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Abstract Evidential reasoning is hard, and errors can lead to miscarriages of justice

with serious consequences. Analytic methods for the correct handling of evidence

come in different styles, typically focusing on one of three tools: arguments, sce-

narios or probabilities. Recent research used Bayesian networks for connecting

arguments, scenarios, and probabilities. Well-known issues with Bayesian networks

were encountered: More numbers are needed than are available, and there is a risk

of misinterpretation of the graph underlying the Bayesian network, for instance as a

causal model. The formalism presented here models presumptive arguments about

coherent hypotheses that are compared in terms of their strength. No choice is

needed between qualitative or quantitative analytic styles, since the formalism can

be interpreted with and without numbers. The formalism is applied to key concepts

in argumentative, scenario and probabilistic analyses of evidential reasoning, and is

illustrated with a fictional crime investigation example based on Alfred Hitchcock’s

film ‘To Catch A Thief’.

Keywords Evidential reasoning � Argumentation � Scenarios � Probabilistic
reasoning � Bayesian networks � Forensic science

1 Introduction

Establishing what has happened in a crime is often not a simple task. Many errors

can be made, with confirmation bias and statistical reasoning errors among the well-

documented sources of mistakes (cf. also Kahneman 2011). Recently the number of

erroneous convictions in criminal trials in the Netherlands was estimated to be in the
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order of 5–10% (Derksen 2016). As a result, there is a need for analytic tools that

can help prevent mistakes.

In the literature on correct evidential reasoning, three structured analytic tools are

distinguished: arguments, scenarios and probabilities (Anderson et al. 2005; Dawid

et al. 2011; Kaptein et al. 2009). These tools are aimed at helping organize and

structure the task of evidential reasoning, thereby supporting that good conclusions

are arrived at, and foreseeable mistakes are prevented.

In an argumentative analysis, a structured constellation of evidence, reasons and

hypotheses is considered. Typically the evidence gives rise to reasons for and

against the possible conclusions considered. An argumentative analysis helps the

handling of such conflicts. The early twentieth century evidence scholar John Henry

Wigmore is a pioneer of argumentative analyses; cf. his famous evidence charts

(Wigmore 1913).

In a scenario analysis, different hypothetical scenarios about what has happened

are considered side by side, and considered in light of the evidence. A scenario

analysis helps the coherent interpretation of all evidence. Scenario analyses were the

basis of legal psychology research about correct reasoning with evidence (Bennett

and Feldman 1981; Pennington and Hastie 1993; Wagenaar et al. 1993).

In a probabilistic analysis, it is made explicit how the probabilities of the

evidence and events are related. A probabilistic analysis emphasises the various

degrees of uncertainty encountered in evidential reasoning, ranging from very

uncertain to very certain. Probabilistic analyses of criminal evidence go back to

early forensic science in the late nineteenth century (Taroni et al. 1998) and have

become prominent by the statistics related to DNA profiling.

In a Netherlands-based research project,1 artificial intelligence techniques have

been used to study connections between these three tools (Verheij et al. 2016). This

has resulted in the following outcomes:

• A method to manually design a Bayesian network incorporating hypothetical

scenarios and the available evidence (Vlek 2016; Vlek et al. 2014);

• A case study testing the design method (Vlek 2016; Vlek et al. 2014);

• A method to generate a structured explanatory text of a Bayesian network

modeled according to this method (Vlek 2016; Vlek et al. 2016);

• An algorithm to extract argumentative information from a Bayesian network

modeling hypotheses and evidence (Timmer 2017; Timmer et al. 2017);

• A method to incorporate argument schemes in a Bayesian network (Timmer

2017; Timmer et al. 2015a).

Building on earlier work in this direction (Fenton et al. 2013; Hepler et al. 2007),

these results show that Bayesian networks can be used to model arguments and

structured hypotheses. Also two well-known issues encountered when using

Bayesian networks come to light:

• A Bayesian network model typically requires many more numbers than are

reasonably available;

1 See http://www.ai.rug.nl/*verheij/nwofs/.
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• The graph model of a Bayesian network is formally well-defined, but there is the

risk of misinterpretation, for instance unwarranted causal interpretation (Dawid

2010) (see also Pearl 2009).

Research has started on addressing these issues by developing an argumentation

theory that connects presumptive arguments, coherent hypotheses and degrees of

uncertainty (Verheij 2014a, b; Verheij et al. 2016).

A key issue addressed in this paper is how to find an appropriate balance between

qualitative and quantitative modeling styles. Building on ideas presented semi-

formally by Verheij (2014b), in the present paper, a formalism is proposed in which

presumptive arguments about coherent hypotheses can be compared in terms of

their strengths. The formalism allows for a qualitative and a quantitative

interpretation. The qualitative interpretation uses total preorders, and the quanti-

tative interpretation probability distributions.

Key concepts used in argumentative, scenario and probabilistic analyses of

reasoning with evidence are discussed in terms of the proposed formalism. The idea

underlying this theoretical contribution is informally explained in the next

section. The crime story of Alfred Hitchcock’s famous film ‘To Catch A Thief’,

featuring Cary Grant and Grace Kelly (1955) is used as an illustration.

2 General idea

The argumentation theory developed in this paper considers arguments that can be

presumptive (also called ampliative), in the sense of logically going beyond their

premises. Against the background of classical logic, an argument from premises P

to conclusions Q goes beyond its premises when Q is not logically implied by P.

Many arguments used in practice are presumptive. For instance, the prosecution

may argue that a suspect was at the crime scene on the basis of a witness testimony.

The fact that the witness has testified as such does not logically imply the fact that

the suspect was at the crime scene. In particular, when the witness testimony is

intentionally false, based on inaccurate observations or inaccurately remembered,

the suspect may not have been at the crime scene at all. Denoting the witness

testimony by P and the suspect being at the crime scene as Q, the argument from P

to Q is presumptive since P does not logically imply Q. For presumptive arguments,

it is helpful to consider the case made by the argument, defined as the conjunction of

the premises and conclusions of the argument (Verheij 2010, 2012). The case made

by the argument from P to Q is P ^ Q, using the conjunction of classical logic. An

example of a non-presumptive argument goes from P ^ Q to Q. Here Q is logically

implied by P ^ Q. Presumptive arguments are often defeasible (Pollock 1987;

Toulmin 1958), in the sense that extending the premises may lead to the retraction

of conclusions.

In Fig. 1, on the left, we see an argument from premises P to conclusions Q. The

argument is attacked by a counterargument: the negation of Q, denoted :Q. The
case made by the argument from P to Q is P ^ Q. By considering the argument from

P to the case made P ^ Q, the argument’s presumptive character as going beyond
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the premises is emphasised (Fig. 1, middle). An argument from P to :Q makes the

case P ^ :Q. The two arguments from P to P ^ Q and to P ^ :Q are conflicting and

make mutually incompatible cases. When the argument from P to P ^ Q is stronger

than the argument to P ^ :Q, the conflict is resolved, and leads to the presumptive

conclusion Q. The relative strength is indicated in the figure using a[-sign. The

relative strength of these arguments corresponds to a comparative value of the two

cases P ^ Q and P ^ :Q being made, as suggested by the size of the corresponding

boxes in the figure (Fig. 1, right).

The three representations in the figure can each represent the information that Q

follows presumptively from P, but not when also :Q. On the left, this is indicated

by the argument from P to Q with counterargument :Q. In the middle, this is

indicated by the two presumptive arguments from P making the cases P ^ Q and

P ^ :Q, where the former argument is stronger. Assuming both P and :Q, there is
no conflict of arguments. On the right, this is indicated by considering that P follows

from both cases, but one has a stronger relative value. Assuming both P and :Q,
only one of the cases remains, viz. P ^ :Q. In a sense, P ^ Q represents the normal

case (given P) and P ^ :Q the exceptional one.

In Fig. 1, no numbers appear. The comparison of the arguments uses the ordering

relation associated with their relative strengths, indicated by the [-sign (in the

middle). Such an ordering relation can be derived from or interpreted in a numeric

representation. Figure 2 shows the numeric strengths s(P, Q) and sðP;:QÞ of the

middle arguments, the former larger than the latter:

sðP;QÞ[ sðP;:QÞ

P

Q

¬Q

P ∧ Q P ∧ ¬Q

P

>
P ∧ Q

P ∧ ¬Q

Fig. 1 General idea: an argument with a counterargument (left); arguments for conflicting cases and their
comparison (middle); cases and their comparative value (right)

P ∧ Q P ∧ ¬Q

P

>s(P,Q) s(P,¬Q)

Fig. 2 Comparing argument
strengths
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We discuss below that the numeric strengths s(P, Q) and sðP;:QÞ can be derived

from a probability function Pr, by treating strengths as conditional probabilities

PrðQ jPÞ and Prð:Q jPÞ. The comparison of the values of the corresponding cases

P ^ Q and P ^ :Q is equivalently derived from the comparison of PrðP ^ QÞ and
PrðP ^ :QÞ.

3 Formalism and properties

The formalism uses a classical logical language L generated from a set of

propositional constants in a standard way. We write : for negation, ^ for

conjunction, _ for disjunction, $ for equivalence, > for a tautology, and ? for a

contradiction. The associated classical, deductive, monotonic consequence relation

is denoted �. We assume a finitely generated language, i.e., a language generated

using a finite set of propositional constants.

First we define case models, formalizing the idea of cases and their preferences.

Cases in a case model must be logically consistent, mutually incompatible and

different. Cases are logically consistent in the sense of the classical logical language

L. Cases are mutually incompatible, in the sense that the conjunction of case

sentences that are not logically equivalent, is inconsistent. Cases are different in the

sense that the set of case sentences cannot contain two elements that are logically

equivalent. The comparison relation must be total and transitive (hence is what is

called a total preorder, commonly modeling preference relations; Roberts 1985).

Definition 1 (Case models) A case model is a pair ðC; �Þ, such that the following

hold, for all u, w and v 2 C:

1. 6� :u;
2. If 6� u $ w, then � :ðu ^ wÞ;
3. If � u $ w, then u ¼ w;
4. u�w or w�u ;

5. If u�w and w� v, then u� v.

The strict weak order[ standardly associated with a total preorder � is defined as

u[w if and only if it is not the case that w�u (for u and w 2 C). When u[w,
we say that u is (strictly) preferred to w. The associated equivalence relation � is

defined as u�w if and only if u�w and w�u.

Example Figure 3 shows a case model with cases :P, P ^ Q and P ^ :Q. :P is

(strictly) preferred to P ^ Q, which in turn is preferred to P ^ :Q.

¬P
P ∧ Q

P ∧ ¬Q

Fig. 3 Example of a case model
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Although the preference relations of case models are qualitative, they correspond to

the relations that can be represented by real-valued functions.

Corollary 1 Let C � L be finite with elements that are logically consistent,

mutually incompatible and different (properties 1, 2 and 3 in the definition of case

models). Then the following are equivalent:

1. ðC; �Þ is a case model;

2. � is numerically representable, i.e., there is a real valued function v on C such

that for all u and w 2 C, u�w if and only if vðuÞ� vðwÞ.

The function v can be chosen with only positive values, or even with only positive

integer values.

Proof It is a standard result in order theory that total preorders on finite (or

countable) sets are the ones that are representable by a real-valued function (Roberts

1985). h

Corollary 2 Let C � L be non-empty and finite with elements that are logically

consistent, mutually incompatible and different (properties 1, 2 and 3 in the

definition of case models). Then the following are equivalent:

1. ðC; �Þ is a case model;

2. � is numerically representable by a probability function Pr on the algebra

generated by C such that for all u and w 2 C, u�w if and only if

PrðuÞ� PrðwÞ.

Proof Pick a representing real-valued function v with only positive values as in the

previous corollary, and (for elements of C) define the values of Pr as those of v

divided by the sum of the v-values of all cases; then extend by summation to the

algebra generated by C. When C is non-empty, Pr is a probability function on the

algebra generated by C. h

Next we define arguments. Arguments are from premises u 2 L to conclusions

w 2 L.

Definition 2 (Arguments) An argument is a pair ðu;wÞ with u and w 2 L. The

sentence u expresses the argument’s premises, the sentence w its conclusions, and

the sentence u ^ w the case made by the argument. Generalizing, a sentence v 2 L

is a premise of the argument when u � v, a conclusion when w � v, and a position

in the case made by the argument when u ^ w � v. An argument ðu;wÞ is properly
presumptive when u 6� w; otherwise non-presumptive. An argument ðu;wÞ is a

presumption when � u, i.e., when its premises are logically tautologous.

Note our use of the plural for an argument’s premises, conclusions and positions.

This terminological convention can be slightly confusing initially, but has been

deliberately chosen since this allows us to speak of the premises p and :q and

conclusions r and :s of the argument ðp ^ :q; r ^ :sÞ. Also the convention fits our
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non-syntactic definitions, where for instance an argument with premise v also has

logically equivalent sentences such as ::v as a premise.

Note that we define presumptions as a specific kind of argument, viz. from

tautologous premises, and not as propositions. We have done so in order to

emphasize that accepting a presumption is an inferential step that can be defeated.

In this way, presumptions differ from premises, which are the basis of possible

inferences, and not themselves the result of an inferential step. An example is the

presumption of innocence, which can be defeated by proof of guilt. (We formally

discuss this example at the start of Sect. 4.1.)

We define three kinds of valid arguments: coherent arguments, conclusive

arguments and presumptively valid arguments. A coherent argument is defined as an

argument that makes a case logically implied by a case in the case model. A

conclusive argument is a coherent argument, for which all cases in the case model

that imply the argument’s premises also imply the conclusions.

Definition 3 (Coherent and conclusive arguments) Let ðC; �Þ be a case model.

Then we define, for all u and w 2 L:

ðC; �Þ � ðu;wÞ if and only if 9x 2 C: x � u ^ w.

We then say that the argument from u to w is coherent with respect to the case

model. We define, for all u and w 2 L:

ðC; �Þ � u ) w if and only if 9x 2 C: x � u ^ w and 8x 2 C: if x � u, then
x � u ^ w.

We then say that the argument from u to w is conclusive with respect to the case

model.

Example (continued) In the case model of Fig. 3, the arguments from > to :P and

to P, and from P to Q and to :Q are coherent and not conclusive in the sense of this

definition. Denoting the case model as ðC; �Þ, we have ðC; �Þ � ð>;:PÞ,
ðC; �Þ � ð>;PÞ, ðC; �Þ � ðP;QÞ and ðC; �Þ � ðP;:QÞ. The arguments from a

case (in the case model) to itself, such as from :P to :P, or from P ^ Q to P ^ Q are

conclusive. The argument ðP _ R;PÞ is also conclusive in this case model, since all

P _ R-cases are P-cases. Similarly, ðP _ R;P _ SÞ is conclusive.
The notion of presumptive validity considered here is based on the idea that some

arguments make a better case than other arguments from the same premises. More

precisely, an argument is presumptively valid if there is a case in the case model

implying the case made by the argument that is at least as preferred as all cases

implying the premises.

Definition 4 (Presumptively valid arguments) Let ðC; �Þ be a case model. Then

we define, for all u and w 2 L:

ðC; �Þ � u,w if and only if 9x 2 C:

1. x � u ^ w; and
2. 8x0 2 C: if x0 � u, then x�x0.
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We then say that the argument from u to w is presumptively valid with respect to the

case model. A presumptively valid argument is properly defeasible, when it is not

conclusive.

Example (continued) In the case model of Fig. 3, the arguments from > to :P,
and from P to Q are presumptively valid in the sense of this definition. Denoting the

case model as ðC; �Þ, we have formally that ðC; �Þ � >,:P and

ðC; �Þ � P,Q. The coherent arguments from > to P and from P to :Q are

not presumptively valid in this sense.

Corollary 3

1. Conclusive arguments are coherent, but there are case models with a coherent,

yet inconclusive argument;

2. Conclusive arguments are presumptively valid, but there are case models with a

presumptively valid, yet inconclusive argument;

3. Presumptively valid arguments are coherent, but there are case models with a

coherent, yet presumptively invalid argument.

The next proposition provides key logical properties of this notion of

presumptive validity. Many have been studied for nonmonotonic inference relations

(Kraus et al. 1990; Makinson 1994; van Benthem 1984). Given a case model

ðC; �Þ, we write u j� w for ðC; �Þ � u,w. We write CðuÞ for the set

fx 2 C jx � ug, and refer to the elements of CðuÞ as u-cases. For brevity, we
abbreviate ‘presumptively valid’ to ‘valid’.

(LE), for Logical Equivalence, expresses that in a valid argument premises and

conclusions can be replaced by a classical equivalent (in the sense of �).

(Cons), for Consistency, expresses that the conclusions of presumptively valid

arguments must be consistent.

(Ant), for Antecedence, expresses that when certain premises validly imply a

conclusion, the case made by the argument is also validly implied by these

premises.

(RW), for Right Weakening, expresses that when the premises validly imply a

composite conclusion also the intermediate conclusions are validly implied.

(CCM), for Conjunctive Cautious Monotony, expresses that the case made by a

valid argument is still validly implied when an intermediate conclusion is added to

the argument’s premises.

(CCT), for Conjunctive Cumulative Transitivity, is a variation of the related

Cumulative Transitivity property (CT, also known as Cut). (CT)—extensively

studied in the literature—has u j� v instead of u j� w ^ v as a consequent. The

variation is essential in our setting where the (And) property is absent (If u j� w
and u j� v, then u j� w ^ v). Assuming (Ant), (CCT) expresses the validity of

chaining valid implication from u via the case made in the first step u ^ w to the

case made in the second step u ^ w ^ v. (See Verheij 2010, 2012, introducing

(CCT).)
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Proposition 1 Let ðC; �Þ be a case model. For all u, w and v 2 L:

(LE) If u j� w, � u $ u0 and � w $ w0, then u0 j� w0.
(Cons) u 6j� ?.

(Ant) If u j� w, then u j� u ^ w.
(RW) If u j� w ^ v, then u j� w.
(CCM) If u j� w ^ v, then u ^ w j� v.
(CCT) If u j� w and u ^ w j� v, then u j� w ^ v.

Proof (LE): Direct from the definition. (Cons): Otherwise there would be an

inconsistent element of C, contradicting the definition of a case model. (Ant): When

u j� w, there is an x with x � u ^ w that is � -maximal in CðuÞ. Then also

x � u ^ u ^ w, hence u j� u ^ w. (RW): When u j� w ^ v, there is an x 2 C with

x � u ^ w ^ v that is maximal in CðuÞ. Since then also x � u ^ w, we find u j� w.
(CCM): By the assumption, we have an x 2 C with x � u ^ w ^ v that is maximal

in CðuÞ. Since Cðu ^ wÞ � CðuÞ, x is also maximal in Cðu ^ wÞ, and we find

u ^ w j� v. (CCT): Assuming u j� w, there is an x 2 C with x � u ^ w, maximal

in CðuÞ. Assuming also u ^ w j� v, there is an x0 2 C with x � u ^ w ^ v,
maximal in Cðu ^ wÞ. Since x 2 Cðu ^ wÞ, we find x0 �x. By transitivity of � ,

and the maximality of x in CðuÞ, we therefore have that x0 is maximal in CðuÞ. As
a result, u j� w ^ v. h

We say that an argument ðu;wÞ has coherent premises when the argument ðu;uÞ
from the premises to themselves is coherent. The following proposition provides

some equivalent characterizations of coherent premises.

Proposition 2 Let ðC; �Þ be a case model. The following are equivalent, for all

u 2 L:

1. u j� u, i.e., the argument ðu;uÞ is presumptively valid;

2. 9x 2 C : x � u and 8x0 2 C: If x0 � u, then x�x0;
3. 9x 2 C : u j� x.
4. 9x 2 C : x � u, i.e., the argument ðu;uÞ is coherent.

Proof 1 and 2 are equivalent by the definition of j� . Assume 2. Then there is a � -

maximal element x of CðuÞ. By the definition of j� , then u j� x; proving 3.

Assume 3. Then there is a � -maximal element x0 of CðuÞ with x0 � u ^ x. For
this x0 also x0 � u, showing 2. 4 logically follows from 2. 4 implies 2 since L is a

language that generated by finitely many propositional constants. h

Corollary 4 Let ðC; �Þ be a case model. Then all coherent arguments have

coherent premises and all presumptively valid arguments have coherent premises.

We saw that, in the present approach, premises are coherent when they are logically

implied by a case in the case model. As a result, generalisations of coherent

premises are again coherent; cf. the following corollary.
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Corollary 5 Let ðC; �Þ be a case model. Then:

If u j� u and u � w, then w j� w.

We now consider some properties that use a subset L� of the language L. The set
L� consists of the logical combinations of the cases of the case model using

negation, conjunction and logical equivalence (cf. the algebra underlying proba-

bility functions (Roberts 1985)). L� is the set of case expressions associated with a

case model.

(Coh), for Coherence, expresses that coherent premises correspond to a

consistent case expression implying the premises. (Ch), for Choice, expresses that,

given two coherent case expressions, at least one of three options follows validly:

the conjunction of the case expression, or the conjunction of one of them with the

negation of the other. (OC), for Ordered Choice, expresses that preferred choices

between case expressions are transitive. Here we say that a case expression is a

preferred choice over another, when the former follows validly from the disjunction

of both.

Definition 5 (Preferred cases) Let ðC; �Þ be a case model, u 2 L, and x 2 C.

Then x expresses a preferred case of u if and only if u j� x.

Proposition 3 Let ðC; �Þ be a case model, and L� � L the closure of C under

negation, conjunction and logical equivalence. Writing j� �
for the restriction of j�

to L�, we have, for all u, w and v 2 L�:

(Coh) u j� u if and only if 9u� 2 L� with u� 6� ? and u� � u;
(Ch) If u j� �u and w j� �w, then u _ w j� �:u ^ w or

u _ w j� �u ^ w or u _ w j� �u ^ :w;
(OC) If u _ w j� �u and w _ v j� �w, then u _ v j� �u.

Proof (Coh): By Proposition 2, u j� u if and only if there is an x 2 C with

x � u. The property (Coh) follows since C � L� and, for all consistent u� 2 L�,
there is an x 2 C with x � u�: (Ch): Consider sentences u and w 2 L� with u j� �u
and w j� �w. Then, by Corollary 5, u _ w j� u _ w. By Proposition 2, there is an

x 2 C, with x � u _ w. The sentences u and w are elements of L�, hence also the

sentences u ^ :w, u ^ w and :u ^ w 2 L�. All are logically equivalent to

disjunctions of elements of C (possibly the empty disjunction, logically equivalent

to ?). Since x � u _ w, � u _ w $ ðu ^ :wÞ _ ðu ^ wÞ _ ð:u ^ wÞ, and the

elements of C are mutually incompatible, we have x � u ^ :w or x � u ^ w or

x � :u ^ w. By Proposition 2, it follows that u _ w j� �:u ^ w or u _ w j� �u ^ w
or u _ w j� �u ^ :w.

(OC): By u _ w j� �u, there is an x � u maximal in Cðu _ wÞ. By w _ v j� �w,
there is an x0 � w maximal in Cðw _ vÞ. Since x � u, x 2 Cðu _ vÞ. Since

x0 � w, x0 2 Cðu _ wÞ, hence x�x0. Hence x is maximal in Cðu _ vÞ, hence
u _ v j� u. Since v 2 L�, u _ v j� �u. h
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The properties in Propositions 1 and 3 are the basis of qualitative and quantitative

representation results for the inference relation j� . See Verheij (2016a), also for

other formal properties of the proposal. In Sect. 4.3, we show how the probabilistic

representation of case models (Corollary 2) gives rise to probabilistic representa-

tions of our three kinds of argument validity: coherence, conclusiveness, and

presumptive validity.

The history of research in Artificial Intelligence that combines arguments,

hypotheses and uncertainty is extensive and varied. Without claiming a represen-

tative selection, we mention a few examples in order to position the present

formalism. We already mentioned the work by Kraus et al. (1990) on a preferential

semantics for non-monotonic inference. Formal differences include that the present

proposal uses cases, not worlds as primitives in the semantics, and that the (And)-

rule (If u j� w and u j� v, then u j� w ^ v.) does not hold for our notion of

presumptive validity. See Verheij (2016a) for further formal information. Non-

formal differences are that the present proposal is designed to be a balance between

qualitative and quantitative modeling, and has been applied to the modeling of

evidential reasoning (this paper) and normative reasoning (Verheij 2016c). Kohlas

et al. (1998) proposes a probabilistic approach to model-based diagnostics using

arguments supporting hypotheses about the state of a system. It is discussed that

numerical degrees of support can be looked at as conditional probabilities. Dung

and Thang (2010) defines probabilistic adaptations of abstract and assumption-based

argumentation. Hunter (2013) studies probability distributions in the settings of

abstract and logical argumentation, leading to an analysis of different kinds of

inconsistency that can arise. Benferhat et al. (2000) study non-monotonic reasoning

in terms of default reasoning, building on Adams’ epsilon semantics in terms of

extreme probabilities. Fagin and Halpern (1994) study reasoning about knowledge

and probability, studying a language that allows for the explicit mentioning of an

agent’s numeric probabilistic beliefs. Satoh (1990) studies non-monotonic reasoning

with a probabilistic semantics such that new information only leads to non-

monotonicity when it is contradicting previous information.

4 A formal analysis of some key concepts

We now use the formalism of case models and presumptive validity above for a

discussion of some key concepts associated with the argumentative, scenario and

probabilistic analysis of evidential reasoning.

4.1 Arguments

In an argumentative analysis, it is natural to classify arguments with respect to the

nature of the support their premises give their conclusions. We already defined non-

presumptive and presumptive arguments (Definition 2), and—with respect to a case

model—presumptively valid and properly defeasible arguments (Definition 4). We

illustrate these notions in an example about the presumption of innocence.
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Let inn denote that a suspect is innocent, and gui that he is guilty. Then the

argument ðinn;:guiÞ is properly presumptive, since inn 6� :gui. The argument

ðinn ^ :gui;:guiÞ is non-presumptive, since inn ^ :gui � :gui.
Presumptive validity and defeasibility are illustrated using a case model.

Consider the case model with two cases inn ^ :gui and :inn ^ gui ^ evi with

the first case preferred to the second (Fig. 4; the size of the cases’ rectangles

measures their preference). Here evi denotes evidence for the suspect’s guilt. Then

the properly presumptive argument ðinn;:guiÞ is presumptively valid with respect

to this case model since the conclusion :gui follows in the case inn ^ :gui that is

a preferred case of the premise inn. The argument is conclusive since there are no

other cases implying inn. The argument ð>; innÞ—in fact a presumption now that

its premises are tautologous—is presumptively valid since inn follows in the

preferred case inn ^ :gui. This shows that the example represents what is called

the presumption of innocence, when there is no evidence. This argument is properly

defeasible since in the other case of the argument’s premises the conclusion does not

follow. In fact, the argument ðevi; innÞ is not coherent since there is no case in

which both evi and inn follow. The argument ðevi; guiÞ is presumptively valid,

even conclusive.

In argumentative analyses, different kinds of argument attack are considered.

John Pollock made the famous distinction between two kinds of—what he called—

argument defeaters (Pollock 1987, 1995). A rebutting defeater is a reason for a

conclusion that is the opposite of the conclusion of the attacked argument, whereas

an undercutting defeater is a reason that attacks not the conclusion itself, but the

connection between reason and conclusion. Joseph Raz made a related famous

distinction of exclusionary reasons that always prevail, independent of the strength

of competing reasons (Raz 1990) (see also Richardson 2013).

Unlike in the work of Pollock, in the present proposal, undercutting and rebutting

attack are not treated as separate primitives. Instead they are specializations of a

general idea of attack defined in terms of case models. In this connection, Fig. 1 can

be confusing as the graphical representation of the argument and counterargument

(in the figure on the left) suggests that :Q attacks the connection between P and Q,

much like an undercutter. But the attack consists in the negation of the conclusion

Q of the argument from P, reminiscent of a rebutter. We show how the distinction

between undercutting and rebutting attack can still be made in the present proposal.

We propose the following terminology.

Definition 6 (Defeating circumstances) Let ðC; �Þ be a case model, and ðu;wÞ a
presumptively valid argument. Then circumstances v are defeating or successfully

attacking when ðu ^ v;wÞ is not presumptively valid. Defeating circumstances are

Fig. 4 A case model for
presumption
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rebutting when ðu ^ v;:wÞ is presumptively valid; otherwise they are undercutting.

Defeating circumstances are excluding when ðu ^ v;wÞ is not coherent.

Continuing the example of the case model illustrated in Fig. 4, we find the

following. The circumstances evi defeat the presumptively valid argument

ð>; innÞ since ðevi; innÞ is not presumptively valid. In fact, these circumstances

are excluding since ðevi; innÞ is not coherent. The circumstances are also rebutting

since the argument for the opposite conclusion ðevi;:innÞ is presumptively valid.

Note that this example of rebutting defeat is defeat of a presumption (in the sense of

Definition 2), hence can be regarded as a formalization of the idea of undermining

defeat that is the basis of argumentation formalisms in which defeat is assumption-

based (Bondarenko et al. 1997; Verheij 2003). See also the discussion of arguments

with prima facie assumptions by Eemeren et al. (2014).

Undercutting can be illustrated with an example about a lying witness. Consider a

case model with these two cases:

Case 1: sus ^ :mis ^ wit

Case 2: mis ^ wit

In the cases, there is a witness testimony (wit) that the suspect was at the crime

scene (sus). In Case 1, the witness was not misguided (:mis), in Case 2 he was. In

Case 1, the suspect was indeed at the crime scene; in Case 2, the witness was

misguided and it is unspecified whether the suspect was at the crime scene or not. In

the case model, Case 1 is preferred to Case 2 (Fig. 5), representing that witnesses

are usually not misguided.

Since Case 1 is a preferred case of wit, the argument ðwit; susÞ is presumptively

valid: the witness testimony provides a presumptively valid argument for the

suspect having been at the crime scene. The argument’s conclusion can be

strengthened to include that the witness was not misguided. Formally, this is

expressed by saying that ðwit; sus ^ :misÞ is a presumptively valid argument.

When the witness was misguided after all (mis), there are circumstances

defeating the argument ðwit; susÞ. This can be seen by considering that Case 2 is

the only case in which wit ^ mis follows, hence is preferred. Since sus does not

follow in Case 2, the argument ðwit ^ mis; susÞ is not presumptively valid. The

misguidedness is not rebutting, hence undercutting since ðwit ^ mis;:susÞ is not
presumptively valid. The misguidedness is excluding since the argument ðwit ^
mis; susÞ is not even coherent.

Arguments can typically be chained, namely when the conclusion of one is a

premise of another. For instance when there is evidence (evi) that a suspect is guilty

of a crime (gui), the suspect’s guilt can be the basis of punishing the suspect (pun).

For both steps there are typical defeating circumstances. The step from the evidence

Fig. 5 A case model for
undercutting
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to guilt is blocked when there is a solid alibi (ali), and the step from guilt to

punishing is blocked when there are grounds of justification (jus), such as force

majeure. Cf. Fig. 6.

A case model with three cases can illustrate such chaining:

Case 1: pun ^ gui ^ evi

Case 2: :pun ^ gui ^ evi ^ jus

Case 3: :gui ^ evi ^ ali

Cf. Fig. 7. In the case model, Case 1 is preferred to Case 2 and Case 3, modeling

that the evidence typically leads to guilt and punishing, unless there are grounds for

justification (Case 2) or there is an alibi (Case 3). Cases 2 and 3 are preferentially

equivalent.

In this case model, the following arguments are presumptively valid:

Argument 1 (presumptively valid): ðevi; guiÞ
Argument 2 (presumptively valid): ðgui; punÞ
Argument 3 (presumptively valid): ðevi; gui ^ punÞ

Arguments 1 and 3 are presumptively valid since Case 1 is the preferred case among

those in which evi follows (Cases 1, 2 and 3); Argument 2 is since Case 1 is the

preferred case among those in which gui follows (Cases 1 and 2). By chaining

arguments 1 and 2, the case for gui ^ pun can be based on the evidence evi as in

Argument 3.

The following arguments are not presumptively valid in this case model:

Fig. 6 Chained arguments

Fig. 7 Case model for chained arguments
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Argument 4 (not presumptively valid): ðevi ^ ali; guiÞ
Argument 5 (not presumptively valid): ðgui ^ jus; punÞ

This shows that Arguments 1 and 2 are defeated by circumstances ali and jus,

respectively:

Defeating circumstances 1 (attacking Argument 1): ali

Defeating circumstances 2 (attacking Argument 2): jus

The structural relations of the arguments 1 and 2 and their defeating circumstances 1

and 2 are graphically shown in Fig. 6.

As expected, chaining the arguments fails under both of these defeating

circumstances, as shown by the fact that these two arguments are not presumptively

valid:

Argument 6 (not presumptively valid): ðevi ^ ali; gui ^ punÞ
Argument 7 (not presumptively valid): ðevi ^ jus; gui ^ punÞ

But the first step of the chain—the step to guilt—can be made when there are

grounds for justification. Formally, this can be seen by the presumptive validity of

this argument:

Argument 8 (presumptively valid): ðevi ^ jus; guiÞ

This example shows how the preference ordering of cases is connected to the

overriding of arguments by their exceptions. Here we see that the exceptional cases

about grounds of justification and alibi are less preferred than Case 1. One could say

that because Case 1 is preferred the exceptional cases 2 and 3 are ignored given only

evi as a premise. The three arguments from evi to each of the cases separately are

coherent, but of these only the argument to Case 1 is presumptively valid. Since

Case 1 does not logically imply the defeating circumstances, adding ali or jus to

the premises makes Case 1 no longer coherently supported, hence certainly not

presumptively valid. Cf. Arguments 6 and 7, which make a case that logically

implies Case 1, but are not presumptively valid and not coherent.

4.2 Scenarios

In the literature on scenario analyses, several notions are used in order to analyze the

‘quality’ of the scenarios considered. Three notions are prominent: a scenario’s

consistency, a scenario’s plausibility and a scenario’s completeness (Pennington and

Hastie 1993; Wagenaar et al. 1993). In this literature, these notions are part of an

informally discussed theoretical background, having prompted work in AI & Law

on formalizing these notions (Bex 2011; Verheij and Bex 2009; Vlek et al. 2015). A

scenario is consistent when it does not contain contradictions. For instance, a

suspect cannot be both at home and at the crime scene. A scenario is plausible when

it fits commonsense knowledge about the world. For instance, in a murder scenario,

a victim’s death caused by a shooting seems a plausible possibility. A scenario is

complete when all relevant elements are in the scenario. For instance, a murder
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scenario requires a victim, an intention and premeditation. We now propose a

formal treatment of these notions using the formalism presented.

The consistency of a scenario could simply be taken to correspond to logical

consistency. A stronger notion of consistency uses the world knowledge represented

in a case model, and emphasises the coherence of a scenario in the sense of the

present formalism. In this way, we connect to the term coherence that also appears

in the literature on scenario-based evidence analysis, with various connotations.

In our proposal, some coherent scenarios fit the world knowledge represented in

the case model better than others, since some are presumptively valid. We can say

that a scenario is plausible (given a case model) when it is a presumptively valid

conclusion of the evidence. This notion of a scenario’s plausibility depends on the

evidence, in contrast with the mentioned literature (Pennington and Hastie 1993;

Wagenaar et al. 1993), where plausibility is treated as being independent from the

evidence. The present proposal includes an evidence-independent notion of

plausibility, by considering a scenario as plausible—independent of the evi-

dence—when it is plausible given no evidence, i.e., when the scenario is a

presumptively valid presumption. In the present setting, plausibility can be

connected to the preference ordering on cases given the evidence, when scenarios

are complete.

In the formal proposal here, besides coherence and presumptive validity, we have

encountered a third notion of validity: conclusiveness. This notion can be used to

represent that there is no remaining doubt about a scenario given the knowledge in

the case model: the scenario is beyond a reasonable doubt. Then the doubt that

always remains is transferred to doubt about whether everything that needs to be

considered is in the case model. When the case model is the result of a process of

critical, careful and open-minded scrutiny, and has been performed with appropriate

effort, such remaining doubt could be dubbed ‘unreasonable’ (Verheij 2014b).

We summarize the discussed definitions of coherence, completeness and

reasonable doubt, each in an evidence-independent and evidence-dependent variant.

Sentences r are intended to express scenarios, sentences � the evidence.

Definition 7 Let ðC; �Þ be a case model, and r 2 L. Then we define:

1. r is coherent if and only if the argument ð>; rÞ is coherent;
2. r is plausible if and only if the argument ð>; rÞ is presumptively valid;

3. r is beyond a reasonable doubt if and only if the argument ð>; rÞ is conclusive.

Definition 8 Let ðC; �Þ be a case model, and r and � 2 L. Then we define:

1. r is coherent given � if and only if the argument ð�; rÞ is coherent;
2. r is plausible given � if and only if the argument ð�; rÞ is presumptively valid;

3. r is beyond a reasonable doubt given � if and only if the argument ð�; rÞ is

conclusive.
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The completeness of a scenario can here be defined using a notion of maximally

specific conclusions, or extensions, as follows.

Definition 9 (Extensions) Let ðC; �Þ be a case model, and ðu;wÞ a presumptively

valid argument. Then the case made by the argument (i.e., u ^ w) is an extension of

u when there is no presumptively valid argument from u that makes a case that is

logically more specific.

For instance, consider a case model in which the case vic ^ int ^ pre ^ evi is a

preferred case of evi. The case expresses a situation in which there is evidence

ðeviÞ for a typical murder: there is a victim ðvicÞ, there was the intention to kill

ðintÞ, and there was premeditation ðpreÞ. In such a case model, this case is an

extension of the evidence evi. A scenario can now be considered complete with

respect to certain evidence when the scenario conjoined with the evidence is its own

extension. In the example, the sentence vic ^ int ^ pre is a complete scenario

given evi as the scenario conjoined with the evidence is its own extension. The

sentence vic ^ int is not a complete scenario given evi, as the extension of

vic ^ int ^ evi also implies pre.

Definition 10 Let ðC; �Þ be a case model, and r 2 L. Then we define:

r is complete given � if and only if r ^ � is an extension of �.

In the literature, scenario schemes have been used to represent a scenario’s

completeness (Bex 2011; Bex and Verheij 2013; Verheij et al. 2016; Vlek et al.

2014, 2016), taking inspiration from the use of scripts in artificial intelligence and

cognitive science (Schank and Abelson 1977). Here the cases in a case model are

used to represent completeness.

4.3 Probabilities

The literature on the probabilistic analysis of reasoning with evidence uses the

probability calculus as formal background. A key formula is the well-known Bayes’

theorem, stating that for events H and E the following relation between probabilities

holds:

PrðHjEÞ ¼ PrðEjHÞ
PrðEÞ � PrðHÞ

Thinking of H as a hypothesis and E as evidence, here the posterior probability

PrðHjEÞ of the hypothesis given the evidence can be computed by multiplying the

prior probability PrðHÞ and the Bayes factor PrðEjHÞ= PrðEÞ.
A formula that is especially often encountered in the literature on evidential

reasoning is the following odds version of Bayes’ theorem:

PrðHjEÞ
Prð:HjEÞ ¼

PrðEjHÞ
PrðEj:HÞ �

PrðHÞ
Prð:HÞ

Here the posterior odds PrðHjEÞ=Prð:HjEÞ of the hypothesis given the evidence is
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found by multiplying the prior odds PrðHÞ=Prð:HÞ with the likelihood ratio

PrðEjHÞ=PrðEj:HÞ. This formula is important since the likelihood ratio can

sometimes be estimated, for instance in the case of DNA evidence. In fact, it is a

key lesson in probabilistic approaches to evidential reasoning that the evidential

value of evidence, as measured by a likelihood ratio, does not by itself determine the

posterior probability of the hypothesis considered. As the formula shows, the prior

probability of the hypothesis is needed to determine the posterior probability given

the likelihood ratio. Just as Bayes’ theorem, the likelihood ratio obtains in a

probabilistic realization of a case model in our sense.

In Sects. 4.1 and 4.2, we focused on arguments and scenarios, which have

primarily (but not exclusively) been studied using qualitative methods. Here we

show that key notions of our approach can be given a quantitative, probabilistic

representation. In this way, we intend to show the balanced connection between

qualitative and quantitative analytic methods.

In particular, we turn to the quantitative representation of our three notions of

argument validity: coherence, conclusiveness and presumptive validity. We use the

probabilistic representation of case models as in Corollary 2 (Sect. 3). The

representing probability functions used there are functions on the algebra generated

by C. It is convenient to extend such functions to the language L.

Definition 11 Let ðC; �Þ be a case model (with C non-empty) represented by a

probability function Pr as in Corollary 2. Then we define, for all u and w 2 L:

1. PrðuÞ :¼
P

x2C andx�u PrðxÞ;
2. PrðwjuÞ :¼ Prðu ^ wÞ= PrðuÞ if PrðuÞ[ 0.

Note that the extension Pr to L only behaves exactly like the logical

generalization of a probability function when restricted to sentences corresponding

to the algebra generated by C. Consider for instance a language L generated by

propositional constants p and q and case model ðfpg; fðp; pÞgÞ represented by Pr.

Then PrðpÞ ¼ 1 and Prð:pÞ ¼ 0, as expected in a probabilistic setting where the

probabilities of complements add up to 1. However, PrðqÞ and Prð:qÞ are both equal
to 0.

Proposition 4 (Coherence, quantitative) Let ðC; �Þ be a case model (with C non-

empty) represented by a probability function Pr as in Corollary 2. Then, for all u
and w 2 L, the following are equivalent:

1. ðC; �Þ � ðu;wÞ;
2. Prðu ^ wÞ[ 0.

Proof Immediate using the definitions. An argument ðu;wÞ is coherent if and only

if there is a case x in C from which u ^ w, the case made by the argument, follows

logically. And, since Pr in Corollary 2 is positive on C, the definition of the

extension of Pr to L gives that this is the case if and only if Prðu ^ wÞ[ 0. h
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Proposition 5 (Conclusiveness, quantitative) Let ðC; �Þ be a case model (with C

non-empty) represented by a probability function Pr as in Corollary 2. Then, for all

u and w 2 L, the following are equivalent:

1. ðC; �Þ � u ) w;
2. PrðwjuÞ ¼ 1.

Proof An argument ðu;wÞ is conclusive if and only if it is coherent and all u-cases
in C are also u ^ w-cases. This is the case if and only if Prðu ^ wÞ[ 0 and

Prðu ^ wÞ ¼ PrðuÞ. Since Prðu ^ wÞ[ 0 implies PrðuÞ[ 0, this is equivalent to

PrðwjuÞ ¼ 1. h

Proposition 6 (Presumptive validity, quantitative) Let ðC; �Þ be a case model

(with C non-empty) represented by a probability function Pr as in Corollary 2. Then,

for all u and w 2 L, the following are equivalent:

1. ðC; �Þ � u,w;
2. 9x 2 C:

(a) x � u ^ w; and
(b) 8x0 2 C : if x0 � u, then PrðxÞ� Prðx0Þ;

3. 9x 2 C:

(a) x � u ^ w; and
(a) 8x0 2 C : Prðx juÞ� Prðx0 juÞ.

Proof An argument ðu;wÞ is presumptively valid if and only there is a u ^ w-case
x that is � -maximal among the u-cases in C. Hence the equivalence of 1 and 2.

Noting that x � u ^ w implies Prðu ^ wÞ[ 0, which implies PrðuÞ[ 0, which in

turn implies that Prðx0juÞ is defined for all x0 2 C, we find that 2 and 3 are also

equivalent.

The propositions show how the qualitatively defined notions of coherence,

conclusiveness and presumptive validity have equivalent quantitative characteriza-

tions. For presumptive validity, one is in terms of the comparative value of cases,

measured as a probability (part 2 of the proposition), the other in terms of the

comparative strength of arguments, measured as a conditional probability (part 3 of

the proposition).

We discuss an example, adapting our earlier treatment of the presumption of

innocence. Consider a crime case where two pieces of evidence are found, one after

another. In combination, they are considered to prove the suspect’s guilt beyond a

reasonable doubt. For instance, one piece of evidence is a witness who claims to

have seen the suspect committing the crime (evi), and a second piece of evidence

is DNA evidence matching the suspect’s profile (evi’). The issue is whether the
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suspect is innocent (inn) or guilty (gui). Consider now a case model with four

cases:

Case 1: inn ^ :gui ^ :evi
Case 2: :inn ^ gui ^ evi ^ :evi’
Case 3: inn ^ :gui ^ evi ^ :evi’
Case 4: :inn ^ gui ^ evi ^ evi’

Case 1 expresses the situation when no evidence has been found, hence the

suspect is considered innocent and not guilty. In order to express that by default

there is no evidence concerning someone’s guilt, this case has highest preference.

Cases 2 and 3 express the situation that the first piece of evidence is found. Case 2

expresses guilt, Case 3 innocence, still considered a possibility given only the first

piece of evidence. In order to express that evi makes the suspect’s guilt more

plausible than his innocence, Case 2 has higher preference than Case 3. Case 4

represents the situation that both pieces of evidence are available, proving guilt. It

has lowest preference. Summarizing the preference relation we have:

Case 1[Case 2[Case 3[Case 4

Qualitatively, the following hold in this case model:

1. The argument ð>; innÞ for innocence given no evidence is coherent,

presumptively valid and not conclusive;

2. The argument ð>; guiÞ for guilt given no evidence is coherent, not presump-

tively valid and not conclusive;

3. The argument ðevi; innÞ for innocence given only the first piece of evidence is

coherent, not presumptively valid and not conclusive;

4. The argument ðevi; guiÞ for guilt given only the first piece of evidence is

coherent, presumptively valid and not conclusive;

5. The argument ðevi ^ evi0; innÞ for innocence given both the first and the

second piece of evidence is not coherent, not presumptively valid and not

conclusive.

6. The argument ðevi ^ evi0; guiÞ for guilt given both the first and the second

piece of evidence is coherent, presumptively valid and conclusive.

Table 1 Coherence and conclusiveness of the example’s arguments

Argument Coherence Conclusiveness

ð>; innÞ yes: PrðinnÞ[ 0 no: PrðinnÞ\1

ð>; guiÞ yes: PrðguiÞ[ 0 no: PrðguiÞ\1

ðevi; innÞ yes: Prðinn ^ eviÞ[ 0 no: PrðinnjeviÞ\1

ðevi; guiÞ yes: Prðgui ^ eviÞ[ 0 no: PrðguijeviÞ\1

ðevi ^ evi0; innÞ no: Prðinn ^ evi ^ evi0Þ ¼ 0 no: Prðinn j evi ^ evi0Þ\1

ðevi ^ evi0; guiÞ yes: Prðgui ^ evi ^ evi0Þ[ 0 yes: Prðgui j evi ^ evi0Þ ¼ 1
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In Tables 1 and 2, we translate these remarks to their quantitative versions using the

Propositions 4, 5, and 6. Here we assume that probability function Pr represents the

case model as in Corollary 2 and has been extended to a function on L as in the

propositions. As expected, the specific numbers used in Pr do not matter much. It is

mostly their relative sizes that count. For instance, we could use Pr with

PrðCase1Þ ¼ 0:4, PrðCase2Þ ¼ 0:3, PrðCase3Þ ¼ 0:2, and PrðCase4Þ ¼ 0:1. If

information about actual distributions for this example is available (for instance

about the proportion of possible suspects for which there is a witness, but no DNA

match), that can be reflected in Pr. Whichever representation Pr as in Corollary 2 is

chosen, the probability calculus is followed. Hence Bayes’ theorem and its odds

version using a likelihood ratio hold.

5 Example: Alfred Hitchcock’s ‘To Catch A Thief’

As an example of the development of evidential reasoning in which gradually

information is collected, we discuss the crime investigation story that is the

backbone of Alfred Hitchcock’s ‘To Catch A Thief’, otherwise—what Hitchcock

himself referred to as—a lightweight story about a French Riviera love affair,

starring Grace Kelly and Cary Grant. In the film, Grant plays a former robber Robie,

called ‘The Cat’ because of his spectacular robberies, involving the climbing of high

buildings. At the beginning of the film, new ‘The Cat’-like thefts have occurred.

Because of this resemblance with Robie’s style (the first evidence considered,

denoted in what follows as res), the police consider the hypothesis that Robie is

again the thief (rob), and also that he is not (:rob). Figure 8 provides a graphical

representation of the investigation. The first row shows the situation after the first

evidence res, mentioned on the left side of the figure, with the two hypothetical

conclusions rob and :rob represented as rectangles. The size of a rectangle’s area

suggests the strength of the argument from the accumulated evidence to the

hypothesis. Here the arguments from res to rob and :rob are of comparable

strength.

When the police confront Robie with the new thefts, he escapes with the goal to

catch the real thief. By this second evidence (esc), the hypothesis rob becomes

more strongly supported than its opposite :rob. In the figure, the second row

indicates the situation after the two pieces of evidence are available. As indicated by

Table 2 Presumptive validity of the example’s arguments

Argument Presumptive validity

ð>; innÞ yes: PrðCase1Þ[ PrðCase2Þ[ PrðCase3Þ[ PrðCase4Þ
ð>; guiÞ no: PrðCase2Þ\ PrðCase1Þ; PrðCase4Þ\ PrðCase1Þ
ðevi; innÞ no: PrðCase3 j eviÞ\ PrðCase2 j eviÞ
ðevi; guiÞ yes: PrðCase2 j eviÞ[ PrðCase3 j eviÞ[ PrðCase4 j eviÞ
ðevi ^ evi0; innÞ no: The argument is not coherent

ðevi ^ evi0; guiÞ yes: PrðCase4jevi ^ evi0Þ ¼ 1
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the rectangles of differently sized areas, the argument from the accumulated

evidence res ^ esc to rob is stronger than that from the same premises to :rob.
Rectangles in a column in the figure represent corresponding hypotheses. Sentences

shown in a corresponding hypothesis in a higher row are not repeated. So on the

second row, when the evidence res and esc are taken into account, the rectangles

correspond to rob (on the left) and :rob (on the right).

Robie sets a trap for the real thief, resulting in a night-time fight on the roof with

Foussard who falls and dies (fgt). The police consider this strong evidence for the

hypothesis that Foussard is the thief (fou), but not conclusive so also the opposite

hypothesis is considered coherent (:fou). In the figure (third row marked fgt) the
hypothesis :rob is split into two hypotheses: one rectangle representing

:rob ^ fou, the other :rob ^:fou, both in conjunction with the evidence

available at this stage of the investigation (res ^ esc ^ fgt). With the

accumulated evidence res ^ esc ^ fgt as premises, the hypothesis

:rob ^ fou is more strongly supported than the hypothesis :rob ^:fou. The
police no longer believe that Robie is the thief. This is indicated by the line on the

left of the third row in the figure. The premises res ^ esc ^ fgt do not provide

support for the hypothesis rob; or, in the terminology of this paper: the argument

from premises res ^ esc ^ fgt to conclusion rob is not coherent.

Fig. 8 Example: Hitchcock’s ‘To Catch A Thief’
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Robie points out that Foussard cannot be the new incarnation of ‘The Cat’, as he

had a prosthetic wooden leg (pro). In other words, the argument from

res ^ esc ^ fgt ^ pro to :rob ^ fou is not coherent. (Cf. the second line

in the fourth row of the figure, corresponding to the hypothesis that Foussard is the

thief.)

Later in the film, Foussard’s daughter is caught in the act (cau), providing very

strong support for the hypothesis that the daughter is the new cat (dau). The
argument from res ^ esc ^ fgt ^ pro ^ cau to dau is stronger than to

:dau.
In her confession (con), Foussard’s daughter explains where the jewelry stolen

earlier can be found, adding some specific information to the circumstances of her

crimes (jwl). The argument from res ^ esc ^ fgt ^ pro ^ cau ^ con to

dau ^ jwl is stronger than to :dau ^:jwl.
The police find the jewelry at the indicated place (fin) and there is no remaining

doubt about the hypothesis that Foussard’s daughter is the thief. The argument from

res ^ esc ^ fgt ^ pro ^ cau ^ con ^ fin to :dau ^:jwl is incoherent, as

indicated by the line on the right of the bottom row of the figure. In the only remaining

hypothesis, Foussard’s daughter is the thief, and not Robie, and not Foussard. In other

words, the argument from res ^ esc ^ fgt ^ pro ^ cau ^ con ^ jwl to

:rob ^:fou ^ dau is conclusive.

During the investigation, gradually a case model has been developed representing

the arguments discussed in the example. We distinguish 7 cases, as follows:

Case 1: rob
^ res ^ esc

Case 2: :rob ^ fou
^ res ^ esc ^ fgt

Case 3: :rob ^:fou ^ dau ^ jwl
^ res ^ esc ^ fgt ^ pro ^ cau ^ con ^ fin

Case 4: :rob ^:fou ^:dau ^:jwl
^ res ^ esc ^ fgt ^ pro ^ cau ^ con

Case 5: :rob
^ res ^:esc

Case 6: :rob ^:fou
^ res ^ esc ^:fgt

Case 7: :rob ^:fou ^:dau
^ res ^ esc ^ fgt ^ pro ^:cau

Cases 1–4 are found as follows. First the properties of the four main hypotheses are

accumulated from the columns in Fig. 8:

Hypothesis 1: rob
Hypothesis 2: :rob ^ fou
Hypothesis 3: :rob ^:fou ^ dau ^ jwl
Hypothesis 4: :rob ^:fou ^:dau ^:jwl

Then these are conjoined with the maximally specific accumulated evidence that

provide a coherent argument for them:
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Evidence coherent with

hypothesis 1:

res ^ esc

Evidence coherent with

hypothesis 2:

res ^ esc ^ fgt

Evidence coherent with

hypothesis 3:

res ^ esc ^ fgt ^ pro ^ cau ^ con ^ fin

Evidence coherent with

hypothesis 4:

res ^ esc ^ fgt ^ pro ^ cau ^ con

Cases 5–7 complete the case model. Case 5 is the hypothetical case that Robie is not

the thief, that there is resemblance, and the Robie does not escape. In Case 6, Robie

and Foussard are not the thieves, and there is no fight. In Case 7, Robie, Foussard

and his daughter are not the thieves, and she is not caught in the act. Note that the

cases are consistent and mutually exclusive.

Figure 9 shows the 7 cases of the model. The sizes of the rectangles represent the

preferences. The preference relation has the following equivalence classes, ordered

from least preferred to most preferred:

1. Cases 4 and 7;

2. Case 3;

3. Case 6;

4. Cases 2 and 5;

5. Case 1.

Note that the rectangles in Fig. 8 can be constructed as combinations of the

rectangles in Fig. 9.

The discussion of the arguments, their coherence, conclusiveness and validity

presented semi-formally above fits this case model. For instance, the argument from

the evidential premises res ^ esc to the hypothesis rob is presumptively valid in

this case model since Case 1 is the only case implying the case made by the argument.

It is not conclusive since also the argument from these same premises to :rob is

coherent. The latter argument is not presumptively valid since all :rob-cases
implying the premises (Cases 2–7) have lower preference than Case 1. The argument

from res ^ esc ^ fgt to rob is incoherent as there is no case in which the

premises and the conclusion follow. Also arguments that do not start from evidential

premises can be evaluated. For instance, the argument from the premise (not itself

evidence)dau tojwl is conclusive since in the only case implying the premises (Case

3) the conclusion follows. Finally we find the conclusive argument from premises

res ^ esc ^ fgt ^ pro ^ cau ^ con ^ jwl to conclusion :rob ^:fou ^
dau ^ jwl (only Case 3 implies the premises), hence also to dau.

Fig. 9 Case model for the example
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6 Concluding remarks

In this paper, we have discussed correct reasoning with evidence using three

analytic tools: arguments, scenarios and probabilities. We proposed a formalism in

which the presumptive validity of arguments is defined in terms of case models, and

studied properties (Sect. 3). In particular, we showed that the qualitative definitions

of case models and presumptive validity have a quantitative representation in terms

of probability functions. We discussed key concepts in the argumentative, scenario

and probabilistic analysis of reasoning with evidence in terms of the formalism

(Sect. 4). An example of the gradual development of evidential reasoning was

provided in Sect. 5.

This work builds on a growing literature aiming to formally connect the three

analytic tools of arguments, scenarios and probabilities. In a discussion of the

anchored narratives theory by Crombag et al. (1993), it was shown how

argumentative notions were relevant in their scenario analyses (Verheij 2000).

Bex has provided a hybrid model connecting arguments and scenarios (Bex 2011;

Bex et al. 2010), and has worked on the further integration of the two tools (Bex

2015; Bex and Verheij 2013). Connections between arguments and probabilities

have been studied by Hepler et al. (2007) combining object-oriented modeling and

Bayesian networks. Fenton et al. (2013) continued this work by developing

representational idioms for the modeling of evidential reasoning in Bayesian

networks. Inspired by this research, Vlek developed scenario idioms for the design

of evidential Bayesian networks containing scenarios (Vlek et al. 2014), and

Timmer showed how argumentative information can be extracted from a Bayesian

network (Timmer et al. 2015b). Keppens and Schafer (2006) studied the knowl-

edge-based generation of hypothetical scenarios for reasoning with evidence, later

developed further in a decision support system (Shen et al. 2006).

This paper continues from an integrated perspective on arguments, scenarios and

probabilities (Verheij 2014b). In the present paper, that integrated perspective is

formally developed (building on ideas in Verheij 2014a) using case models and

discussing key concepts used in argumentative, scenario and probabilistic analyses.

Interestingly, our case models and their preferences are qualitative in nature, while the

preferences correspond exactly to those that can be numerically and probabilistically

realized. As such, the present formal tools combine a non-numeric and numeric

perspective (cf. the paper ‘To Catch A Thief With and Without Numbers’; Verheij

2014b). The mathematics of the formalism is studied further in Verheij (2016a) and has

been applied to value-guided decision making in Verheij (2016c).

The present work does not require modeling evidential reasoning in terms of full

probability functions, as is the case in Bayesian network approaches. In this way,

the well-known problem of needing to specify more numbers than are reasonably

available is addressed. In fact, we have shown an approach in which the specific

numbers of a quantitative representation can be abstracted to a qualitative

representation. Also whereas the causal interpretation of Bayesian networks is

risky (Dawid 2010), our case models come with formal definitions of arguments,

their coherence, conclusiveness and presumptive validity.
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From a knowledge representation perspective, one relevant question is what

happens in more complex examples than the ones used here. Indeed, more realistic

examples can quickly increase in complexity and may lead to more cases than can

be handled. This question has not been addressed in this paper. A helpful next step

could be to perform a case study of a real example, but also the formal investigation

of the growth of complexity can prove fruitful.

Another knowledge representation issue is where the case models come from. In

the formal proposal in this paper, the evaluation of arguments and scenarios happens

against the background of a given case model. So such evaluation requires that a

case model is available. No systematic approach for the development of case models

is discussed in this paper. For the Bayesian network modeling of scenarios, Vlek

et al. (2014) provides such a method, and Timmer et al. (2015a) discusses the

inclusion of argumentation schemes and their critical questions in a Bayesian

network model. These works continue from the use of building blocks and idioms

for building a Bayesian network model of the evidence in a criminal case, pioneered

by Hepler et al. (2007) and Fenton et al. (2013). Perhaps ideas from these

systematic modeling approaches can be adapted to the present setting.

By the present and related studies, we see a gradual clarification of how

arguments, scenarios and probabilities all have their specific useful place in the

analysis of evidential reasoning. By explicating formal bridges between qualitative

and quantitative analytic styles, we have provided an explanation why some prefer

to rationally analyze proof numerically, and others non-numerically. As a result, it

seems ever less natural to choose between the three kinds of tools, and ever more so

to use each of them when practically applicable.
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