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Abstract— General Purpose Service Robots operate in dif-
ferent environments of a dynamic nature. Even the robot’s
programmer cannot predict what kind of failure conditions a
robot may confront in its lifetime. Therefore, general purpose
service robots need to efficiently handle unforeseen failure
conditions. This requires the capability of handling unforeseen
failures while the robot is performing a task. Existing research
typically offers special-purpose solutions depending on what has
been foreseen at the design time. In this research, we propose a
general purpose argumentation-based architecture which is able
to autonomously recover from unforeseen failures. We compare
the proposed method with existing incremental online learning
methods in the literature. The results show that the proposed
argumentation-based learning approach is capable of learning
complex scenarios faster with a lower number of observations.
Moreover, the final precision of the proposed method is higher
than other methods.

I. INTRODUCTION

The development and application of domestic service robots
are growing rapidly. Whereas basic household robots are
already common practice [1], the study of General Purpose
Domestic Service Robots (GPSR) able to do complex tasks is
increasing [2], [3]. Due to the dynamic environment around
GPSRs, they need to efficiently handle noise and uncertainty
[4].

On the architecture level of GPSRs, any kind of failure
should be avoided. On a practical level, which involves
persistent changes in the environment, it becomes much
more difficult to account for all possible failure conditions
at design time. Therefore, it is important to note that con-
fronting unforeseen failures is mostly the default state for
GPSRs, rather than an exceptional state as often described
in the literature. There are some solutions for external failure
recovery in the literature, which involve using simulations for
the prediction of future faults [5] and logic-based reasoning
to account for failures [6], [7]. However, in most of these
cases, the solutions are proposed for specific applications.
In this paper, we propose an argumentation-based incremen-
tal online learning method for recovering from unforeseen
failures.

A. Argumentation
Argumentation is a reasoning model based on interaction
between arguments [8]. In [9], Dung has defined an Abstract
Argumentation Framework (AF) as the pair of the arguments
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(whose inner structures are unknown) and a binary relation
representing the attack relation among the arguments. Ex-
tending Dung’s idea, some arguments can support a conclu-
sion and others might be against (attacking) that conclusion
in the bipolar argumentation framework [10].

B. Argumentation in Machine Learning
According to a recent survey by Cocarascu et al. [11],
the works using argumentation in supervised learning are
listed as follows. Argumentation-Based Machine Learning
(ABML) [12] uses the CN2 classification approach [13]. This
method uses experts’ arguments to improve the classification
results. The paper by Amgoud et al. [14] explicitly uses
argumentation. There are other approaches for improving
classification using argumentation in the literature [15]. In
contrast with the aforementioned methods, we are not using
argumentation for improving the current machine learning
approaches or resolving conflicting decisions between cur-
rent classification methods; instead, we focus on the devel-
opment of a supervised incremental learning method.

C. Research goals
We aim to develop a method with the following properties:

1) Confronting a previously unknown failure state, the
robot should be able to generate related hypotheses for
choosing the best recovery behavior.

2) The robot should be able to update the set of hypotheses
when new contradicting facts enter the model and reason
according to them.

3) The learning model should be able to learn faster than
other methods with fewer number of observations.

4) The final learning precision of the model should be
higher than other state-of-the-art incremental online learning
methods.

II. BACKGROUND

Abstract Argumentation Framework (AF) and Bipolar Ar-
gumentation Framework (BAF) are the building blocks of
the online incremental learning approach proposed in this
paper. AF, BAF and online incremental machine learning
algorithms are formally defined in this section.

A. Formal Definition of Abstract Argumentation Framework
An argumentation framework defined by Dung [9] is a pair
AF = (AR, attacks) where AR is a set of arguments, and
attacks is a binary relation on AR, i.e. attacks ⊆ AR × AR.
The meaning of attacks (A, B) is that A attacks B where A
and B are two arguments. In order to define the grounded
extension semantics in AF, which is used in the proposed
learning method, some semantics should be defined first.



Fig. 1: An abstract argumentation framework (AF)

(Conflict-Free) A set S of arguments is conflict-free iff
there are no arguments A and B in S such that A attacks B.

(Acceptability) An argument A ∈ AR is acceptable with
respect to a set S of arguments iff for each argument B ∈
AR: if B attacks A then B is attacked by at least one element
of S.

(Admissibility) A conflict-free set of arguments S is
admissible iff each argument in S is acceptable with respect
to S.

(Characteristic Function) The characteristic function
FAF in an argumentation framework AF = (AR, attacks) is
defined as follows:

FAF : 2AR → 2AR and
FAF (S) = {A |A is acceptable with respect to S}.
(Grounded Extension) The grounded extension of an

argumentation framework AF, denoted by GEAF is the least
fixed point of FAF .

Example: Consider the argument set AR =
{A,B,C,D,E} and the attack relations given by
attack = {(A,B), (B,A), (C,D), (C,E)} as demonstrated
in Figure 1. Then the conflict-free sets of arguments would
be {}, {A}, {B}, {C}, {D}, {E},{A, C}, {A, D}, {A, E},
{B, C}, {B, D}, {B, E}, {D, E}, {A, D, E}, {B, D, E}.
Among these, only the sets of {}, {A}, {B}, {C}, {A, C},
{B, C} are admissible. The grounded extension is {C}.

B. Formal Definition of an Abstract Bipolar Argumentation
Framework

An Abstract Bipolar Argumentation Framework (BAF) is an
extension of Abstract Argumentation Framework by adding
a support relationship. A BAF is a triple of the form <
AR,Ratt, Rsup> where AR is the finite set of arguments,
Ratt⊆ AR×AR is the attack set and Rsup⊆ AR×AR is the
support set. Considering Ai and Aj ∈ AR, then Ai Ratt Aj

means that Ai attacks Aj and Ai Rsup Aj means that Ai

supports the argument Aj .
The semantics of BAF are as follows:
(Conflict-Free) Let S ⊆ AR. S is conflict-free iff

@B,C ∈ S such that B attacks C.
(Admissible set) Let S ⊆ AR. S is admissible iff S is

conflict-free, closed for Rsup (if B ∈ S and B Rsup C ⇒
C ∈ S) and defends all its elements.

(Preferred extension) A set E ⊆ AR is a preferred
extension iff E is inclusion-maximal among the admissible
sets.

Figure 2 shows a bipolar argumentation framework. Here
the 9 arrows show attack relations and the → arrows
demonstrate support relations. The admissible sets are {},
{E}, {A, C, E}, {A, C, E, F}. The preferred extension in
this BAF is {A, C, E, F}.

Fig. 2: An bipolar argumentation framework (BAF).

C. Formal Definition of On-line Incremental Machine Learn-
ing Algorithms

We define an incremental learning approach that uses a
sequence of data instances d1, d2, ..., dt for generating the
corresponding models M1,M2, ...,Mt. In case of supervised
incremental online learning, each data instance has a label
di = (xi, yi) ∈ Rn × {1, ..., C} and Mi : Rn → {1, ..., C}
is representing the model which depends on Mi−1. The
on-line learning is then defined as an incremental learning
which is also able to continuously learn. Incremental learning
approaches has the following properties:

• The model should adapt gradually, i.e. Mi is updated
using Mi−1.

• The previously learned knowledge should be preserved.

III. SCENARIOS

The performance of the different methods is tested using a
test scenario. The aim of the scenario is to model a situation
where a programmer has provided an initial solution (e.g.,
a top level behavior such as entering the room), while he
did not account for all possible failures (e.g., objects and
persons blocking the entrance), but allows the robot to find
new solutions whenever a (previously unseen) failure occurs.

The basic setup of the scenario is illustrated in Figure 3.
The high level behavior of the robot aims to proceed from the
initial location to the target location using three entrances.
Different obstacles may be present in its way to the target
location.

In this paper, we only concentrate on finding the best
recovery solution for each failure state.

A. Recovery Solutions
Whenever the robot is confronted with a failure state, it may
use any of the following recovery solutions to resolve the
issue:

• Continue: This solution is only useful if the failure has
resolved itself (e.g., the obstacle moved away just after
the failure).

• Push: The robot can try pushing any obstacle.
• Ask: The robot can try to ask any type.
• Alternative Route: The robot can move to another

entrance to reach the target location.
Notice that choosing Alternative Route as the best recovery
behavior may not always lead to success, because the robot
may again confront with obstacles (Figure 3). Moreover,
the best recovery solution not only depends on the type of
obstacle, but also on the color and location of the obstacle.

B. Test Scenario
In this scenario, three types of obstacles (ball, box or person)
with four colors (red, blue, green or yellow) can be presented
in one of the locations 1 to 6 (Figure 3). There can be
either zero or one combination of color-type in each location.



Fig. 3: Schematic overview of the possible failure state scenario.
Only the green location is relevant for finding the best recovery
behavior. Alt. stands for Alternative Route recovery behavior.

Only the location number 5, marked in green (Figure 3), is
relevant for choosing the best recovery behavior. The number
of possible combinations of color-type in each location is 13
(3 types × 4 colors + “no obstacle” = 13). Since there are
6 locations in this scenario, the number of all possible states
is 136 = 4, 826, 809.
This scenario is inspired by Ron Snijders’ master thesis
(University of Groningen, 2016).

IV. METHOD

In this section, we will talk about the proposed
argumentation-based learning method for recovering from an
unforeseen failure state.

A. Argumentation-Based Learning (ABL)
In order to explain ABL, we first use a simplified version of
the previous test scenario where there is only one location
ahead of the robot (instead of 6). When there is no obstacle
ahead of the robot, the best recovery behavior is “Continue”.

Assume that the robot confronts a blue-ball blocking
the entrance. Since there is no pre-trained model yet, the
robot tests different recovery behaviors to find the best one
(assuming that only one is successful and others will fail).
Supposing that pushing the ball was successful in this case,
the robot should learn from this experience.

However, only learning the recovery solutions for exactly
the same experiences is not enough. We need a learning
approach capable of inferring the features or feature values
which are the reason for choosing the best recovery behavior.
This is known as generalization in machine learning liter-
ature. For instance, confronting a red-ball and a green-ball
with the same recovery solution of pushing, the robot should
make a new hypothesis push the ball. Therefore, the next
time the robot confronts the green-ball, it can easily infer
that Push is the best recovery behavior.

Confronting a yellow-ball with Alt as the best recovery be-
havior contradicts the previous hypothesis. Therefore, a new
hypothesis is made: Push the ball unless it’s yellow. From
an argumentation perspective, we can see each hypothesis as
an argument. Therefore, the second generated hypothesis can
attack and defeat the first argument. This is inspired by how
human agents make new hypotheses from their perceptions
and reason about the best course of action in each state.

The architecture of the proposed argumentative-learning
method is shown in Figure 4. Bipolar argumentation frame-
work is used as hypotheses generator unit and Abstract ar-

Fig. 4: Architecture of the proposed Argumentation-based learning
method.

TABLE I: Possible combinations of color-type with the best
recovery behaviors

gumentation framework is modeling the defeasibility relation
between these generated hypotheses in this architecture.

We now use an example to explain the proposed method.

B. Example
Table I shows the best recovery behavior when the robot
confronts an obstacle with different colors and types. Figure
5 shows the updating procedure of the model step by step. In
the hypotheses generation unit (BAF), an arrow → shows a
support relation between arguments and 9 shows an attack
relation between them. However, in AF, → shows an attack
relationship between the arguments.

Referring to Table I, at the beginning of the learning
procedure, the robot confronts a Red-Ball (R-Ba). Therefore,
it tests all the recovery behaviors and finds the Push recovery
behavior as a success (Table I). Therefore, the Bipolar
Argumentation Framework is getting updated as in Figure 5.
In order to update the BAF, first, the best recovery node is
constructed which is Push in this case. Then all the possible
combinations of the feature values of the current state are
added as supporting nodes. The supporting nodes are R,
Ba and R-Ba which support the Push node. If there was
previously the same supporting node, its supporting weight
will be increased. For instance in Figure 5, where 8:B-Bo
enters the BAF, since B and B-Ba are new supporting nodes
for the Alt recovery behavior, they will be added to the model
with supporting weight equal to 1. On the other hand, Bo
already exists in the set of supporting nodes for Alt and its
weight will be increased. Confronting the 2:R-Bo and using
the previously generated hypotheses, the robot would infer
that the best possible recovery behavior is Push, which is a
wrong choice in this case (Table I). Therefore, the robot tries
other recovery behaviors and finds Alt as success and updates
the model accordingly. Moreover, a bidirectional attack will



Fig. 5: Example of Argumentation-Based Learning for the simple
scenario. Here only observations number 1, 2, 3, 9, 10 and 12 of
Table I are shown selectively.

be added among all the recovery nodes in the BAF (in this
case, Alt and Push). Subsequently, the new set of hypotheses
is generated to update the hypotheses argumentation unit.
Finally, from the set of generated hypotheses (arguments),
an Abstract Argumentation Framework will be made. This
BAF-AF update cycle goes on and on during the learning
procedure.

In this tiny example, seven out of thirteen cases are
correctly recovered from new failure situations and only two
are wrongly classified using our proposed argumentation-
based learning. In other cases, our system can provide
multiple probable guesses. For instance, when 12:Y-P enters
the system in Figure 5, the AF cannot provide any suggestion
but the BAF will suggest both Ask and Alt as the candidate
recovery behaviors.

C. Hypotheses Generation Unit (BAF Unit)
This unit has two roles. Firstly, it generates a new set of
hypotheses whenever the second unit could not classify the
new data instance correctly (1). The second role of this unit
is to produce a second guess for best recovery behavior (2):

Algorithm 1: Hypotheses generation pseudocode.
input: current BAF Graph, Threshold, the best recovery behavior

and the latest hypothesis with wrong recovery behavior called
WrongRule

output: set of hypotheses

- choose the Best Recovery Behavior node called BRB.
- Normalize the supporting weights of BRB to [0, 1].
- Sort BRB.supporting-nodes according to their weight values from

high to low.
- Sum = 0;
- Hypotheses-List = Empty;
for (any sup in BRB.supporting-nodes) do

if (sup.weight > Threshold) then
Add sup→ BRB to the Hypotheses-List;

for any (A → BRB) in Hypotheses-List do
for any B → BRB in Hypotheses-List do

if (A ⊃ B) then
Remove (A → BRB) from Hypotheses-List;

Add WrongRule.P recondition→ BRB to Hypotheses-List;
return Hypotheses-List as output;

Fig. 6: The generated BAF when Yellow-Person (12:Y-P) enters the
model. Blue nodes show the intersection of preferred extensions and
recovery behaviors nodes.

1) In order to generate a new set of hypotheses from the
constructed BAF, only one recovery behavior is considered
which is highlighted with a red box in Figure 5. The
pseudocode shown in Algorithm 1 represents how the set
of hypotheses is generated.

2) In order to generate a second guess, a new BAF should
be constructed. For the new unforeseen failure state, the set
of all possible combinations of feature values is compared
with the supporting nodes of each recovery behavior node.
According to the sum of the matching supporting weights
for any recovery behavior, the attack relationship is adapted.
Therefore, only recovery behaviors with the higher sum of
matching supporting weights can attack the other recovery
behavior. For instance, in the example, if 12: Y-P enters the
model for prediction, the AF will not be able to guess the
best recovery behavior. Constructing a new BAF for a second
guess, shown in Figure 6, the calculated weight sum for Alt
node is the same as Ask and higher than Push. Accordingly,
the attack relationship gets updated. Using preferred exten-
sion semantics and its intersection with recovery behavior
nodes, both Alt and Ask will be chosen as second guesses.

D. Hypotheses Argumentation Unit using AF

As stated in the previous sections, this unit tries to justify
what has been learned so far by updating the attack rela-
tionship between the arguments (hypotheses). The arguments
in this framework can only bidirectionally attack each other



when they have the same precondition but different conclu-
sions.

Each argument in this unit has the form precondition
→ conclusion (postcondition) : weight. When the new data
instance enters the model, there will be three possible cases
for the set of hypotheses in the grounded extension of the
AF. Notice that in the proposed argumentation-based learning
method, it can be proved that the grounded extension is a
set of singletons in the AF. One possibility is the empty set,
which leads to generating a second guess by the BAF unit.
If one or more argument with the same conclusion part s
presented, then this conclusion will be the AF’s first guess.
If more than one argument with different recovery behaviors
in their conclusion part was chosen, the weights of arguments
determine which argument has more power to be selected.
For instance in the example, if blue-ball enters the model
after it has been trained using the complete set of data in
Table-I, both B → Alt: 2/4 and Ba → Push:1 can be used
for prediction. Since the Ba→ Push:1 has higher weight, the
Push recovery behavior will be chosen, which is the correct
choice for this failure state.

V. EXPERIMENTS

In this section, we compare the performance of our proposed
unforeseen failure recovery method with other incremental
learning classifiers. Gepperth et al. compared different in-
cremental learning algorithms and their applications [16].
Moreover, one of the recent surveys on a comparison of
incremental online machine learning techniques [17], covers
a broad range of algorithms. According to their results, we
are also comparing the proposed method with Incremental
Support Vector Machine (ISVM) [18], [19], [20], incremental
decision tree based on C4.5 [21] and ID3, incremental
Bayesian classifier [22], Online Random Forest (ORF)[23]
and Multi-Layer Neural Networks for classification with
localist models like Radial Basis Functions (RBF) which
work reliably in incremental settings [24], [25].

A. Performance Measure
The mean performance of each method is calculated over
1000 independent runs. Each run consists of 200 failure
recovery attempts. The order of failures is randomized for
each run in which there is an equal uniform probability for
each solution to be a success.

We are interested in knowing whether the method picked
the best recovery solution or not for a given failure state.

Notice that all the methods use the same randomly gen-
erated data set compatible with the conditions mentioned in
the test scenario.

B. Comparison criteria
We need a learning approach which can quickly learn to
recover from failure states in a low number of attempts.
Therefore, the increase in learning precision in a lower
number of attempts is one important criterion (which we
call learning speed) to evaluate the efficiency of the method.
Furthermore, the final learning precision (after 200 attempts)
is also an important criterion. Therefore, learning curves

Fig. 7: The comparison of the Argumentation-Based Learning
(ABL) with key methods for incremental online learning [17] using
the test scenario.

with the highest steepness in a smaller number of attempts
are preferred to the learning curves with almost the same
steepness all over the approach that have the same final
learning precision.

C. Comparison Methods
The first method utilized for comparison is a naive Bayesian
classifier. The second categories of methods that are used
for comparison are rule extraction and decision-tree based
methods. The PART algorithm is based on the C4.5 decision
tree classification method [26]. PRISM is an algorithm for
inducing modular rules [27]. The ID3 algorithm constructs
an unpruned decision tree for classification [28]. The J48
algorithm is also based on a pruned or unpruned C4.5
decision tree [21]. The incremental version of decision tree
algorithm is discussed in [29].

The incremental version of the random forest algorithm is
called On-line Random Forest (ORF) [23]. The multi-Layer
Perceptron (MLP) neural network is also used for compar-
ison. The final algorithm for the comparison is Incremental
Support Vector Machine (ISVM). These are compared with
our Argumentation-Based Learning (ABL) method.

D. Results
As one can see in Figure 7, the proposed Argumentation-
Based Learning (ABL) method outperforms all the other
methods in both the comparison criteria used for this re-
search, namely, the final precision and the learning speed.
The steepness of the learning curve shows that the ABL
learns faster in a lower number of iterations. After observing
30 failure states, ABL achieves 74% precision, while the best
method among others has 60% precision. The final precision
of ABL is 95%, while the best final precision among other
methods is 90%.

VI. DISCUSSION

A key reason that the proposed method works better than
Naive Bayes originates from the independence assumption
between all features in the Naive Bayesian formulation. In
the case of neural networks, since there is only a small
number of training data instances, it does not work well.
On the other hand, decision-tree based techniques fail at the
initial recovery attempts and then gradually learn the best



recovery behavior. This is because of the change in entropy
or information gain when new unforeseen data updates the
decision tree. This is also the case with the Online Random
Forest (ORF) method. Furthermore, ISVM does not perform
well in the case where only a few features are related in
predicting class label. In all the above cases, the proposed
ABL approach performed better since it considers any pos-
sible dependence between features and it can quickly focus
on features which are most important for the classification.

Moreover, ABL leads to an explicit representation of the
learning process understandable for humans, as is also the
case with decision-tree based techniques. In contrast, neural
networks, support vector machines and Bayesian techniques
are all black boxes for human agents. This explicit represen-
tation of the learning process can be utilized in combination
with human-robot interaction. By this property ABL can be
used in multi-agent scenarios where agents can share their
knowledge.

The proposed ABL method has limitations. It handles data
sets with discrete feature values. Moreover, the complexity of
the method is rather high since it uses the subsets of feature
values for comparisons. These limitations can be addressed
in future works.

Consequently, the proposed argumentation-based learning
algorithm could learn in fewer attempts with higher precision
than other algorithms used for comparison. Therefore, this
method can be a good option when the feature values are
discrete.

VII. CONCLUSION

General Purpose Service Robots should be able to recover
from unexpected failure states caused by environmental
changes around the robot. In this paper, an argumentation-
based learning (ABL) approach is proposed which is able
to generate related hypotheses (best recovery behaviors) for
recovering from an unforeseen failure state. This set of hy-
potheses is updated incrementally and the conflicts between
the hypotheses are modeled using Abstract Argumentation
Frameworks. The resulting technique learns faster and with
higher final precision than various state-of-the-art online
incremental learning techniques.
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