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Abstract

In this paper, we describe an open problem in abstract angtattien theory: the precise conditions under
which semi-stable extensions exist. Although each finigeiisrentation framework can be shown to have
at least one semi-stable extension, this is no longer thewhsn infinite argumentation frameworks are
considered. This puts semi-stable semantics betweere stabipreferred semantics. Where stable seman-
tics does not warrant the existence of extensions (evenite irgumentation frameworks) and preferred
semantics always warrants the existence of extensions {evnfinite argumentation frameworks), semi-
stable semantics warrants the existence of extensionsanfipite argumentation frameworks, but not for
infinite argumentation frameworks. We illustrate this wétltounter-example of the latter. The question
is then studied if, even for infinite argumentation framekgpione can identify specific conditions under
which semi-stable extensions do exist.

1 Introduction

Much of the recent work regarding the formal study of argutaon has its origin in Dung’s 1995 landmark
paper [7]. In this work, the focus is on the mathematical prtips of one aspect of argumentation, namely
the attack relation between arguments. Dung’s analysiseohttack relation uses sets as a central tool. He
proposed four kinds of extensions of an argumentation freonle stable, preferred, grounded and complete
extensions. Verheij continued the analysis using lalgdlji 3]. He defined labelling analogues of stable and
preferred extensions, and added two new kinds of extensiwising naturally in the setting of labellings:
stage extensions and admissible stage extensions. Irsfteaaximizing the set of arguments, the set of
labeled arguments was maximized. In a sense, this mearththaet of arguments taken into account was
maximized (whether attacked or not), instead of just th@sahattacked arguments. Verheij continued the
labelling analysis of argumentation [16], but in a more eggive setting, namely one in which both support
and attack can be analyzed. Recently, Caminada has resteahalysis of argumentation frameworks
in terms of labellings [1, 5]. In Caminada’s work, Verheifigmissible stage extensions [13] occur by the
elegant name of semi-stable extensions [2]. Although thi&kwbCaminada has been done independent of
that of Verheij, both discovered essentially the same qoinicetheir respective formalizations of abstract
argumentation semantics. In the current paper, we will hsgdrmsemi-stable extensigjr semi-stable
labelling) instead of Verheij's original terrmdmissible stage extension

Semi-stable semantics can be located between stable sesnamdl preferred semantics, in the sense
that every stable extension (labelling) is also a semilstaktension (labelling), and that every semi-stable
extension (labelling) is also a preferred extension (lagl[13, 2]. Moreover, if an argumentation frame-
work has at least one stable extension (labelling) thenfals semi-stable extensions (labellings) are also
stable extensions (labellings) [13, 2].

Over the recent years, research on semi-stable semansgipsdduced complexity analysises [9] as well
as an algorithm that computes all semi-stable extensiatel{ings) given an argumentation framework
[3, 4].1 In the current paper, we discuss a property that so far haseneived any attention: the existence
(and possible non-existence) of semi-stable extensiaiel{ings) of a given argumentation framework.
Although semi-stable extensions (labellings) do exisefgary finite argumentation framework, we will see
that they do not always exist for every infinite argumentaframework.

1slightly modified versions of the algorithm can also be usedamputer all preferred or stable extensions (labellirds) given
argumentation framework[3, 4].



The current paper is structured as follows. First, in SecBiave provide some formal preliminaries on
argumentation semantics, and in particular on semi-stteantics. Then, in Section 3 we will provide an
example of an (infinite) argumentation framework withouy aami-stable extension (labelling) state some
conditions under which semi-stable extensions do exigndur infinite argumentation frameworks. We
will round off in Section 4 with a brief discussion and a dgston of an open research issue.

2 Formal Preliminaries

In the current section, we state some basic notions of albstrgumentation theory.

Definition 1. Let U be the universe of all possible arguments. @&gumentation frameworls a pair
(Ar, att) whereAr is a subset o/ and att C Ar x Ar.

We say that an argumentattacksan argumenB iff (A, B) € att.

An argumentation framework can be depicted as a directgzhgnavhich the arguments are represented
as nodes and the attack relation is represented as arrowmskmnce, argumentation framewdthr, att)
wheredAr = {A,B,C, D, E} andatt = {(A, B), (B, A),(B,C),(C,D),(D,E),(E,C)} is represented
in Figure 1.

Figure 1: An argumentation framework represented as atdilegraph.

The shorthand notatiod* and A~ stands for, respectively, the set of arguments attackedduynzent
A and the set of arguments that attack argunentikewise, if Args is a set of arguments, then we write
Args™ for the set of arguments that are attacked by at least onenangfLin Args, and.Args ™~ for the set of
arguments that attack at least one argumentins. In the definition belowF'(Args) stands for the set of
arguments that are acceptable in the sense of [7].

Definition 2 (defense / conflict-free)Let (Ar, att) be an argumentation frameworld, € Ar and.Args C
Ar.

We defineA™ as{B | A att B} and Args™ as{B | A att B for someA € Args}.

We defined™ as{B | B att A} and Args— as{B | B att AforsomeA € Args}.

Args is conflict-freeiff Args N Args™ = 0.

Args defendsan argumentd iff A= C Args™.

We define the functiofl : 247 — 247 as

F(Args) = {A | Ais defended bylrgs}.

Args is admissibléff it is conflict-free andArgs C F(Arygs).

WhenArgs is a set of arguments, we refertbrgs U Args™ as therangeor Args, a term that was first
introduced in [13]. Using the concept of admissibility,lieh becomes possible to define preferred, stable
and semi-stable semantics. The definitions of stable and&afrle extensions below are not literally the
same as in [7] and [2] but can be proved to be equivalent. Gurigito formulate these notions in such
a way to make clear the connection between the extensisesdb®efinition 3) and the labelling-based
(Definition 5) characterisations of argumentation seneanti

Definition 3 (acceptability semantics) et (Ar, att) be an argumentation framework and ldtrgs C Ar
be an admissible set of arguments.

- Args is apreferredextension iffArgs is a maximal (w.r.t. set-inclusion) admissible set.

- Arygs is astableextension iffArgs is an admissible set wherdrgs U Args™ = Ar.



- Args is asemi-stableextension iffAdrgs is an admissible set wherdrgs U Args™ is maximal (w.r.t.
set-inclusion) among all admissible sets.

As an example, in the argumentation framework of FigufeBL D} is a stable (and semi-stable) ex-
tension,{ A} is a preferred extension which is neither stable nor seatilst and{ B} is an admissible set
which is not a preferred extension (and also not a stableror-stable extension).

The connection between stable, semi-stable and prefextedsons can be stated as follows.

Proposition 1 ([2]). Let AF' = (Ar, att) be an argumentation framework.
1. Every stable extension dff’ is also a semi-stable extension4f'.
2. Every semi-stable extensionAf' is also a preferred extension dfF'.

3. If AF has at least one stable extension, then every semi-statdasion ofAF is also a stable
extension ofAF'.

The concept of admissibility, as well as that of preferradble or semi-stable semantics were origi-
nally stated in terms of sets of arguments. It is equally weBsible, however, to express these concepts
using argument labellings. This approach was pioneeredbgdk [12] has subsequently been applied by
Jakobovits and Vermeir [10], Caminada [1, 3], Vreeswijk][aBd Verheij[13, 17]. In the current paper we
follow the approach of Caminada [1, 5], where the idea of ellaty is to associate with each argument ex-
actly one label, which can either e, out orundec. The labelin indicates that the argument is explicitly
accepted, the labelt indicates that the argument is explicitly rejected, andabelundec indicates that
the status of the argument is undecided, meaning that onairdfrom an explicit judgment whether the
argument isin or out.

Definition 4 ([5]). Let(Ar, att) be an argumentation framework.l@bellingis a total functionl : Ar —
{in, out, undec}. A labelling is calledadmissibleff for every A € Ar it holds that:

1. if Ais labelledin then all attackers ofi are labelledout
2. if Ais labelledout thenA has a attacker that is labelleth, and

We writein(L) for {A | L(A) = in}, out(L) for {A | L(A) = out} andundec(L) for {A | L(A) =
undec}. Sometimes, we write a labelling as a triple(Args,, Args,, Argss) where Args, = in(L),
Args, = out(L) andArgs; = undec(L).

Using the concept of an admissible labelling, it becomesiptesto define the notions of preferred,
stable and semi-stable labellings.

Definition 5. Let £ be an admissible labelling of argumentation framewdtk = (Ar, att).

e We say that is apreferred labellingff in(£) is maximal (w.r.t. set inclusion) among all admissible
labellings.

e We say thal is astable labellingff undec(L£) = 0.

e We say thatC is a semi-stable labellingff undec(£) is minimal (w.rt. set inclusion) among all
admissible labellings.

The connection between stable, semi-stable and prefexbetlihgs are similar as for the stable, semi-
stable and preferred extensions.

Proposition 2. Let AF = (Ar, att) be an argumentation framework.
1. Every stable labelling ofl F' is also a semi-stable labelling ofF'.
2. Every semi-stable labelling ofF is also a preferred labelling ofL F'.

3. If AF has at least one stable labelling, then every semi-stablellag of A F' is also a stable labelling
of AF.

2In [1] these were defined using the concept of complete falgsll However, our current formalization based on admiissib
labellings can be shown to be equivalent.



For preferred, stable and semi-stable semantics, extenaitd labellings stand in a one-to-one relation
to each other. In essence, in order to convert a labellingitexéension, one simply takes the setiaf
labelled arguments. Similarly, in order to convert an egiemto a labelling, one labels all arguments in the
extensionin, all arguments attacked by the extenséart and all other argumentsdec. More details can
be found in [5].

3 On the Existence of Semi-Stable Extensions

Although various technical issues regarding semi-stadateamtics (like computational complexity [9] and
algorithms [3]) have been treated in the literature, theie particular question that is still to be answered
in any reasonable detail: can we guarantee the existeneanufsdable extensions for any argumentation
framework? Although we understand that this question magtiirst appear odd to the reader, it will be
explained that answering it is definitely not a trivial tatkfact, the reader might be surprised to learn that
for a wide variety of cases, one cannot provide an a priorven$o this question.

To properly understand the nature of the problem, it can tegasting to look at it from the perspective
of preferred semantics. Recall that preferred extensionbeadefined as a maximal admissible sets®[7],
while semi-stable extension can be defined as admissildensttt a maximal rangé. When being asked
why there always exists a preferred extension, many schagty by stating that the empty set is admissible
and that one can always keep on adding arguments to it urtihas reached a preferred extension. This is
stated in remarks like “Every argumentation framework pesss at least one preferred extension (the empty
set is always an admissible set)” [6] and “(...) it is alwalye tase that a preferred extension exists since
the empty set is always admissible” [8]. While we agree tla@heargumentation framework has at least a
minimaladmissible set (the empty set), this still does not ansveeqtiestion of whether each argumentation
framework also has maximaladmissible set (a preferred extension).

Of course, an easy and straightforward way of ensuring tieesce of a preferred extension would be
to take into account only argumentation frameworks with gefiget of arguments. If there are only finitely
many arguments, then there are also finitely many admissétte It then trivially follows that there exists
some maximal admissible set. This is for instance the agprtaken in [8].

A similar observation holds with respect to the existenceeshi-stable extensions, as long as one re-
stricts oneself to finite argumentation frameworks. Fottdirirgumentation frameworks, one can always
identify an admissible setirgs where Args U Args™ is maximal, thus warranting the existence of a semi-
stable extension.

When one also allows for argumentation frameworks with dimite set of arguments, the situation
becomes more complex. It should be mentioned that the ideawifig an infinite number of arguments is
not too far-fetched. When one, for instance, defines an aggtation framework using classical logic (such
as [11, 12]) then from the fact that there are infinitely malassical tautologies, it follows that one can
construct infinitely many arguments.

Suppose there are infinitely many arguments. Is there thikalatays a preferred or semi-stable ex-
tension? For semi-stable semantics, this question shoofdrtunately, be answered negatively. Take the
example (taken from [14, 16]) of an argumentation framewudhnkere there are infinitely mang-arguments
(41, Az, A3, .. ), infinitely many B-arguments B, , Bs, Bs, . . .) and infinitely manyC-arguments , Cs,
Cs,...). Let each4; attack itself. Let eacl; attack eactd; with j < i as well as eaclis;, with &£ < i.
Furthermore, let eacB; andC; attack each other. This situation is depicted in Figure 2.

Perhaps the best way of explaining why in this case no seahlesextension exists is by examining the
preferred labellings (recall that every preferred labelicorresponds to a preferred extension). In this case,
there exist an infinite sequence of preferred labellingsyla€h we only provide the first three:

1. eachC; is in, eachB; is out and eachd; is undec

2. C) is out, all the otherC;s arein, B; is in, all the otherB;s areout, A; is out, all A; with j > 1
areundec.

3. Cy isout, all the othelC;s arein, By is in, all the otherB;s areout, A; andA; areout, all A; with
j > 2 areundec.

SWe write “can be” because it would be equally possible to @sdipreferred extension as a maximal complete extension [7].
“We write “can be” because it would be equally possible to @efirsemi-stable extension as a complete extension with rahxim
range [2].
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Figure 2: Sometimes, there does not exist a semi-stablasate

The situation here is as follows. There can be at most/i$vagument that is labeleth (otherwise one
loses conflict-freeness and violates point 1 of Definitionl4t us assume tha; is labelledin (for some
i > 1). Then, if one wants to minimizendec, one should label’; out and all otherC; (with j # ) in.

All' A;, with k& < i then becomeut (this is becaus®; is in) whereas alld;, with k& > i remainundec.

For instance, if one chooséx to bein, then the set oindec labelled arguments becomgd,, As, Ay,
As, ...}, If one chooseBs to bein then the set ofindec labelled arguments becoméds, A4, A5, .. .}.

If one choose®B; to bein then the set ofindec labelled arguments becomgd,, 4s, ...}, etc. Thus, the
larger we choose thein B;, the less arguments get labelletldec. Nevertheless, we never end up with
a minimal set ofundec labelled arguments, since one can always obtain a set teatafier. There is no
admissible setdrgs where Args U Args™ is maximal. Therefore, there exists no semi-stable exterisi
Figure 2.

As an aside, one may ask the same question regarding pcefameantics. Is it perhaps possible that
one can invent an example where the admissible sets keeg@aging, such that there is no admissible
setArgs where Args is maximal? Suppose there exists an infinite sequence afasiorg admissible sets
Args,, Args,, Args,, ... How can one guarantee the existence of a global maximum?

The first step towards dealing with this is to observe thauthien of Args,, Args,, Argss, ... where
Args,; (i > 1) keeps getting bigger is again an admissible set. This iglifftdult too see, as the union is
conflict-free (otherwise at least ookrgs; (i > 1) would not be conflict-free) and defends all its elements
(otherwise at least ondrgs; (¢ > 1) would not defend all its arguments). Nevertheless, thigilsnot
enough to warrant the existence of a global maximum. Whdugifunion (sayArgs’) is in itself again the
starting point of an ever increasing sequence of admiss#éit?

The key to the existence of preferred extensions is to bed@u@orn’s Lemma, which can be stated as
follows: “Every non-empty partially ordered sef)(of which every totally ordered subsét) has an upper
bound contains at least one maximal element”. £ &k the set of all admissible sets, where the admissible
sets are ordered according to the subset relation. As edatiytordered subsét (thatis: every sequence of
increasing admissible sets) has an upper bound (that ignid®), one can apply Zorn’s Lemma and obtain
the existence of at least one maximal element (a preferrethsion). Although not explicitly mentioned in
[7], this is in fact the reason why there always exists a preteextension.

As for semi-stable semantics, one cannot perform the saicle tThe point is that the union of a
sequence of admissible setsgs,, Args,, Argss, ... whereArgs, U Args; (i > 1) keeps getting bigger
might not be an admissible set itself. Again, an example @ifolhnd in Figure 2, where this union is
not conflict-free (since it contains more than adBeargument). Thus, we cannot apply Zorn’s Lemma for
semi-stable semantics.

To summarize: the existence of extensions is not as stfaig¥erd as it may appear at a first sight. For
stable semantics, the situation is clear: there may notdidesextensions regardless of whether there are
finitely or infinitely many arguments. For preferred semesitihe situation is quite the opposite: there is
always at least one preferred extension, again regardieglather there exists finitely or infinitely many
arguments. For semi-stable semantics, however, the isituist somewhere in between: extensions are
guaranteed to exist for finite argumentation frameworksnlot for infinite argumentation frameworks. So



also here, it can be seen that semi-stable semantics ha#tiarpbstween stable semantics and preferred
semantics.

Overall, some properties with respect to the existence wii-séable extensions can be identified as
follows.

1. There exist (infinite) argumentation frameworks withserni-stable extensions (labellings).
2. Every finite argumentation framework has at least one-s¢abile extension (labelling).

3. Every argumentation framework with a finite number of prefd extensions (labellings) has at least
one semi-stable extension (labelling).

4. Every argumentation framework with at least one stabteresion (labelling) has at least one semi-
stable extension (labelling).

Point 4 follows from Proposition 1 and Proposition 2. Poiatand 3 are actually special cases of the
following theorem.

Theorem 1. If an argumentation frameworkAr, att) does not have an infinite sequence of preferred ex-
tensions with strictly increasing ranges (or equivalentges not have an infinite sequence of preferred
labellings with strictly decreasing sets oafidec-labelled arguments) then it has at least one semi-stable
extension (labelling).

Proof. We prove this by modus tollens. Suppdsér, att) has no semi-stable extension. Now pick an
arbitrary preferred extension (s&Y). It is not semi-stable, so there exists an admissiblelgeatith a larger
range (that is, the range df; is a proper superset of the rangefyf). Let P, be a preferred extension that
is a superset ofl, (from [7] it follows that such a preferred extension alwayssts). From the fact thal,
has a larger (or equal) range thdn, together with the fact that, has a larger range than, it follows
that P, has a larger range thah. P is not semi-stable either, so using the same reasoning ¢xests a
preferred extensiof?; with a larger range. Repeating this process gives (by inglcan infinite sequence
of preferred extensions with strictly increasing ranges. O

The validity of point 3 above follows directly from Theorem The validity of point 2 above follows
from the fact that it is a special case of point 3 above.

4 Discussion

Although Theorem 1 does provide a guideline regarding tligtexce of semi-stable extensions (labellings)
it does so by examining its preferred extensions (labedlingn interesting question is whether one can also
warrant the existence of semi-stable extensions basedeotopiological properties of the argumentation
framework. One possible candidate would be to considerfomnitary argumentation frameworks, as defined
in [7]. Recall that in a finitary argumentation framework e@gument has a finite number of atackers. It
is not too difficult to see that the argumentation framewdrkigure 2 is not finitary. This is because each
A; (¢ > 1) has an infinite number of atackers (edghwith j > ) and eachB; has an infinite number of
atackers (eacB; with j > 7).

The fact that there exists no semi-stable extension forrinenaentation framework of Figure 2 is closely
related to the fact that it is not finitary. In fact, we have e@able to construct an example of a finitary
argumentation framework that still does not have any séatils extensions. Still, this does not mean that
there exists an easy and straightforward proof of the exigt®f semi-stable extensions for finitary argu-
mentation frameworks. It appears that such a proof woul@ awse Zorn’s Lemma, and it is hot obvious
how such should be done while making use of the specific ptiegef finitary argumentation frameworks.
The following conjecture should therefore be seen as an ggs&arch issue in abstract argumentation.

Conjecture 1. Every finitary argumentation framework has at least one s&atfile extension (labelling).

In our view, the above conjecture is currently one of the ntaghnical open issues in the theory of
abstract argumentation.

5We encourage people who are interested to work on this t@cbus, in order to prevent double work from being done.



Epilogue: Historic Context and Terminology

The issue of the existence of semi-stable extensions wasfiesnined in [14, 16]). The argumentation
framework associated to example 5.8 of [16][p. $38)s no semi-stable extensibhe result is obtained
using the DefLog language, a straightforward generabnatif Dung’s attack graphs. DefL&gs a logical
language in which attack is interpreted as a kind of cond#ioelation. The language adds support, nested
conditionals and — what might be called — negation-as-d&fieathe expressiveness of Dung’s attack
graphs. Analogues of Dung’s stable and preferred exteasiomdefined, and shown to be faithful gener-
alizations (in the sense that translating an attack graghDefLog does not affect its stable and preferred
extensions). Next to the semi-stable semantics, Verh&jj16] adds a second kind of semantics that is new
with respect to Dung’s definitions, namely the stage seroanth stage extension is a conflict-free set of
arguments, with maximal range [18] For the sake of completeness of the analysis, Verheij [163 aolax-
imal conflict-free sets to the comparative analysis (usiregterm “compatibility class”). Table 1 contains
an overview of the different uses of terminology.

| Dung[7] | Verheij[13] | Verheij [14, 16] | Caminada [2]| Encompassing proposal
stable complete stage extension, dialectical stable stable
extension extension interpretation extension extension
preferred preferred dialectically preferred preferred
extension stage preferred stage extension extension
grounded - - grounded grounded
extension extension extension
complete - - complete complete
extension extension extension
- admissible stage = maximal dialectically semi-stable semi-stable
extensions preferred stages extension extension
- stage maximal - stage
extension stage extension
- - compatibility class - conflict-free
(in [14]: satisfiability class) extension

Table 1: Comparison of terminology.

As an aside, the example of Figure 2 is also a counterexargplast the existence of stage extensions
for infinite argumentation frameworks. ldentifying topgloal properties that warrant the existence of ex-
tensions (labellings) is therefore not only an issue forisgable semantics, but for stage semantics as well,
and to some extent even for stable semantics.
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