(b),

v(t1 � t2) :=


1 if v(t1),v(t2) ∈ Q and v(t1) ≥ v(t2),
0 if v(t1),v(t2) ∈ Q and v(t1) < v(t2),
u if either v(t1) or v(t2) is undecided.

Here, multiplication × on rational numbers of the unit inter-
val is the standard multiplication. Moreover, u×0 = 0×u =

0 and u×n = n×u = u for n , 0. Also, + and − on rational
numbers of the unit interval are the standard addition and
subtraction, respectively, such that n−u = u−n = u + n =

n + u = u for n ∈ Q∩ [0,1]. Finally, v(A∨B) and v(A∧B)
are u if either v(A) or v(B) is u.

The set of all many-valued interpretations over N is de-
noted byV, i.e.V = {v | v : N → Vu}. Interpretations can
be ordered by the ordering <i which assigns a greater value
to the rational numbers of the unit interval than to u, that is,
u <i x for x ∈ [0,1]∩Q. The reflexive, transitive closure of
<i is ≤i i.e. u ≤i u and x ≤i x for each x ∈ [0,1]∩Q. Thus,

v1 ≤i v2 iff for each n ∈ N, v1(n) ≤i v2(n)

Note that in the current work we assume that all ratio-
nal numbers are incomparable via ≤i. That is, for each
x,y ∈ [0,1]∩Q, neither x <i y nor y <i x, which is a proper
generalization of the information ordering defined in Sec-
tion 2.2 for ADFs.

Definition 11 Let V be the set of all many-valued inter-
pretations and let v1 and v2 be two interpretations ofV. v2
is called an extension of v1 if v1 ≤i v2. v1 and v2 are called
incomparable and it is denoted by v1 / v2 if neither v1 ≤i v2
nor v2 ≤i v1.

The least interpretation, which is called trivial interpreta-
tion, is the one that maps all arguments to undecided, which
is denoted by vu : N→ {u}.

Example 2 Let v = {a 7→ u, s 7→ u,o 7→ 1/3},v1 = {a 7→
u, s 7→ 1/10,o 7→ 1/3} and v2 = {a 7→ u, s 7→ 1/10,o 7→ 1/2}
be three interpretations ofV. Since v and v1 are equivalent
on an argument which is assigned to a rational number by
v and v(s) <i v1(s), v1 is an extension of v. However, v2 and
v are incomparable v / v2, because neither v(o) ≤i v2(o)
nor v2(o) ≤i v(o).

Definition 12 Let v ∈ V be a many-valued interpretation.
Then an extension w of v is called a completion of v if it is a
total interpretation. The set of completions of v is denoted
by [v]c.

Semantics of nADFs, similarly to semantics of ADFs de-
fined in Section 2.2, are defined based on a characteristic

operator ΓU on many-valued interpretations which are or-
dered by ordering ≤i, which shows that nADFs are appro-
priate generalization of ADFs. The operator ΓU transforms
interpretations of nADFs into others, ΓU : V →V. The
operator takes a many-valued interpretation v as an input
and returns a many-valued interpretation ΓU (v). For a given
nADF U = (N,L,C, i), the characteristic operator ΓU on
an argument n for the given interpretation v is a meet of
completions of v on n.

Definition 13 Let U = (N,L,C, i) be an nADF, let v be an
interpretation and let ϕn be an acceptance condition of n.
The operator ΓU (v) yields a new interpretation:

ΓU (v) : N→ Vu with n 7→
�
{w(ϕn) | w ∈ [v]c}.

Some of the different types of semantics of nADFs are
given below. These are the same as the semantics of stan-
dard ADFs when interpretations are three-valued and input
function i does not define on any argument.

The intuition of defining semantics of nADFs is exactly
the same as the intuition of semantics of ADFs, presented
in Section 2.2.

Definition 14 Let U = (N,L,C, i) be an nADF, let v be an
interpretation and let v be the i-correction of v under U.
An interpretation v is:

• admissible in U iff v ≤i ΓU (v);

• complete in U iff v = ΓU (v);

• grounded in U iff v is the ≤i-least fixed point of ΓU ;

• preferred in U iff v is ≤i-maximal admissible;

• model in U iff v = ΓU (v) and ∀n ∈ N, v(n) , u;

Note that in Definition 14, ΓU is applied to v, the i-
correction of v under U. The sets of adm(U), com(U),
grd(U), prf(U) and mod(U) denote the set of all admissi-
ble interpretations, complete interpretations, the unique
grounded interpretation, preferred interpretations and
model of U, respectively.

Example 3 Continuing Example 1, let v = {a 7→ 0,b 7→
u,c 7→ u}. The i-correction of v under U is v = {a 7→ 0,b 7→
1/5,c 7→ 4/5} since i is defined on b and c. Since none
of the arguments of v assign to u, [v]c = {v}. Therefore,
v(ϕb) = v(b∨¬a) = max{v(b),v(¬a)}= max{i(b),1−v(a)}=
max{1/5,1} = 1. That is, ΓU(v)(b) = 1. In the same way,
since v(a⊗c) = v(a)× i(c) = 0 and v(b) = 1/5, v(a⊗c)< v(b)
and ΓU (v)(c) = v(ϕc) = 0. Since ΓU (v) = {a 7→ 0,b 7→ 1,c 7→
0} and v ≤i ΓU (v), v is an admissible interpretation of U. In
addition, ΓU (v) is a preferred interpretation, a complete in-
terpretation, and a model of U. However, the revision of the
trivial interpretation vu under ΓU is vu, which is the unique
grounded interpretation and a complete interpretation of
U as well but not a preferred interpretation.
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4. Embedding of Decision Problems in
nADFs

In this section we investigate how the standard decision
problems introduced in Definition 2 can be embedded in
nADFs. Since there are three main different types of argu-
ments, namely act, state and outcome, in a decision prob-
lem, different symbols are used for distinct types of them.
Circles are used to show act nodes; diamonds are clarify-
ing state nodes; and boxes illustrate outcome statements,
depicted in Figure 3.

Definition 15 A decision problem D = (A,S ,O, p,u) can
be modeled by nADF UD = (N,L,C, i) as follows:

• N = A∪S ∪O;

• ϕs = s for s ∈ S ;
ϕo = o for o ∈ O;
ϕai =

⊗
i,k(
⊕

j(s j⊗oi j) �
⊕

j(s j⊗ok j)) for ai ∈ A;

• i(s) = p(s) for s ∈ S and i(o) = u(o) for o ∈ O.

Self-loops in a graph of a decision problem can be utilized
as a guess whether or not to accept an argument or to which
extent to accept an argument. For instance, self-loops on
state nodes are used to show that the degree of acceptance
of each state node depends on the probability of occurrence
of that state. This notion leads to name this type of links
as self-dependent links; the set of self-dependent links is
denoted by Rd. Self-dependent links are reflexive relations
that can be defined on N. In nADFs, any other link which
is not self-dependent is called an event link; the set of event
links is denoted by Re. In the nADF depicted in Figure 3,
(s1, s1) ∈ Rd and (s1,a1) ∈ Re. Since both the probability of
occurrence of states and the utility of outcomes play a role
in choosing actions, there are event links from states and
outcomes to actions. The degree of acceptance of states
only depends on the probability of occurrence of that state.
Therefore, the acceptance condition of each state node
s ∈ S is ϕs = s. Similarly, the degree of the acceptance
of outcomes only depends on the utility of that outcome
from an agent point of view, that is, ϕo = o for each o ∈ O.
Thus, in each nADF there exists a self-dependent link on
each state and outcome node. The acceptance condition of
each action is defined in a way that the best action can be
chosen via semantics. That is, ϕai =

⊗
i,k(
⊕

j(s j⊗oi j) �⊕
j(s j ⊗ ok j)) for ai ∈ A. To model decision problems by

nADFs, function i on each state node s is equivalent with
p(s) and on each outcome node o is u(o). In the current
work, we assume that in a decision problem an agent is
aware of the probability of states and her/his utility of each
outcome. That is, the values of these functions are part of
an input of the decision problem.

Example 4 Continuing the example introduced in Sec-
tion 1 in which Maryam wants to decide whether to buy the

international health insurance the following propositional
atoms are used to model this knowledge base.

a1: Maryam buys the international health insurance.

a2: Maryam does not buy any international health
insurance.

s1: Maryam gets emergency surgery when she is
abroad.

s2: Maryam does not get emergency surgery when she
is abroad.

o11: Maryam gets emergency surgery when she is
abroad and it is paid by the health insurance com-
pany.

o12: Maryam buys the international health insurance
but she does not use it.

o21: Maryam gets emergency surgery when she is
abroad and she has to pay by herself.

o22: Maryam does not buy the international health
insurance and she does not need it.

We assume that p is a probability function on states,
that is, p(s1) shows the probability of Maryam gets emer-
gency surgery when she is abroad and p(s2) indicates the
probability of Maryam does not get emergency surgery
when she is abroad. Assume that p(s1) = 1/10 and p(s2) =

9/10. Maryam’s preference order on outcomes is as fol-
low: o22 �p o12 �p o11 �p o21. The utility function u
which keeps the same order, from Maryam’s point of view,
is: u(o22) = 7/8,u(o12) = 5/8,u(o11) = 1/2,u(o21) = 3/8.
Therefore, this problem is modeled by decision problem
D = ({a1,a2}, {s1, s2}, {o11,o12,o21,o22}, {p(s1), p(s2)},
{u(o11),u(o12),u(o21)}).
The corresponding nADF of D is UD = (N,L,C, i) where N
= {a1,a2, s1, s2,o11,o12,o21,o22}, C = {ϕa1 = ⊕ j(s j⊗o1 j) �
⊕ j(s j⊗o2 j),ϕa2 =⊕ j(s j⊗o2 j)�⊕ j(s j⊗o1 j),ϕs1 = s1,ϕs2 =

s2,ϕo11 = o11,ϕo12 = o12,ϕo21 = o21,ϕo22 = o22} and {i(s1) =

p(s1), i(s2) = p(s2), i(o11) = u(o11), i(o12) = u(o12), i(o21) =

u(o21), i(o22) = u(o22)}), depicted in Figure 3.

The notation Xv
x is used to show the set of arguments of

X which are assigned to x by v such that x ∈ X and X
can be either A, S or O. For instance, in Example 2 that
v = {a 7→ u, s 7→ u,o 7→ 1/3}, Av

1 = {} and S v
1/10 = {s}.

Example 5 Continuing Example 4, let v = {a1 7→ 1,a2 7→

u, s1 7→ u, s2 7→ 1/5,o11 = u,o12 = 5/8,o21 = u,o22 = u}.
Intuitively, interpretation v want to investigate whether it
is reasonable for an agent pick action a1 when she/he only
knows the probability of occurring of s2 and utility of output
o12, as input values. Particularly, in the current example,
Maryam wants to decide whether it is reasonable for her to
buy the international health insurance when she assumed
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a1 a2

s2s1

o11 o12 o21 o22

o11 o12 o21 o22

s1 s2

Figure 3: nADF of whether to buy international health in-
surance, used in Example 4

that the probability of not getting emergency surgery is 1/5
and her utility of buying the international health insurance
and not using it is 5/8. To do so, we compute the revise
of v by ΓU , v1 = ΓU (v) = {a1 7→ 0,a2 7→ 1, s1 7→ 1/10, s2 7→

9/10,o11 = 1/2,o12 = 5/8,o21 = 3/8,o22 = 7/8}. Since v
and v1 are incomparable on a1 and s2, v �i v1. That is, v
is not an admissible interpretation of UD. That is, based
on this piece of information that is presented in v, it is not
reasonable that Maryam pick a1. However, v1 is the unique
complete interpretation of UD. That is, if the information
of Maryam increases to v1 about the probabilities of states
and utilities of outcome, then choosing a2, is a feasible
choice for Maryam.

The constructive proof of the uniqueness of the model in an
nADF which is constructed based on a decision problem is
investigated by Proposition 16.

Proposition 16 Let D = (A,S ,O, p,u) be a decision prob-
lem and let UD = (N,L,C, i) be the corresponding nADF.
Let v be an arbitrary interpretation of UD and let v be the
i-correction of v under UD. The least fixed point of ΓUD on
v is a model of UD.

Proof Let v be an arbitrary interpretation on UD and let
v be the i-correction of v under UD. By the definition of
acceptance conditions of states and outcomes nodes and
the definition of ΓUD , v1 = ΓUD(v) assigns each state node
to its probability, each outcome node to its utility, and after
computation each action to either 1 or 0. Moreover, the
value of actions, states and outcomes nodes do not change
by iteration of this operator on v1. That is, v1 is the least
fixed point of ΓUD . If v ≤i v1, then v1 is the least fixed point
of ΓUD and v is an admissible interpretation. However, if
v and v1 are incomparable, then v1 is the least fixed point
of ΓUD and v is not an admissible interpretation. Therefore,
in all cases v1 is the least fixed point of ΓUD , v1 = ΓUD (v1).
Since v1(n) , u for each n ∈ N, v1 is a model of UD.

Corollary 17 Assume that a decision problem D =

(A,S ,O, p,u) is modeled by nADF UD = (N,L,C, i). All se-
mantics of UD coincide.

Proof Let v be an arbitrary interpretation and let v be the i-
correction of v under UD. By Proposition 16 the least fixed
point of ΓUD on v is a model of UD and by the Definition 14
it is a preferred interpretation. By the Definition 14, each
grounded interpretation is a complete interpretation. It is
enough to show that this complete interpretation is unique.
Thus, all semantics of UD are equivalent. Toward a contra-
diction, assume that |com(UD)| > 1, then by the definition
ucom(UD) is the least fixed point of ΓUD that cannot be
a model of UD. This is a contradiction by the assumption
that the least fixed point of ΓUD is a model of UD.

Theorem 18 investigates how semantics of nADFs can
be used to choose the set of the best actions of decision
problems of an agent.

Theorem 18 Let D = (A,S ,O, p,u) be a decision problem,
let UD = (N,L,C, i) be the corresponding nADF, and let v
be the grounded interpretation of UD, which is also the
unique preferred interpretation, complete interpretation
and model of UD. Then the set Av

1 of actions evaluated as 1
in the grounded interpretation v equals the set of actions
with maximal expected utility in the decision problem D.

Proof It is enough to show that Av
1 is non-empty. Toward

a contradiction, assume that Av
1 is the empty set. Since

v is the grounded interpretation by Corollary 17 v is a
model of UD, as well. If Av

1 is empty, then all a ∈ A are
mapped to 0 by v. That is, for each i there exists k such
that v(

⊕
j(s j ⊗oi j) �

⊕
j(s j ⊗ok j)) = 0. That is, for each

ai there exists ak such that the expected utility of ai is less
than the expected utility of ak. It is a contradiction by the
assumption that the number of actions are finite, therefore,
Av

1 is non-empty. If ai ∈ Av
1, by the definition of ϕai the

expected utility of ai is greater or equal with any other
actions. That is, ai is the best action to do.

5. Related Works and Conclusion
In the paper, argumentation is formally connected to deci-
sion making, by developing a formal connection between
argumentation formalisms and EUT. This is significant for
argumentation since the general issue how argumentation
relates to the standard setting of EUT is not fully under-
stood. This paper provides a step in that understanding. The
result is significant for decision making since an argumenta-
tion perspective provides insight in how to defend different
positions, which remains unaddressed in theories of deci-
sion making. Generally, it is relevant to study the bridging
of qualitative and quantitative theories (here: ADF as a
theory of argumentation and EUT as a theory of decision
making).
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This paper proposes an argumentation formalism, nu-
merical abstract dialectical frameworks (nADFs), that can
model standard decision problems. In [7, 16, 17, 30], other
formalisms for modeling a decision problem are presented.
The ability of doing arithmetical calculation makes nADFs
an applicable formalism in decision-making problems, for
example, in the medical domain. Our proposal specifically
generalizes abstract dialectical frameworks ADFs to allow
the modeling of standard decision problems. ADFs are spe-
cial cases of nADFs in which formulas are limited to the
standard language of propositional logic, i is empty, and the
semantics is defined based on three-valued interpretations.

Semantics of nADFs are defined based on many-valued
interpretations, similarly to weighted abstract dialectical
frameworks wADFs [11], which are also generalizations of
ADFs. A weighted ADF is a tuple (N,L,C,V,≤i) in which
V indicates the set of truth values of arguments and ≤i is
an ordering on V . That is, semantics of wADFs are also
defined based on many-valued interpretation. To do cal-
culation in nADFs, the set of truth values is fixed to the
rational numbers of the unit interval and the information
ordering is a generalization of the standard information
ordering defined in ADFs. The language which is used in
the acceptance conditions of nADFs is a variation of the
language of propositional logic, with two new function
symbols ⊗ and ⊕ and a predicate �, and the partial function
i in nADFs. These additions empower the formalism to
represent arithmetical calculations. In general, nADFs are
not a special case of wADFs. However, if in an nADF the
formulas are restricted to propositional logic and the input
function is empty, then it can also be viewed as a wADF
in which the set of truth values V is [0,1]∩Q and ≤i is a
standard generalization of information ordering in ADFs.

It is constructively proven in [13] that in each acyclic
ADF, all semantics coincide. In the current work, it is shown
that in each nADF that formalizes a decision problem, all
semantics coincide, as well. In Section 4 it is shown how
an nADF can be constructed for a decision problem for a
single-agent system to choose the best action. As to future
work, it can be investigated whether nADFs can be used
for modeling decision problems in multi-agent systems.
In addition, t would be interesting to investigate whether
nADFs are powerful enough to answer queries, for instance,
“for which probabilities of needing an emergency surgery
Maryam will decide to buy an insurance?” Where the an-
swer can be an interval of probabilities. Moreover, the
computational complexity of decision problems in nADFs
can be studied. Finally, it can be interesting to study sim-
ulation experiments that show the effectiveness of nADFs
modeling decision problems.
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