The XAI paradox: Systems that perform well for
the wrong reasons

Cor Steging, Lambert Schomaker and Bart Verheij

Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence,
University of Groningen

Abstract. Many of the successful modern machine learning approaches
can be described as “black box” systems; these systems perform well, but
are unable to explain the reasoning behind their decisions. The emerg-
ing sub-field of Explainable Artificial Intelligence (XAI) aims to create
systems that are able to explain to their users why they made a partic-
ular decision. Using artificial datasets whose internal structure is known
beforehand, this study shows that the reasoning of systems that per-
form well is not necessarily sound. Furthermore, when multiple combined
conditions define a dataset, systems can preform well on the combined
problem and not learn each of the individual conditions. Instead, it often
learns a confounding structure within the data that allows it to make the
correct decisions. With regards to the goal of creating explainable sys-
tems, however, unsound rationales could create irrational explanations
which would be problematic for the XAI movement.

Keywords: Explainable AI - Machine Learning - Reasoning -
Connectionism - Symbolicism - Philosophy of Al

1 Introduction

In recent years, the notion of artificial intelligence has reached the masses with
the introduction of smart devices, digital assistants, self-driving cars and many
other inventions. This booming interest in AI can largely be attributed to the
success of machine learning in combination with the growing availability in big
data. Despite their success, many of the most commonly employed machine
learning techniques inherently lack a possibility to provide an explanation of
the way in which they reason. These ”black box” systems are often distrusted
by their users because they do not explain why particular decisions are made [3].

The response to the lack of transparency is the emerging field of Explainable
Artificial Intelligence (XAI) [4]. XAI aims to create explainable models that are
able to explicitly describe the inner workings of a ”black box” machine learning
system, and thus provide the essential explanations to their users. Examples of
such XAI systems are rule extraction algorithms, that create sets of rules for
the users that describe the reasoning of ”black box” systems [7], or glass-box
systems, in which the users are able to control what the systems learn [5]. A

2 C. Steging et al.

recent deep learning system that is used to diagnose and refer in retinal diseases
(and is able outperform medical experts), is divided into a framework of smaller
systems; one for each stage of the diagnostic process [2]. This makes it easier for
the clinicians to investigate and understand the reasoning of the system. The
overall goal of XAI systems is therefore to yield accurate explanations of the
reasoning of the systems, without sacrificing performance.

Whether or not the explanation that such an XAI system gives would make
sense, however, is not certain. The internal rationale that a black-box system uses
may yield high performance results, even though that rationale is not sound [1].
A great example of this phenomenon is the use of adversarial examples in image
classification, in which an input image is altered ever so slightly using a perturba-
tion [11]. To the human eye, there is no apparent difference between the original
input image and its altered version, while a machine learning system will make
a completely different classification after the image is altered. This suggests that
the reasoning that the systems employ differs wildly from the reasoning that
humans would use, despite the fact that the system usually makes the correct
decisions. It performs well, but for the wrong reasons. In and of itself, this is
impressive, as the machine learning system is able to extrapolate structures from
the data that we as humans are not able to perceive, and consequently achieve
a high performance. The result, however, is that when an explainable model
is generated from these systems using XAI techniques, the explanation that is
generated for the user is irrational as well. Because an unsound and irrational
explanation does not provide the user with the desired information and trust,
systems are needed that reason in a sound fashion; in a way that we as humans
would. The aim of this study is therefore to investigate machine learning tech-
niques in terms of how well they are able to learn the structure that defines
the dataset, rather than in terms of a general performance accuracy. Artificial
datasets will be generated from a set of predetermined conditions on which ma-
chine learning systems will train. The rationale of the trained systems will be
compared to the original set of conditions in order to measure how well the sys-
tems are able to extrapolate the correct conditions from the data. When multiple
conditions define the dataset, the system might not learn each of the individual
conditions correctly, but instead learn a completely different confounding struc-
ture that accurately maps the input to the output. This interaction effect is be
investigated as well.

2 Previous Research

In a particular case study in the field of law, it is investigated whether neural
networks can achieve a high performance on open texture law problems [1]. Fur-
thermore, it is examined whether or not the rationale that the neural networks
use in its classification is acceptable. To this end, a fictional dataset is generated
that describes the personal information of elderly people and whether they are
eligible for a particular welfare benefit. The eligibility depends on the six condi-

The XAT paradox: Systems that perform well for the wrong reasons 3

tions shown below, and the personal information of the individual. If and only if
all of the six conditions apply to an individual, her or she is eligible for a benefit.

1. The person should be of pensionable age (60 for a woman, 65 for a man).
2. The person should have paid contributions in four out of the last five relevant
contribution years.

The person should be a spouse of the patient.

The person should not be absent from the UK.

The person should have capital resources not amounting to more than £3,000.
If the relative is an in-patient the hospital should be within a certain distance:
if an out-patient, beyond that distance.

o G W

Neural networks are trained on this dataset and tasked with predicting the el-
igibility of new individuals. High classification accuracies are achieved by these
neural networks, with the number of correct predictions ranging from 98.75% to
99.25%.

In order to determine how well the conditions that define eligibility are
learned by networks, special test datasets are generated for each condition, in
which the personal information is generated such that all other conditions are
satisfied. For instance, the first condition states that the person should be of
pensionable age, which is 60 women and 65 for men. In order to measure how
well this condition is learned by a network, a test dataset is generated with val-
ues for the age and gender variables across the full possible range of values. The
values of the remaining variables are generated such that they satisfy the other
five conditions. In this way, a high performance on the resulting test dataset can
only be achieved if the network has learned the condition ’the person should be
of pensionable age’.

It was discovered that the networks are unable to learn all of the conditions
that define eligibility, despite the high classification accuracy. The condition of
pensionable age, for instance, is not learned correctly by the networks. Through
the use of statistics, Bench-Capon shows that a high classification accuracy can
be obtained in this example by only having learned a few of the conditions. By
altering the distribution of the training dataset it is possible to improve upon
how well certain conditions are learned, but it proved impossible to accurately
learn all of them. The actual conditions and structures that define this dataset
are therefore not learned by the networks. In this particular example, a high
performance does therefore not necessarily guarantee a sound rationale.

In other earlier research, a comparison was made between the performance of
the neural networks [1], defeasible logic [6] and an adaptation of the CN2 algo-
rithm using argumentation [8] on the the same fictional welfare benefit dataset.
All systems produced a high classification accuracy, but none of them were able
to exactly reproduce all of the six conditions of the dataset. Additionally, it was
shown that conditions 3 and 4, the simple boolean conditions, are easily iden-
tified by all of the systems. Similarly, the systems seem to have no difficulty in

4 C. Steging et al.

identifying condition 5, in which a specific threshold value needs to be exceeded.
Conditions 1 and 6 on the other hand, in which specific combinations of two vari-
ables are required, are difficult for the systems to learn. Additionally, so-called
condition 2, in which at least 4 out of the 5 variables need to be true, are not
easily identified by the system either.

3 Method

In the welfare benefit dataset mentioned earlier, the systems were unable to
learn all of the conditions that defined the data, despite achieving a high clas-
sification accuracy. Individually, the conditions are quite simple and all modern
machine learning systems should be able learn them. Combined, however, they
become more difficult to learn. This could indicate that there might be a type of
interaction effect between conditions, that causes a condition to be learned less
successfully when other conditions are present. For instance, a machine learning
algorithm may be able to easily learn two conditions separately, but have diffi-
culty when attempting to learn both at the same time. This study sets out to
investigate how well machine learning systems are able to internalize the rule-like
conditions that define a training dataset. Furthermore, the possible interaction
effect between conditions will be examined.

3.1 Symmetrical Boolean Functions

The type of functions that neural networks and other machine learning algo-
rithms have been shown to struggle with in previous research can be generalized
into symmetrical Boolean functions. The output of these functions is based on
the number of 1’s in the input vector. The location of the 1’s in the input vec-
tor is therefore irrelevant. A famous example of a symmetrical Boolean function
with two variables is the XOR function, which provides an output of 1 if and
only if the number of 1’s in the input vector is equal to 1. With more than two
variables, the XOR function can be generalized into the parity function, which
is a function that returns an output of 1 if and only if there is an odd number of
1’s in the input vector. Symmetrical Boolean functions can be sub-categorized
into the following three categories [9]:

— M-out-of-N function: f7(z) =1« |z| > m
— Exact value function: [} (z) =1+ |z] =m

— Parity function: f*(z) =1+ |z| =1 mod 2

In this notation, a Boolean function f"(x), has a Boolean input vector x with n
values, where |z| denotes the number of 1’s in vector x. Variable m is a prede-
termined, fixed value. These three types of symmetrical Boolean functions form
the basis of conditions used in the experiment.

The XAT paradox: Systems that perform well for the wrong reasons 5

3.2 Datasets

A large number of datasets are generated based on a set of conditions; the sym-
metrical Boolean functions. Each instance in the dataset has an output value,
which is true if and only if all of its conditions are true as well. This set of con-
ditions can include the M-out-of-N function, the exact value function and the
parity function. Each condition also has a set of parameters. As described earlier,
parameter n denotes the number of variables of the condition and parameter m
is used in M-out-of-N functions and exact value functions to determine the value
of the output. The total number of variables of each instances in the datasets is
therefore based on the number of variables of each of the conditions.

For any set of conditions, the following datasets are generated: a training set,
a general test set and a specific test set for each condition. First of all, a train-
ing set consists of 150,000 instances where half of the instances are generated
randomly such that their output value is true, and the other half are generated
randomly such that their output value is false. In the latter half, the instances
are generated such that they fail on each of its conditions equally. With two con-
ditions for example, this means that the latter half (the half where the output
is false) would consists for 50% out of instances where the first condition is false
and for 50% out of instances where the second condition is false. If a condition
is not specifically set up to fail, its variables are provided with random values.
The general test set consists of 150,000 instances, and is generated in the exact
same fashion.

For each condition, an additional specific test set is generated. This test set
is used to determine how well a system is able learn a specific condition. Given
such a condition, its test set is constructed by generating all of the possible
input values that the condition can have. For example, the XOR condition (or
parity function with n=2) has 22 = 4 possible values and would therefore have
a specific test set with 4 instances. The variables of any additional conditions
are given random values such that these conditions are satisfied. This ensures
that the output is dependent on only the single condition for which the test set
is generated. This allows us to measure how well that particular condition is
learned by the system.

3.3 Machine Learning Algorithms

Both a decision tree algorithm and a neural network are trained on the training
sets. The resulting systems are tasked with classifying the general test sets and
the specific test sets. The decision tree system uses the CART algorithm with
the Gini impurity and it does not make use of early stopping or any other form of
pruning. The neural networks used consist of three hidden layers, with 25, 10 and
3 hidden nodes respectively. The learning rate is set to 0.05 and the sigmoid is
used as the activation function. The networks use a mini-batch approach with a
batch size of 50. The maximum number of times that the entire training dataset

6 C. Steging et al.

will be presented to the network during the training phase is set to 2000 rounds.
Training stops early if there is no change in training errors over the past 10
rounds

4 Results

Both machine learning systems are first trained and tested using datasets with
only a single condition; either the parity, M-out-of-N or exact value function.
This will determine whether the systems are able to learn each of the conditions
individually. The systems will then be trained and tested on datasets with two
conditions in order to investigate both how well the systems are able to learn the
combined problem and how well they are able to learn the individual conditions
that make up the combined problem.

4.1 Single Condition Datasets

First of all, datasets are generated with only one condition with different numbers
of variables n; from 2 to 18. For the M-out-of-N and exact value condition, the
value of m will be varied as well: between 1 and n. For each condition and each
possible combination of m and n, both the decision tree algorithm and the neural
network are trained on the training dataset and then tested on the general test
set and the specific condition test set. In Figure 1 the accuracy of the decision
tree and the neural network on the general test set is shown versus the number of
variables for all three conditions. For the M-out-of-N and exact value condition,
the mean accuracies across all possible values values of m are displayed.

Decision Tree accuracies vs Number of variables Neural Network accuracies vs Number of variables
g oo g o —g—> —e—o e
ER 8
3 3
g g
© ©
B g
Parity Parity
— MofN — MofN
3 - Exact 3 Exact
Ne v e e~ oo 2 ye3eere Ne v w e n~eo 2y 3eere
Number of variables Number of variables
Decision tree accuracies Neural network accuracies

Fig. 1: The accuracies of the decision tree (A) and neural network (B) on the parity
condition (red), M-out-of-N condition (blue) and exact value condition (green) for
varying number of variables.

The XAT paradox: Systems that perform well for the wrong reasons 7

The accuracies of these systems on the specific test sets were almost identical,
and a repeated measures anova showed no significant difference between the
performance on the general test set and on the specific test set for all of the
conditions. Figure 1 shows that the accuracy of the decision tree system decreases
as the number of variables of the condition increases. The neural network does
not appear to have difficulties with any of the conditions, as the mean accuracy
for each number of variables never reaches lower than 98%. Earlier research has
shown that with sufficient training and enough hidden nodes, a neural network
should theoretically be able to learn any parity function [10]. If we assume that
a similar rule applies to the other types of symmetrical Boolean functions, the
150,000 training instances appear to be sufficient for a network of this format to
learn the conditions. Clearly, this is not sufficient for the decision tree algorithm.
The average accuracy of the neural network is relatively stable near 100% for
each condition and each number of variables. The accuracy of the decision tree
decreases at around 14 variables for all three conditions. The accuracy on the
parity condition drops rapidly to 55% with 18 variables, whereas the accuracies of
the exact value and M-out-of-N conditions decrease to 89% and 96% respectively
at 18 variables.

Additionally, in order to investigate how well the systems perform with noise, a
particular percentage of the instances of the training dataset are given a “noisy
variable”. These noisy variables have their values inverted, such that a 1 becomes
a 0 and a 0 becomes a 1. It should be noted that inverting the value of a variable
does not necessarily mean that the outcome is incorrect. Varying the percentage
of instances with a noisy variable between 0 and 100% yields the graphs shown
in Figure 2. These graphs display the mean accuracies of the decision tree (red)
and the neural network (blue) on the specific test set for each of the three sym-
metrical Boolean functions. The accuracies are average accuracies across values
of n ranging from 2 to 10 and across all possible values of m.

Even under extreme levels of noise, the systems are still able to learn the
M-out-of-N and exact value function quite effectively. This shows the powerful
nature of the data-driven machine learning techniques. The parity function is a
unique case, as its output is dependent on whether the amount of 1’s in the input
vector is odd or even. This means that if an instance in the training dataset has
a noisy variable, that instance automatically has the wrong output. If all of the
instances in the training set have a noisy variable, the systems simply learn that
an even number of 1’s should yield true, which is the complete opposite of the
parity function.

4.2 Multiple Condition Datastes

As mentioned earlier, systems that are able to learn how to solve a combined
problem, may not necessarily have learned all of the conditions that make up the
combined problems; there can be an interaction effect between the conditions.
To investigate this, neural networks and decision trees were trained and tested
on datasets that include two of the three symmetrical Boolean functions. First

8 C. Steging et al.

Accuracies on the parity test set Accuracies on the M-out-of-N test set

3
Decision Tree 2
— Neural Network
2

100
1

80

Accuracy (%)
40
L

Accuracy (%)

Decision Tree
o —— Neural Network

T T T T T T T T T T T T

0.0 02 04 06 0.8 10 0.0 02 04 06 0.8 1.0
Noise level Noise level
Accuracies on the exact test set

s
8 |
2
3
S
>
Q
5
g <
<
2
Decision Tree
o - — Neural Network

T T T T T T
0.0 0.2 04 0.6 0.8 1.0

Noise level

Fig. 2: The effect of varying levels of noise on the accuracies of the decision tree algo-
rithm (red) and the neural network (blue) after training on the parity function (a), the
M-out-of-N function (b) and the Exact value function (c).

of all, the interaction between the parity function and the exact value function
is examined, followed up by the interaction between the parity function and the
M-out-of-N function, and lastly the interaction between the M-out-of-N function
and the exact function will be explored. For all three combinations, the number
of variables per function will be varied between 2 and 10, thus creating instances
with 4 to 20 variables. Just as in the results of the single conditions, the accu-
racies of the M-out-of-N function and the exact function are averaged over all
possible values of m. For each interaction, three accuracies will be examined per
system: the accuracy on the general test set, the accuracy on a specific test set
of the first condition and a specific test set of the second condition.

An overview of the average accuracies of the decision trees and neural net-
works is given in Table 1 and Table 2 respectively. These show the mean accu-

The XAT paradox: Systems that perform well for the wrong reasons 9

Table 1: The mean accuracies of the decision tree on each test set after training on
each interaction.

General |Function 1|Function 2
accuracy| accuracy | accuracy

Parity, Exact 98.50 17.48 78.75
Parity, M-out-of-N| 99.99 30.36 81.75
M-out-of-N, Exact| 99.99 96.00 32.53

Table 2: The mean accuracies of the neural network on each test set after training on
each interaction.

General |Function 1|Function 2
accuracy| accuracy | accuracy

Parity, Exact 99.65 14.59 78.31
Parity, M-out-of-N| 100.00 30.59 81.65
Me-out-of-N, Exact| 99.99 99.88 26.14

racies for each interaction on each of the different test sets: the general test set,
and one test specific test set for each of the two functions of the interaction.
What is clear from these tables, is that the mean accuracy of both the neural
network and the decision tree on the general test set is quite high for each in-
teraction. However, the accuracies on the specific test sets, which indicate how
well the functions themselves are learned, are almost always a lot lower. With
the parity-exact interaction, for instance, the decision tree algorithm preforms
with an accuracy of 98.5% on the general test set, but only 17.5% on the par-
ity test set and 78.8% on the exact test set. This is shows that a system can
perform with a high accuracy, even if it has not learned all of the conditions.
The accuracies of the neural network and the decision tree system are also quite
similar to each other, which shows that the trends in accuracies are not limited
to a single machine learning algorithm. The relationships between the number
of variables for each function and the accuracies of each of the tests sets are
recorded as well, an example of which can be seen in the heatmaps of Figure 3.
These display the mean accuracies of the decision tree on the three different test
sets for the M-out-of-n and exact value function interaction versus the number
of variables of both functions on the x- and y-axis.

The accuracies on the general test set (Figure 2a) show the overall perfor-
mance of the decision tree system on the combined problem. Unsurprisingly,
more M-out-of-N and exact value function variables lead to a decrease in accu-
racy; as the problem becomes more complex, it is more difficult for the system
to learn. Figure 2b displays how well the M-out-of-N function is learned by the
system, and a similar decrease in accuracy can be observed when more variables
are used in the data. Interestingly, the number of M-out-of-N variables has a
bigger influence on the accuracy on this test set than the number of exact value
variables. This could be because functions with more variables are more difficult

10 C. Steging et al.

Decision tree accuracies on the general test set Decision tree accuracies on the M-of-N test set

935 9535 9499
96.17 9474
9696 9567
Aceuracy, 9656 9596

9631 96.2

97.81

Number of variables in the Exact function
o
8

Number of variables in the Exact function
£y

2 3 9 10 2 3

4 5 6 7 8
Number of variables in the M-of-N function

4 5 6 7 3
Number of variables in the M-of-N function

Decision tree accuracies on the exact test set

2683 2805 293 3269 3509 37.57
2817 306 2088 3282 3731 39.22
2076 2731 2033 3168 3456 3874

235 2812 3121 335 3563 3764 Accuncy

2539 3131 3521

5- 2344 2344 2344 2344 3281 388

4- 2047 2917 2047 2947 2047 3403

Number of variables in the Exact function
o

375 375 375 375 375 375

4 5 6 7 3
Number of variables in the M-of-N function

Fig. 3: The mean accuracies of the decision tree system on the different test sets after
training on the training set with a M-of-N function (x-axis) and an exact function
(y-axis) with varying numbers of variables in each function.

for the systems to learn. In Figure 2c¢, which displays how well the exact value
function is learned, a different effect can be observed. The accuracy on this test
set decreases with more exact value variables, but increases with more M-out-of-
N variables. So a larger number of exact value variables decreases how well the
M-out-of-N function is learned, while a larger number of M-out-of-N variables
increases how well the exact function is learned. A summarized overview of the
effects that the conditions have in the other interactions is shown in Table 3.

5 Discussion

There are some interesting findings in these results. First of all, it shows once
again that a high performance in terms of classification accuracy does not guar-
antee that the system has learned the conditions that define the dataset, as
evident by Table 1 and Table 2. Secondly, when dealing with interactions, the

The XAT paradox: Systems that perform well for the wrong reasons 11

Table 3: This table shows the the effect that a high number of variables of a function
has on the performance of a system (in terms of learning the function) for all functions
that it interacts with.

Performance on || Parity | Exact |M-out-of-N
Parity - decreases| decreases
Exact increases - decreases

M-out-of-N increases|decreases -

number of variables of a function can either increase or decrease how well a sys-
tem learns the function, depending on the other function that is in the dataset.
The accuracy on the parity test set increases with a low number of parity vari-
ables in both the interaction with the exact value function and the M-out-of-N
function. The accuracy on the exact value test set increases with a high num-
ber of exact variables in the interaction with the parity function and with a
low number of exact variables in the interaction with the M-out-of-N function.
Similarly, the accuracy on the M-out-of-N test set increases with a high number
of M-out-of-N variables in the interaction with the parity function, and with
a low number of M-out-of-N variables in the interaction with the exact value
function. Table 3 shows that higher numbers of parity variables always have a
negative effect on the how well the parity function is learned, regardless of other
the functions that define the dataset. This is also true for the other two func-
tions, except when interacting with the parity function; when interacting with
the parity function, a high number of exact/M-out-of-N variables has a positive
effect. Earlier results already showed that the parity function is more difficult
to learn than the other two functions. This, combined with the finding of Table
3 suggests that the interference of the parity function has a greater negative
impact on the how well the the exact and M-out-of-N function are learned than
the number of variables of said function. This is could explain why the increase
in variables creates a increase in learning the exact and M-out-of-N functions in
combination with the parity function.

The experiment with the symmetrical Boolean functions has confirmed that
the neural network and the decision tree algorithm can learn the XOR condi-
tion and its generalized form, the parity function, if there is no interference from
other variables. Compared to the M-out-of-N and exact value function, the parity
function seems to be the most difficult function for the machine learning systems
to learn. Both neural networks and decision trees, however, can learn them with
sufficient training. Once multiple conditions are presented to the systems at the
same time, however, the systems are unable to learn the conditions as well. The
accuracies on the general test sets are still quite high for all possible interactions
between the functions, but the systems do not learn the functions themselves as
well. This supports the claim that a high classification accuracy is no guarantee
that the right rationale is used in the classification process. The accuracies on
the general test set and on each of the functions individually can be seen in

12 C. Steging et al.

Table 1 and Table 2. It is interesting to see how systems can perform with an
accuracy of almost 100% on the general test set, yet fail dramatically on the test
sets of the individual functions. This indicates that they do not necessarily learn
these functions, but rather that a completely different function that somehow
accurately maps the input to the output. There must therefore be a confounding
structure within the data that the systems chooses to learn over the original,
intended structure.

In most of the experiments, the performances of the neural network and the
decision trees were quite similar. When considering the fact that decision trees
are transparent and much more easy to comprehend, they would appear to be
superior to the “black box” neural network. However, the experiments in this
study used relatively simple functions and conditions, which both connectionist
and symbolic machine learning techniques can learn. When dealing with im-
age or speech data, for instance, the (deep) neural networks will almost always
outperform the symbolic learning techniques. This is because neural networks
are better at generalizing, whereas decision trees attempt to map out the en-
tire training set. Due to these inherent differences, they are generally used for
different purposes.

6 Conclusion

In the future, machine learning algorithms that simply execute a task with a
high performance will not suffice; an explanation of their decision making will
be required [4]. This explanation, however, is dependent on the reasoning of
the systems; if the reasoning is unsound, the explanation will be unsound as
well. This study has shown that machine learning algorithms do not always
internalize the structure of their training data as we would expect. With regards
to the emerging XAl techniques and the explainable models that they generate,
the unsound rationales of machine learning systems can form a hindrance in
creating an understandable explanation.

References

1. Bench-Capon, T.: Neural networks and open texture. In: Proceedings of the 4th
International Conference on Artificial Intelligence and Law. pp. 292-297. ICAIL
’93, ACM, New York, New York, NY, USA (1993)

2. De Fauw, J., Ledsam, J.R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Black-
well, S., Askham, H., Glorot, X., ODonoghue, B., Visentin, D., et al.: Clinically ap-
plicable deep learning for diagnosis and referral in retinal disease. Nature Medicine
p. 1 (2018)

3. Edwards, L., Veale, M.: Slave to the algorithm? why a right to explanation is
probably not the remedy you are looking for (12 2017)

4. Gunning, D.: Explainable artificial intelligence (xai) (2017), https://www.darpa.
mil/attachments/XAIProgramUpdate.pdf

10.

11.

The XAT paradox: Systems that perform well for the wrong reasons 13

Holzinger, A., Plass, M., Holzinger, K., Crisan, G.C., Pintea, C., Palade, V.: A
glass-box interactive machine learning approach for solving np-hard problems with
the human-in-the-loop (08 2017)

Johnston, B., Governatori, G.: Induction of defeasible logic theories in the legal
domain. In: Proceedings of the 9th international conference on Artificial intelligence
and law. pp. 204-213. ACM, New York (2003)

Lu, H., Setiono, R., Liu, H.: Neurorule: A connectionist approach to data mining
(11 1996)

Mozina, M., Zabkar, J., Bench-Capon, T., Bratko, I.: Argument based machine
learning applied to law. Artificial Intelligence and Law 13(1), 53-73 (2005)
Wegener, I.: The complexity of symmetric boolean functions. In: Computation
theory and logic, pp. 433—442. Springer, New York (1987)

Wilamowski, B.M., Hunter, D., Malinowski, A.: Solving parity-n problems with
feedforward neural networks. In: Neural Networks, 2003. Proceedings of the Inter-
national Joint Conference on. vol. 4, pp. 2546-2551. IEEE, Piscataway (2003)
Yuan, X., He, P., Zhu, Q., Bhat, R.R., Li, X.: Adversarial examples: Attacks and
defenses for deep learning. CoRR abs/1712.07107 (2017)

