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Abstract—Human agents can acquire knowledge and learn
through argumentation. Inspired by this fact, we propose a
novel argumentation-based machine learning technique that can
be used for online incremental learning scenarios. Existing
methods for online incremental learning problems typically do
not generalize well from just a few learning instances. Our pre-
vious argumentation-based online incremental learning method
outperformed state-of-the-art methods in terms of accuracy and
learning speed. However, it was neither memory-efficient nor
computationally efficient since the algorithm used the power set
of the feature values for updating the model. In this paper, we
propose an accelerated version of the algorithm, with polynomial
instead of exponential complexity, while achieving higher learning
accuracy. The proposed method is at least 200× faster than
the original argumentation-based learning method and is more
memory-efficient.

Index Terms—Argumentation-Based Learning, Online Incre-
mental Learning, Argumentation Theory

I. INTRODUCTION

Argumentation-Based Learning (ABL) [1], [2] outperformed
other online incremental learning approaches and was shown
to be successful for handling unforeseen failures. However,
ABL is not efficient in terms of space and computational com-
plexity. Therefore, the current ABL approach is not usable for
high dimensional datasets. In this paper, we propose a novel
Accelerated Argumentation-Based incremental online Learn-
ing (AABL) method that has a lower space and computational
complexity and higher learning accuracy. This entails lower
run-time and memory consumption. Moreover, like the original
ABL, AABL can generate a set of explainable hypotheses
(arguments) for predicting the best recovery behavior (class
label).
A. Argumentation in Machine Learning

Argumentation is a reasoning model based on interaction
between arguments [3]. Argumentation has been used in
various applications such as non-monotonic reasoning [4],
inconsistency handling in knowledge bases [5], and decision
making [6]. In [7], Dung has defined an Abstract Argumen-
tation Framework (AF) as a pair of the arguments and a
attack binary relation among the arguments. Extending Dung’s
idea, some arguments can support a conclusion and others
might be against (attacking) that conclusion in the Bipolar
Argumentation Framework (BAF) [8]. According to a survey
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by Cocarascu et al. [9], the works using argumentation in
supervised learning are listed as follows. Argumentation-Based
Machine Learning (ABML) [10] uses the CN2 classifica-
tion approach [11]. This method uses experts’ arguments to
improve the classification results. The paper by Amgoud et
al. [12], [13] explicitly uses argumentation. There are other
approaches for improving classification using argumentation
in the literature [14].
B. The Expansions
This research is an expansion of our previous paper [1], [2].
The specific expansions are listed as follows.

• Proposing a simpler architecture of the model using only
a BAF rather than using both the AF and a BAF.

• Accelerating the prediction and update procedure of the
model by introducing an algorithm with lower space and
computational complexity by going from exponential to
polynomial complexity.

• Including more evaluation scenarios with different levels
of complexities.

• Adding run-time and memory usage analysis for both the
proposed and previous ABL method.

• Specifying the algorithms in the proposed method
by adding pseudocodes to explain argumentation-based
learning in more detail.

II. BACKGROUND

The bipolar argumentation framework [8] is the main build-
ing block of our proposed accelerated argumentation-based
learning approach. Argumentation-based learning and BAF are
formally defined in this section.

A. Argumentation-Based Learning
Using the combination of AF and BAF, argumentation-based
learning has been proven to outperform state-of-the-art online
incremental learning methods [1], [2]. ABL extracts a set of
relevant hypotheses from the learning instances in an online
manner and explicitly represents the knowledge acquired from
the learning instances as an explainable set of rules as argu-
ments and defeasibilty relations among them. ABL can learn
with fewer learning instances. However, it lacks the ability
to work with higher dimensional data since it uses all the
subsets of the feature values as the supporting nodes and this
makes the model slow and not memory-efficient. In this paper,
we will propose a new argumentation-based learning approach
which resolves these issues.
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Fig. 1. A Bipolar Argumentation Framework (BAF).
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Fig. 2. Schematic overview of the possible failure state scenarios. Only the
green location is relevant for finding the best recovery behavior. Alt. stands
for the Alternative Route recovery behavior.

B. Formal Definition of an Abstract Bipolar Argumentation
Framework

An Abstract Bipolar Argumentation Framework (BAF) [8] is
a triple of the form < AR,Ratt, Rsup> where AR is the finite
set of arguments, Ratt⊆ AR×AR is the attack set and Rsup⊆
AR × AR is the support set. Considering Ai and Aj ∈ AR,
then Ai Ratt Aj means that Ai attacks Aj and Ai Rsup Aj

means that Ai supports the argument Aj .
The semantics of BAF are as follows:
(Conflict-Free) Let S ⊆ AR. S is conflict-free iff there is

no B,C ∈ S such that B attacks C.
(Admissible set) Let S ⊆ AR. S is admissible iff S is

conflict-free, closed for Rsup (if B ∈ S and B Rsup C ⇒
C ∈ S) and S defends all its elements.

(Preferred extension) The set E ⊆ AR is a preferred
extension iff E is inclusion-maximal among the admissible
sets. An inclusion-maximal set among a collection of sets is
a set that is not a subset of any other set in that collection.

Figure 1 shows a bipolar argumentation framework. The
admissible sets are {}, {E}, {A, C, E}, {A, C, E, F}. The
preferred extension in this BAF is {A, C, E, F}.

C. Online Incremental Machine Learning Algorithms

A recent study on the comparison of the state-of-the-art
methods for incremental online machine learning [15] shows
that Incremental Support Vector Machines (ISVM) [16], [17]
together with LASVM [18], which is an online approximate
SVM solver, and Online Random Forest (ORF) [19] outper-
form the other methods. The original ABL approach outper-
formed all these methods in terms of accuracy and learning
speed [1], [2]. Therefore, we only compare the proposed
AABL method with the original ABL approach. Both AABL
and ABL can be utilized in open-ended learning scenarios
[20].

III. SCENARIOS

The performance of the different methods is tested using three
test scenarios. The aim of these test scenarios is to model a

situation where a programmer has provided an initial solution
(e.g., a top level behavior such as entering the room), while
he has not accounted for all possible failures (e.g., objects and
persons blocking the entrance), allowing, however, the robot
to find new solutions whenever a (previously unseen) failure
occurs.

The basic setup of the test scenarios is illustrated in Fig. 2.
The high-level behavior of the robot aims to proceed from
the initial location to the target location using three entrances.
Different obstacles might be on its way to the target location.
Looking at all the obstacle locations at once, the robot can
reach the goal by choosing the best recovery behavior.

A. Recovery Behaviors

Whenever the robot is confronted with an obstacle, it may use
any of the following recovery behaviors to resolve the issue:

• Continue: This solution is only useful if the failure has
resolved itself (e.g., the obstacle moved away).

• Push: The robot can try pushing any obstacle.
• Ask: The robot can try to ask any obstacle to move.
• Alternative Route (Alt): The robot can move to another

entrance to reach the target location.

It is important to note that choosing Alternative Route as
the best recovery behavior may not always lead to success,
because the robot may again be confronted with new obstacles
(Fig. 2). Moreover, the best recovery behavior depends on the
type, color and location of the obstacle.

B. Test Scenario 1

In this scenario, three concepts (ball, box or person) with four
colors (red, blue, green or yellow) can be presented in one of
the locations 1 to 6 (Fig. 2). Locations 7 to 12 play no role
in this scenario. There can be either zero or one combination
of color-concept in each location. Only location number 5,
marked in green (Fig. 2), is relevant for choosing the best
recovery behavior. It is important to notice that the robot does
not know this fact and it should infer it by itself.The number
of possible combinations of the color-concept in each location
is 13 (3 types × 4 colors + “no obstacle” = 13). Since there
are 6 locations in this scenario, the number of all possible
states in this scenario is 136 = 4, 826, 809.

Notice that colors can have meaningful interpretations. For
instance, the red object might be heavy and cannot be pushed,
while green ones are light. Using the colors instead of these
realistic features simplifies the scenarios with fewer features.

C. Test Scenario 2

This scenario is more complex than the first scenario, since
each color-concept combination can be presented in one of
the locations 1 to 9 (Fig. 2). Here, only the green locations 5
and 8 are relevant for determining the best recovery behavior.
The number of all possible states in this scenario is 139 =
10, 604, 499, 373.
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Fig. 3. Architecture of the proposed Argumentation-based learning approach.

Order Color Concept Best Recovery Behavior
1 Red Ball Push
2 Red Box Alternative Route
3 Red Person Ask
4 Green Ball Push
5 Green Box Alternative Route
6 Green Person Ask
7 Blue Ball Push
8 Blue Box Alternative Route
9 Blue Person Alternative Route

10 Yellow Ball Push
11 Yellow Box Alternative Route
12 Yellow Person Ask
13 None None Continue

TABLE I
POSSIBLE COMBINATIONS OF COLOR-TYPE WITH THE BEST RECOVERY

BEHAVIORS

D. Test Scenario 3

The third scenario is the most complex scenario in all the
scenarios. Each color-type combination can be presented in
any of the twelve different locations (Fig. 2). Like the previous
scenario, only locations number 5 and 8 play a role for deter-
mining the best recovery behavior. In this Scenario, the number
of all the possible states is 1313 = 302, 875, 106, 592, 253.

IV. METHOD

In this section, with an illustrating example, we first explain
the Bipolar Argumentation Framework (BAF) unit which is the
main building block of the proposed approach. Subsequently,
we define AABL, and its updating procedure.

A. Explanation of the Method with an Illustrating Example

We first use the simplified version of the test scenarios with
only one location ahead of the agent (instead of 6, 9 or 12
locations). Figure 3 shows the architecture of the proposed
argumentation-based learning approach.

Using the randomly generated Table I, the robot is initially
confronted with a Red-Ball (R-Ba) and tries different recovery
behaviors to find out that the best choice is Push. The model
initially gets updated by the subsets of feature values with
length 1 (L := 1). This means that the supporting nodes R
and Ba are added to the Push recovery behavior (Fig. 4).
Subsequently, the agent is confronted with a Red-Box (R-Bo)
for which the subsets of feature values with length L = 1
consist of R and Bo. Looking at the current state of the BAF,
R supports the Push recovery behavior and it is chosen as
the model’s prediction. Since, this is a wrong choice, the
agent try other recovery behaviors and find “Alternative route”
(Alt) as the best recovery behavior. Therefore, the Alt node
gets updated with its supporting nodes R and Bo and also
a bidirectional attack among Alt and Push nodes. Since R
supports both Push and Alt recovery behaviors, it is not a
unique supporter for each of them and it will be pruned from

Fig. 4. Example of Argumentation-Based Learning for the illustrating
example. First part
both the recovery behaviors and will be marked as a node
which can no longer support any recovery behavior nodes in
the future.

For the third learning instance the robot is confronted with a
Red-Person (R-P) and the models does not have any prediction
since no current recovery behavior node in the BAF has
either P or R in its supporting nodes. The BAF unit gets
updated with only P as a supporting node for the Ask since
R has been previously marked as a non-supporting node and
bidirectional attack relations are added among all pairs of the
recovery behaviors. Subsequently, the agent is confronted with
a Green-Ball (G-Ba) obstacle and since Ba supports the Push
in the BAF unit, Push is chosen as a prediction for the best
recovery behavior. The BAF gets updated using G supporting
node for Push recovery behavior. This process will continue
and the model predicts the best recovery behavior correctly
in the subsequent obstacle confrontations until the agent is
confronted with a blue person.

When the agent is confronted with a Blue-Person (B-P), it
chooses Ask as the best recovery behavior. This is a reasonable
choice because Ask was the best recovery behavior for all the
previous cases where a Person was the obstacle, namely, in
R-P and G-P. However, it turns out that the best choice for
B-P is Alt. Since, the subsets of feature values with length 1
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were not adequate for choosing the best recovery behavior for
both the Ask and the Alt recovery behaviors, the length of the
subsets of the feature values is incremented i.e. L := L+1 in
this case L = 2. Therefore, the supporting node B-P is added
to the Alt recovery behavior and the supporting nodes R-P and
G-P are added to the Ask recovery behavior while P is pruned
and marked as a non-supportable node. The model predicts
the correct categories for the rest of the learning instances
until it is confronted with a Yellow-Person (Y-P). In this case
the model does not have any guess for the best recovery
behavior and gets updated with the Y-P supporting node. The
last learning instance None-None is a new case based on
the previous agent’s experiences and it does not have any
prediction for that. Finally the model gets updated and a new
recovery behavior node Continue (Cont) is added to the BAF
model. In this illustrating example, the proposed approach has
seven correct predictions and two wrong predictions out of all
the thirteen instances while having no other predictions for the
other four cases.

Comparing the number of nodes between the proposed
model and the previous argumentation-based learning model
[1], [2], the number of saved nodes in memory for our
proposed approach decreases from 44 to 11 and the number
of attack or support relations decreases from 40 to 13 (Fig. 5).
Since each attack or support relation is between two nodes,
the memory usage for these relations is twice the memory
usage of the saving nodes. Moreover, the supporting weights
and argument weights are reduced from 40 to 0. Therefore, the
total memory usage decreases from 44+ (40× 2)+40 = 164
to 11+(13×2)+0 = 37 which is more than four times (4×)
lower in this small illustrating example. Moreover, the lower
number of saved nodes in the memory results in the lower
number of comparisons between the feature values and lower
ultimate run-time.

B. Accelerated Argumentation-Based Learning

As explained in the previous sub-section, the main differ-
ence among the proposed Accelerated Argumentation-Based
Learning (AABL) approach and the ABL is the architecture
of the model. Here, only a the BAF unit is utilized. Algorithm
IV-B shows the pseudocode of the proposed approach for
AABL. Instead of initiating the model with all the subsets
of feature values, the model begins with the subsets of length
1 and increases the length of the subsets when needed. This
way the number of required computations in the algorithm is
significantly reduced. Using the extracted subsets and the set
of supporting nodes in the model, the best recovery behavior
(action) is predicted. If the model could predict a recovery
behavior in the previous step, it will be applied to the envi-
ronment. If there exits more than one predictions, one of them
is chosen randomly. Otherwise, the random choice is among
all the possible recovery behaviors (actions). Subsequently, the
BAF unit is updated using the algorithm IV-B. The updating
process has two steps, namely, updating the attack relations
and updating the support relations. When a new recovery
behavior (action) is added to the model, bidirectional attacks

Proposed Approach (secs) Original ABL (secs)
First Scenario 0.42 84.76

Second Scenario 3.16 3318.68
Third Scenario 13.56 87088.60

TABLE II
COMPARISON OF RUN-TIMES IN SECONDS FOR DIFFERENT SCENARIOS.

will be added between the newly added recovery behavior
(action) and all the other previous recovery behaviors (actions)
in the model. The supporting nodes are then added or pruned
based on their uniqueness in supporting a recovery behavior
(action). When all the supporting nodes are pruned, the length
of the subsets of the feature values will increase.

V. EXPERIMENTS

A. Experimental Setup

In all the experiments, a table like Table I is randomly gener-
ated. Using this randomly generated table, we then randomly
generate the three scenarios as explained in Section III. Each
experiment has been conducted ten times (iterations) and the
average result is reported. In order to compare the accuracy
of both the proposed AABL and the original version of ABL
[1], [2], we have set the limit of 200 recovery attempts at each
iteration. The run-times are reported in seconds.
B. Experimental Results

In this section, three sets of experiments have been conducted.
First, the run-time of both approaches for all the scenarios
have been compared and the computational complexity of
the approaches has been discussed. Second, the memory
consumption of both methods has been compared. Moreover,
the space complexity of the algorithms is computed. Third,
the learning accuracy of both approaches has been compared.

1) Comparison of Run-times: Table II shows the compari-
son of the run-times of the proposed AABL and the original
ABL over these scenarios. As you can see, the newly proposed
approach outperforms the original version of ABL by a large
margin. For the first scenario, the run-time of the original ABL
is 84.76s, while the newly proposed method has the run-time
of 0.42s. This means that AABL runs almost 200 times faster
than ABL. The run-time of our proposed approach for the
second scenario is 3.16s, while it is 3318.68s for the original
ABL approach. This means that the proposed approach is more
than 103 times faster than the previous approach for the second
scenario. For the third scenario, the proposed ABL algorithm
runs 6× 103 times faster than the original ABL algorithm.

Figure 6 shows the relation between the number of locations
in a scenario like the first scenario and the run-time of
different approaches. The run-time of the original ABL ap-
proach exponentially increases while the proposed accelerated
ABL approach maintains much lower run-time that is linearly
dependent on the number of locations. Since the first scenario
is only dependent on the location number 5, only the subsets
with the length 1 from the feature values are extracted.

2) Computational Time Complexity: In the previous sec-
tion, we have explained that the proposed ABL method begins
with extracting the subsets of feature values with length 1
and then increases the length of subsets if needed. Moreover,
pruning the unnecessary supporting nodes reduces the required
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a) Our Approach b) Original ABL approach [1], [2]

Fig. 5. Comparison of the ABL models after training on the illustrating example

Algorithm 1: Argumentation-Based Learning
input: Current BAF graph, Data Instance X entering the

argumentation-based learning model, feature values subsets’ length
L, The class label or Best Recovery Behavior (BRB) for X

output: The predicted label for X called Y

Start:
- Extract all feature value combinations in X with length L and add

them to a list called Combs.
- Let SNs be the set of supporting nodes (in form of

“supporting-node → supported-node”) in the BAF.
for (all sn in SNs) do

for (all comb in Combs) do
if (sn.supporting-node==comb) then

Y.Add(sn.supported-node)

if (Y is not empty) then
if (Length(Y)==1) then

- Apply Y to environment and observe the result.
else

- Select a prediction in Y at random (Y :=
Y[random index]) and observe the result.

else
- Randomly choose a prediction from the available class labels

(observed recovery behaviors).
- should Increment L := Update the BAF unit (using Algorithm 2

with input parameters: current BAF graph, BRB, Combs, SNs).
while (should Increment L == True) do

- L := L+1
- Compute the combinations of the feature values again as

Combs.
- should Increment L := Update the model with Algorithm 2.

return Y
Proposed Approach (MBs) Original ABL (MBs)

First Scenario 0.9 20.4
Second Scenario 1.3 161.1
Third Scenario 1.7 392.73

TABLE III
COMPARISON OF MEMORY USAGE FOR DIFFERENT SCENARIOS.

number of computations of the approach. Assuming that n is
the number of features in a dataset, for the first scenario the
order of the proposed algorithm is O(n), while the original
ABL method has O(2n) since it extracts all the subsets of the
feature values. The reason that the proposed algorithm is in
O(n) for the first scenario is that in the worst case it only uses
the subsets of feature values with length 1. For the second and
third scenarios, the algorithm uses subsets of length 2 in the
worst case since there are only two relevant locations in their
state space. Therefore, the order of the proposed algorithm is
O(n2) while it is O(2n) for the original ABL.

3) Comparison of the Memory Usage: In order to compare
the memory usage of both the previous ABL approach and the
new proposed ABL approach, we have made a comparison.
Table III shows the comparison of the memory usage of both
approaches in MBs for all the scenarios. For the first scenario,

Algorithm 2: Updating the BAF Unit
input: Current BAF graph, class label (Best Recovery Behavior)

BRB, Combinations of feature values for X called Combs, Set of
Supporting Nodes in the BAF graph SNs

output: A Boolean variable “should Increment L” that tells
whether L needs to be incremented or not.

Start:
- Let RNs be the set of all the class labels (Recovery behavior

Nodes) in the BAF.
- Let attacks be the set all the attack relations (for a ∈ RNs and b
∈ RNs the attack relations are in form of “a → b”) among the
class labels (recovery behavior nodes) in the BAF.

Step 1: (Updating attack relations and class labels)
if (BRB is not in BAF) then

- add BRB to the BAF graph;
- add bidirectional attacks between BRB and all the other class

labels (recovery behavior nodes) as follows:
for all rn in RNs do

- attacks.add( BRB → rn )
- attacks.add( rn → BRB )

Step 2: (Updating support relations)
- Let should Increment L := True
for ( all comb in Combs) do

- Let Add Support :=True
for (all sn in SNs) do

if (sn.supporting-node == combs) then
- Add Support :=False
if ( sn.supported-node 6= BRB ) then

- Mark comb as a non-unique node that can not
support any node in future.

- Remove sn from the set supporting nodes in
BAF SNs.

if (comb is not Marked) then
- should Increment L := False
if (Add Support == True) then

- SNs.add(comb → BRB)

return should Increment L

Fig. 6. The relation between the run-time and the number of locations in a
scenario like the first scenario.
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Fig. 7. The comparison of learning accuracy vs number of recovery attempts
between the proposed AABL and the original ABL for the first scenario.

Fig. 8. The comparison of learning accuracy vs number of recovery attempts
between the proposed AABL and the original ABL for the second scenario.

our current method has more than 20 times lower memory
consumption. Moreover, for the second scenario, the memory
consumption is more than 70 times reduced in the newly
proposed approach. The proposed approach uses 200 times
lower memory for the third scenario.

4) Space Complexity: Space complexity of the proposed
AABL method is directly related to the computational time
complexity of the approach. Therefore, for the first scenario,
the space complexity of the proposed algorithm is O(n)
where n is the number of features in the dataset. The space
complexity of the proposed approach for the second and third
scenarios is O(n2). In all the scenarios, the space complexity
of the original ABL approach is O(2n).

5) Evaluating the Accuracy: In order to evaluate the per-
formance of both methods based on the learning accuracy,
we have conducted two experiments. Figure 7 compares the
accuracy of both methods for the first scenario. The compar-
ison of both methods for the second scenario is illustrated in
Figure 8. In both cases, the proposed ABL approach has higher
accuracy.

VI. CONCLUSION

Argumentation-Based online incremental Learning (ABL) has
been introduced recently in [1], [2]. ABL outperformed other
state-of-the-art online incremental learning algorithms. Al-
though ABL has higher learning accuracy than other ap-
proaches, the it is not suitable for high dimensional problems.
The reason lies in the high computational complexity of
the approach. In this paper, we have proposed Accelerated
Argumentation-Based Learning (AABL), which has lower
computational complexity, and memory usage. The resulting

approach can be used for higher dimensional problems while
having a better learning accuracy than the original version
of the ABL algorithm. We have conducted three sets of
experiments with more complex scenarios and analyzed the
run-time and memory usage of the methods. The proposed
approach outperforms the original version of ABL algorithm
in terms of run-time and memory usage by a large margin
while slightly outperforming the original ABL in terms of
accuracy. The lower computational complexity of the proposed
approach makes it applicable for wider range of machine
learning problems.

REFERENCES

[1] H. Ayoobi, M. Cao, R. Verbrugge, and B. Verheij, “Handling unforeseen
failure conditions using argumentation-based learning,” in International
Conference on Automation Science and Engineering, IEEE, 2019.

[2] H. Ayoobi, M. Cao, R. Verbrugge, and B. Verheij, “Argumentation-based
online incremental learning,” IEEE Transactions on Automation Science
and Engineering (TASE), 2021.

[3] F. H. Van Eemeren, B. Garssen, E. C. Krabbe, A. F. S. Henkemans,
B. Verheij, and J. H. Wagemans, Handbook of Argumentation Theory.
Dordrecht: Springer, 2014.

[4] L. Rizzo and L. Longo, “An empirical evaluation of the inferential ca-
pacity of defeasible argumentation, non-monotonic fuzzy reasoning and
expert systems,” Expert Systems with Applications, vol. 147, p. 113220,
2020.

[5] A. Vassiliades, N. Bassiliades, and T. Patkos, “Argumentation and
explainable artificial intelligence: a survey,” The Knowledge Engineering
Review, vol. 36, 2021.

[6] K. Atkinson, T. Bench-Capon, and D. Bollegala, “Explanation in AI and
law: Past, present and future,” Artificial Intelligence, vol. 289, p. 103387,
2020.

[7] P. M. Dung, “On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games,”
Artificial Intelligence, vol. 77, no. 2, pp. 321–357, 1995.

[8] L. Amgoud, C. Cayrol, M.-C. Lagasquie-Schiex, and P. Livet, “On bipo-
larity in argumentation frameworks,” International Journal of Intelligent
Systems, vol. 23, no. 10, pp. 1062–1093, 2008.

[9] O. Cocarascu and F. Toni, “Argumentation for machine learning: A
survey,” in COMMA, pp. 219–230, 2016.

[10] M. Mozina, J. Zabkar, and I. Bratko, “Argument based machine learn-
ing,” Artificial Intelligence, vol. 171, no. 10-15, pp. 922–937, 2007.

[11] P. Clark and T. Niblett, “The CN2 Induction Algorithm,” Machine
Learning, vol. 3, no. 4, pp. 261–283, 1989.

[12] L. Amgoud and M. Serrurier, “Agents that argue and explain classifi-
cations,” Autonomous Agents and Multi-Agent Systems, vol. 16, no. 2,
pp. 187–209, 2008.

[13] O. Cocarascu, A. Stylianou, K. Čyras, and F. Toni, “Data-empowered
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