
Abstract

In recent years, the combinatorics of argumentation
with arguments that can attack each other has been
studied extensively. Especially, attack graphs (put
in the focus of attention by Dung's seminal work
1995) have proven to be a productive tool of analy-
sis. In this paper a new style of algorithm is pre-
sented that computes the minimal admissible sets
containing or attacking the argument. It is a
breadth-first algorithm using labelings. The algo-
rithm is applied to the computation of the preferred
and stable extensions of a given attack graph.

1 Introduction

The formal study of argumentation with arguments and their

counterarguments in terms of argument attack graphs [Dung

1995] has proven to be fruitful. Dung introduced several

different argumentation semantics, of which especially the

grounded and preferred semantics have been the topic of

further study. A central decision problem is to determine

credulous acceptance (see, e.g., [Cayrol, Doutre & Mengin

2003], [Dunne & Bench-Capon 2002, 2003]): given an ar-

gument attack graph and an argument, determine whether

the argument is an element of some preferred extension.

The present paper provides an algorithm for the com-

putation of credulous acceptance. The approach is based on

labelings, which leads to a different kind of algorithm than

the more common argument game approaches. Argument

games are a kind of dialogues in which a proponent tries to

defend an argument, while an opponent tries to attack it. A

natural idea in argument game approaches is to defend

against the most recently proposed arguments first.
1

As a

result, in an argument games approach, it is natural to con-

sider the elements of an attack tree in a depth-first manner.

The main contribution of the paper is a breadth-first al-

gorithm in terms of labelings that answers the credulous

acceptance problem for the preferred semantics. Formally

proven results about labelings show the correctness of the

algorithm. By the nature of the algorithm short proofs and

1
 Natural, but not necessary: see e.g. [Cayrol et al. 2003].

refutations of arguments are returned: the minimal admissi-

ble sets containing or attacking a given argument, respec-

tively. As an encore, a straightforward way is provided to

construct all preferred extensions of an argumentation

framework, essentially by 'gluing' proofs and refutations.

2 Analyzing attack graphs in terms of sets

and in terms of labelings

The starting point of Dung's [1995] work is an argumenta-

tion framework, which is essentially a directed graph ex-

pressing the attack relations between arguments:

Definition (1). An argumentation framework is a pair

(Arguments, Attacks), where Arguments is any set, and

Attacks is a subset of Arguments _ Arguments. The ele-

ments of Arguments are the arguments of the theory, the

elements of Attacks the attacks.

When (Arg, Arg') is an attack, the argument Arg is said to

attack the argument Arg'. A set of arguments Args is said to

attack an argument Arg if and only if there is an element of

Args that attacks Arg.

A useful shorthand for the specification of (finite) ar-

gumentation frameworks is as a set of lists of arguments.

Each list of arguments in the set expresses attacks of the

first argument in the list. For instance, the set of lists {a b1

b2, b1 c1 c2, b2 c3 c4} denotes the argumentation frame-

work, in which the argument a is attacked by b1 and b2,

while b1 is attacked by c1 and c2 and b2 by c3 and c4. It can

be useful to require of this shorthand that an attack list con-

tains all attackers of its first element, but this is not neces-

sary and reduces flexibility of the notation.

In the rest of the paper, an argumentation framework AF

= (Arguments, Attacks) is silently assumed. Some of Dung's

central notions are the following:

Definition (2). 1. A set of arguments Args is conflict-free

if it contains no arguments Arg and Arg', such that Arg at-

tacks Arg'.

2. An argument Arg is acceptable with respect to a set of

arguments Args if for all arguments Arg' in the argumen-

tation framework the following holds:

If Arg' attacks Arg, then there is an argument Arg'' in

Args, such that Arg'' attacks Arg'.
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3. A set of arguments Args is admissible if it is conflict-

free and all arguments in Args are acceptable with respect

to Args.

4. An admissible set of arguments Args is a complete ex-

tension if each argument that is acceptable with respect to

Args is an element of Args.

5. A preferred extension of an argumentation framework

is an admissible set of arguments, that is maximal with

respect to set inclusion.

6. A conflict-free set of arguments Args is a stable exten-

sion of an argumentation framework if for any argument

Arg of the framework that is not in Args, there is an argu-

ment Arg' in Args, such that Arg' attacks Arg.

The complete extension that is minimal with respect to set

inclusion (which exists and is unique; see [Dung 1995]) is

called the grounded extension.

In this paper, instead of sets, labelings are used as analy-

sis tool. An early use of the labeling approach for Dung's ab-

stract argumentation frameworks is by Verheij [1996], con-

tinued using a more expressive language in [Verheij 2003b].

Recently, Caminada [2006] has resumed the analysis of ar-

gumentation frameworks in terms of labelings.

Definition (3). A pair (J, D) is a labeling if J and D are

disjoint subsets of the set Arguments of the argumentation

framework. The elements of J and D are the justified and

defeated arguments, respectively. The elements of J � D

are labeled, other elements of Arguments unlabeled.

A convenient shorthand notation for a (finite) labeling (J, D)

is as a list of arguments, some of which appear between

parentheses. The arguments in parentheses are those in D.

For instance, using this shorthand, a (b1) c1 (b2) c3 denotes

the labeling in which the arguments a, c1 and c3 are justi-

fied and the arguments b1 and b2 defeated. Grouping the

arguments in J and in D this becomes a c1 c3 (b1 b2). When

there are no defeated arguments, this can be indicated as ().

The following definition contains the main notions of

the labeling approach.

Definition (4). 1. A labeling (J, D) is conflict-free if the

set J is conflict-free.

2. A labeling (J, D) has justified defeat if for all elements

Arg of D there is an element in J that attacks Arg.

3. A labeling (J, D) is closed if all arguments that are at-

tacked by an argument in J are in D.

4. A conflict-free labeling (J, D) is attack-complete if all

attackers of arguments in J are in D.

5. A conflict-free labeling (J, D) is defense-complete if all

arguments of which all attackers are in D are in J.

6. A conflict-free labeling (J, D) is complete if it is both

attack-complete and defense-complete.

7. A labeling (J, D) is a stage if it is conflict-free and has

justified defeat.

Caminada's [2006] reinstatement labelings are closed com-

plete labelings with justified defeat. The set of labelings of

an argumentation framework AF is denoted as LabelingsAF.

The following properties summarize the relations be-

tween the set and labeling approach.

Properties (5). Let J be a set of arguments and D be the

set of arguments attacked by the arguments in J. Then the

following properties obtain:

1. J is conflict-free if and only if (J, D) is a labeling.

2. J is admissible if and only if (J, D) is an attack-

complete stage.

3. J is a complete extension if and only if (J, D) is a com-

plete stage.

4. J is a preferred extension if and only if (J, D) is an at-

tack-complete stage with maximal set of justified argu-

ments.

5. J is a stable extension if and only if (J, D) is a labeling

with no unlabeled arguments.

Proof omitted.

It is useful to introduce a name for minimal admissible sets:

Definition (6). An admissible proof (or proof, for short)

for an argument Arg is an admissible set containing Arg

that is minimal with respect to set inclusion. An admissi-

ble refutation (or refutation, for short) against an argu-

ment Arg is an admissible proof for an attacker of Arg.

It is important to note that the existence of a refutation of an

argument does not only imply that the argument is in no

preferred extension, but only that there is a preferred exten-

sion attacking the argument.

3 Computing credulous acceptance

Before we turn to the algorithm some remarks about the

approach are in use. What is the nature of the 'solutions' we

are looking for? Consider an argumentation framework in

which there is an argument a with two attackers b1 and b2,

which on their turn have two attackers each (arguments c1

to c4), and these are again each attacked by two attackers

(arguments d1 to d8). The relevant part of the attack graph

is shown in Figure 1. It is assumed that the figure shows all

attackers at at most three attack levels from argument a.

There are for instance no other attackers of a than b1 and

b2. The dots indicate that higher attack levels are omitted.

Given this partial view of the attack graph, what can be

said about the proofs and refutations of the argument a? Of

course we cannot determine 'complete' proofs and refuta-

tions, but we know what the 'three-levels deep' partial proofs

and refutations must look like if they exist. The figure

shows a possible partial proof (on the left) and a possible

partial refutation. In the partial proof, a is justified (light

grey). Hence both its attackers must be defeated (dark grey).

Since a proof is minimal, a partial proof only needs to con-

tain one attacker against a's attackers. Therefore the second

attack level allows four different possible partial proofs, one

for each minimal choice of c's attacking the b's. In the fig-

ure, the arguments c1 and c3 are chosen and consequently

labeled as justified. The third attack level is then again de-

termined: the attackers of the c's that are justified must all be

defeated. As a result, there exist four possible partial proofs

of the argument a. A similar analysis shows that there are

eight possible partial refutations, one of which is shown on



the right in the figure. Each possible partial refutation is

determined by a choice between the two b's at attack level 1

followed by two choices from a pair of d's at attack level 3.

Figure 1: a possible partial proof and refutation

for a three levels deep part of an attack graph

Note that possible partial proofs and refutations are in-

deed only possible, in the sense that they are not necessarily

the part of an actual proof or refutation. The unshown parts

of the attack graph may obstruct a possible partial proof or

refutation from being extended to an actual one. For in-

stance, the shown possible partial proof (on the left) is not

an actual partial proof if the figure already shows all attack-

ers of the argumentation framework since, in that case, there

is no way of defending against the d's. Using the terminol-

ogy associated with labelings, the defeat of the d's cannot be

justified. Similarly, the shown possible partial refutation is

not an actual partial refutation if for instance d1 has exactly

one attacker that is itself unattacked.

Notwithstanding this possibility of possible partial

proofs and refutations becoming 'blocked' by knowing more

about the attack graph, each is genuinely possible, in the

sense that there exist extended attack graphs in which a pos-

sible partial proof or refutation is actualized. For instance,

the possible partial proof shown is realized when the attack

graph contains exactly one unattacked attacker for each of

the defeated D's, and the possible partial refutation is actu-

alized when the attack graph is already complete.

The discussion of the possible partial proofs in this ex-

ample provides a good illustration of the computational ap-

proach in this paper. Formally, two functions on labelings

are central in the algorithm: ExtendByAttack and ExtendBy-

Defense. Both return a set of labelings given a labeling as

input. The function ExtendByAttack: LabelingsAF � � (La-

belingsAF) adds all attackers of the justified arguments of a

labeling to the set of defeated arguments:
ExtendByAttackAF((J, D)) := {(J, D') � LabelingsAF | D'

is the set D extended with all arguments attacking ar-

guments in J}

The function ExtendByAttack returns a set of labelings that

contains one element or is empty. ExtendByAttackAF(J, D) is

empty if and only if J is self-attacking: if one of the attack-

ers of an argument in J is an element of J, then (J, D'), where

D' is as in the definition of the function, is not a labeling

since this requires that J � D' is empty.

The function ExtendByDefense: LabelingsAF � �(La-

belingsAF) returns the set of labelings that result from ex-

tending the set of justified arguments of the input labeling in

a minimal way, such that all defeated arguments of the input

labeling are attacked by the justified arguments:
ExtendByDefense((J, D)) := {(J', D) � LabelingsAF | J'

is a conflict-free, minimal set of arguments � J, such

that for all arguments Arg in D there is an argument
Arg' in J' that attacks Arg}2

Extension by defense returns a set of labelings that can

contain zero, one or several elements. The following exam-

ple illustrates the two functions.

Example (7). Consider the argumentation framework AF =

{a b1 b2, b1 c1 c2, b2 c3 c4, c1 d1 d2, c2 d3 d4, c3 d5 d6,

c4 d7 d8}. It corresponds to the attack graph shown in Fig-

ure 1, assuming that there are no further arguments and at-

tacks than the ones shown. Some representative examples of

applying the two functions for this framework are as fol-

lows. They result from the repetitive application of the two

functions starting with the labeling a (), in which a is justi-

fied, as a 'seed':
ExtendByAttack(a ()) = {a (b1 b2)}

ExtendByDefense(a ()) = {a ()}
ExtendByAttack(a (b1 b2)) = {a (b1 b2)}

ExtendByDefense(a (b1 b2)) = {a (b1 b2) c1 c3, a (b1
b2) c1 c4, a (b1 b2) c2 c3, a (b1 b2) c2 c4}

ExtendByAttack(a (b1 b2) c1 c3) = {a (b1 b2) c1 c3
(d1 d2 d5 d6)}

ExtendByDefense(a (b1 b2) c1 c3) = {a (b1 b2) c1 c3}
ExtendByAttack(a (b1 b2) c1 c3 (d1 d2 d5 d6)) = {a

(b1 b2) c1 c3 (d1 d2 d5 d6)}
ExtendByDefense(a (b1 b2) c1 c3 (d1 d2 d5 d6)) = �

Starting with the labeling (a) in which the argument a is

defeated, the following are found:
ExtendByAttack((a)) = {(a)}
ExtendByDefense((a)) = {(a) b1, (a) b2}

ExtendByAttack((a) b1) = {(a) b1 (c1 c2)}
ExtendByDefense((a) b1) = {(a) b1}

ExtendByAttack((a) b1 (c1 c2)) = {(a) b1 (c1 c2)}
ExtendByDefense((a) b1 (c1 c2)) = {(a) b1 (c1 c2) d1

d3, (a) b1 (c1 c2) d1 d4, (a) b1 (c1 c2) d2 d3,
(a) b1 (c1 c2) d2 d4}

ExtendByAttack((a) b1 (c1 c2) d1 d3) = {(a) b1 (c1
c2) d1 d3}

ExtendByDefense((a) b1 (c1 c2) d1 d3) = {(a) b1 (c1
c2) d1 d3}

The functions ExtendByAttack and ExtendByDefense can be

extended to �(LabelingsAF) � �(LabelingsAF) by stipulating

the following (where L denotes a set of labelings):
ExtendByAttack(L) := {(J, U) | There is a (J', U') � L,

such that (J, U) � ExtendByAttack((J', U'))}

ExtendByDefense(L) := {(J, U) | There is a (J', U') � L,

such that (J, U) � ExtendByDefense((J', U'))}

We can now formally define the partial proof and partial

refutation options of an argument in an argumentation

framework. They are the labelings that result from the alter-

nating application of the (nonmonotonic) functions Extend-

2
A somewhat more exact, but less readable wording of the

constraint on sets J' is the following: J' is a conflict-free set of ar-

guments that is minimal with respect to set inclusion among the

sets of arguments J'' for which it holds that for all arguments Arg in

D there is an argument Arg' in J' that attacks Arg.



ByAttack and ExtendByDefense, starting with different seeds

(where n ranges over the natural numbers �0):
PartialProofOptions0(Arg) := {Arg ()}
PartialProofOptions2n+1(Arg) := ExtendByAt-

tack(PartialProofOptions2n(Arg))
PartialProofOptions2n+2(Arg) := ExtendByDe-

fense(PartialProofOptions2n+1(Arg))

PartialRefutationOptions0(Arg) := {(Arg)}
PartialRefutationOptions2n+1(Arg) := ExtendByAt-

tack(PartialProofOptions2n(Arg))
PartialRefutationOptions2n+2(Arg) := ExtendByDe-

fense(PartialProofOptions2n+1(Arg))

The elements of PartialProofOptionsn(Arg) are referred to as

the partial proof options of the argument Arg at attack level

n , the elements of PartialRefutationOptionsn(Arg) are its

partial refutation options at attack level n.

Definition (8). A proof option is a labeling (J, D), such

that there is an n0 � 0, such that for all n � n0 it holds that

(J, D) � PartialProofOptionsn(Arg). A refutation option is

a labeling (J, D), such that there is an n0 � 0, such that for

all n � n0 it holds that (J, D ) � PartialRefutationOp-

tionsn(Arg).

The lowest value of n0 as in this definition is the depth of

the proof or refutation option.

It holds that, if (J, D) is a proof or refutation option, then

(J, D) � ExtendByAttack((J, D)) and (J, D) � ExtendByDe-

fense((J, D)).

Example (7), continued. The following table shows that

there are no proof options and eight refutation options for

the argument a.
Partial proof options
0: a

1: a (b1 b2)
2: a (b1 b2) c1 c3, a (b1 b2) c2 c3, a (b1 b2) c1 c4, a (b1 b2) c2 c4

3: a (b1 b2) c1 c3 (d1 d2 d5 d6), a (b1 b2) c2 c3 (d3 d4 d5 d6),
a (b1 b2) c1 c4 (d1 d2 d7 d8), a (b1 b2) c2 c4 (d3 d4 d7 d8)

4: none, since the d's cannot be defended against

Partial refutation options
0: (a)

1: (a) b1, (a) b2
2: (a) b1 (c1 c2), (a) b2 (c3 c4)

3+: (a) b1 (c1 c2) d1 d3, (a) b1 (c1 c2) d1 d4,
(a) b1 (c1 c2) d2 d3, (a) b1 (c1 c2) d2 d4,

(a) b2 (c3 c4) d5 d7, (a) b2 (c3 c4) d5 d8,
(a) b2 (c3 c4) d6 d7, (a) b2 (c3 c4) d6 d8

Example (9). AF = {a b c, b h j k, c e f, e g, f f, g e, j a}.

This example is used by Cayrol, Doutre & Mengin [2003,

p. 379] to illustrate their approach in terms of dialogues. It

further illustrates that partial proof and refutation options

are gradually constructed and can be discarded. The table

below shows that there are two proof options and no refuta-

tion options for the argument a. The computation of the

proof options is complete after the second level. Since b has

three attackers and c has two, there are six possible labelings

that must be considered. Four of them are immediately dis-

carded since they are not conflict-free. The remaining two

are proof options that correspond to the two minimal admis-

sible sets containing a. The computation of the refutation

options shows that none remain from the third level onward.

Indeed there exists no admissible set attacking a.

Partial proof options
0: a

1: a (b c)
2: a (b c) e h

a (b c) e j a attacks j
a (b c) e k

a (b c) f h f attacks itself
a (b c) f j a attacks j

a (b c) f k f attacks itself
3+: a (b c) e h (g), a (b c) e k (g)
Partial refutation options

0: (a)
1: (a) b, (a) c

2: (a) b (h j k), (a) c (e f)
3+: (a) b (h j k) a a is justified & defeated

(a) c (e f) f g f is justified & defeated

Example (10). AF = {a b, b c1 c2, c1 d, c2 e, d c1 c2, e c1

c2}. This argumentation framework shows how the labeling

approach deals with 'dependent choices'. When trying to

credulously prove a, a choice between c1 and c2 must be

made in order to defend against b. Further down the attack

graph, again a choice between c1 and c2 becomes available

(to defend against d and e). In a minimal proof, the choice

must be kept constant, as actually happens in our labeling

approach:
0: a; 1: a (b); 2: a (b) c1, a (b) c2; 3+: a (b) c1 (d), a (b)

c2 (e)

Since d is already attacked by c1 in the partial proof option

a (b) c1 (d) that appears at the third level, the c2-option of

attacking d is not considered.

We will show that partial proof and refutation options in-

deed produce proofs and refutations. The following lemma

is needed.

Lemma (11). 1. If (J, D) is a conflict-free labeling, then

the elements of ExtendByAttack((J, D)) and ExtendBy-

Defense((J, D)) are conflict-free.

2. A conflict-free labeling (J, D) is attack-complete if and

only if ExtendByAttack((J, D)) = {(J, D)}.

3. A conflict-free labeling (J, D) has justified defeat if

and only if (J, D) � ExtendByDefense((J, D)).

4. If (J, D) is a conflict-free labeling, such that (J, D) �

ExtendByAttack((J, D)) and (J, D) � ExtendByDefense((J,

D)), then J is admissible.

Proof omitted.

Theorem (12). If (J, D) is a proof or refutation option,

then J is admissible.

Proof. Proof and refutation options are the result of the

consecutive application of the functions ExtendByAttack

and ExtendByDefense starting from seeds that are con-

flict-free. Since the functions maintain conflict-freeness

(Lemma (11) under 1), proof and refutation options are

conflict-free. Since proof and refutation options are by

definition fixed points of the functions ExtendByAttack

and ExtendByDefense as in Lemma (11) under 4, the

theorem follows.

Theorem (13). Let AF be a finite argumentation frame-

work, J a set of arguments of the framework and D the set

of arguments attacking arguments in J.

1. If J is a proof of an argument Arg, then (J, D) is a proof

option for Arg.



2. If J is a refutation of an argument Arg, then (J, D) is a

refutation option for Arg.

Proof. 1. Let J be a proof of Arg. We inductively con-

struct a sequence (J(n), D(n)) for natural numbers n = 0,

1, 2, ..., as follows:
J(0) := {Arg}
J(2n+1) := J(2n)

J(2n+2) := some minimal subset of J that defends
against all elements of D(2n+1)

D(0) := �

D(2n+1) := D(2n) � {Arg' | Arg' attacks an argument

in J(2n)}
D(2n+2) := D(2n+1)

The J(2n+2)-step is non-constructive, but can be made by

the admissibility of J. It follows by induction from the

definitions and from the admissibility of J that, for all n,

(J(n), D(n)) � PartialProofOptionsn(Arg) and J(n) 	 J.

When n is larger then the depth of the attack graph (de-

fined as the maximum length of a non-looping or mini-

mally looping attack sequence
3
), we have that J(n) = J

(this uses the minimality of J), and (J(n), D(n+1)) = (J,

D) is a proof option. The proof of the second part is similar.

Example (14). AF = {a b, b c e, c d, d e}. This example

shows that sometimes a proof option contains redundant

justified arguments, and hence does not correspond to a

proof (which by definition must be minimal). The argument

a has two proof options, viz. a c e (b d) and a e (b), while

only the latter corresponds to a proof. The non-minimally

admissible set {a c e} arises since an early choice of de-

fense turns out to be redundant further down the attack tree.

The trace of partial proof options of a is as follows:
0: a; 1: a (b); 2: a (b) c, a (b) e; 3: a (b) c (d), a (b) e;

4+: a (b) c (d) e, a (b) e

The choice of c at level 2 becomes obsolete. Note also that

the proof option a e (b) is already complete at level 2.

Example (15). AF = {a b, b c1 c2, c1 d1 d2 d3, c2 d4, d1

e1, d2 e2, d3 e3, d4 e1, e1 f1 f2, e2 f3, f1 c2, f2 e2, f3

e3}. This example shows that a proof option of minimal

depth does not necessarily have a minimal set of justified

arguments, hence does not necessarily return a proof. This

argumentation framework has two proof options for the ar-

gument a. The first is a (b) c1 (d1 d2 d3) e1 e2 e3 (f1 f2

f3) c2 (d4) of depth 7, the second is a (b) c2 (d4) e1 (f1 f2)

e2 (f3) e3 of depth 8. The latter has {a, c2, e1, e2, e3} as

set of justified arguments, which is a proper subset of {a,

c1, c2, e1, e2, e3}, the set of justified arguments of the

former. Hence, the only proof of a corresponds to the deeper

proof option.

Corollary (16). If Arg has no proof, then Arg has no proof

options. If Arg has no refutation, then Arg has no refuta-

tion options.

Corollary (17). For finite argumentation frameworks, if

Arg has no proof, then there is an n0 � 0, such that for all

n � n0 it holds that PartialProofOptionsn(Arg) = �. If Arg

3
An attack sequence is minimally looping of it is not non-

looping, while all its proper initial parts are.

has no refutation, then there is an n0 � 0, such that for all

n � n0 it holds that PartialRefutationOptionsn(Arg) = �.

On the basis of the above, an algorithm can be built that

computes proof options of minimal depth for an argument

Arg given a finite argumentation framework AF:
Step 0: L := {Arg ()}.
Step 1: L' := ExtendByDefense(ExtendByAttack(L)).

Step 2: If there is a labeling (J, D) � L' � L, then re-

turn L' � L.

Step 3: If L = L', then stop and return L.

Step 4: Goto step 1.

For finite argumentation frameworks, the algorithm stops

since extension by attack and by defense either discards a

labeling, keeps it constant or increases the set of labeled

arguments in the labeling. When Arg has a proof, the algo-

rithm returns the proof options for Arg of minimal depth.

When Arg has no proof, the algorithm returns the empty set

(Corollary (17)). By leaving out Step 2, the algorithm re-

turns all proof options of Arg, hence all its proofs (Theorem

(13)). When Step 0 is replaced by L := {(Arg)}, the algo-

rithm computes refutation options.

The algorithm has been implemented (in Delphi 7 under

Windows XP) and tested using a set of test examples. It

computes all proof and refutation options for all arguments

of a given argumentation framework. One detail of the im-

plementation is not obvious: the way in which extension by

attack and by defense has actually been implemented. The

algorithm keeps track of the newly labeled arguments. For

extension by attack, only attackers of the arguments newly

labeled as justified are added. For extension by defense,

only defenses against the arguments newly labeled as de-

feated are added. To find minimal defense sets as in the

definition of extension by defense, the minimality is

checked of all sets that contain exactly one attacker against

all arguments that are newly labeled as defeated and that are

not yet attacked by a justified argument.

Example (18). DOUBLE(n) := {ai0 a(i+1)0 a(i+1)1, ai1 a(i+1)0

a(i+1)1 | i = 0, ..., n - 1}. DOUBLE*(n) := DOUBLE(n) � {ai0

bi | i = 1, ..., n}. This example illustrates the exponential

complexity of the computation of proof options (cf. the re-

sults by Dunne & Bench-Capon [2003]). The number of

proof/refutation options of DOUBLE(n) grows exponentially,

while DOUBLE*(n) has only one proof option or one refu-

tation option. The nature of DOUBLE*(n) is such that it

may be necessary to consider all (partial) proof/refutation

options of DOUBLE(n) to find this unique solution.

Example (19). DEEP&WIDE(n, m) := {a b, b ci0, cij dij, dkj
c(k + 1)j | i = 0, 1, ..., n - 1; j = 0, 1, ..., m - 1; k = 0, 1, ...,
m - 2}. DEEP&WIDE*(n, m) := DEEP&WIDE(n, m) � {b z}.

This example illustrates the possible advantage of the

breadth-first character of our approach. The argument a has

exactly one proof {a, z}. It corresponds to the proof option

a (b) z. The c-defenses against b all fail at the end of the c-d

sequences, since the final d 's cannot be defended against.

Since the proof option has depth 2, our approach quickly

finds it. Of course, the full width of the example (which

increases with the parameter n) must be considered at attack



level 2, but then the algorithm stops. For higher values of n,

a depth-first approach will have a lower chance of entering

the z-branch quickly and a higher chance of lingering in the

c-d chains. For higher values of m, this is more costly.

The algorithm above has been applied to compute the

preferred and stable extensions of argumentation frame-

works, as follows:
Step 0: Find all proofs and refutations of all arguments.

Step 1: Find the set DA of all credulously ambiguous ar-
guments.

Step 2: Choose a labeling (J, D) of DA in which all ele-
ments of DA are labeled (the 'disambiguation').

Step 4: If, for all elements of DA, there exists a proof or a
refutation option that is compatible with (J, D),

then goto Step 5, else goto Step 6.
Step 5: Collect all proof and refutation options compatible

with (J, D). Output their union as a preferred ex-
tension. When it has no unlabeled arguments, out-

put it as a stable extension.

Step 6: Choose the next disambiguation and goto Step 4.
If none exists, stop.

This algorithm uses the properties that the union of com-

patible admissible sets is again admissible and that two dif-

ferent preferred extensions must differ on some credulously

ambiguous argument.

4 Related research

Chesñevar & Simari [2006] and Dung, Kowalski & Toni

[2006] also deal with computational aspects of argumenta-

tion. Both focus on a different language than Dung's [1995]

attack graphs. Chesñevar & Simari include a notion of dia-

lectical constraints and Dung, Kowalski & Toni treat as-

sumption-based frameworks. Dunne & Bench-Capon [2002,

2003] use attack graphs and pay attention to the length of

disputes that show whether an argument can be successfully

justified or refuted. They prove a relation between their

formally defined notions of complexity of a dispute instance

and the rank of an argument (Theorem 4 on p. 232). Their

analyses focus on theoretical complexity results rather than

actual computation. Doutre & Mengin [2001] and Cayrol et

al. [2003] use a subset enumeration algorithm for the com-

putation of preferred extensions and a dialogue approach for

credulous acceptance. They apply terminology related to

graph theory, which is formally close to some of the label-

ing terminology used here. Verheij's [2003a] ArguMed

software computes stable extensions for an argumentation

language extending that of Dung's. The algorithm computes

the grounded extension and then tries to extend it to a stable

extension. The mentioned papers contain further references.

5 Conclusion

In this paper, the credulous acceptance problem has been

approached in terms of labelings. The new notions of (par-

tial) proof and refutation options have been proposed and

formally analyzed. As an application, an algorithm has been

described that computes whether an argument is credulously

acceptable. Variants of the algorithm compute all minimal

admissible sets of arguments containing or attacking a given

argument. A negative result (which also applies to existing

argument game approaches) is that in a special kind of

situation a non-minimal admissible set can be returned (Ex-

amples (14) and (15)), but always alongside the minimal

ones (Theorem (13)). The examples show that this is un-

avoidable: since computing admissibility requires that the

attack tree is gradually explored, only a kind of 'tree-

minimality' can be maintained. To ensure set-minimality, an

ultimate check is needed. An innovation is that it takes the

labeling approach. The labeling approach leads to an algo-

rithm of a different flavour than the more common argument

game approaches. In argument game approaches, it is a

natural choice to follow up on the last proposed argument,

which leads to a depth-first consideration of the attack tree.

In contrast, the algorithm proposed here is the first breadth-

first algorithm, which hence avoids the unnecessarily deep

consideration of attack graphs (cf. Example (19)). As an

application of the algorithm, it is shown how preferred and

stable extensions can be computed given the proofs and

refutations of the arguments in an argumentation framework

by a kind of gluing. Hence, the connection between the

computation of credulous acceptance and of preferred ex-

tensions is made explicit, in contrast with Cayrol, Doutre &

Mengin's work, who compute preferred extensions in terms

of set enumeration and credulous acceptance in terms of

dialogues. The algorithm has been implemented and tested

using a set of examples. It has been made available for

download (http://www.ai.rug.nl/~verheij/comparg/).
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