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Abstract

Errors in reasoning about probabilistic evidence can have severe consequences.
In the legal domain a number of recent miscarriages of justice emphasises how
severe these consequences can be. These cases, in which forensic evidence was
misinterpreted, have ignited a scientific debate on how and when probabilistic
reasoning can be incorporated in (legal) argumentation. One promising approach
is to use Bayesian networks (BNs), which are well-known scientific models for
probabilistic reasoning. For non-statistical experts, however, Bayesian networks
may be hard to interpret. Especially since the inner workings of Bayesian
networks are complicated, they may appear as black box models. Argumentation
models, on the contrary, can be used to show how certain results are derived
in a way that naturally corresponds to everyday reasoning. In this paper we
propose to explain the inner workings of a BN in terms of arguments.

We formalise a two-phase method for extracting probabilistically supported
arguments from a Bayesian network. First, from a Bayesian network we construct
a support graph, and, second, given a set of observations we build arguments from
that support graph. Such arguments can facilitate the correct interpretation and
explanation of the relation between hypotheses and evidence that is modelled in
the Bayesian network.

Keywords: Bayesian networks, argumentation, probabilistic reasoning,
explanation, inference, uncertainty

1. Introduction

Bayesian networks (BNs), which model probability distributions, have proven
value in several domains, including medical and legal applications [1, 2]. How-
ever, the interpretation and explanation of Bayesian networks is a difficult task,
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especially for domain experts who are not trained in probabilistic reasoning [3].5

Legal experts, for example, such as lawyers and judges, may be more accustomed
to argumentation-based models of proof because probabilistic reasoning is often
considered a difficult task [4, 5]. Recently, a scientific interest in combining
argumentation-based models of proof with probabilities has arisen [6, 7, 8, 9, 10].
One possible combination is the use of argumentation to explain probabilistic rea-10

soning. Argumentation is a well studied topic in the field of artificial intelligence
(see chapter 11 of [11] for an overview). Argumentation theory provides models
that describe how conclusions can be justified. These models closely follow the
reasoning patterns present in human reasoning. This makes argumentation an
intuitive and versatile model for common sense reasoning tasks.15

Argumentative explanations of Bayesian reasoning may prove helpful to
interpret probabilistic reasoning in legal cases. Existing explanation methods
for BNs can broadly be divided in two categories. First, the model itself can
be explained. See, for instance, the work of Lacave and Dièz or Koiter [12, 13].
Secondly, the evidence can be explained by calculating the so-called most probable20

explanation (MPE) or maximum a-posteriori probability (MAP) which is the most
likely configuration of a (sub)set of non-evidence variables [14]. A MAP/MPE
helps to explain the evidence, but does not explain why the posterior probabilities
of variables of interest are high or low nor do they explain the reasoning steps
between evidence and hypotheses. In this paper we take a third approach to25

explaining, which is to explain the derivation of probabilities resulting from the
calculations in the BN and explain those using reasoning chains that have a
clear argumentative interpretation. This resembles the work of Suermondt [15]
although that does not apply argumentation, and the work of Schum [16] which
is an informal approach to explaining Bayesian networks in argumentative30

terms. We formalise a method for extracting arguments from a BN, in which we
first extract an intermediate support structure, which subsequently guides the
argument construction process. This results in numerically backed arguments
based on probabilistic information modelled in a BN. We apply our method to a
legal example but the approach does not depend on this domain and can also be35

applied to other fields where BNs are used. Our method thus serves as a general
explanation method for BNs.

In earlier work [17] we introduced the notions of probabilistic rules and
arguments and a simple algorithm to extract those from a BN. For larger
networks, however, this algorithm, which exhaustively enumerates every possible40

probabilistic rule and argument, is computationally infeasible because it examined
inferences between all combinations of variable assignments. We improve on this
by searching for explanations in nearby nodes only. Moreover, the algorithm
from [17] does unnecessary work because many of the enumerated antecedents will
never be met, resulting in irrelevant rules. Similarly, many arguments constructed45

in this way are superfluous because they argue for irrelevant conclusions from
which no further inference is possible. Improving on this work, we proposed
a new method that addresses these issues [18]. In this method, the process
of argument generation is split into two phases: from the BN, first, a support
graph is constructed for a variable of interest, from which arguments can be50
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Suspect committed crime

Suspect had motive DNA matches

Psychologists confirms

Figure 1: An example of a complex argument. Every box represents one argument and the
arrows show how subarguments support conclusions.

generated in a second phase. This eliminates the aforementioned problem of
unnecessarily enumerating irrelevant rules and arguments. As a side-effect this
also has the advantage that the support graph is independent of the evidence.
When observations are added to the BN, only the resulting argumentation
changes. In [18] we introduced an algorithm for the first phase but the second55

phase was only described informally. In [19] we further formalised the support
graph generation phase and we proved a number of properties of this formalism.
The current paper further extends [19]. Extensions include the addition of a
more elegant and intuitive definition of support graphs and a proof that our
algorithm correctly computes such a graph. We have also added a more detailed60

discussion of the support graph and argument construction method using small
examples. Furthermore, we have formalised the second (argument generation)
phase and added a case study using an example BN from the literature.

In Section 2 we will present backgrounds on argumentation and BNs. In
Section 3 we formally define and discuss support graphs. Using the notion65

of a support graph we introduce a formalisation of argument construction in
Section 4. We apply this method in a case study in Section 5.

2. Preliminaries

2.1. Argumentation

In argumentation theory, one possibility to deal with uncertainty is the use of70

defeasible inferences. A defeasible rule (as opposed to a strict, or deductive,
inference rule) can have exceptions. In a defeasible rule the antecedents do not
conclusively imply the consequence but rather create a presumptive belief in
it. Using (possibly defeasible) rules, arguments can be constructed. Figure 1,
for instance, shows an argument graph with three nested arguments connected75

by two rules. From a psychological report it is derived that the suspect had a
motive and together with a DNA match this is reason to believe that the suspect
committed the alleged crime.

Argumentation can be used to model conflicting or contradictory information.
This is modelled by attack between arguments. Undercutting and rebutting80

attacks between arguments with defeasible rules have been distinguished [20]. A
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rebuttal attacks the conclusion of an argument, whereas an undercutter directly
attacks the inference. An undercutter exploits the fact that a rule is not strict
by posing one of the exceptional circumstances under which it does not apply.
In this paper we do not use undercutting and undermining, which is the third85

form of attack that can be present in the general case of ASPIC+. The attack
relation between arguments can be analysed and from it the acceptability of
arguments can be determined.

Different formalisations of argumentation systems exist [21, 22, 23, 24]. The
formalisation of arguments that we will provide is an instantiation of ASPIC+.90

We adopt ASPIC+ since it is a state-of-the art formalism for structured argu-
mentation and since it contains all the elements we need, namely, unattackable
premisses, defeasible rules and an abstract notion of argument preference which
can be instantiated in several ways. By this framework we inherit known re-
sults [25] on the rationality postulates that have been developed for structured95

argumentation [26].
We now describe a simplified version of ASPIC+ because we do not use strict

rules, presumed knowledge and we use only one type of attack. For a detailed
discussion of this framework we refer the reader to [25]. In ASPIC+ a logical
language (L) describes the basic elements that can be argued about. A negation100

function maps elements of this language to incompatible elements.

Definition 1 (Argumentation System [25]). An argumentation system (AS) is
a tuple AS = (L,̄ ,Rd) where:

L is a logical language

¯: L 7→ L is the negation function105

Rd is a set of defeasible inference rules of the form ϕ1, . . . , ϕn ⇒ ϕ (where
ϕ,ϕi are meta-variables ranging over wff in L).

The negation relation over the language can be generalised to something that is
called contrariness, but we do not require it in this paper.

As described by Pollock [27], defeasible rules are differentiated from strict110

rules (often denoted Rs in ASPIC+, although they are not used in this paper)
because defeasible rules allow for the existence of exceptions.

To reason with the language and the rules, a knowledge base is required.

Definition 2 (Knowledge base, after [25]). In an argumentation system AS =
(L,̄ ,Rd), a knowledge base is a set Kn ⊆ L.115

The general case of ASPIC+ distinguishes axiomatic knowledge Kn from pre-
sumed knowledge Kp for which Kn ∩ Kp = ∅ and Kn ∪ Kp = K. In such a
distinction Kn cannot be disputed, whereas Kp can. Since we use the knowledge
base to represent the assignments to variables that are observed and we do not
wish to dispute observations, we do not use Kp in this paper. The combination of120

an argumentation system and a knowledge base forms an argumentation theory.
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Definition 3 (Argumentation theory, [25]). An Argumentation theory is a tuple
AT = (AS,Kn) consisting of an argumentation system AS and a knowledge base
Kn.

The contents of the knowledge base Kn and defeasible rules Rd is not specified125

by ASPIC+ and we will define these later for our specific instantiation.
An argumentation theory can be use to build an argument graph by starting

with evidence and repeatedly applying rules. ASPIC+ formalises this and defines
how these arguments attack each other.

Definition 4 (Argument, after [25]). Given an argumentation system AS and130

a knowledge base Kn, an argument A is one of the following:

• ψ if ψ ∈ Kn, and we define

Prem(A) = {ψ}
Conc(A) = ψ

Sub(A) = {ψ}135

TopRule(A) = undefined

ImmSub(A) = ∅
DefRules(A) = ∅

• A1, . . . , An ⇒ ψ if A1, . . . , An are arguments such that there is a defeasible
rule Conc(A1), . . . ,Conc(An)⇒ ψ in Rd, and we define140

Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An)

Conc(A) = ψ

Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}
TopRule(A) = Conc(A1), . . . ,Conc(An)⇒ ψ

ImmSub = {A1, . . . , An}145

DefRules(A) = DefRules(A1) ∪ . . . ∪DefRules(An) ∪ {TopRule(A)}

Note that we overload the ⇒ symbol to denote an argument while it was
originally introduced to denote defeasible inference rules. This is common
practice in argumentation and originates from [23]. In such an argument A, ψ is
referred to as the conclusion of A which is written as Conc(A). The last applied150

rule is referred to as the top-rule and written as TopRule(A). The arguments
A1, . . . , An are called immediate sub-arguments. The notation ImmSub(A) is
used for the set of immediate sub-arguments of A. By sub-arguments Sub(A) we
refer to subarguments of sub-arguments at any depth. By premises (Prem(A))
of an argument, we mean all sub-arguments that do not use a rule but an item155

from the knowledge base. The set DefRules(A) is used to denote all defeasible
rules used in the subarguments of A.

Definition 5 (Argument terminology, after [25]). An argument A is said to be
strict iff DefRules(A) = ∅ and defeasible otherwise.
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An argument can be attacked by rebutting it on a conflicting conclusion.160

Definition 6 (attack). Argument A attacks another argument B on B′ ∈ Sub(B)
iff A rebuts B on B′. Argument A rebuts argument B on B′ iff Conc(A) =
Conc(B′).

Informally, an argument rebuts another argument if it is incompatible with
one of the intermediate (or final) conclusions. The general case of the ASPIC+165

framework specifies two further ways in which arguments can attack each other
that we do not use in this paper.

To determine which arguments defeat each other, a binary preference ordering
4 is required. We denote the strict version of the ordering as A ≺ B when both
A 4 B and A 6< B which states that B is strictly preferred over A. We use170

A 6≺ B to denote that B is not strictly preferred over A. Such an ordering is
usually defined on the basis of an ordering of the defeasible rules, but in our case
it will be based on a notion of strength that is derived from the probabilities in
the BN.

Using an argument ordering, some of the attacks result in defeat of the175

attacked argument.

Definition 7 (Argument defeat, after [25]). Given a collection of arguments
A ordered by an ordering 4, a defeat relation D ⊆ A×A among arguments is
defined such that: argument A defeats argument B iff A rebuts B on B′ ∈ Sub(B)
and A 6≺ B′.180

In this way, arguments can be compared on their strengths to see which attacks
succeed as defeats. The set of arguments A and the defeat relation D can be used
as input to Dung’s theory of abstract argumentation [28]. On the basis of (A,D)
the acceptability of arguments can be determined. A number of admissible
extension semantics have been introduced.185

Definition 8 (Dung extensions, after [28]). Consider arguments A and defeat
relation D. Any argument A ∈ A is acceptable with respect to some set of
arguments S ⊆ A iff any argument B ∈ A that defeats A is itself defeated by an
argument in S. A set of argument S is conflict free if none of the arguments in
S attack each other. Then, a conflict free set of arguments S:190

• is an admissible extension iff A ∈ S implies A is acceptable w.r.t. S;

• is a complete extension iff A ∈ S whenever A is acceptable w.r.t. S;

• is a preferred extension iff it is a set inclusion maximal complete extension;

• is the grounded extension iff it is the set inclusion minimal complete
extension;195

• is a stable extension iff it is preferred and every argument outside S is
defeated by at least one argument that is in S.
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These extensions are all consistent sets of beliefs or points of view that can be
taken. The different extensions have different interpretations. The grounded
extension, for instance, represents the set of arguments that a rational reasoner200

should minimally accept.

2.2. Bayesian networks

When dealing with probabilistic evidence, often the likelihood ratio (LR) is used
as a measure of probative force. The LR expresses the relation between prior
and posterior belief in a hypothesis H being true or false upon observing some
evidence e:

P (H = true|e)

P (H = false|e)
=

P (H = true)

P (H = false)
· P (e|H = true)

P (e|H = false)

in which the fraction P (H = true)/P (H = false) is called the prior odds
and P (H = true|e)/P (H = false|e) the posterior odds. The ratio P (e|H =
true)/P (e|H = false) is the LR of this evidence. This formula is often treated205

as an update rule because it can be used to compute probabilities after observing
evidence from probabilities before observing that evidence. It is noteworthy that
prior and posterior are notions relative to this evidence. The rule can be invoked
multiple times by using the posterior of the first evidence as the prior of the
second computation. However, it is required that the second LR is calculated210

conditioned on all evidence that is already used in the prior. This makes such an
approach ideal if all evidence is independent of each other given the hypothesis,
but rather complicated if it is not.

When dealing with large amounts of evidence, often some independence
information is available. To exploit known independencies a Bayesian network215

(BN) can be used [29]. A BN allows for an efficient representation of the
independences among evidence, hypotheses and intermediate variables. A BN
contains a directed acyclic graph (DAG) in which nodes correspond to stochastic
variables. We introduce the following notational conventions for all graphs,
including the BN graph. We use Par(X) for the set of parents of node X and220

Cld(X) for the children of X. Descendants and ancestors will be written as
Descendants(X) and Ancestors(X) respectively. For sets of nodes we will use
similar notation in boldface fonts. I.e., Cld(X) (or Par(X)) denotes the union of
the children (or parents) of nodes in a set X. The set V and variables V1, V2, . . .
will exclusively refer to BN nodes whereas N and N1, N2, . . . will refer to nodes225

in a support graph as defined in the next section.
Every variable V has a number of mutually exclusive and collectively exhaus-

tive outcomes, denoted by vals(V ). Upon observing the variable, exactly one of
the outcomes will become true. Throughout this paper we will consider variables
to be binary-valued (boolean in our examples even). The reason for this is that230

we will use the likelihood ratio to compare arguments. This likelihood ratio can
only be used to compare two hypotheses with each other.

Definition 9 (Bayesian network). A Bayesian network is a pair (G,P) where
G is a directed acyclic graph (V,E), with a finite set of variables V connected
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by edges E = {(Vi, Vj)|Vi, Vj ∈ V and Vi is a parent of Vj)}, and P is a proba-235

bility function which specifies for every variable Vi the probability distribution
P(Vi|Par(Vi)) of its outcomes conditioned on the parents Par(Vi) of Vi in the
graph.

A BN models a joint probability distribution with independences among its
variables implied by d-separation in the DAG [30]. The conditional probability240

distributions together define a joint probability distributions from which any
prior or posterior of interest can be computed. When evidence has been observed,
we condition on this evidence e, consisting of a value assignment describing the
observed values of the instantiated variables. We say that those variables are
instantiated to their observed values.245

The directions of the arrows have no distinct meaning on their own, but
collectively they constrain the conditional independences between variables as
captured by d-separation. The concept of d-separation is defined in terms of
blocking and chains that can be active or inactive depending on the set of
instantiated variables.250

Definition 10 (chain). A path in a graph is simple iff it contains no vertex
more than once. A chain in a DAG is a simple path in the underlying undirected
graph.

Definition 11 (head-to-head node). A variable Vi is a head-to-head node with
respect to a particular chain . . . , Vi−1, Vi, Vi+1, . . . in a DAG G = (V,E) iff both255

(Vi−1, Vi) ∈ E and (Vi+1, Vi) ∈ E. I.e., it has two incoming edges on that chain.

Definition 12 (blocking chain). A variable V on a chain c blocks c iff either

• it is an uninstantiated head-to-head node without instantiated descendants,
or

• it is not a head-to-head node with respect to c and it is instantiated.260

A chain is active iff none of its variables is blocking it. Otherwise it is said to
be inactive.

Definition 13 (d-separation). Sets of variables VA ⊆ V and VB ⊆ V are
d-separated by a set of variables VC ⊆ V iff there are no active chains from any
variable in VA to any variable in VB given instantiations for variables VC .265

If, in a given BN model, VA and VB are d-separated by VC , then VA and VB

are probabilistically independent given VC .
An example of a BN is shown in Figure 2. This example concerns a criminal

case with five variables describing how the occurrence of some crime correlates
with a psychological report and a DNA matching report. The variables Motive270

and Twin model the presence of a criminal motive and the existence of an
identical twin. The latter can result in a false positive in a DNA matching
test. Since adding further evidence can either create or remove independences,
d-separation is a dynamic concept. In the example, instantiating the Motive
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Psych report
Motive true false
true 0.6 0.1

false 0.4 0.9

Crime
Motive true false
true 0.5 0.01
false 0.5 0.99

Twin
true 0.01

false 0.99

Motive
true 0.05

false 0.95

DNA match
Crime true false
Twin true false true false

true 1.0 1.0 1.0 10−6

false 0.0 0.0 0.0 1− 10−6

Figure 2: A small BN concerning a criminal case. The conditional probability distributions
are shown as tables inside the nodes of the graph.

variable will make the psychological report independent of the Crime. On the275

other hand, observing a DNA match will make the Crime and the presence of a
twin dependent, which they were not before.

Head-to-head connections can model intercausal interactions. These inter-
actions occur when two variables can cause the same reaction. In our example
Crime and Twin can both cause the DNA to match. When the DNA match is280

not observed they are independent of each other, but once the match is observed
they become dependent. However, the dependency is a negative correlation, even
though the DNA match variable features positive correlations with both parents.
This is the case because observing the existence of a twin explains away the
evidence. In a sense, no further explanation for the DNA match is expected.285

When the intercausal interaction creates a stronger correlation this is called
explaining in [31]. In the following we will also require the notions of a Markov
blanket and Markov equivalence [32].

Definition 14 (Markov blanket). Given a BN graph, the Markov blanket
MB(Vi) of a variable Vi is the set

Cld(Vi) ∪ Par(Vi) ∪ Par(Cld(Vi)) \ {Vi}

I.e., the parents, children and parents of children of Vi (but excluding Vi itself).

The Markov blanket d-separates a node from the rest of the network and is290

therefore a useful concept.

Definition 15 (Immorality [29]). Given a BN graph, an immorality is a tuple
(Va, Vc, Vb) of variables such that there are directed edges (Va, Vc) and (Vb, Vc) in
the BN graph but no edges (Va, Vb) or (Vb, Va).
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Definition 16 (Graph skeleton). The skeleton of a directed graph is the under-295

lying undirected graph.

Definition 17 (Markov equivalence [29]). Two BN graphs are said to be Markov
equivalent if and only if they have the same skeleton, and the same set of
immoralities.

Two Markov equivalent graphs capture the exact same independence relation300

among their variables. Two BNs with Markov equivalent graphs can therefore
describe the exact same joint probability distribution.

3. Support graphs

If a BN is given as input, some evidence can be entered in this probabilistic
model and the posteriors can be calculated. However, the results may not be very305

intuitive to understand. To explain the reasoning from evidence to hypothesis in
the Bayesian network, we therefore wish to extract arguments from the BN.

The process of argument generation can be split in two phases. We first
construct a support graph from a BN, and subsequently establish arguments
from the support graph. In this section we define the support graph and its310

construction and give an illustration of the construction of a support graph
in a small example BN. Moreover, we identify some useful properties of the
support graph. The motivation for this graphical transformation from the BN
to a support graph is that it abstracts away from the Bayesian network in a way
that retains the reasoning chains from the BN. As we will see later, these chains315

form the skeleton of the arguments, without dealing with evidence yet.
In previous work we developed a method to identify arguments in a BN setting

based on exhaustive enumeration of probabilistic rules and rule combinations [17].
A disadvantage of the exhaustive enumeration is the combinatorial explosion of
possibilities, even for small models. Using a support graph, we will be able to320

reduce the number of arguments that needs to be enumerated because only rules
relevant to the conclusion of the argument will be considered and we allow rules
between variables that are close to each other in the BN. We make this more
precise in the next section.

3.1. Definition325

Given a BN and a variable of interest V ?, the support graph is a template
for generating explanatory arguments. It captures the chains in the BN that
end with the variable of interest. As such, it does not depend on observations
of variables but rather represents the possible structures in arguments for a
particular variable of interest in a particular BN. This means that it can be used330

to construct an argument based on any set of observations, as we will show in
the next section. When new evidence becomes available the support graph can
be reused (presuming that the variable of interest does not change). This means
that the support graph should be able to capture the dynamics in d-separation
caused by different observations. Since d-separation is defined on chains we first335

introduce the notion of a support chain.
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V ?

Figure 3: Illustration of a support chain for variable of interest V ?. The BN edges are solid
and have open triangle tips. A possible support chain is shown in dashes and with pointy
arrow tips.

Definition 18 (Support chain). Given a BN ((V,E),P), a support chain for a
variable of interest V ? ∈ V is a sequence of variables that:

• follows a simple chain in the BN graph, except that for every immorality
(Vi, Vj , Vk) for which Vi, Vj , Vk is on that chain in the BN graph, Vj is340

skipped in the support chain;

• ends in V ?.

The intuition behind a support chain is that observations of a variable in
the BN will propagate through the graph and have some influence on V ?

through the other variables along these chains. From Pearl [33] we know that345

immoralities can create possible intercausal interactions that deserve special
attention: variables that are only connected through a head-to-head connection
are a-priori independent. Information should therefore not be propagated through
a head-to-head connection. Additional information can, however, create an
intercausal dependency. To explicitly capture the possibility of such an induced350

intercausal relation, we bypass the immoralities in the support chains and create
direct links between parents of a common child. In this way every support chain
represents a possibly active chain for some set of observations and any chain
that is active for some set of observations is represented by a support chain. An
example is shown in Figure 3.355

To capture all possible ways in which a variable V ? can be supported we define
the notion of a support graph, which can combine multiple support chains. These
support chains can be combined in many ways. The definition below defines
a family of support graphs that are all valid in the sense that every possible
support graph is represented. When used to construct arguments, however, we360

will see that one specific support graph is exceptionally useful and we provide
an algorithm that constructs this (in a sense minimal) support graph.

Definition 19 (Support graph). Given a BN ((V,E), P ) and a variable of
interest V ? ∈ V, a support graph is a pair (G,V) where G is an acyclic directed
graph (N,L) with nodes N and edges L, and V : N 7→ V associates a variable365

with every node, such that:

V(N1),V(N2), . . . ,V(Nn) is a support chain if and only if N1, N2, . . . , Nn

is a simple, directed path in G with V(Nn) = V ?.
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We will call Ni a supporter of Nj if Ni is a parent of Nj in the support graph,
i.e. there is an edge from Ni to Nj .370

If the BN graph is multiply connected, a variable may be reachable in more
than one way. In that case, it can be associated with more than one of the nodes
in the support graph. To distinguish between nodes in the support graph for the
same variable, a mapping V : N 7→ V is introduced that maps support graph
nodes to the corresponding variables. When confusion is not possible we will375

abuse terminology and call Vi a supporter of Vj when we intend to say that Ni

is a supporter of Nj for which V(Ni) = Vi and V(Nj) = Vj .
We will show later how active and inactive chains are treated when we use

the support graph to construct arguments about the case. Without knowing
which variables are instantiated, the paths in the support graph represent all380

possibly active chains in the BN.
One of the often misleading aspects of BNs is that directions of individual

arrows have no inherent meaning. Sometimes an arrow can be reversed without
consequences for the implied independence relation. This is captured by the
Markov equivalence property that we mentioned before. One of the advantages385

of support graphs is that they take away this confusing aspect. Indeed, we can
prove that Markov equivalent BNs generate the same support graphs.

Proposition 20. Given two Markov equivalent BN graphs G and G′, and a
variable of interest V ?, the sets of support graphs are identical for both BNs.

Proof. Markov equivalent BN graphs have the same skeleton and the same390

immoralities. Therefore, they must have the same support chains (which follow
the skeleton but bypass immoralities). The set of support chains uniquely defines
the possible support graphs, which must therefore be equal.

A trivial support graph can be constructed by simply enumerating simple chains
in the BN and creating a path for every such chain in the support graph, which395

results in a forest with as many components as there are simple chains in the
BN and every such component is a linear path. Since the number of simple
chains in a BN is of the order O(|V|!) this is not feasible, nor desirable, even for
small BNs. Instead, we introduce an algorithm that constructs a more concise
support graph in which paths with common prefixes are merged. This algorithm400

is shown in Algorithm 1 and illustrated in Figure 4.
The support graph construction algorithm, given in Algorithm 1, uses the

notion of a forbidden set of variables to maintain a list of variables that should
not be used in further support in that branch. This set is used to prohibit the use
of, for instance, cyclical reasoning, or reasoning along a head-to-head connection.405

Figure 4 shows the three cases of the forbidden set definition. The forbidden
set of a new supporter Ni for variable Vi always includes the variable Vi itself,
which prevents cyclic traversal of the BN graph and corresponds to the fact that
the support graph represents simple chains only.

As we have discussed, in a BN parents of a common child often exhibit410

intercausal interactions (such as explaining away), which means that if a child has
positive correlations with both parents, the parents can be negatively correlated
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function SupportGraphConstruction(G, V ?):
Input: G = (V,E) is the BN graph with variables V and edges E
Input: V ? is the variable of interest
Output: a support graph G = (N,L)
N := {N?} L := ∅
V(N?) := V ?

F(N?) := {V ?}
expand(G,N?)

function expand(G,Ni):
Input: G := (N,L) is the support graph under construction
Input: Ni is the support graph node to expand with Vi = V(Ni)
foreach Vj ∈ MarkovBlanket(V(Ni)) do

if Vj ∈ Par(Vi) \ F(Ni) then // case I

Fnew := F(Ni) ∪ {Vj}
AddSupport(G,Ni,Vj,Fnew)

else if Vj ∈ Cld(Vi) \ F(Ni) then // case II

Fnew := F(Ni) ∪ {Vj} ∪ {Vk|(Vi, Vj , Vk) is an immorality}
AddSupport(G,Ni,Vj,Fnew)

else if Vj ∈ Par(Vk) \ F(Ni) s.t. Vk ∈ Cld(Vi) then // case III

Fnew := F(Ni) ∪ {Vj , Vk}
AddSupport(G,Ni,Vj,Fnew)

function AddSupport(G,Ni,Vj,Fnew):
Get from G a node Nj with:

V(Nj) = Vj and
F(Nj) = Fnew

or create it if it does not exist in G
Add (Nj ,Ni) to L in G
expand(G, Nj)

Algorithm 1: Recursive algorithm to construct a support graph while building
forbidden sets F . Note that, although the order in which the support graph
is constructed is not deterministic, the output is not dependent on the order
in which nodes are added to the graph because new nodes do not depend on
other branches of the already constructed graph.
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Vj

Vi

case I

Vj Fnew = F ∪ {Vj}

Vi F

Vj

ViVk ...

case II

Vj Fnew = F ∪ {Vj , Vk, . . .}

Vi F

Vj Vi

Vk ...

case III

Vj Fnew = F ∪ {Vj , Vk}

Vi F

Figure 4: Visual representation of the three cases in Algorithm 1. A support node for variable
Vi can obtain support in three different ways from a variable Vj , depending on its graphical
relation to Vi. Note that every support node Ni is labelled with V(Ni) = Vi and F(Ni).

with each other. More generally, the influence between parents may be weaker
or stronger, and, in an extreme case, even have the opposite sign from what we
may expect based on the individual influences between the common child and415

the two parents. Supporting a variable Vi with one of its children Vj and then
supporting this child Vj by a parent Vk would incorrectly chain the inferences
through a head-to-head node even though an intercausal interaction is possible.
Therefore we ensure that this last step cannot be made, by including any other
parents that constitute immoralities with a shared child in the second case in the420

algorithm. A reasoning step that uses the inference according to the intercausal
interaction is allowed by the third case of the algorithm. In terms of the support
chains this disallows the traversal of a head-to-head connection that is involved
in an immorality and it creates the shortcut between the parents of a common
child. Note that the use of the intercausal reasoning step requires evidence to be425

present for the common child. Since the support graph is abstracted from the
collection of evidence we allow the step in the support graph, and ensure that
the subsequent argument construction verifies that premises and conclusions
taken from the support graph are indeed probabilistically dependent.

Theorem 21 (Correctness). Algorithm 1 creates a support graph G = ((N,L),V)430

for a variable of interest V ? of a BN (G = (V,E),P).

Proof. We prove this in two parts:

1. V maps every simple directed path in G ending with the root to a support
chain in G, and

2. for every support chain in G, there is a simple path to the root in G that435

is mapped to this support chain by V.
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Part 1. Any simple directed path in the support graph is constructed from the
steps in Algorithm 1 and therefore represents a sequence of nodes in the BN.
We need to prove that the sequence of mapped variables is a simple chain in
the BN graph where immoralities have been bypassed. By putting the visited440

variables in the forbidden set F it is ensured that this sequence is simple. What
remains to be shown is that every consecutive pair of support nodes maps to a
parent-child pair or a bypass of an immorality, and that no immoralities remain.
The former is ensured by the three cases in the algorithm. Every step either
goes to a parent or child, creating a parent-child pair in the chain, or to a445

parent of a child that together form an immorality. The latter (no immoralities
remain) follows from the addition of Vk to F in the second case of the algorithm
that makes it impossible to move to a parent after you move to a child in this
sequence.

Part 2. A support chain in G is a simple chain in which immoralities have450

been bypassed. We need to prove that all such chains have a corresponding
directed path in the graph found by the algorithm. We prove this by induction.
Suppose that, at some point during the construction, the last part of a support
chain starting at Vi and ending in V ? is already represented by a path in the
constructed support graph. Then, there is a leaf Ni in the support graph under455

construction with V(Ni) = Vi. The previous variable on the support chain Vj is
not in F(Ni) because in that case the support chain would either not be simple
or contains an immorality. Therefore Vj is added in one of the three cases of
the algorithm. Given that the end of every support chain V ? is added in the
first step of the algorithm, this inductively proves that all support chains are460

found.

The specific support graph constructed by Algorithm 1 has a number of interesting
properties that we will discuss later, but we first present a small step-by-step
example of this algorithm to familiarise the reader with the method.

3.2. Example of construction465

Let us now consider the example BN from Figure 2 and take Crime as the variable
of interest V ? since, ultimately, that is the variable under legal debate, which
models whether or not the crime was committed by the suspect. The construction
steps are shown in Figure 5. We initiate support graph construction by creating
one solitary node N? with this variable as its root, i.e. V(N?) = Crime. The470

forbidden set for this node is simply {Crime} (step 1 in the figure). We then
add nodes to the support graph by trying all three extension steps as described
above. The Crime node has a parent and a child which has another parent, so all
three cases apply (exactly once) and we create three supporters in the support
graph. First, the Crime node can be supported by its parent (Motive). This475

confirms our intuition that the existence of a motive for the suspect affects our
belief in the suspect having committed the crime. Secondly, the Crime node can
also be supported by its child (DNA match) because a match is strong evidence
for the suspect’s guilt. And thirdly, outcomes of the Crime variable may be
supported by outcomes of the parent of a child node Twin. This corresponds to480
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the fact that finding that the suspect has an identical twin explains away the
evidence of the DNA match. These three have been added in step 2 of Figure 5.

Let us now consider the forbidden sets starting with the last supporter (Twin).
When using a head-to-head connection in the BN to find support, the common
child is added to the forbidden set, which then becomes {Crime, DNA match,485

Twin}. This eliminates any further support because it covers the entire Markov
blanket of the Twin node. For the second supporter (DNA match), the forbidden
set is exactly the same because now the child is the supporter itself (and is added
to F for that reason) and any other parents (Twin in this case) are added to the
forbidden set as prescribed by the algorithm. Again, the entire Markov blanket490

of the DNA match variable is covered by the forbidden set and no further support
is possible. For the first supporter that we mentioned (Motive), however, one
additional supporter can be added. The forbidden set of the support graph node
for Motive that we created will be {Crime, Motive}. This means that the child
Psych report can be used to support outcomes of the Motive variable (step 3).495

This is the result of the fact that the Bayesian network captures the correlation
between having a motive and a psychological report on finding this motive. No
further support can be added for the Psych report variable and the support
graph construction is finished.

3.3. Properties of the support graph algorithm500

We now describe some properties of our algorithm to construct support graphs
that serve to illustrate the way in which support graphs capture an efficient
argumentative representation of what is modelled in a BN.

Property 22. Given a BN with G = (V,E), Algorithm 1 constructs a support
graph containing at most |V| · 2|V| nodes, regardless of the variable of interest.505

Proof. Variables can occur multiple times in the support graph but never with
the same F sets (see the definition). This set contains subsets of other variables
and therefore 2|V| is a strict upper bound on the number of times any variable
can occur in the support graph. The total number of support nodes is therefore
limited by the expression |V| · 2|V|.510

This is a theoretical upper bound. In practice the number of support nodes will
often be significantly smaller when the BN graph is not densely connected. In
the special case where the BN is singly connected we can prove that the support
graph contains exactly the same number of nodes as the BN.

Definition 23 (singly connected graph). A directed graph is singly connected515

iff the underlying undirected graph is a tree.

Many known graph algorithms that have an exponential worst case running
time on multiply connected inputs, have polynomial running times for singly
connected graphs. This also holds for our support graph construction algorithm:

Property 24. Given a BN graph G = (V,E) and the support graph G = (N,L)520

constructed by Algorithm 1 for some variable of interest. If G is singly connected,
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(step 1)

Crime

{Crime}

(step 2)

Crime

{Crime}

Motive{
Crime

Motive

}
Twin




Crime

Twin

DNA match





DNA match



Crime

DNA match
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(step 3/final support graph)
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Motive{
Crime

Motive

}
Twin




Crime

Twin

DNA match





DNA match
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DNA match
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Crime

Motive
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Figure 5: The steps in the construction of the support graph corresponding to the example
in Figure 2 with V ? = Crime. For every node Ni we have shown the variable name V(Ni)
together with the forbidden set F(Ni). Multiple edges (Vi, V ), . . . , (Vk, V ) into the same node
are represented by a hyperedge.
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every variable occurs exactly once in G and the size of the support graph is
|N| = |V|.

Proof. A variable can in theory occur multiple times in the support graph, but
this only happens when the graph is loopy (multiply connected). In a singly525

connected graph there are no loops. This means that using the three available
steps from Algorithm 1, the recursive construction encounters every variable
exactly once after which it will be forbidden in the ancestors of the resulting
support node and unreachable in the BN from any other branch of the support
graph.530

Specifically, the number of support nodes for a single variable Vi is bounded
by the number of simple chains from Vi to V ? which is smaller for less densely
connected graphs. The sparser the BN graph, therefore, the more the support
graph will approach size |V |.

This shows that the support graph is a concise model to represent the535

inferences in a BN. We have already seen that support graphs abstract from the
sometimes confusing interpretation of the directions of edges. From the bounds
on the size of the support graph a bound on the complexity of the algorithm
can easily be derived. Specifically, the expand() function is called once for every
node in the final graph and has itself a worst case complexity of O(|V|) because540

it loops once over the Markov blanket of each variable which could contain
all other variables in the graph in the worst case. The worst case complexity
of Algorithm 1 is therefore bounded by O(|V|2 ∗ 2|V|) in general and O(|V|2)
for singly connected graphs. One of the reasons why BNs are popular as a
model for probability distributions is that they provide a considerable reduction545

in computational power when the graph is not densely connected. A similar
improvement holds for our algorithm. In practice, the Markov blankets often
contain only a relatively small portion of the other variables in the BN, resulting
in fast execution times.

We have already proven in Theorem 25 that two Markov equivalent graphs550

share the same set of possible support graphs for a specific node of interest.
We now show that for our algorithm we can prove that Markov equivalent BN
graphs result in a single unique support graph.

Theorem 25. Given two Markov equivalent BN graphs G and G′, and a variable
of interest V ?, the two support graphs resulting from Algorithm 1 (G and G′) are555

identical.

Proof. Consider the BN graph G and the corresponding support graph G. In
a Markov equivalent graph G′ edges may be reversed but not if this creates or
removes immoralities. We can prove that the support graphs for G and G′ are
identical by induction. First the roots have the same variable (V ?) and the same560

forbidden set ({V ?}) by definition. Then, in every iteration of the support graph
construction algorithm the added nodes are identical if the support graphs under
construction are identical. Following the three possible support steps we see that
every supporter follows an edge from the skeleton (which stays the same) or an
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immorality (which also stays the same). This means that the variables that are565

associated with the newly added nodes must be the same. If the support graphs
were to differ, this has to follow from a different forbidden set. What remains
to be shown is that the forbidden sets will also be equal given that the (alrealy
found) children have the same forbidden set. Let us consider the three cases of
the F update from Algorithm 1 (see also Figure 4). Suppose that in the support570

graph of G, Ni with V(Ni) = Vi is supporting Nj V(Nj) = Vj :

• if Vj is a parent of Vi in G (case I), then

– if the direction of the edge in G′ is also from Vj to Vi the forbidden
sets are trivially the same and

– if the edge is reversed in G′ (from Vi to Vj) then in G′ this is handled575

by case II. This adds any Vk to the forbidden set for which (Vi, Vj , Vk)
is an immorality. However, (Vi, Vj , Vk) cannot be an immorality for
any Vk in G′ because it was not in G and the immoralities are the
same.

• if Vj is a child of Vi in G (case II), then580

– if the direction of the edge in G′ is also from Vi to Vj the forbidden
sets are trivially the same and

– if the edge is reversed in G′ (from Vj to Vi) then in G′ this is handled
by case I. The forbidden sets are the same except that in G any Vk is
added that constitutes an immorality (Vi, Vj , Vk). Again, no such Vk585

exists because reversal of the edge would not be allowed in G′.

• if (Vi, Vk, Vj) is an immorality (case III), then it must also be an immorality
in G′ because immoralities in G and G′ are the same. Therefore the
forbidden sets must also be identical.

Therefore, during the execution of the algorithm on Markov equivalent graphs,590

the forbidden sets are exactly identical, and therefore the constructed support
graphs will be identical.

What this theorem shows is that Markov equivalent models are mapped to the
same support graph, which means that they will receive the same argumentative
explanation later on. In Figure 6, for example, we showed three different but595

Markov equivalent BNs and the single resulting support graph.
In Section 4 on argument construction the following property is helpful. It

states that the support graph constructed by Algorithm 1 is ‘minimal’ in the
sense that support chains have been merged as much as possible. This means
that for every support node the set of supporters is ‘maximal’.600

Theorem 26. Assume a BN with graph G and a variable of interest V ?. Denote
the support graph constructed by Algorithm 1 as G. We have that any two distinct
directed paths in G that end in the root N? of G are mapped to different support
chains in G.
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Figure 6: Three Markov equivalent BNs and their unique support graph for the case that
V ? = X.

Proof. That such paths map to a support chain was already shown in part 1605

of the proof of Theorem 21. That no two simple paths in G map to the same
support chain in Gfollows from the fact that the algorithm never creates multiple
support nodes with the same variable and the same forbidden set, and that a
support chain uniquely defines the forbidden set (through the 3 cases in the
algorithm). Therefore, any support chain in G is represented by one such path610

in the constructed support graph.

This is exactly the minimality property of Algorithm 1 that we hinted at earlier.
It means that chains in the support graph are merged as much as possible which
makes it the most concise support graph among all support graphs that are
theoretically possible.615

4. Argument construction

From a support graph arguments can be generated that match the reasoning
in the BN, since the support graph captures all possible chains of inference. In
this section we show how arguments can be generated on the basis of a support
graph as constructed by Algorithm 1. We will employ a strength measure to620

rank inferences and to prevent arguments that follow inactive paths in the BN
graph.

The interpretation of an argument in this paper is slightly different from
what is common in argumentation systems. Since we try to capture the Bayesian
network reasoning in arguments, these arguments encapsulate all pro and con625

reasons for their conclusions. This reflects the way in which Bayesian networks
also internally weigh all evidence. The resulting arguments, therefore, do not
attack and defeat each other in the way that is common in argumentation.
The aim of such an argumentation system is to provide an explanation of the
probabilistic reasoning captured by the Bayesian network. The proposed method630

is not a new form of probabilistic argumentation [34, 35], in which probabilities
are used to express grades of uncertainty about the arguments. Instead, it is an
explanation method for Bayesian network reasoning that translates a Bayesian
network to explanatory arguments about the same case. These arguments pose
an alternative, qualitative representation of the information represented in and635

derived from the BN.
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Because of our focus on explaining BNs, in our method reasons pro and con
a conclusion are combined in a single argument, since in probability theory all
evidence has to be considered for drawing conclusions. This is in contrast to the
usual modelling of argumentation, in which reasons pro and con a conclusion640

are distributed over conflicting arguments. Consider, for example, the reasons
to believe that a suspect was present at a crime scene at the time of an offence.
In other argumentative models, it is usually the case that an argument pro
(based on a matching DNA profile that was recovered from the crime scene,
for instance) and an argument con (a witness testifying that the suspect was645

at another location at the time) would result in two arguments. One for the
conclusion that the suspect was at the crime scene and one for the conclusion
that he/she was not. In our method, however, we find only the argument for one
of these conclusions that has both of these premises. Which one we find depends
on the probabilities involved. The interpretation of such an argument is that650

the conclusion holds ‘because or despite’ the premises. In case of the example
above such an argument could be: ‘The suspect was at the crime scene because
the DNA profiles match, despite the fact that a witness has testified otherwise’.

The arguments that we build will follow the structure of the support graph.
As such, the support graph can be seen as a skeleton to build arguments. We655

present a formal model of these explanatory arguments which instantiates the
ASPIC+ framework for structured argumentation. We also discuss how the
grounded extension of such a framework can be generated efficiently on the basis
of the support graph.

First, we define a logical language L of sentences used to build arguments.660

For this language, we take pairs (N, o) of a support node N and one of the
outcomes o of the associated variable V(N). Elements of this language negate
each other iff they assign different outcomes to the same variable.

Definition 27 (Language for explanatory arguments). Given a BN with graph
G = ((V,E)) and the corresponding support graph G = ((N,L),V), let the logical
language L be defined as:

L = {(N, o) | N ∈ N and o ∈ vals(V(N))}

For which the negation is defined as

(N, o) = (N, o′) such that o′ ∈ vals(V(N)) and o′ 6= o

Since the support graph captures the allowed paths of reasoning, the rules in the
argumentation system should follow the edges of this support graph. When a665

support node has multiple parents we must consider combinations of supporting
parents to form a rule for an outcome of the supported node. In particular, we
should consider all parents that can themselves be supported by evidence. This
means that we must first consider which chains in the support graph start with
actually observed evidence. For this we create a pruned version of the support670

graph in which all chains start with an instantiated variable and end in the
variable of interest.
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Crime

Motive Twin DNA match

Psych report

Crime

Motive DNA match

Figure 7: Support graph from the running example before and after pruning. Instantiated
variables are depicted by double node outlines.

Definition 28 (Support graph pruning). Given a support graph G for variable
of interest V ? and evidence e for the BN variables Ve, the pruned support graph
Ge is obtained by repeatedly removing from G every node N for which either:675

• N is an ancestor of a node N ′ for which V(N ′) ∈ Ve or

• V(N) 6∈ Ve, and N has no unpruned parents.

The second condition resembles the definition of barren nodes [29] in a Bayesian
network except that nodes are barren iff they are uninstantiated and their
children are barren.680

In Figure 7 we have depicted the support graph from the running example
together with the pruned version for the evidence variables {Motive, DNA match}.
The node for Psych report has been pruned because it satisfies both conditions
(the only path to V ?=Crime contains an instantiated variable and it has no
unpruned ancestors) and Twin has been pruned by the second condition.685

The set of defeasible rules is defined to follow the structure of this pruned
support graph.

Definition 29 (defeasible rules). Given a support graph G as constructed by
Algorithm 1, observations e and the pruned support graph Ge = ((N,L),V), a
rule in our argumentation system has the form (N1, o1), . . . , (Nk, ok)⇒ (Nc, oc)690

such that

• N1, . . . , Nk are all parents of Nc in Ge, and

• oc is an outcome of the conclusion variable V(Nc), and

• o1, . . . , ok are outcomes of the associated variables V(N1), . . . ,V(Nk)

These rules are defeasible because they indicate a likely or probable inference695

rather than a strict deduction.
The evidence that is entered in the BN is represented in the knowledge base.
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Definition 30 (Knowledge base). Given a Bayesian network and evidence e
for the variables Ve. The knowledge base Kn contains all observations:

Kn =

(Ni, oi)

∣∣∣∣∣∣
V(Ni) ∈ Ve, and
oi is logically consistent with e, and
(Ni, oi) ∈ L


Using Definitions 29 and 30 ASPIC+ specifies arguments, counter arguments
and the attack relation. To resolve possible conflicts we consider how arguments
can be evaluated against each other. Arguments can attack each other on the700

outcome of the conclusion variable and defeat can be based on the strength of the
arguments. To compute this strength any of a number of measures of inferential
strength can be used that have been proposed throughout the literature. See for
a comparison the work of Crupi [36]. In general, two categories can be identified:

• incremental measures of strength assign a number to the weight of the705

evidence. The Likelihood ratio (LR) is the best known measure of this
kind. It expresses the change in the odds of the hypothesis as the result of
observing the evidence.

• absolute measures assign strength on the basis of posterior probability. The
posterior odds measure is a typical example in this class. Such measures710

capture the a-posterior belief in the hypothesis rather than the change in
belief.

In our examples we will use the LR and the posterior odds measures to show
how they compare. Note that, although the support graph is not concerned
with variable outcomes, the following (and in particular the likelihood ratio as715

a measure of strength) requires that variables are boolean-valued. Hence we
assumed that our input BN contains only binary-valued variables.

Inferential strength can be computed from the BN for every support graph
node and depends on the evidence for variables in ancestors of that node in the
support graph.720

Definition 31 (relevant premises to calculate strength). Consider a support
graph Ge built from a BN with graph G = (V,E) by Algorithm 1 and pruned to
observations e for the variables Ve.

The set of relevant premises (premises(Ni)) of a support graph node Ni is
an assignment to

Ve ∩ {V(Nj)|Nj ∈ Ancestors(Ni)}
that is logically consistent with e.

In order to correctly compute the inferential strength, it is important to take725

into account the correct context. This context largely overlaps with the observed
evidence. However, instantiations of the variable under consideration are omitted.

Definition 32 (context to calculate strength). Consider support graph Ge =
((N,L),V) built from a BN with graph G = (V,E) and pruned to observations e
for the BN variables Ve.730
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The context (context(Ni)) of a support graph node Ni is an assignment to

Ve \ {{V(Nj)|Nj ∈ Ancestors(Ni)} ∪ {V(Ni)}}

that is logically consistent with e.

The evidence that overlaps with the ancestors of the node under consideration is
excluded during the calculation of the strength because it occludes the potential
influence between variables that we wish to detect. I.e., to measure the influence
of a DNA match on the guilt hypothesis we must (temporarily) ignore the fact735

that the DNA match was observed. If we would not do that, the hypothesis
would appear to be independent of the DNA match.

Definition 33 (Likelihood ratio as measure of strength). Consider a BN with
graph G = (V,E) and a support graph (Ge = ((N,L),V)) for the variable of
interest V ? and observations e for the variables Ve. The LR strength of an
assignment Vi = o for a given support graph node Ni with V(Ni) = Vi is

strengthLR(Vi, o,Ni) =
P (premises(Ni) | (Vi = o) ∧ context(Ni))

P (premises(Ni) | (Vi 6= o) ∧ context(Ni))

Definition 34 (Posterior odds as measure of strength). Consider a BN with
graph G = (V,E) and a support graph (Ge = ((N,L),V)) for the variable of
interest V ? and observations e for the variables Ve. The posterior odds strength
of an assignment Vi = o for a given support graph node Ni with V(Ni) = Vi is

strengthodds(Vi, o,Ni) =
P (Vi = o | premises(Ni) ∧ context(Ni))

P (V 6= o | premises(Ni) ∧ context(Ni))

Strength as defined for assignments to support graph nodes can be lifted to
argument strength directly.

Definition 35 (Argument strength and ordering). Let A be an argument with
Conc(A) = (N, o). The strength of A is:

strength(A) = strength(V(N), o,N)

From this an argument ordering follows. A 4 B iff either:740

• A is strict (premise argument from observation) and B is not, or

• strength(A) ≤ strength(B)

Figure 8 shows examples of arguments that can be constructed by ASPIC+
from the given definitions of rules and knowledge bases for the running example.
Arguments A1, A2, A3 and A4 together in fact form the grounded extension745

of this argumentation system. This is because this argument graph uses the
maximal set of premises in every inferential step and it assigns the outcomes
that are probabilistically best supported. Figure 8 shows, in addition, a similar
argument that uses the same set of premises for that conclusion variable but

24



A1:(Psych report,true)

A2:(Motive,true)A3:(DNA match,true)

A4:(Crime,true)

A5:(Motive,false)

A6:(Crime,false)

Figure 8: An argument graph resulting from our running example. Arrows show the immediate
sub-argument relation. Besides the intuitively correct arguments A1, . . . , A4 there are two
additional arguments depicted that can also be made but that are successfully rebutted by A2.
The dashed arrows with crosshair tips show the defeat relation between arguments. Argument
A5 is defeated by A2 because (Motive, true) is probabilistically stronger (using the likelihood
ratio measure of strength in this case) than (Motive, false) based on this evidence. Any
conclusion that builds on this second argument (such as A6) is also defeated.

which draws the ‘wrong’ conclusion. Such an argument will always be rebutted750

by the similar argument for the right conclusion. If the two outcomes of the node
are equally strong (which in the case of the LR measure of strength means the
conclusion is independent of the premises given the evidence), then arguments
for both outcomes coexist but defeat each other and will therefore not be part of
the grounded extension. In fact, the grounded extension in this argumentation755

system coincides with the set of undefeated arguments.

Theorem 36. Consider an argumentation system with the above definitions for
the language, rules, knowledge and argument strength. An argument A is in the
grounded extension if and only if it is undefeated.

Proof. Undefeated arguments are by definition part of the grounded extension.760

For the other way around, we have to prove that any argument in the grounded
extension is undefeated. We prove this by induction over subarguments.

For premise arguments, the base case, it is trivially true that they are
undefeated because the argument ordering is such that premise arguments are
stronger than other arguments and no two premise arguments for different765

outcomes can exists.
Now for the induction step, we have to prove that an argument A in the

grounded extension is undefeated, given the induction hypothesis which states
that all immediate subarguments of A are undefeated.

By construction of our argumentation theory, an argument B with the770

opposite conclusion Conc(B) = Conc(A) can be constructed which has the same
set of proper subarguments as A. Since A is in the grounded extension, there
exists a reinstating argument C in the grounded extension that strictly defeats B.
By the induction hypothesis we know that C must directly rebut B, since all the
subarguments of B are undefeated. This means that strength(C) > strength(B).775

By the definition of argument strength we have that strength(C) = strength(A)
and consequently strength(A) > strength(B′) for any B′ that directly rebuts A.
By the induction hypothesis we know that no subargument of A is defeated and
hence, A is undefeated.
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Corollary 37. For any argument A in the grounded extension with conclu-780

sion Conc(A) = (N, o) for variable V(N) = Vi, there is no argument B in
the grounded extension with Conc(B) = (N, o′) such that strength(Vi, N, o) <
strength(Vi, N, o

′). In other words, if strength is given by the posterior probabil-
ity, then the arguments in the grounded extension are for those assignments with
the highest probability in the BN.785

Because our argumentation theory has no strict rules and no presumed knowledge
it follows that any argument ordering is reasonable [37]. This means that all
known [25] results regarding rationality postulates [26] on ASPIC+ also hold for
our argumentation theory.

Important to note is that due to the nature of support graphs there may be790

paths in the graph that are inactive given the actual evidence and should therefore
not be used to reason along. Since d-separation depends on the actual set of
evidence and the support graph is meant to capture possible support independent
of the actual set of evidence, these irrelevant reasoning paths are still present in
the support graph. Only after evaluating the strengths of arguments will these795

paths explicitly become redundant.
Since the set of rules is directly based on the support graph it is possible

to construct the arguments (and in particular the grounded extension) directly,
simply by traversing the nodes of the support graph. For every node the ‘best’
supported argument can be computed using the chosen measure of strength800

and when both outcomes are equally well supported we immediately know that
both outcomes are defeated by the other and not in the grounded extension.
This means that the computation of the grounded extension, which is in general
computationally hard, can be done efficiently for this argumentation system.

5. Skidding car case study805

We will now apply our method to a more realistically sized example. For this, we
use the Bayesian network as described by Huygen [38], which is an adaptation
from the causal model presented by Prakken and Renooij [39] for a civil legal
case about a car accident. The graphical structure of this network is shown in
Figure 9. Since the probability tables described by Huygen omit two conditional810

probabilities we have estimated those in a similar analysis to Huygen’s. For our
analysis the exact values are not critical. The full specification of the conditional
probability tables is given in AppendixA.

5.1. Bayesian network

The example network models the events discussed in an actual legal case about815

a car accident. The passenger in the car claims that the driver lost control
over the vehicle. Because the driver was, supposedly, speeding in the S-curve,
the passenger claims that the driver is responsible for the consequences of the
accident and wants financial compensation for damages. However, according to
the driver it was the passenger (who was drunk at the time of the accident) who820

pulled the handbrake, causing the car to skid and crash. This case is modelled
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drunk passenger

passenger
pulls handbrakespeeding in S curve
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suggest slowing

loss of control
over vehicle

locking of wheels

handbrake in
pulled position drivers testimony

skidding

tire marks present crash

Figure 9: Graphical structure and posterior probabilities in the skidding car accident net-
work [38]. Observed outcomes can be distinguished by the double outlines.

in eleven variables. Six of these variables are instantiated with evidence. Most
importantly, there are tire marks, indicating that the car was skidding before
the accident. The nature of the tire marks after the S-curve indicates slowing
rather than speeding. Concerning the handbrake, the police found the car with825

the handbrake in the pulled position. The first thing that the driver said to
the police was that the passenger had pulled the handbrake. Finally, it was
confirmed by the police that the passenger was drunk at the time of the accident.

5.2. Support graph

Based on this BN, a support graph can be constructed for any of the variables.830

The variable that we are interested in is speeding in S curve because that is
what determines the liability of the driver in the accident. The support graph
for this variable is shown in Figure 10.

What can be seen from this support graph is that the observed nature of the
tire marks is direct evidence for the fact that the driver was (or was not in this835

case) speeding in the S-curve. Another supporter for the conclusion is the loss

of control over vehicle variable because loss of control can occur when one
is speeding and has, therefore, a strong correlation with it. The fact that the
driver may have lost control over his vehicle is supported by the fact that the
car was skidding, which in turn is diagnosed by the fact that the crash happened840

in the first place and the presence of tire marks. The locking of wheels, however,
can also explain the skidding and the resulting crash. This may, to some extent,
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tire marks after S curve suggest slowing loss of control over vehicle
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Figure 10: Support graph from the skidding car accident network.

speeding in s curve

false 2.797

tire marks after S curve suggest slowing

true observed
loss of control over vehicle

true 1.251

locking of wheels

true 35.42

passenger pulls handbrake

true 6.115 · 105

drunk passenger

true observed
drivers testimony

true observed
handbrake in pulled position

true observed

skidding

true inf

crash

true observed
tire marks present

true observed

Figure 11: The best argument for the skidding car accident network using the LR measure of
strength. The strengths have been displayed in the nodes that were not instantiated.

explain away the loss of control over vehicle node. The locking of the
wheels is supported by the statement that the passenger pulled the handbrake,
which is supported by the three observations that the passenger was drunk, that845

the handbrake was in the pulled position and that the driver testified to the
police about this event.

5.3. Arguments

The support graph does not need pruning since all (and only) leaves of the graph
correspond to instantiated BN variables. This is because the BN is targeted850

at this specific set of evidence and no variables have been considered that are
irrelevant given the current set of observations.

We first translate the support graph into arguments based on the likelihood
ratio measure of inferential strength. The resulting undefeated argument tree is
shown in Figure 11.855

We observe that the skidding receives an infinite LR from the evidence below
it. This is the case because the probability of finding tire marks was set to 0
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speeding in s curve

false 2.797 · 105

tire marks after S curve suggest slowing

true observed
loss of control over vehicle

false 7.992 · 104

locking of wheels

false 1.000 · 105

passenger pulls handbrake

false 1.000 · 105

drunk passenger

true observed
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handbrake in pulled position

true observed

skidding

false 1.011 · 104

crash

true observed
tire marks present

true observed

Figure 12: The best argument for the skidding car accident network labelled with posterior
odds of the most likely outcome.

if the car did not skid. In other words: there is no other explanation for the
tire marks than that the car must have skidded. However, this strong support
does not transfer to the loss of control over vehicle because the locking860

of wheels (itself with a moderate amount of support) poses an alternative
explanation for the skidding. We see that the final conclusion speeding in S

curve = false is best supported by the combined evidence with a likelihood
ratio of 2.797. This does, however, not mean that this conclusion has a high
probability, just that it has become more likely by observing the evidence.865

To see what the posterior odds are, we can relabel the support graph with
posterior odds instead of likelihood ratios. We have done so in Figure 12. Indeed,
we see that the loss of control over vehicle has a very low probability,
even though the skidding is a certain event (probability 1.0). This shows that
both the incremental and absolute reasoning patterns can be explained using870

this model.

6. Discussion and conclusions

In this paper we formalised a two-phase argument extraction method for ex-
plaining the reasoning in BNs. Due to the increase of forensic methods, the legal
domain requires that models of evidence are studied that incorporate probabilis-875

tic reasoning. One such model is given by Bayesian networks and indeed we
find that case specific information has on occasion indeed been modelled as a
BN. The question that arises is how these models can be explained. Bayesian
networks are notoriously hard to interpret, partly because of the fact that the
directions of arrows in a BN have no intrinsic interpretation. We solve this by880

first extracting a support graph, which removes this confusing property. The
support graph is used as the basis for argument construction. This results in
qualitative arguments about the same case.

29



We stress that the proposed method is an explanation tool and cannot be used
to replace evidence propagation in Bayesian networks. It rather complements885

probabilistic inference by representing the same quantitative information in a
qualitative, argumentative setting. The resulting argument graphs follow the
inference in the BN, but are structured such that they have a clear argumentative
interpretation.

To resolve conflicts between arguments we have applied likelihood ratios and890

posterior odds. These are always expressed in terms of two alternative hypotheses.
It is for this reason that we have limited the approach to binary valued variables.
All other aspects of this method do not rely on this. In particular, the general
case of ASPIC+ uses contrariness which is already a generalisation of negation.

Our support graph method is inspired by the work of Pearl [33], who intro-895

duced a logic to deal with causality (and therefore intercausal interactions) in
default reasoning. Although that paper is not concerned with Bayesian networks
and the extraction of arguments, an important insight that we take from it is
that predictive and diagnostic reasoning cannot be chained in a logical approach.

Our approach is similar to Schum’s [16], who uses argumentation terminology900

to understand what is going on in probabilistic analyses of evidential reasoning.
However, his notions of argument and argumentation were not formalised, nor
related to formal or computational work on argumentation.

Other methods that attempt to explain probabilistic inferences in BNs have
focussed on visual or textual explanations. See for instance the work of Lacave905

and Dı́ez [12, 40], Koiter [13] and Druzdzel [41]. All of these methods try to
make Bayesian networks easier to interpret by visualising correlations or by
verbally presenting the relations between variables. However, none of these
methods provide (structured) arguments by analysing the reasoning chains in the
BN graph using argumentation. In our method we obtain formally well-defined910

arguments from the Bayesian network. Madigan et al. [42] construct visual
explanations of a Bayesian network based on the graphical structure of the
BN and a measure similar to the likelihood ratio but they ignore conditional
independence captured by the BN and instead first discard the directions of edges.
Vreeswijk [43] proposed a simple method to construct rules from BNs to form915

arguments. His approach, however, only works when there are no head-to-head
connections in the BN graph, which is a very limiting constraint on the models
that can be used as input.

Another approach to formalise BN reasoning was taken by Keppens [6] who
extracts Argumentation Diagrams from BNs. An Argumentation Diagram is a920

graphical structure that informally represents support between statements, but
does not allow one to identify possible counter-arguments. In Argumentation
Diagrams, therefore, only one side of the story is highlighted. In a persuasive
setting such as legal reasoning, the argumentation approach can be more expres-
sive because it allows for reasoning about the other parties’ arguments as well.925

In our argumentation the pro and con arguments are collectively considered and
weighted in accordance with the Bayesian network.

We have shown how support graphs help in the construction of arguments
because they capture the argumentative structure that is present in a BN.
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This provides a general purpose BN explanation method. An advantage of our930

method is that it offers a dynamic model of evidence: if more observations
become available the first phase does not need to be repeated.
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AppendixA. Conditional probabilities for the skidding car example

drunk passenger=true 0.05
drunk passenger=false 0.95

speeding in S curve=true 0.00001
speeding in S curve=false 0.99999

passenger pulls handbrake true false
locking of wheels=true 0.8 0.1
locking of wheels=false 0.2 0.9

speeding in S curve true false
loss of control over vehicle=true 1.0 0.00001
loss of control over vehicle=false 0.0 0.99999

drunk passenger true false
passenger pulls handbrake=true 0.03 0.0
passenger pulls handbrake=false 0.97 1.0

loss of control over vehicle true false
locking of wheels true false true false
skidding=true 1.0 1.0 1.0 0.0
skidding=false 0.0 0.0 0.0 1.0

skidding true false
crash=true 0.2 0.0001
crash=false 0.8 0.9999

passenger pulls handbrake true false
drivers testimony=true 0.9 0.03
drivers testimony=false 0.1 0.97

passenger pulls handbrake true false
handbrake in pulled position=true 0.99 0.001
handbrake in pulled position=false 0.01 0.999

speeding in S curve true false
tire marks after S curve suggest slowing=true 0.2 0.7
tire marks after S curve suggest slowing=false 0.8 0.3

skidding true false
tire marks present=true 1.0 0.0
tire marks present=false 0.0 1.0

940
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