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Abstract

The present paper discusses experimental argument assistance tools. In contrast with automated
reasoning tools, the objective is not to replace reasoning, but to guide the user’s production of
arguments. Two systems are presented, ARGUE! and ARGUMED based on DEFLOG. The focus is on
defeasible argumentation with an eye on the law. Argument assistants for defeasible argumentation
naturally correspond to a view of the application of law as dialectical theory construction. The
experiments provide insights into the design of argument assistants, and show the pros and cons
of different ways of representing argumentative data. The development of the argumentation
theories underlying the systems has culminated in the logical system DEFLOG that formalizes
the interpretation of prima facie justified assumptions. DEFLOG introduces an innovative use of
conditionals expressing support and attack. This allows the expression of warrants for support and
attack, making it a transparent and flexible system of defeasible argumentation.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Argument assistance systems

A current goal in artificial intelligence and law is the development of experimental
argument assistance systems. Such systems assist one or more users during a process
of argumentation. A lawyer, for example, could use such a system in order to draft his
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pleading in court. Such a system could be part of the lawyer’s word processing package,

and provide assistance, for instance, by helping the lawyer to structure his unpolished
arguments, and by offering tools for analyzing the arguments. Argument assistance systems
can also serve in a context of more than one user: such argument mediation systems can be
used to keep track of diverging positions and assist in the evaluation of opinions.

More specifically, argument assistance systems are aids to drafting and generating
arguments by

– administering and supervising the argument process,
– keeping track of the issues that are raised and the assumptions that are made,
– keeping track of the reasons that have been adduced for and against a conclusion,
– evaluating the justification status of the statements made, and
– checking whether the users of the system obey the pertaining rules of argument.

Marshall [26] speaks similarly of tools to support the formulation, organization and
presentation of arguments.

Argument assistance systems must be distinguished from the more common automated
reasoning systems. The latter automatically perform reasoning on the basis of the
information in their ‘knowledge base’. In this way, an automated reasoning system can
do (often complex) reasoning tasks for the user. Argument assistance systems do not (or
not primarily) reason themselves; the goal of assistance systems is not to replace the user’s
reasoning, but to assist the user in his reasoning process.

The different nature of argument assistance systems and automated reasoning systems
has two consequences. First, argument assistance systems are more passive than automated
reasoning systems. Several of their functions are implicitly available, or operate ‘in the
background’. For instance, the evaluation of argumentative data, such as the determination
of the currently justified statements, can occur in the background, much like the automatic
spelling checks of word processing systems: after each action by the user, the argument
assistance system automatically updates previous evaluations.

Second, in the development of argument assistance systems, the notorious difficulties of
the inherent complexities of the law (such as its open and dynamic nature) are less severe
than for automated reasoning systems, since they can to a large extent be left to the user. In
fact, this is a relevant incentive to develop argument assistants in the first place (cf. Leenes
[20] and Section 1.2).

Other incentives for the development of argument assistance software stem from the
recent research interest in dialogical theories of reasoning (see, e.g., [24]; for an in-
sightful overview see Hage [18]), the use of computer-supported argumentation in teach-
ing and learning (e.g., Aleven’s CATO [1], related to Ashley’s HYPO [2], the work
of Bench-Capon et al. [5] and—not focusing on the legal domain—Suthers et al. [41]
on Belvedere, [13,43]), argument analysis (Reed and Walton [35] on Araucaria, see
http://www.computing.dundee.ac.uk/staff/creed/research/araucaria.html), computer-sup-
ported collaborative work focusing on argumentation (see, for instance, Shum’s resource
site at http://kmi.open.ac.uk/people/sbs/csca/), computer-supported and online legal medi-
ation and dispute resolution (see, for instance, [23], and http://www.mediate.com/), knowl-
edge management [40] and the commercial development of case management and liti-
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gation support systems (see, for instance, http://www.digital-lawyer.com/digital-lawyer/

resource/caseman.html).

The present paper focuses on argument assistants that have been developed with a legal
context in mind, and in which the argumentation is defeasible. Defeasible argumentation
is based on statements or arguments that can become defeated when they are attacked
by other statements or arguments. Examples of such systems are Gordon’s Pleadings
Game [15], Room 5 by Loui et al. [25], Zeno by Gordon and Karacapilidis [16]1 and
DiaLaw by Lodder [21]. There are many otherwise interesting and relevant systems
that are not about argument assistance, not legally oriented, or not about defeasible
argumentation. Examples are Nute’s d-Prolog [27], NATHAN by Loui and his students
(1991–1993, http://www.cs.wustl.edu/∼loui/natnathan.text), IACAS by Vreeswijk [54],
Pollock’s OSCAR [28,29], Tarski’s World by Barwise and Etchemendy [3], and Jaspars’
logic animations (http://turing.wins.uva.nl/∼jaspars/animations/).

It should be noted that the development of argument assistance systems for defeasible
argumentation is still mainly in an experimental phase. A first difficulty is the lack
of a canonical theory of defeasible argumentation, and more specifically of legal
argumentation.2 A second difficulty is that argument assistance systems require the design
of user interfaces of a new kind. There is much to be learnt about the way arguments can
be sensibly and clearly presented to the users (especially when they are defeasible), or
with the way argument moves should be performed by the user. Difficulties such as these
could be the cause of the striking differences between the argumentation theories and user
interfaces of argument assistance systems (cf. Section 4 on related work).

Elsewhere [45,46], I have argued that even in the current experimental phase the
development of argument assistance systems is relevant. I distinguished four ways in
which the development of argument assistance systems is worthwhile: first, such systems
can serve as realizations of (formal) argumentation theories, which is especially relevant
because of the (well-recognized) technical difficulties of many theories; second, they are
test beds for argumentation theories, technically, philosophically and in practice; third,
argument assistance systems can be showcases, giving the argumentation theories more
credibility; and, finally, they can be practical aids, with applications in, for instance,
legal decision making, planning and education. Currently developed systems are already
worthwhile in the first two, more theoretically oriented ways, and are starting to become
so in the second two, more practically oriented ways.

In the present paper, two prototypes of argument assistants are presented, with different
argumentation theories and program designs. The first is the ARGUE! system (see
Section 2), the second ARGUMED based on DEFLOG (see Section 3).3 The systems

1 Zeno was developed in the context of a project focusing on geography, but has also been explicitly presented
in the artificial intelligence and law community.

2 For an overview of argument models in law, see [4] and the special issue of Artificial Intelligence and
Law, Vol. 4, Nos. 3/4, 1996. For overviews of defeasible argumentation, see [33], or [8]. For an overview of
nonmonotonic logics, see [12].

3 Parts of the present paper are based on earlier publications, especially [47]. Section 1.2 is taken from [49].
The description of CUMULA (Section 2.1) is adapted from [45] and [22]. An extended version of the present
paper will be published as a book [53].
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can be downloaded at http://www.rechten.unimaas.nl/metajuridica/verheij/aaa/. Section 4

discusses related work. The developmental history of the systems and the main reasons for
the design choices made are overviewed in Section 1.3.

Before that, we turn to the view on legal argumentation that underlies the systems’
argumentation theories: legal argumentation is a kind of dialectical theory construction.

1.2. Legal argumentation as dialectical theory construction

A naive conception of the application of the law to concrete cases is that it consists
in strictly following the given rules of law that match the given facts associated with a
case—a conception by which a judge is turned into a bouche de la loi (Fig. 1).

The main problem with this view (which has become a mock image of law application
that mainly serves as a starting place for discussion) is that it assumes that the rules of law
and the case facts are somehow readily available. Obviously, that is not true in general.
The available material is often simply not sufficiently precise and unambiguous to allow
straightforward application of rules to facts. And even if the rules and facts would be given
in an adequate manner, following the rules that match the case facts can be problematic.
First, following the rules may not be appropriate, for instance, when a rule is not applicable
because of an exception. Second it may not solve the case at all, for instance, when no
relevant result follows. Third there may be several possibilities, perhaps even conflicting.

The first can occur since legal rules are generally defeasible. There can be exclusionary
reasons or reasons against their application, for instance when applying the rule would be
against its purpose.

The second is the case when there is a legal gap: the applicable law does not have an
answer to the current case. This not only occurs on the advent of new legally relevant
phenomena (such as the new legal problems as they are encountered by the rise of the
Internet), but also when the law only (and often deliberately) provides a partial answer, as
for instance by the use of open rule conditions, such as grievous bodily harm or fairness.
An adjudicator will have to fill the gap, for instance by making new rules of classification.

The third is the case when there is a legal ambiguity: the applicable law provides several
possible answers. This can occur by accident, for instance, when there is an unforeseen

Fig. 1. A naive view of applying the law to a case.
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Fig. 2. Theory construction.

and unwanted conflict of rules. In a complex, man-made system such as the law, this is to
be expected. Ambiguities also arise on purpose however, namely when choosing between
the different possibilities is left to the discretion of the adjudicator. For instance, in the
Netherlands, rules of criminal law have open rule conclusions, in the sense that they merely
prescribe the maximum amount of punishment. As a result, the adjudicator can take all
circumstances into account when deciding the actual amount of punishment.

Defeasibility is related to the dialectical argumentation that is so deeply entrenched in
the law: every claim can at times be put to discussion. Legal gaps and ambiguities are signs
of the inherent openness of the legal system. Just as defeasibility, they allow for a flexible
application of the law that takes all circumstances into account, and thus can increase the
system’s justness.4

Law application can therefore best be considered as a kind of dialectical theory con-
struction (Fig. 2). In such a view, applying the law to a case is a process going through a
series of stages. During the process, a theory of the case, the applicable law and the con-
sequences are progressively developed. The process starts with a preliminary theory with
imperfections, such as insufficiently justified assumptions, tentative interpretations of legal
sources, unduly applied rules, open issues and conflicting conclusions. During the process,
the theory is gradually enhanced in order to diminish the imperfections. The process is
guided by examining the preliminary theory, and by looking for reasons for and against it.

The argument assistants presented in the present paper support the dialectical theory
construction needed for the application of the law to cases.

1.3. Two prototypes: ARGUE! and ARGUMED based on DEFLOG

The first argument assistant, ARGUE! (Section 2), was inspired by work on the logical
system CUMULA that abstractly modeled defeasible argumentation [44]. In CUMULA,
arguments (in the sense of trees of reasons and conclusions) can be defeated. The defeat

4 Some may fear that defeasibility, gaps and ambiguities all too easily diminish legal security and equality.
One asset of the legal system is that it tries to uphold legal security and equality by explicit specification, while
leaving room for justness by remaining open.
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of arguments results from attack by other arguments, as expressed by defeaters. A defeater

indicates which set of arguments attacks which other set of arguments. CUMULA’s
defeaters allow the representation of several types of defeat, including defeat by parallel
strengthening and by sequential weakening [44]. While building ARGUE!, it became
apparent however that CUMULA (or better: the simplified version of it used for ARGUE!)
was not sufficiently natural for the representation of real-life argumentation. Also the
on-screen drawing of argumentative data (especially of the defeaters) seemed to be too
complex for the intended users. The result was a system that was mainly interesting from
a research perspective, as a realization of (and testbed for) a particular theory of defeasible
argumentation. ARGUE! was first described in this way by Verheij [45].

A new approach was taken, with two starting points. First, the argumentation theory
would be changed considerably. Second, the interface would become template-based. The
user could perform his argumentation by filling in forms dedicated to particular argument
moves.

With respect to the argumentation theory, the focus was limited to undercutting
exceptions, as distinguished by Pollock [28,29]: reasons that block the connection between
a reason and a conclusion. Since undercutting defeaters are of established importance for
legal reasoning (see, e.g., [17,30,44], this seemed to be a natural choice. The first version
of ARGUMED (ARGUMED 1.0 [46], not further discussed in the present paper) was soon
replaced by the second since it had two obvious drawbacks: undercutting exceptions were
not graphically represented, and it was not possible to argue about certain relevant issues,
such as whether a statement was a reason or whether it was an exception. The former
drawback was solved in ARGUMED 2.0 by the use of dialectical arguments, in which
support by reasons and attack by undercutting exceptions were represented simultaneously.
The latter led to the introduction of step and undercutter warrants. In ARGUMED 2.0, a step
warrant is a kind of conditional sentence that underlies an argument step, such as ‘If Peter
has violated a property right, then he has committed a tort’. Undercutter warrants similarly
underlie attack by an undercutting exception. An example of an undercutter warrant is
the statement ‘The statement that there is a ground of justification for Peter’s act, is an
exception to the rule that, if Peter has violated a property right, then Peter has committed a
tort’. Verheij [47] gave the first presentation of ARGUMED 2.0.

ARGUMED 2.0 was evaluated by a group of ten test persons. The group was varied
and consisted mostly of students and staff members of the Faculty of Law in Maastricht.
They were asked to finish a test protocol containing several tasks to be performed
within ARGUMED 2.0. (The test protocol is available at http://www.rechten.unimaas.nl/
metajuridica/verheij/aaa/. It is however in Dutch.) The goal was to find out whether the
system and its argumentation theory sufficiently spoke for themselves. For that purpose, the
test protocol initially provided little information about its workings, but let the test persons
find out for themselves by showing unexplained examples and by asking to reproduce
argumentation samples in the system.

The test results were qualitatively evaluated. It was reassuring that some test persons
almost flawlessly finished the test protocol. Most test persons indicated having enjoyed
the test. The opinions about the system were reasonably positive. The opinions were more
positive when the test protocol was finished more easily. The tests also showed a number of
recurrent obstacles in the system and its argumentation theory. For instance, the dialectical
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arguments were understood reasonably well, as long as there were no warrants involved.

Not only was it hard to reproduce warrants in the system, but also their intended role in
argumentation was not entirely clear to all test persons. The distinction between issues and
assumptions turned out to be difficult for some test persons, especially in connection with
the justification status of the statements. The template-based interface was not a complete
success. For some, it was hard to relate the slots of the templates to what was happening
in the argument screen. Several test persons expected that the argument screen would be
mouse-sensitive, for instance, to repair small typing errors, but by trying found out that it
was not.

The user evaluation of ARGUMED 2.0 inspired the design of a new user interface of
the system. The result was ARGUMED based on DEFLOG (the version of ARGUMED

described in this paper, see Section 3). Its user interface is based on a mouse-sensitive
argument screen, in accordance with what the test persons had expected. When the user
double-clicks in the argument screen, a box appears in which a statement can be typed. The
right mouse button gives access to a context-sensitive menu that allows adding support for
or attack against a statement. The resulting interface is very natural and easy to use (as was
confirmed by another user evaluation). Apart from the better interface, the most interesting
enhancement of the new version of ARGUMED is that it uses a richer and more satisfactory
argumentation theory. Whereas in ARGUMED 2.0 the only kind of attack was based on
undercutting exceptions, ARGUMED based on DEFLOG allows the attack of any statement.
By considering the connecting arrows between statements (whether expressing support or
attack) as conditional statements, warrants and undercutters found natural representations.
Moreover, the new version of ARGUMED is logically more satisfactory: the evaluation of
dialectical arguments corresponds exactly to the dialectical interpretations of prima facie
justified assumptions in the logical system DEFLOG (see [48,52]).

The main part of this paper consists of descriptions of the systems and their
argumentation theories (Sections 2 and 3). In order to illustrate the possibilities and
differences, one example is used throughout the discussion of the two systems.

1.4. An example: a case of grievous bodily harm

Consider the following fictitious case of grievous bodily harm.

There has been a pub fight, in which someone is badly hurt: according to the hospital
report, the victim has several broken ribs, with complications. Someone is arrested
and accused of intentionally inflicting grievous bodily harm, which is punishable with
up to eight years of imprisonment, according to article 302 of the Dutch criminal
code. The accused denies that he was involved in the fight. However, there are ten
witnesses who claim that the accused was involved. In one precedent (referred to as
precedent 1), the victim has several broken ribs, but no complications. In that precedent,
the bodily harm was not considered to be grievous, and the accused was punished for
intentionally inflicting ordinary bodily harm, which is punishable with up to two years
of imprisonment (article 300 of the Dutch criminal code). In another precedent (referred
to as precedent 2), the victim has several broken ribs with complications. In precedent 2,
the accused was punished for intentionally inflicting grievous bodily harm.
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The case story can give rise to interesting argumentation concerning the accused’s

punishability because of inflicting grievous bodily harm. In the discussion of the systems,
it will be shown to what extent the relevant argumentation can be produced within each
of them. In Sections 2.2 and 3.2, the example is analyzed in ARGUE! and in ARGUMED

based on DEFLOG, respectively.

2. ARGUE!

2.1. Argumentation theory

The argumentation theory underlying the ARGUE! system was inspired by CUMULA
[44]. CUMULA is a procedural model of argumentation with arguments and counterargu-
ments. It is based on two main assumptions. The first assumption is that argumentation is
a process during which arguments are constructed and counterarguments are adduced. The
second assumption is that the arguments used in argumentation are defeasible, in the sense
that whether they justify their conclusion depends on the counterarguments available at a
stage of the argumentation process. If an argument no longer justifies its conclusion it is
said to be defeated. The defeat of an argument is caused by a counterargument (that is itself
undefeated).

For instance, if a colleague entering the room is completely soaked and tells that it is
raining outside, one could conclude that it is necessary to put on a raincoat. The conclusion
can be rationally justified, by giving support for it. The following argument could be
given:

A colleague entering the room is completely soaked and tells that it is raining.
So, it is probably raining.
So, it is necessary to put on a raincoat.

Such an argument is a reconstruction of how a conclusion can be supported.
An argument that supports its conclusion does not always justify it. For instance, if in

our example it turns out that the streets are wet, but the sky is blue, the conclusion that it
is necessary to put on a raincoat would no longer be justified. The argument has become
defeated. For instance, the following argument could be given:

The streets are wet, but the sky is blue.
So, the shower is over.

In this case the argument that it is probably raining is defeated by the counterargument
that the shower is over. Since the conclusion that it is probably raining is no longer
justified, it can no longer support the conclusion that it is necessary to put on a rain-
coat.

CUMULA is a procedural model of argumentation with arguments and counterargu-
ments. Arguments are assigned a defeat status, either undefeated or defeated. The defeat
status of an argument depends on three factors:

(1) the structure of the argument;
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(2) the attacks by counterarguments;

(3) the argumentation stage.

We briefly discuss each factor below. The model especially builds on the work of Pollock
[28,29], Simari and Loui [39], Vreeswijk [55] and Dung [9] in philosophy and artificial
intelligence, and was developed to complement work on the model of rules and reasons
Reason-Based Logic (see, e.g., [17,44]).

In CUMULA, the structure of an argument (factor (1) above) is represented as in the
argumentation theory of Van Eemeren and Grootendorst [10,11]. Both the subordination
and the coordination of arguments are possible. It is explored how the structure of
arguments can lead to their defeat. For instance, the intuitions that it is easier to defeat
an argument if it contains a longer chain of defeasible steps (‘sequential weakening’), and
that it is harder to defeat an argument if it contains more reasons to support its conclusion
(‘parallel strengthening’), are investigated.

In CUMULA, which arguments are counterarguments for other arguments, that is, which
arguments can attack other arguments (factor (2) above), is taken as the primitive notion
(cf. [9]). This approach to argument defeat can be called counterargument-triggered defeat.
Basically, an argument is defeated if it is attacked by an undefeated counterargument
(cf. also [39]). This approach to argument defeat must be contrasted with inconsistency-
triggered defeat: the primitive notion is which arguments have conflicting conclusions
(as, e.g., in abstract argumentation systems [55]). In this approach to argument defeat,
an argument is defeated if there is an undefeated argument with conflicting conclusion.
Often the defeating argument has higher priority than the defeated argument, with respect
to some priority relation on arguments.5

In CUMULA, so-called defeaters indicate which arguments are counterarguments to
other arguments, that is, which arguments can defeat other arguments. In this way,
CUMULA shows that the defeasibility of arguments can be fully modeled in terms
of argument structure and the attack relation between arguments, independent of the
underlying language. Moreover, it turns out that defeaters can be used to represent a wide
range of types of defeat, as proposed in the literature, for instance, Pollock’s undercutting
and rebutting defeat [28]. Also some new types of defeat can be distinguished, namely
defeat by sequential weakening (related to the sorites paradox; cf. [34]) and defeat by
parallel strengthening (related to the accrual of reasons).

In the CUMULA model, argumentation stages (factor (3) above) represent the arguments
and the counterarguments currently taken into account, and the status of these arguments,
either defeated or undefeated. The model’s lines of argumentation, that is, sequences of
stages, give insight into the influence that the process of taking arguments into account
has on the status of arguments. For instance, by means of argumentation diagrams (which
give an overview of possible lines of argumentation), phenomena that are characteristic
for argumentation with defeasible arguments, such as the reinstatement of arguments,
are explicitly depicted. In contrast with Vreeswijk’s model [55], we show how in a line

5 I made the distinction between counterargument-triggered and inconsistency-triggered defeat in my
dissertation [44]. I think that (Dung-style) counterargument-triggered defeat is philosophically the most attractive
and innovative of the two approaches to argument defeat.
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Fig. 3. A two-step argument.

of argumentation not only new conclusions are inferred (‘forward argumentation’, or
inference), but also new reasons are adduced (‘backward argumentation’, or justification).
In other words, CUMULA’s model of the argumentation process is free, as opposed to
proof-based systems (that focus on inference from a fixed set of premises) and issue-
based systems (that focus on justification of a fixed set of issues): in CUMULA neither
the premises nor the issues are fixed during a line of argumentation.

To summarize, CUMULA shows

(1) how the subordination and coordination of arguments is related to argument defeat;
(2) how the defeat of arguments can be described in terms of their structure, counterar-

guments, and the stage of the argumentation process, and independent of the logical
language;

(3) how both inference and justification can be formalized in one model.

CUMULA has obvious limitations. We mention two. First, its underlying language is
completely unstructured. It contains for instance no logical connectives, no quantifiers,
and no modal operators. This is certainly a limitation, but one of the research objectives
was to show that defeat can be fruitfully studied independently of the language. Second,
the role of the rules underlying arguments is not clarified in CUMULA. This is in part due
to the first limitation: the language of CUMULA does not contain a conditional or variables,
by which rules would become expressible.6

Verheij [44] discusses the CUMULA model extensively, both informally and formally.

2.2. The grievous bodily harm example

As an illustration, it is shown how argumentation concerning the grievous bodily harm
example (Section 1.4) can be represented in ARGUE!.

As a start, an argument is constructed for the conclusion that the accused is punishable
with up to 8 years of imprisonment (Fig. 3). This is done by typing statements in on-screen

6 Verheij [44] does contain a formal model in which rules play a central role, viz. Reason-Based Logic.
However, the formal connection with the CUMULA model is not made. The cause of this is amongst others
the very different ‘flavours’ of the two formalisms.
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Fig. 4. Adding a defeater.

boxes and connecting the statements by drawing arrows. Here the conclusions are drawn
above the reasons for them, but the user can arrange the statements at will.

In Fig. 3, all three statements are justified, as indicated by the use of white boxes. The
hospital report statement is set as justified (by the user, as is indicated by a box with a
different color edge), the other two are justified since there is a justifying reason for them.

Next precedent 1 is used to argue that broken ribs do not count as grievous bodily
harm. The user adds the appropriate statements and draws the dedicated graphical structure
that represents a defeater (Fig. 4). Here the rule that several broken ribs do not count as
grievous bodily harm, which explains the precedent, is used as a counterargument against
the connection between the hospital report statement and the conclusion that grievous
bodily harm has been inflicted. This is an example of an undercutting defeater (cf. [28]).

The result is that the connecting arrow is no longer supporting (indicated by the dots).
Therefore the conclusions that grievous bodily harm has been inflicted and that the accused
is punishable are no longer justified. This is indicated by the use of gray boxes.

Finally, the accused’s testimony is added as an argument attacking the conclusion that
he has inflicted grievous bodily harm to the victim (Fig. 5). The result is that this conclusion
is unjustified, as indicated by the crossed-out box.

For ARGUE!, the representation of the grievous bodily harm example ends here. The
other relevant argumentative information cannot be represented in the right way. There
are two relevant limitations of ARGUE!. First it does not allow for the representation of
warrants (cf. Toulmin [42]): that a statement is a reason for another, cannot be the subject
of further argument. Therefore the source of the punishability (the criminal code article
302) cannot be represented. Second the defeaters are not themselves statements that can be
argued against. As a result, it cannot be attacked that some argument defeats another. As
a result, it can for instance not be represented that the accused’s testimony does not defeat
the conclusion that he has inflicted grievous bodily harm to the victim, since there are ten
witnesses stating that he was involved in the fight. Of course the accused’s testimony can
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Fig. 5. A second defeater.

itself be argued against, but that would be a misrepresentation of the example: there is no
reason to dispute the accused’s testimony, only its defeating effect is at issue.

2.3. Program design

In the ARGUE! system, the user ‘draws’ his argumentation on screen. By clicking one
of the buttons on the left, the user chooses the graphical mode. There are four modes.
In statement mode, clicking in the drawing area shows an edit box, in which a sentence
can be typed. In arrow mode, statements can be connected by arrows, indicating that a
statement is a reason for another. In order to draw an arrow, the user clicks twice: first
on the reason statement, second on the conclusion statement. In defeater mode, defeaters
are drawn. They consist of two connected rectangles. In order to draw a defeater, the user
makes two selections in the drawing area (by clicking and dragging). The first selection
indicates the attacking part of the argumentative data, the second the attacked part. Only
the statements and arrows that are selected are attacking or attacked, not the defeaters.
In selection mode, the user can select argumentative elements in the drawing area. For
instance, a statement can be moved by clicking and dragging. Statements and arrows can
be deleted.

ARGUE! has a stepwise evaluation algorithm, activated by clicking the ‘Evaluate (one
round)’ button. At each step, the current statuses of the argumentative data determine the
new statuses. The basis of the evaluation is formed by the statement statuses that are set by
the user. By right-clicking a statement, the user can set a statement as justified, unjustified
or not evaluated.

The evaluation rules are as follows:

(1) A statement that is now set to justified or unjustified by the user, keeps its status.
(2) A statement that now has justified support, is next justified.
(3) A statement that now has no justified support and is attacked, is next unjustified.
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Fig. 6. An attacking statement that is attacked by another statement.

Fig. 7. Two statements attacking each other.

(4) A statement that now has no justified support and is not attacked, is next not evaluated.

A statement has justified support if and only if it is at the end of a supporting arrow starting
at a justified statement. A statement is attacked if and only if it is inside the attacked
rectangle of an active defeater. An arrow is supporting if and only if it is not inside the
attacked rectangle of an active defeater. A defeater is active if and only if the statements in
its attacking rectangle are justified and the arrows in its attacking rectangle are supporting.

The ‘Jump (one round)’ button activates a variant of the evaluation algorithm, in which
a statement that now has no justified support and is not attacked, is next justified (instead
of not evaluated). This rule has the effect that all statements are prima facie justified. The
user can optionally change the selection of rules that are used when clicking either of the
two buttons.

The changes of evaluation statuses are logged. It depends on the argumentative data
whether new evaluations are made. Two configurations that do not lead to new evaluations
(when using the ‘Jump’ rules) are shown in Figs. 6 and 7.

However, when in the second configuration, the statement ‘a’ is set to ‘not evaluated’,
repeatedly clicking the ‘Jump’ button results in a loop flipping between two states: one in
which both ‘a’ and ‘b’ are justified, and one in which both are unjustified. Further details
are provided by Verheij [45].

3. ARGUMED based on DEFLOG

The development of ARGUE! was soon followed by a series of argument assistants with
starting points that differ fundamentally from those of ARGUE!: the ARGUMED family.
With respect to the program design, the starting point became that the argumentative data
should be entered into the system by making argument moves instead of by drawing
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Fig. 8. Support and attack.

graphical elements. With respect to the argumentation theory, the starting point became
that arguments are inherently dialectical, in the sense that support and attack go side by
side and are not separated in different levels.

ARGUMED based on DEFLOG is the successor of ARGUMED 2.0 (described by
Verheij [47]).7 With respect to the program design, forms are no longer used for entering
argumentative data. Instead, the screen has been made mouse-sensitive so that the user
can interact directly with the argumentative data that is already shown. With respect to
the argumentation theory, attack is no longer limited to undercutting exceptions, but it is
possible to attack any statement. Moreover the arrows used to represent support or attack
are considered as conditional statements, which allows a natural treatment of warrants and
undercutters.

3.1. Argumentation theory

The argumentation theory of ARGUMED based on DEFLOG is an extension and
streamlining of that of ARGUMED 2.0.

3.1.1. The structure of dialectical arguments
In ARGUMED based on DEFLOG, dialectical arguments consist of statements that

can have two types of connections between them: a statement can support another, or
a statement can attack another. The former is indicated by a pointed arrow between
statements, the latter by an arrow ending in a cross. An example is shown in Fig. 8.

The dialectical argument consists of three elementary statements, viz. that Peter shot
George, that witness A states that Peter shot George, and that witness B states that Peter
did not shoot George. As is indicated, the second is a reason supporting that Peter shot
George, the second a reason attacking that Peter shot George.

The expressiveness of dialectical arguments is significantly enhanced by considering the
connecting arrows (of both the supporting and the attacking type) as a kind of statements,
that can as such be supported and attacked. The arrow of a supporting or attacking argument
step is here called the conditional underlying the step.

For instance, one could ask why A’s testimony supports that Peter shot George. In Fig. 9,
the statement that witness testimonies are often truthful is adduced as a reason.

The statement that witness testimonies are often truthful serves as reason why it follows
from A’s testimony that Peter shot George. The same statement can back the attacking
argument step of B’s testimony attacking that Peter shot George (Fig. 10).

7 Verheij [46] describes ARGUMED 1.0.
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Fig. 9. Supporting that a statement is a reason for another.

Fig. 10. Supporting that a statement is a reason against another.

Fig. 11. Attacking that a statement is a reason.

The examples in Fig. 11 show that the connecting arrows can also be attacked.
Here the unreliability of the witnesses A and B, respectively, are adduced as reasons

against the consequential effect of their testimonies.
In general, dialectical arguments are finite structures that result from a finite number of

applications of three kinds of construction types:

(1) Making a statement.
(2) Supporting a previously made statement by a reason for it.
(3) Attacking a previously made statement by a reason against it.

It should be borne in mind that the types two and three consist of making two statements:
one an ordinary elementary statement, viz. the reason for or against a statement, the other
the special statement that the reason and the supported or attacked statement are connected,
as expressed by the conditional underlying the supporting or attacking argument step.

Though dialectical arguments are here considered as the result of a finite construction,
their corresponding tree structure can be virtually infinite. An example is given in Fig. 12.
The dots indicate where the argument could be further extended.

The argument can be thought of as being the result of three construction steps. First
the statement that Peter shot George is made, then that statement is attacked by the reason
against it that Peter did not shoot George, and finally it is stated that the statement that
Peter shot George is on its turn a reason against its attack. If the resulting loop is expanded
as a tree (growing downward from the initial statement), the result is infinite. The relevant
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Fig. 12. An attack loop.

Fig. 13. An evaluated argument.

Fig. 14. An evaluated dialectical argument.

information can be finitely represented by blocking the expansion of a branch after the first
recurrence of a statement, as in the figure (which was generated by the system).

3.1.2. Evaluating dialectical arguments
Dialectical arguments can be evaluated with respect to a set of prima facie justified

assumptions. An example of an evaluated dialectical argument is given in Fig. 13.
Assumptions are preceded by an exclamation mark, all other statements—called

issues—by a question mark. For instance, in Fig. 13, the statement that witness A states
that Peter shot George is an assumption, while the other two statements shown are issues.
The three shown statements are evaluated as justified, as is indicated by the dark bold font.
The statement about A’s testimony is justified since it is an assumption that is not attacked;
the statement that Peter shot George is justified since it is supported by a justifying reason
(viz. A’s testimony), and similarly for the statement about the investigation. (Here and in
the following the conditionals underlying argument steps are implicitly considered to be to
be prima facie justified assumptions.)

The example given in Fig. 14 involves the attack of the support relation between two
statements. The statements about A’s testimony and unreliability are assumptions, while
the statement that Peter shot George is an issue. The two assumptions are justified since
they are not attacked. The statement that Peter shot George is unevaluated (as is indicated
by the light italic font): it is not justified or defeated since it is an issue without justifying
or defeating reason.
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Fig. 15. A defeated assumption.

An example of a dialectical argument in which a statement is defeated is as in Fig. 15.
Here the statement that Peter shot George is an assumption. Just like all assumptions, it is
prima facie justified. However in the argument shown it is actually defeated (as is indicated
by the bold struck-through font) since it is attacked by the reason against it that witness B
states that Peter did not shoot George.

The evaluation of dialectical arguments with respect to a set of prima facie justified
assumptions is naturally constrained as follows:

(1) A statement is justified if and only if
(a) it is an assumption, against which there is no defeating reason, or
(b) it is an issue, for which there is a justifying reason.
A statement is defeated if and only if there is a defeating reason against it.

(2) A reason is justifying if and only if the reason and the conditional underlying the
corresponding supporting argument step are justified.

(3) A reason is defeating if and only if the reason and the conditional underlying the
corresponding attacking argument step are justified.

It is a fundamental complication of dialectical argumentation that a dialectical argument
can have any number of evaluations with respect to a set of prima facie justified
assumptions: there can be no evaluation, or one, or several.

Assuming as we do that statements cannot be both justified and defeated, the argument
whether Peter shot George shown in Fig. 8 has no evaluation with respect to the testimonies
by A and B as assumptions. That the argument has no evaluation is seen as follows.
Since both assumptions are not attacked they must be justified in every evaluation. But
then A’s testimony would require that it is justified that Peter shot George, while at the
same time B’s testimony would require that it is defeated that Peter shot George. This is
impossible.

An example of a dialectical argument with two evaluations is the looping argument
discussed in Fig. 16. The argument has two prima facie justified assumptions, viz. that
Peter shot George and that Peter did not shoot George. The assumptions attack each
other. In one evaluation, it is justified that Peter shot George, thus making it defeated
that Peter did not shoot George, while in the other evaluation it is the other way
around.

Note that the existence of the two evaluations is possible because the loop of attacks
consists of an even number of statements. An odd length loop of attacks can cause that
there is no evaluation. Two examples are shown in Fig. 17. In the example on the left, there
are three assumptions. The first is that A says that he is lying. The second (represented by
the supporting arrow) is that A’s saying that he is lying supports that he is lying. The third
(representing by the attacking arrow) is that when A is lying A’s saying that he is lying



308 B. Verheij / Artificial Intelligence 150 (2003) 291–324
Fig. 16. An example with two evaluations.

Fig. 17. Two examples in which there is no evaluation.

provides no support for A’s lying. By reasoning that is well known from all variants of
the liar’s paradox it follows that there is no evaluation.8 The example on the right with a
self-attacking assumption is similar.9

3.1.3. DEFLOG: on the logical interpretation of prima facie justified assumptions
The ideas on dialectical argumentation discussed above can be made formally precise

in terms of the logical system DEFLOG [48,52].

The dialectical interpretation of theories. DEFLOG’s starting point is a simple logical
language with two connectives × and �. The first is a unary connective that is used to
express the defeat of a statement, the latter is a binary connective that is used to express
that one statement supports another. When ϕ and ψ are sentences, then ×ϕ (ϕ’s so-called
dialectical negation) expresses that the statement ϕ is defeated, and (ϕ � ψ) that the
statement ϕ supports the statement ψ . Attack, denoted as �, is defined in terms of these
two connectives: ϕ �ψ is defined as ϕ�×ψ , and expresses that the statement ϕ attacks
the statement ψ , or equivalently that ϕ supports the defeat of ψ . When p, q , r and s are
elementary sentences, then p� (q� r),p�×(q�×r) and (p� q)� (p�×(r �
s)) are some examples of sentences. (For convenience, outer brackets are omitted.)

8 Assume that there is an evaluation. When the statement that A is lying were justified in the evaluation, it
would have to be justified by A’s saying that he is lying. However, that is impossible since the statement that A is
lying then attacks the supporting connection. The statement that A is lying cannot be defeated either since it is not
attacked. But when the statement that A is lying is neither justified nor defeated in the evaluation, A’s saying that
he is lying justifies that A is lying, contradicting that it is not justified that A is lying. By reductio ad absurdum it
follows that there is no evaluation.

9 Note that for DEFLOG the statement ‘This statement is defeated’ is taken as an elementary statement, just
like ‘John is a thief’ or ‘p’. DEFLOG’s language does not include a demonstrative ‘this’ nor does it contain a
predicate ‘is defeated’.
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The central definition of DEFLOG is its notion of the dialectical interpretation of

a theory. Formally, DEFLOG’s dialectical interpretations of theories are a variant of
Reiter’s extensions of default theories [36], Gelfond and Lifschitz’s stable models of
logic programming [14], Dung’s stable extensions of argumentation frameworks [9], and
Bondarenko et al.’s stable extensions of assumption-based frameworks [7].10

A theory is any set of sentences. A theory represents a set of prima facie justified
assumptions. When a theory is dialectically interpreted, all sentences in the theory are
evaluated, either as justified or as defeated. (This is in contrast with the interpretation of
theories in standard logic, where all sentences in an interpreted theory are assigned the
same positive value, namely true, for instance, by giving a model of the theory.)

An assignment of the values justified or defeated to the sentences in a theory gives rise
to a dialectical interpretation of the theory, when two conditions are fulfilled. First, the
justified part of the theory must be conflict-free. Second, the justified part of the theory
must attack all sentences in the defeated part. Formally the definitions are as follows.

(i) Let T be a set of sentences and ϕ a sentence. Then T supports ϕ when ϕ is in T or
follows from T by the repeated application of�-Modus ponens (from ϕ�ψ and ϕ,
conclude ψ). T attacks ϕ when T supports ×ϕ.

(ii) Let T be a set of sentences. Then T is conflict-free when there is no sentence ϕ that
is both supported and attacked by T .

(iii) Let ∆ be a set of sentences, and let J and D be subsets of ∆ that have no elements
in common and that have ∆ as their union. Then (J,D) dialectically interprets the
theory∆when J is conflict-free and attacks all sentences inD. The sentences in J are
the justified statements of the theory ∆, the sentences in D the defeated statements.

(iv) Let ∆ be a set of sentences and let (J,D) dialectically interpret the theory ∆. Then
(Supp(J ),Att(J )) is a dialectical interpretation or extension of the theory ∆. Here
Supp(J ) denotes the set of sentences supported by J , and Att(J ) the set of sentences
attacked by J . The sentences in Supp(J ) are the justified statements of the dialectical
interpretation, the sentences in Att(J ) the defeated statements.

Note that when (J,D) dialectically interprets ∆ and (Supp(J ),Att(J )) is the correspond-
ing dialectical interpretation, J is equal to Supp(J ) ∩∆, and D to Att(J ) ∩∆. It is con-
venient to say that a dialectical interpretation (Supp(J ),Att(J )) of a theory ∆ is specified
by J .

The examples discussed in Sections 3.1.1 and 3.1.2 can be used to illustrate these
definitions. Let the sentence s express Peter’s shooting of George, a A’s testimony, b

10 See [48,52] for a discussion of relations between the formalisms mentioned. To guide intuition, the following
may be useful. An attack (A,B) (as in [9]) would in DEFLOG be expressed by a sentence A� ×B. A default
p : q/r (as in [36]) would in DEFLOG be translated to two conditionals, viz. p� r and ¬q�×(p� r). The
second says that the former is defeated in case of ¬q. This corresponds to the intuition underlying the default that
r follows from p as long as q can consistently be assumed. (Note however that the properties of ordinary negation
¬ are not part of DEFLOG.) A rule in logic programming p� q, ∼r where ∼ is negation as failure, corresponds
in DEFLOG to two conditionals, viz. q� p and r�×(q� p). The second says that q� p is defeated in case
of r . This corresponds to the intuition underlying the program rule that p follows when q is proven, while r is
not.
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B’s testimony, t the truthfulness of testimonies, u A’s unreliability, and i the obligation

to investigate. Then the example shown in Fig. 13 corresponds to the three-sentence
theory {a, a � s, s � i}. The arrows in the figure correspond to the two conditional
sentences. The theory has a unique extension in which the three assumptions in the
theory are justified. In the extension, two other statements are justified, viz. s and i .
The example in Fig. 15 corresponds to the theory {b, b� ×s, s}. The arrow ending in
a cross in the figure corresponds to the sentence b� ×s. The theory is not conflict-free,
but has a unique extension in which b and b� ×s are justified, while s is defeated. In
the extension, there is one other interpreted statement, viz. ×s, which is justified. The
example of Fig. 9 corresponds to the theory {a, t, t � (a� s)}. In its unique extension,
all statements of the theory are justified, and in addition a � s and s. The example of
Fig. 14 corresponds to the theory {a,u,u�×(a� s)}. In its unique extension, a� s is
defeated and s is not interpreted (i.e., neither justified nor defeated). Note that the theory
{a,u,u�×(a� s), a� s} has the same unique extension, but is not conflict-free.

DEFLOG’s logical language only uses two connectives, viz.� and ×. Notwithstanding
its simple structure, many central notions of dialectical argumentation can be analyzed in
terms of it. For instance, it is possible to define an inconclusive conditional (a conditional
for which the consequent does not always follow when its antecedent holds) in terms
of DEFLOG’s defeasible conditional (that is defeasible in the same way as any other
statement). Other examples of DEFLOG’s expressiveness are Toulmin’s warrants and
backings [42] and Pollock’s undercutting and rebutting defeaters [28]. Verheij [48]
discusses how to express these notions.

Theories without and with several extensions. The examples of theories discussed above
all had a unique extension. Several were examples of the following general property: a
conflict-free theory always has a unique extension, namely the extension specified by
the theory itself. The simplest theory that is not conflict-free with a unique extension is
{p,×p}. In its extension, p is defeated and ×p justified. Other important examples of
theories that are not conflict-free, but do have a unique extension are {p,q, q�×p} and
{p,q, r, q � ×p, r � ×q}. In the former theory, the statement that p is attacked by the
statement that q . In its unique extension, q and ×p are justified and p is defeated. In
the latter theory, a superset of the former, in addition to q’s attack of p, r attacks q . In
its unique extension, p, ×q and r are justified, and q is defeated. The theories together
provide an example of reinstatement: a statement is first defeated, since it is attacked by a
counterargument, but becomes justified by the addition of a counterattack, that is, an attack
against the counterargument. Here p is reinstated: it is first successfully attacked by q , but
the attack is then countered by r attacking q .

There are however also theories with no or with several extensions:

(i) The three theories {p,p� ×p}, {p,p� q,×q} and {pi | i is a natural number} ∪
{pj � ×pi | i and j are natural numbers, such that i < j } lack extensions. For the
latter theory, this can be seen as follows. Assume that there is an extension E in which
for some natural number n pn is justified. Then all pm with m> n must be defeated
in E, for if such a pm were justified, pn could not be justified. But that is impossible,
for the defeat of a pm with m > n can only be the result of an attack by a justified
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Fig. 18. A defeated reason.

pm′ with m′ > m. As a result, no pi can be justified in E. But then all pi must be
defeated in E, which is impossible since the defeat of a pi can only be the result of
an attack by a justified pj with j > i . (Note that any finite subset of the latter theory
has an extension, while the whole theory does not. This shows a ‘non-compactness’
property11 of extensions.)

(ii) The three theories {p,q,p�×q, q�×p}, {pi,pi+1�×pi | i is a natural number}
and {×ip | i is a natural number} have two extensions. Here ×ip denotes, for any
natural number i , the sentence composed of a length i sequence of the connective ×,
followed by the constant p. (Note that each finite subset of the latter theory has a
unique extension, showing another non-compactness property.)

3.2. The grievous bodily harm example

ARGUE! could not represent all argumentation concerning the grievous bodily harm
example of Section 1.4. ARGUE! allowed the attack of statements, but could not deal with
the warrants underlying argument steps. In ARGUMED based on DEFLOG, it is possible
to argue about step warrants. For instance, returning to the argumentation of Fig. 5, it can
be asked why it is the case that the statement that the accused has inflicted grievous bodily
harm to the victim, is a reason for the conclusion that the accused is punishable with up to
8 years of imprisonment? Fig. 18 shows the argument why: in general, inflicting grievous
bodily harm is punishable with up to 8 years imprisonment, and this is the case because of
article 302 of the criminal code.

Note the fundamentally different ways in which attack is represented in Figs. 5 and 18:
in the former representation, attack is a relation between argument structures, whereas in
the latter representation, attack is a relation between statements. In Fig. 18, the conclusion
that the accused is punishable is not justified since the only reason for it (the inflicting of
grievous bodily harm) is not justified, even defeated by the accused’s testimony.

In the case story, there is further information that makes the accused’s testimony non-
defeating: the testimonies of 10 pub visitors that the accused was involved in the fight.
Fig. 19 shows how the argument is extended to incorporate this information. Still there is

11 A property P of sets is called compact if a set S has property P whenever all its finite subsets have the
property. Cf. the compactness of satisfiability in first-order predicate logic.
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Fig. 19. A reason that is neither justified nor defeated.

Fig. 20. Attacking that a statement is an undercutter.

no reason justifying the punishability of the accused, but the prima facie reason that the
accused has inflicted grievous bodily harm has become unevaluated instead of defeated.

We come to the final piece of information in the case story that could not yet be
incorporated in the argumentation: the second precedent that is more on point, and is
explained by a more specific rule.12 The rule explaining precedent 2, viz. that several
broken ribs with complications count as grievous bodily harm, has the effect that precedent
1’s rule (viz. that several broken ribs do not count as grievous bodily harm) is not defeating.
The reason why precedent 2’s rule can do this is that it is more specific. The result is shown
in Fig. 20. In the end, the conclusion that the accused is punishable with up to 8 years of
imprisonment is justified for the reason that he has inflicted grievous bodily harm to the
victim.

12 Precedent-based reasoning in the law has been studied extensively. For instance, Ashley [2] treats the on
pointness of cases, and Rissland and Skalak [37]) discuss the use of cases to warrant and to undercut conclusions.
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Fig. 21. Attacking that a statement is an undercutter (in terms of on-pointness).

A variant of the precedent-based reasoning is shown in Fig. 21. It makes explicit that
precedent 2 is more on point than precedent 1. The argumentation could continue by
justifying why this is the case: the reason would be that precedent 2 shares more factors
with the current case than precedent 1 since precedent 2 concerns a case of broken ribs
with complications.

3.3. Program design

ARGUMED based on DEFLOG uses a ‘mouse sensitive’ argument screen. Double
clicking the screen opens an edit box in which a statement can be typed. Further
argumentative data can be added using the context menu that appears after right-clicking
the mouse on a statement or an arrow. Recently, a toolbar has been added to ARGUMED

based on DEFLOG (Fig. 22). Argument moves can be made by clicking one of the
buttons. The toolbar is context-sensitive: only those buttons can be clicked that allow

Fig. 22. A conditional statement with a conjunction as antecedent.
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moves pertaining to the active statement. For instance, when the active statement is an

issue, the ‘Set as issue’-button cannot be clicked, while the ‘Set as assumption’-button is
available. There are buttons for adding an elementary statement, for setting a statement as
an assumption or as an issue, to support or attack a statement, and to add a conjunct. Note
that use of the buttons in ARGUMED based on DEFLOG and in ARGUE! is different: the
latter change the graphical mode (such as the mode of drawing an arrow), while the former
correspond to argument moves (such as supporting a statement).

Adding a conjunct to a conditional statement was not yet encountered. Conditionals
with conjunctions as antecedents are useful for the representation of rules with composite
conditions. For instance, the article on murder in the Dutch criminal code (article 289 Sr)
combines three conditions: taking someone’s life, intent and premeditation. Fig. 22 shows
how this can be represented in ARGUMED based on DEFLOG. The article itself is cited as
support for the conditional statement.

In ARGUMED based on DEFLOG, dialectical arguments are computed starting from
the conclusion, by recursively adding the reasons for and against the statements in the
argument (including the connecting conditionals). When a branch of the argument contains
a loop, the recursion stops after the first repeated occurrence of a statement in order to make
sure that the resulting graphical structure is finite. The blocking of the recursion is indicated
by a series of dots (. . .). Evaluation occurs automatically in the background. ARGUMED

based on DEFLOG computes the dialectical interpretations of the available assumptions, in
accordance with the formal definitions of DEFLOG.

When there is more than one dialectical interpretation, each of them can be viewed.
Fig. 23 shows two evaluated dialectical arguments corresponding to the two different
dialectical interpretations of the same set of assumptions. When there is no dialectical
interpretation, all statements are shown as unevaluated (Fig. 24).

Fig. 23. Two dialectical interpretations.

Fig. 24. No dialectical interpretation.
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ARGUMED based on DEFLOG has three viewing screens. The first shows the file that

contains the argumentative data. It is formatted in an XML-styled format. The second
lists the prima facie justified assumptions. The third shows the dialectical arguments as
evaluated in accordance with the assumptions’ dialectical interpretations. If applicable, the
different dialectical interpretations can be viewed by clicking a corresponding dynamically
generated button. When there is no dialectical interpretation, this is reported in the status
bar, and the dialectical arguments remain unevaluated.

4. Related work

4.1. Argumentation theory

In this subsection, the argumentation theories of ARGUE! and ARGUMED based
on DEFLOG, are briefly compared to a selection of theories of defeasible and legal
argumentation. ARGUMED 2.0 is the precursor of ARGUMED based on DEFLOG,
described by Verheij [47].

As a start, Toulmin’s argument scheme [42] is discussed (Fig. 25). Clearly, Toulmin’s
notions of datum and conclusion have counterparts in all three argumentation theories.
Warrant and backing find a natural place in both versions of ARGUMED. Whereas
Toulmin only uses warrants for support, ARGUMED 2.0 adds warrants for undercutters,
and ARGUMED based on DEFLOG warrants for attack in general. Toulmin’s scheme
contains rebuttals13, that just as the defeaters in ARGUE!, the undercutting exceptions in
ARGUMED 2.0, and the attacks in ARGUMED based on DEFLOG make argumentation
defeasible. The notion of rebuttal is not well elaborated however. A serious omission of
Toulmin’s work is that he does not discuss argument evaluation. For defeasible arguments,
valuation is not a trivial matter, and certainly non-standard. Toulmin’s scheme is not put
in a procedural context, and does not distinguish between assumptions and issues. The
modal qualifier distinguished by Toulmin does not occur in the argumentation theories
presented here. Verheij [50] extensively analyzes Toulmin’s scheme from the point of view
of DEFLOG.

Next, Reiter’s default logic [36] deserves discussion, since it can be considered as
an early theory of defeasible argumentation. A difference between Reiter’s default logic
and the present argumentation theories is that the former uses a first-order language
with variables and quantifiers, whereas the language of the latter only use elementary
sentences (ARGUE!) or sentence connectives (ARGUMED 2.0, ARGUMED based on
DEFLOG). The prerequisite α, the justification β and the consequent γ of a default α : β/γ ,
correspond closely to a reason, the negation of an undercutting exception, and a conclusion,
respectively. In DEFLOG, the default would correspond to two sentences, viz. α � γ
and not-β � ×(α � γ ), where not-β is the standard negation of β . Defaults are not
conditionals in the logical object language, resulting in the (for long recognized) drawback

13 Toulmin [42] does not yet make Pollock’s distinction between undercutting and rebutting exceptions [28],
that is by now standard.
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Fig. 25. Toulmin’s argument scheme.

that they cannot be derived. This is in contrast with the conditionals of ARGUMED 2.0 and
ARGUMED based on DEFLOG. Verheij [48] gives a formal connection between Reiter’s
default logic and DEFLOG. Reiter’s default logic is not put in a procedural context, and
does not distinguish between issues and assumptions.

Pollock’s theory of defeasible argumentation [28,29] has already been mentioned.
Pollock’s logical system is richer than the one presented here, for instance, since
Pollock adds numerical weights that measure the strengths of reasons. Pollock discusses
expressions of the form ‘P wouldn’t be true unless Q were true’, that are closely related
to the step warrants of ARGUMED 2.0 and DEFLOG sentences of the form P � Q.
Pollock characterizes undercutters as reasons for the negation of these expressions.
This is similar to DEFLOG expressions of the form U � ×(P � Q), where U is the
undercutter. Apparently, there is no discussion of (an analog of ) undercutter warrants
in Pollock’s work. DEFLOG uses a more general kind of attack than Pollock. Both
his undercutters and his rebutters can be sensibly expressed in DEFLOG. One way of
representing a rebutter R against P as a reason for Q would use sentences of the
form R � not-Q, R � ×(P � Q) and ×(R � not − Q) � ×(R � ×(P � Q)).
By the first sentence, R is a reason for Q’s negation. The second sentence turns R
into an undercutter of P as a reason for Q. The third sentence expresses that R is not
undercutting when it is not actually a reason for Q’s negation (e.g., since it is itself
undercut). Pollock’s inference graphs (extended with his ‘defeat links’) are related to the
dialectical arguments of the present paper, but are not considered as the analog of classical
proofs of a conclusion. Pollock’s central use of inference graphs is in the definition of
justification. Formal differences are that Pollock’s defeat links are a relation on sequents (a
supposition-conclusion pair), while ARGUE!’s defeaters work on arguments, ARGUMED’s
undercutters effect connections between statements and DEFLOG’s attacks apply to any
statement. Pollock’s notion of interests seems to be related to that of issues in the present
paper.

In Vreeswijk’s abstract argumentation systems [55], the tree-like reason-conclusion
structure of arguments (but lacking the coordination of reasons as in CUMULA) is
studied in relation to defeat. Vreeswijk uses an (almost) unstructured language with one
distinguished sentence that denotes contradiction. He does not include ARGUMED 2.0’s
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step warrants nor DEFLOG’s conditionals expressing support and attack.14 Vreeswijk

considers inconsistency-triggered defeat (a term used by Verheij [44]): an argument can
only be defeated if there is an undefeated argument with conflicting conclusion. In
Vreeswijk’s argumentation theory, support and attack are considered separately, viz. in
the definition of arguments, and in the definition of the ‘in force’ arguments, just like
in ARGUE!. In ARGUMED 2.0 and DEFLOG, support and attack occur side by side
in dialectical arguments. Vreeswijk puts argumentation in a procedural context, but his
argumentation sequences have fixed assumptions. Issues are not distinguished. Vreeswijk
does not use prima facie justified assumptions as in DEFLOG.

The arguments of Prakken and Sartor’s argumentation theory [31] are formed by chain-
ing rules together. Prakken and Sartor’s rules are the conditionals of logic programming,
and cannot be nested. They are not comparable to ARGUMED 2.0’s step warrants since
there can be no support for the rules themselves. There are no undercutter warrants. Support
and attack are treated separately, and not simultaneously as in the dialectical arguments of
the ARGUMED systems. Prakken and Sartor discuss a rebutting and an undercutting type of
defeat, where it should be noted that the latter is unrelated to Pollock’s standard distinction
[28,29]. A naming technique is used for argumentation about priorities. Argumentation is
put in a procedural context by the definition of dialogues.

Reason-Based Logic, as initiated by Hage, and further developed in cooperation with
Verheij [17,44], can be characterized as a theory of rules and reasons. It does not have
a notion of an argument, but focuses on types of sentences related to rules and reasons,
and on the states of affairs expressed by sentences of these types. It is of relevance here,
since the argumentation theories of the ARGUMED systems have resulted from attempts to
bridge the unsatisfactory gap between Reason-Based Logic and CUMULA, as it occurred
in my dissertation [44]. Reason-Based Logic’s sentences expressing the validity of a
rule are comparable to step warrant sentences of ARGUMED 2.0 (or better still to rule
sentences supporting them) and similarly to conditional sentences in DEFLOG. Sentences
expressing ARGUMED 2.0’s undercutter warrants do not occur in Reason-Based Logic,
but are related to the validity of a rule with the exclusion of another rule as its conclusion.
DEFLOG’s attack sentences are related to reasons against a conclusion in Reason-Based
Logic. However, in Reason-Based Logic, reasons accrue. The definition of Reiter-style
extensions in Reason-Based Logic can be regarded as a definition of the statements justified
with respect to a set of assumptions as in ARGUMED 2.0 and DEFLOG. Issues are not
distinguished.

Models of precedent-based reasoning like Ashley’s HYPO [2] and Aleven’s CATO
[1] are very different in flavor from the abstract, logic-styled approaches of the present
paper (cf. also the logic-styled approaches to precedent-based reasoning by Hage [17],
Prakken and Sartor [32] and Bench-Capon and Sartor [6]). However CATO’s factor
hierarchy is related to the trees of reasons and conclusions as they are used here. Just
like the argumentation theories presented here, HYPO and CATO model defeasible
reasoning. The focus is on specific kinds of support and attack, related to the role of

14 In Appendix A, Vreeswijk [55, p. 275ff ] briefly discusses Pollock’s undercutters by using a richer language
which includes defeasible conditionals.
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precedents in reasoning. Examples are the analogizing of a precedent, the distinguishing

of one precedent from another and the downplaying of distinctions. HYPO represents the
dialectical structure of precedent-based reasoning in so-called three-ply arguments.

In Dung’s analysis of defeasible argumentation [9], the focus is on an abstract attack
relation. DEFLOG is closely related to Dung’s argumentation frameworks (see [48,52],
where it is shown that essentially Dung uses a less expressive language than DEFLOG).
A contrast with all argumentation theories discussed in the present paper is that Dung’s
analysis does not take the internal structure of arguments into account. Dung does not
analyze the connection with support, and considers the attack relation to be fixed: arguing
for or against an attack relation is not possible. Dung separates arguments and the attack
relation, in contrast with ARGUMED 2.0 and DEFLOG in which support and attack are
integrated. Dung’s stable extensions correspond to DEFLOG’s dialectical interpretations,
and Dung’s notion of admissibility is related to (but subtly different from) DEFLOG’s
notion of dialectical justification.

Bondarenko, Dung, Kowalski and Toni [7] have presented an assumption-based frame-
work for default reasoning, related to Dung’s work [9]. Assumption-based frameworks are
related to DEFLOG (see [48,52]). They are based on a fixed set of rules of inference, in
contrast with DEFLOG’s use of an object language conditional. Assumption-based frame-
works use a contrary mapping that is related to DEFLOG’s dialectical negation × (and
not to the weak negations that are also used extensively in the assumption-based frame-
works). Assumption-based frameworks are mainly presented as a tool to reconstruct non-
monotonic logics (but see [19], where they are applied to legal reasoning).

Summarizing, the present paper’s argumentation theories show an innovating develop-
ment towards the integrated treatment of support and attack in dialectical arguments, the
use of object level conditionals expressing support and attack, thereby allowing the ex-
pression of warrants and ‘anti-warrants’ for both supporting and attacking argument steps,
and a theory of evaluating dialectical arguments with respect to prima facie justified as-
sumptions. A limitation of the present paper’s argumentation theories is their high level
of abstraction: specialized kinds of legal reasoning, such as reasoning with precedents,
statutes, principles, goals and values have not been analyzed in detail. The argumentation
theories, and especially DEFLOG, have been developed as an abstract background against
which such dedicated argumentation schemes can be elaborated on (see [51]).

4.2. Argument assistance and mediation

In order to put ARGUE! and ARGUMED based on DEFLOG in context, they are
briefly compared to each other and to related systems, viz., Belvedere by Suthers et al.
([41]; for more recent information on Belvedere, see http://lilt.ics.hawaii.edu/lilt/software/
belvedere/), Room 5 by Loui et al. [25] and Zeno by Gordon and Karacapilidis [16].
Belvedere is a system to support students engaged in critical discussion of science issues.
Room 5 is called a testbed for public interactive semi-formal legal argumentation. Zeno
is meant to create advanced support for complex multi-party/multi-goal decision-making.
The relation with Verheij’s ARGUMED 2.0 [47], the precursor of ARGUMED based
on DEFLOG, is also treated. First, the underlying argumentation theories are discussed;
second, the user interfaces.
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4.2.1. The underlying argumentation theories

In the underlying argumentation theories of all systems argumentation is dynamic.

Statements can be made, reasons can be adduced, attacks or defeat information can be
added. In Room 5 and Zeno, argumentation is issue-based as in Rittel’s well-known Issue-
Based Information System (IBIS) [38]. No new conclusions can be drawn, since these
systems focus on the justification of an initial central issue. In Belvedere, ARGUE! and both
versions of ARGUMED, argumentation is free, in the sense that there is no central issue,
and both inference (‘forward’ argumentation, drawing conclusions from premises) and
justification (‘backward’ argumentation, adducing reasons for issues) are allowed. Also
connecting previously made arguments (e.g., by turning the conclusion of one argument
into a reason for a premise of another argument) is only possible in these systems.

In all systems, reasons can be chained (subordination) and can support a conclusion
in parallel (coordination). In Room 5, Zeno and ARGUMED based on DEFLOG, a
distinction is made between reasons for and against a conclusion. Belvedere uses
typed links, including ‘conflicts’ and ‘explains’. The arguments in ARGUMED 2.0
incorporate counterarguments by means of undercutting exceptions. Only ARGUMED 2.0
and ARGUMED based on DEFLOG have notions of the warrants underlying argument
steps.

All systems model a notion of defeasible or dialectical argumentation. Belvedere
allows the representation of conflicting information. In Zeno, weighing the conflicting
reasons determines which conclusions are justified. In ARGUE!, support configuration can
attack any other support configuration (as long as they graphically fit inside a rectangle).
In ARGUMED 2.0, undercutting exceptions can block the justification of a conclusion
by a reason for it. ARGUMED based on DEFLOG allows the attack of any statement,
including the conditionals underlying supporting or attacking argument steps. ARGUE!
has composite-type defeat, such as defeat by sequential weakening (terms used by Verheij
[44]).

In Room 5 and Zeno, argumentation is considered as a game with participants.
Belvedere is focused on work in small groups. In Room 5 and Zeno, the game character
is left implicit, but obtained by the distributed access to the systems, on the World-Wide
Web. ARGUE! and the two versions of the ARGUMED system, all designed as single-
user systems, have no explicit notion of game participants, but can be considered as one-
participant games. (The implementation of a multi-participant version of ARGUMED based
on DEFLOG is planned.)

Belvedere is only a tool to graphically represent argumentative relations between data.
Zeno, ARGUE! and the two versions of the ARGUMED system are evaluative: the status of
statements and arguments can be determined by the system. In Zeno and the ARGUMED

systems, evaluation occurs automatically in the background. In ARGUE!, the user asks the
system to update the evaluation of the statements and arguments. ARGUMED based on
DEFLOG uses the logical semantics of DEFLOG for the evaluation of the arguments.

4.2.2. The user interfaces
All systems have a window-style interface. Room 5 and Zeno are web applications,

ARGUE! and the two versions of ARGUMED are standalone applications that can be
run on a PC (downloadable at http://www.rechten.unimaas.nl/metajuridica/verheij/aaa/).
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Belvedere and ARGUE! have a graphical interface, in the sense that the user draws and

organizes the argumentation data on the screen using a pointing device. Room 5, Zeno
and ARGUMED 2.0 have a template-based interface: users fill in forms to perform an
argument move. ARGUMED 2.0 uses different templates for different types of moves.
ARGUMED based on DEFLOG uses a mouse-sensitive screen, just like ARGUE!, but the
system determines how the argumentative data are organized on the screen.

All systems present arguments in a visual manner. Belvedere, Zeno, ARGUE! and the
ARGUMED systems use a tree-like presentation. Belvedere uses typed links. Room 5 uses
a clever system of boxes-in-boxes in an attempt to avoid ‘pointer-spaghetti’. ARGUMED

based on DEFLOG uses trees branching not only at the tree nodes (expressing elementary
statements), but also at the tree connections (expressing conditional statements).

In Room 5, Zeno and the ARGUMED systems, counterarguments (based on reasons
against conclusions) are grouped together in the visual argument structure. Belvedere and
ARGUE! leave the organization of the data to the user. In ARGUE!, counterarguments are
shown by a dedicated visual structure. In the ARGUMED systems, counterarguments are
incorporated in the arguments themselves, which is possible by the concept of dialectical
arguments.

In the ARGUMED systems, the dynamic aspect of argumentation is shown by a view on
the sequence of moves. In ARGUMED 2.0, it is possible to move back and forth in a line
of argumentation. In Belvedere, Room 5, Zeno and ARGUE!, only a view on the current
stage of the argumentation process is visible. In Room 5 and the ARGUMED systems, it is
possible to switch between different views showing different types of information.

5. Conclusion

ARGUE!, the system that was developed first, provides an interesting realization
of (and testbed for) a particular theory of defeasible argumentation (a stripped-down
version of CUMULA [44]), but that theory is not sufficiently natural to apply to ordinary
argumentation. Its user interface, which allows the user to draw and organize argumentative
data on screen, is flexible, but also cumbersome due to the complexity of the data structures
(especially of the defeaters). As such, it is mainly relevant from a research perspective. For
instance, its step-wise evaluation function provides interesting insights into the evaluation
of defeasible arguments.

ARGUMED based on DEFLOG is more accessible to ordinary users. ARGUMED based
on DEFLOG simplified the warrant model of Verheij’s ARGUMED 2.0 [47] by considering
the arrows between a reason and its (supported or attacked) conclusion as conditional
statements. The result was an expressive and flexible argumentation theory (formalized as
the logical system DEFLOG). The evaluation function became logically more satisfactory
(with respect to that of ARGUMED 2.0) by its correspondence to DEFLOG. As user
interface, a middle way was taken between the too flexible interface of ARGUE! and the
too rigid one of ARGUMED 2.0 which used forms. This has been achieved by the use of
a mouse-sensitive argument screen in which the argumentative data is organized by the
system. Editing the argumentative data occurs directly on the argument screen, instead of
in separate templates.
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A strong point of the systems is that all allow the evaluation of argumentative data.

This is essential for data concerning defeasible arguments and statements. Several other
systems stop at the graphical representation of the data (e.g., Belvedere by Suthers et
al. [41], and systems based on Toulmin [42], who did not discuss argument evaluation;
see [50]). A difficulty is of course that there is no consensus with respect to defeasible
argumentation and its (formal) evaluation. DEFLOG has been designed in order to be as
transparent as possible with respect to the evaluation of dialectical arguments based on
prima facie justified assumptions. Further experience has to be gathered about whether
the attempt has succeeded. The test results with ARGUMED are promising in this
respect.

Systems using Toulmin’s scheme have the advantage that the different slots in the
scheme are assigned specific argumentative roles, such as warrant and backing. This can
have the effect that a user is forced to better organize his argumentation. A drawback is
however that the assigned roles may lead to argumentative rigidity. Further research will
have to be done in this direction in order to find out the best approach.

A general question in the design of argument assistants is whether arguments should
be graphically represented in the first place. Especially the complexities and subtleties
of legal argument may impede such representations, and require natural language
representations. (Cf. a recent discussion on the OSSA argumentation theory e-mail list.)
A compromise could be the dual representation of arguments, both graphically and in
natural language.

Important directions for future research include the integration of domain knowledge
and domain-specific argumentation schemes. With respect to the integration of domain
knowledge, one can think of diminishing the gap between argument assistants and
automated reasoners. Argument assistants have the advantage of being open and flexible,
but it is to be expected that the integration of domain knowledge can make the systems
more useful in practice. In this way, the advantages of both argument assistants and
automated reasoners become available. With respect to the integration of domain-specific
argumentation schemes, one can think of typically legal kinds of argumentation, involving
precedents, rules, principles, values and goals (of which the understanding has recently
increased significantly, mainly by research in artificial intelligence and law). Integrating
such schemes opens many difficult questions (such as the way of presenting such involved
kinds of arguments), but may increase the usefulness of argument assistants for practical
purposes.

With such developments, argument assistants can evolve to valuable knowledge
management tools for argument-intensive environments, such as the law.
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