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Abstract

The present paper isthe result of a search for an analog for defeasible reasoning of valid consequence and
proof in deductive reasoning. The éundance of reseach on nonmonotonic logics, and more spedficdly
on defeasible reasoning, has $own the notoriety of the topic. One reason is that the receved canon of
views on logic and reasoning, as exemplified by standard logics, such as first-order predicae logic, is
inappropriate in the context of defeasible reasoning. A goal of the present paper isto provide arevision of
these views on logic and reasoning, by providing an abstrad, formal theory of dialedical justificaion and
defed. Dialedicd justification can be regarded as an analog of valid consequence.

The starting point is an analog of interpretation in the mntext of defeasible reasoning, viz. the notion
of an extension of atheory, where atheory is regarded as a set of sentences. An extension of atheory can
be thought of as an interpretation of the theory as a set of defeasible statements. In an extension, a
theory's sentences can not only be justified, but also defeaed. Thisis in contrast with the standard, non-
defeasible interpretation of a theory in terms of models, where dl sentences of the theory are assgned the
same positive value, viz. true. In an extension of atheory, the justified part of the theory must provide an
argument against the entire defeaed pert.

The seach for an analog of valid consequence and proof started naively, in work on the graphica
presentation of dialedica arguments in which statements can be supparted by reasons and also attadked
by counterarguments. The development of naive dialedical arguments for the experimental argument
asgstance system ArguMed resulted in the discovery and investigation of the notion of dialectical
judtification: an argument is dialedicdly justifying if and only if the agument attacks all arguments that
are incompatible with it.

Didedicd judtificaion is analogous to valid consequence in the following two relevant ways. First, a
diaedicdly justifying argument can be regarded as a set of premises justifying its conclusions, in the
context of defeasible reasoning. The premises provide abasis justifying a cnclusion, that is as lid as
posshle in the context of defeasible reasoning. Sewnd, the investigation of the internal structure of a
diaedicdly justifying argument leads to the notion of a justifying diadledicd argument, that is a dired
generdization of that of a proof, but incorporates counterarguments. A maor difference between
dialedicd justification and valid consequence is of course that dialedical justificaion is nonmonotonic
relative to a theory: when an argument is dialedicdly justifying with resped to a theory, it need not be
dialedicdly justifying with resped to a larger theory. Another differenceis the phenomenon of diaedicd
ambiguity: it can be the cae that a statement is both dialedically justifiable and daledicdly defeasible
with resped to a theory. Dialedicad ambiguity is analogous to inconsistency, but is not triviaizing: the
existence of a diadedicdly ambiguous datement with resped to a theory does not imply that any
statement isdialedicdly justifiable.

The notion of dialedicd justification plays a central role in an interesting necessary and sufficient
condition for the existence of an extension of a theory. A charaderizaion of the number of extensions
(which isas usual zero, one or severa) is given in terms of the notion of dialedicd justification.

The notion of dialedicd justification is closely related to the notion of admissibility that is currently
regarded as gate of the at: an argument is admissible if and only if it attadks al arguments that attack it.
It is shown that the notion of diaedical justificaion is more satisfadory than the notion of admissibili ty,
as atod in the analysis of extensions. By a meta-analysis it is shown that three properties of diaedicd
judtification are aucia: the union property, the locdizaion property and the separation property.
Admissibili ty ladks the latter, and as a result of that, does not allow a charaderization of the existence of
extensions analogous to that in terms of dialedicd justification.

A useful instrument in the analysis of the dialedicd interpretation of theories is the notion of a
theory's stages. A stage of atheory is a partia dialedicd interpretation of the theory, i.e., a diadedicd
interpretation of a subset of the theory. The stages of a theory correspond extensionally to the theory's
satisfiable subsets (where satisfiability is used in the standard sense of having a model). There is an
interesting intensional difference, which is relevant for the maximization of stages. Instead of maximizing
the stage's justified part (which corresponds to maximizing a satisfiable subset), it is natural to maximize
the stage's sope, i.e., the part of the theory that isinterpreted in the stage, whether justified or defeaed.
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1 Introduction

Argumentation often has a dialedicd charader: it does not only involve aguments for a conclusion, but
also arguments against. For instance, when the daim that Peter shot George is subjed to debate, withess
A's gatement that Peter shot George could be adduced as a reason supparting the daim, while witness B's
statement that Peter did not shoot George auld be raised as a reason attadking the daim. The present
paper attempts to show the nature of dialedicd argumentation and how it should be modeled. It builds on
and extends the work of many authors who have written about the subjed. Among the most influential for
my thinkilng about the subjed are espedally Reiter, Hage, Prakken, Pollock, Vreeswijk, Loui, Dung and
Toulmin.

In the present paper, a logic of didedicd justification and defea, cdled DEFLOG, is presented.
DEFLOG is about justificaion in the sense that it attempts to explain when conclusions are justified by a
set of assumptions. DEFLOG deds with defed in the sense that sentences cannot only be justified, but also
defeded by a set of assumptions. The ajedive 'diaedicd’ is used to suggest that in DEFLOG justification
and defea occurs in a @ntext of juxtaposed oppaing or contradictory claims (and not to suggest a
dialogicd setting, but see sedion 13.5). For instance, in DEFLOG, sets of asaumptions can contain
oppaing claims and still be sensibly interpreted from the dialedicd point of view. DEFLOG is alogic in
the sense that it provides aformal spedfication of aspeds of reasoning, viz. of dialedicd argumentation.
The logicdity of DEFLOG is gressed by the fad that it contains analogues of several elements that often
occur in logic, such as interpretations, valid consequence, proofs, satisfiability and inconsistency (cf.
espedally section 15).

DEFLOG uses a logicd language with two connedives x and ~. The first, the unary connedive x, is
used to express the defea of a statement. If ¢ is a sentence then the sentence x¢ expresss that the
statement that ¢ is defeded. (I like to speek of the dialectical negation of a statement.) The second, the
binary connedive ~, is used to express conditional jutification. If ¢ and ( are sentences, then the
sentence ¢ ~ P expreses that if the statement that ¢ isjustified, then the statement that @ isjustified. A
third connedive % is used to express attack. Attad is defined in terms of dialedicd negation and
conditional justification. That the statement that ¢ attacks the statement that  is considered to mean that
if the statement that ¢ isjustified, then the statement that xy is justified. As aresult, that ¢ attacks @ is
expressed by the sentence ¢ ~ x\, abbreviated as ¢ » . It is among the innovations of DEFLOG that its
language is constructed using genuine sentential connedives, in the sense that nested expressions like p ~
(g (r ~ 9)) - that can be suggested by sensible examples! - are dl owed.

The central definition of DEFLOG is that of the dialedical interpretation of a theory in terms of
extensions. There ae two main differences between the ideaof an interpretation of a theory in standard
logic (often cdled a model of atheory) and that of adiaedicd interpretation of atheory in DEFLOG. The
first is that, in the interpretations of standard logic, all sentences in the theory are asdgned the same
positive status, in logic usualy referred to as true. A model of atheory isthen alogicdly passble world
in which all sentences of the theory are true. In the dialedicd interpretation of a theory in DEFLOG,
however, not all sentences need to be given a paositive evaluation: a sentence of the theory can be dther
positively evaluated, viz. as justified, negatively, viz. as defeated. The key ideais smple: in adidedicd
interpretation of a theory, a sentence of the theory is defeated if and only if it isjustified by the justified
part of the theory that the statement is defeaed.

The seand main difference between standard interpretations and dialedicd interpretations is that in
the interpretations of standard logic, the whole language is interpreted, i.e., al sentences of the language
are asdgned a status (usually either true or false), while in dialedicd interpretations, this need not be so:
adialedicd interpretation has an extent, that consists of the sentences of the language that are asdgned a
status. The intuitive ideais that in a diaedicd interpretation only those sentences are evaluated as
justified by the theory. More predsely, a sentence ¢ (in the language) is evaluated as justified in a
dialedicd interpretation of atheory if and only if ¢ issupparted by the justified pert of the theory.

1 The order in which the names appea only reflects the aciédental chronology of my intelledual history. Some

relevant sources are Reiter's (1980, Hage's (1996 1997), Prakken's (1997), Pollock's (199%), Vreeswijk's (1997,
Loui's (1998), Dung's (1995) and Toulmin's (1958).

For convenience, here and in the following the phrase 'the statement that' - as in 'the statement that ¢' - is often
omitted. Thisis smewhat sloppy sinceit blurs the distinction between the sentence ¢ and the statement it expresses,
but will hopefully not lead to confusion.
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DEFLOG does not fal from the sky. The formal charaderization of justificaion and defea in a
dialedicd context has recently receved much attention. A lot of reseach has been devoted to the
formali zation of these notions, which has resulted in a diversity of formalisms.®

Among the innovations of DEFLOG and the contributions of this paper are the foll owing:

- The idea of considering extensions as interpretations of defeasible theories, contrasted with the
standard notion of models as interpretations of strict theories.

- The discovery of the notion of dialedical justificaion and its role in the extension existence and
extension multi plicity problems, and its subtle distinction from the notion of admisgbility.

- The notion of naive dialedicd arguments as reason/attack-structures, and their evauation, and an
explicaion of the discovery of the extent to which naive diadledicd arguments can count as the
counterpart in dialedicd logic of proofsin standard logic.

- The notions of dialedicd negation and conditional justification, and the discovery that attadk and
severa other notions from dialedicd logic (like rebutters and undercutters) can be expressed in terms
of dialedicd negation and conditional justification.

- The use of genuine sentential connectives x, ~ and x, alowing nested expressions, in the context of
dialedicd argumentation, thus normalizing and enhancing the expressivenessof logics for dialedicd
argumentation.

- The notion of stages as partia interpretations of defeasible theories, and the discovery of its
extensional (but not intensional) equivalenceto the maximal consistent subsets of the theory.

- The digtinction of two fundamentally different ways of maximizing partial dialedicd interpretations
of theories, viz. the maximization of the theory's justified sentences, and the maximization of the
theory's interpreted sentences.

- Discusson of the relations between severa types of stages (or, better, of their non-relations).

Of course some of the &ove ae not entirely new or original, but | claim that the ideas are here & least
significantly extended or clarified, given suitable explicitness or deservedly emphasized.

The paper is gructured as follows. In the next section, the notion of a naive diadledicd argument is
introduced. Naive dialedicd arguments are structured sets of statements, in which statements can be
ressons for or counterarguments against other statements. By the graphicd presentation of naive
dialedicd arguments, several key ideas can be set out in an intuitive way.

In sedion 3, the 'standard’ logicd core of DEFLOG is explained, viz. its language, interpretations and
models. Sedion 4 introduces the dialedicd core, viz. the notion of extension as the diaedicad
interpretation of a theory. The sedions 5 to 10 further elaborate on DEFLOG's diadedica core, in terms of
among others dages, dialedicd justification and diaedicd arguments. Sedion 11 deds with some
representational issues that arise in the cntext of dialedicd argumentation, and sedion 12 with
variations on DEFLOG. In sedion 124, a meta-analysis of some of the main properties of dialedicd
justification shows why it has been seleded from among several adternatives. Related reseach is
discussed in section 13. In sedion 14, two metaphors of dialedicd argumentation, viz. the comparison
and the dtack metaphor, are discussed from DEFLOG's point of view. In sedion 15, DEFLOG is contrasted
with standard propasitional logic in an attempt to clarify the differences and the similarities between a
dialedicd and a deductive gproach to logic.

2 Naivedialedical arguments

Part of the inspiration for the development of DEFLOG was my work on the graphicd representation of
arguments in defeasible agumentation (during the design of prototypicd argument assistance systems;
see e.g., Verheij, 1998a, 1998, 1999 to appear, and http://www.metgjur.unimaas.nl/~bart/aad, where
the systems can be downloaded). | introduced the term 'dialedical argument' for an argument possbly
incorporating counterarguments against statements occurring in the agument. As a result of the possible
occurrence of a unterargument, not al statements in a didedicd argument are to be wnsidered
justified. For instance, if a statement is attacked by a justified statement, the statement is defeated. It was
my hunch that dialedicd arguments would become the counterparts in defeasible reasoning of proofsin
strict reasoning. Sinceit turned out that the dialedica arguments as they are studied here were too coarse

3 Next to the sources mentioned in footnote 1, the reader might want to consult the work of Bondarenko et al.

(1997), Prakken & Sartor (1996), Verheij (1996a, 1996b, 1999), and the overview by Prakken & Vreewijk (to
appear).
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in structure for this purpose (see below, sedion 10), | now cdl them naive dialedical arguments. The
notion of naive dialedicd argumentsis still intuitively attradive and provides a goodill ustration of some
central ideas in DEFLOG. The discusson is rather informal and serves merely as an appetizer for the
formalism to come.

2.1 Thestructure of naivedialedical arguments
Naive dialedicd arguments consist of statements that can have two types of connedions between them: a

statement can suppat another, or a statement can attack another. The former is indicaed by a pointed
arrow between statements, the latter by an arrow endingin a aoss Hereis an example:

| Feter zhot George |

T—{ Witnesz B states that Peter did not shoot George |

Witheszs b ztates that Peter thot George |

The didledicd argument consists of three ¢éementary statements, viz. that Peter shot George, that witness
A states that Peter shot George, and that witness B states that Peter did not shoot George. Asisindicaed,
the second is a reason supparting that Peter shot George, the second a reason attadking that Peter shot
George.

The expressveness of naive dialedicd arguments is sgnificantly enhanced by considering the
conneding arrows (of both the supparting and the dtacking type) asakind of statements, that can as such
be suppated and attacked. The arow of a supparting or attacking argument step is here cdled the
warrant of the step (cf. also Toulmin's terminology, see &so sedion 11.3 below).

For instance, one wmuld ask why A's testimony supparts that Peter shot George. In the following, the
statement that witnesses' testimonies are often truthful is adduced as a reason:

Peter shot Gearge

Witheszes' testimaonies are aften truthful |

Withessz & states that Peter shot George |

The statement that witnesses' testimonies are often truthful serves as a badking of the supparting
argument step (cf. also Toulmin'sterminology, see dso sedion 11.3 below). The same statement can back
the dtacking argument step of B'stestimony attadking that Peter shot George.

That the mnneding arrows can also be atadked can be seen in the foll owing example:

Peter zhat Gearge |

Withess A iz unreliable |

Witheszs A states that Peter shot George

Here the unreliability of witness A is adduced as a munterargument against the supparting connedion
between the other two statements.

In genera, naive dialedicd arguments are finite structures that result from a finite number of
applicaions of threekinds of construction types:

1. Makingastatement
2. Supparting a previously made statement by areason for it
3. Attacking a previously made statement by areason against it (also cdled a cunterargument)

It should be borne in mind that the types two and three @nsist of making two statements: one an ordinary
elementary statement, viz. the reason for or against a statement, the other the spedal statement that the
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resson and the suppated o attacdked statement are cnneded, as expressed by the warrant of the
supparting or attacking argument step.

Though reive didedicd arguments are here wnsidered as the result of a finite construction, their
corresponding treestructure can be virtually infinite. An example is suggested in the foll owing picture;

| Peter zhat George |

T—( Peter did not shoot George |

T—{ Peter zhot Geaorge |

o

The agument can be thought of as being the result of three onstruction steps. First the statement that
Peter shot George is made, then that statement is attadked by the munterargument that Peter did not shoot
George, and finally it is stated that the statement that Peter shot Georgeis on itsturn a munterargument to
its attack. If the resulting (finite) loopng structure is expanded as a tree (growing downward from the
initial statement), the result isinfinite.

2.2 Evaluating ndvedialedical arguments

Naive dialedicd arguments can be evaluated with resped to a set of defeasible assumptions. An example
of an evaluated naive dialedical argument is the foll owing:

| 2 It should be investigated whether Peter murdered George |

T—{ ? Peter shot George |

T—| | Witness A states that Peter shot George |

Defeasible assumptions are precaded by an exclamation mark, all others - cdled isales - by a question
mark. Above the statement that witness A states that Peter shot George is a defeasible assumption. All
three aguments that occur in the agument are evaluated as justified, asisindicated by the dark bold font.
The statement about A's testimony is justified sinceit is an assumption that is not attaded, the statement
that Peter shot George is justified since it is supparted by a justifying reason (viz. A's testimony), and
similarly for the statement about the investigation. (Here and in the following the warrants of argument
steps are implicitly assumed to be defeasibly justified.)
The following example involves the dtad of the suppart relation between two statements:

|? Fier o aonns |

>:K—| | Witness A iz unreliable |

'--I | Witness A states that Peter shot George |

The statements about A's testimony and unreliability are defeasible assumptions, while the statement that
Peter shot George is an issue. The two assumptions are justified sincethey are not attadked. The statement
that Peter shot George is unevaluated (as is indicaed by the light italic font): it is not justified sinceit is
an issue for which there is no justifying reason, nor is it defeaed since there is no attacking
counterargument.

An example of a naive dialedical argument in which a statement is defeaed is the foll owing:
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The issue that Peter shot George is defeated (asisindicated by the dark bold struck-through font) sinceit
is attacked by the munterargument that witnessB states that Peter did not shoot George.

The evaluation of naive dialedicd arguments with resped to a set of defeasible asumptions is
naturally constrained as foll ows:

1. A statementisjustified if and only if
a itisanassumption, against which thereis no defeding counterargument, or
b. itisanissue, for which thereisajustifying reason.
A statement is defeated if and only if thereis a defeating counterargument against it.

2. A reason is justifying if and only if the reason and the warrant of the crresponding supparting
argument step are justified.

3. A counterargument is defeating if and only if the munterargument and the warrant of the
corresponding attacking argument step are justified.

It is a fundamental complication of dialedicd argumentation that a naive dialedicd argument can have
any number of evaluations with resped to a set of defeasible assumptions. there can be no evaluation, or
one, or several.

Assuming as we do that statements cannot be both justified and defeaed, the foll owing argument
whether Peter shot George - arealy discussed above - has no evauation with resped to the two
testimonies as defeasible assumptions.

| Feter zhot George |

T—{ Witnesz B states that Peter did not shoot George |

Witheszs b ztates that Peter thot George |

That the agument has no evaluation is e as follows. Since both assumptions are not attacked they
must be justified in any evaluation. But then A's testimony would require that it is justified that Peter shot
George, while & the same time B's testimony would require that it is defeaed that Peter shot George. This
isimpossible.

An example of a naive didledical argument with two evaluations is the loopng argument discussed
above:

| | Peter zhot George | E-_I _ Petershot George -E
T—;- _I _M_: T—{ | Peter did not shoot George
T—( | Peter shot George | T_.:__l _ Petershot George -E

The agument has two defeasible asumptions, viz. that Peter shot George and that Peter did not shoot
George. The ssauumptions attadk eeach other. In one evaluation, it is justified that Peter shot George, thus
making it defeated that Peter did not shoot George, while in the other evaluation it is the other way
around.

Note that the existence of the two evaluations is possble becaise the loop d attads consists of an
even number of statements. An odd length loop d attacks can cause that there is no evaluation. An
exampleisthe following:

| Thiz sentence iz falze |

T—{ Thiz zentence iz falze |

T
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If its only elementary statement (viz. that this entenceis false) is a defeasible assumption, the agument
has no eval uation obeying the constraints.

3 DEeFLOG'slanguage, interpretations and models

The informally presented notion of naive dialedicd arguments leals the way to the formalizaion of
dialedicd justification and defea in the formalism DEFLOG. As a first step, a suitable logicd |language
and its interpretation is introduced, and some of its elementary - and relatively standard - properties are
studied.

The first consideration towards DEFLOG's logicd language is the remgnition of the warrants of
argument steps as logicdly compound sentences. Since warrants conned two statements, they can be
expresed in alogicd style using binary connedives. In DEFLOG, the warrant of a supparting step in
which the statement that ¢ is a reason for the statement that ), is denoted as ¢ ~ () using the binary
connedive ~. The warrant of an attading step in which the statement that ¢ is a cmunterargument to the
statement that Y is denoted as ¢ x Y using the binary connedive x.

Though alogicd language with the two hinary connectives ~ and x can successfully be used as the
basis of aformalization of justification and defea (seg e.g., Verheij, to appear), a second consideration
leads to considerably simpler definitions and deeper understanding. This sscond consideration is that it is
useful to expressthe defea of a statement in the logicd language. In DEFLOG, the defed of a statement is
expressed using the unary connedive x. A sentence x¢ expresses that the statement that ¢ is defeated.

As areault, it beaomes possble to define attadk in terms of conditional justification and defea: the
statement that ¢ attacks s can be defined as the statement that if ¢ isjustified, then s is defeaed. In other
words, ¢ x P can be mnsidered as $orthand for ¢ ~ xy.

DerLoG's logicd language is defined as foll ows.

Definition (3.1): the language
Given a set of elementary sentences, DEFLOG's language is the small est set of sentences, such that if ¢
and | are sentences, then x¢ and (¢ ~ ) are sentences.

A sentence ¢ expresses that the statement that ¢ is justified.* For convenience, it is also said that a
sentence ¢ expresses that ¢ isjustified, or even simply that ¢. A sentence x¢ expresses that the statement
that ¢ is defeaed, or that ¢ is defeded, for short. A sentenced ~ P expresss that if the statement that ¢
isjustified, then the statement that  isjustified, or that if ¢, then y, for short.

If p, gand r are dementary sentences, then some examples of sentences are the foll owing:

P, (P~ ), (P~ (a~1), (P~ a) ~ 1), xp, xxp, X(p ~ 1), (P~ *q), (xp~ ), (P~ P)
In the foll owing, outer bradkets are normally omitted, as for instancein (p ~ Q) ~r.

Convention (3.2)
If ¢ and Y are sentences, then (¢ x W) and (Y x ¢) are abbreviations of (¢ ~ xu).

A sentence ¢ x ) expresses that the statement that ¢ attacks the statement that |y, or in other words, that
the statement that ¢ is an argument against the statement that ). In DEFLOG, the statement expressed by ¢
x | is equivalent to the statement that if ¢ isjustified, then Y is defeaed (or fully, that if the statement
that ¢ isjustified, then the statement that the statement that  is defeaed, is defeaed).”

Sentences of the form x¢ are defeat sentences, sentences of the form ¢ ~ Y conditional sentences, and
sentences of the form ¢ x Y attack sentences. (Note that attack sentences are dso conditional sentences.)
If & ~ Y is a oonditional sentence, ¢ is the mnditiona's antecedent and  its consequent. If ¢ is a
sentence, then x¢ isits defed sentence

In DEFLOG, sets of sentences are interpreted by assigning ead sentence in the set one of two
justification statuses, either justified or defeaed. The justification statuses are abreviated as j and d,

4 Thisreminds of Tarski's well-known schemein standard logic, ac@rding to which a sentence ¢ expresses that the

sentenced istrue.
® Notethat in DEFLOGIt is equivalent to say that ¢ is defeaed, or that the statement that ¢ is defeated, is justified.
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respedively. The asignment of the status j to a sentence ¢, corresponds to the statement ¢ being
justified, and the assignment of the status d to the statement being defeated.

In an interpretation, the asignment of justification statuses must obey two constraints, suggested by
the intended meaning of the sentences of the language. First, the statement ¢ being defeaed coincides
with the statement x¢ being justified. As aresult, a sentence ¢ is assigned the status d if and only if the
sentence x¢ is assigned the valuej.

Semnd, if it is justified that if ¢ then @, and it is justified that ¢, then it should follow that it is
justified that . As a result, sentences & ~ Y and ¢ being assgned the value j implies the sentence Y
being assigned the value j.

Definition (3.3): interpretations
An interpretation (or world) is a mapping W from a set of sentences S to the set {j, d}, such that the
foll owing two constraints obtain:
1. W(x¢)isequa tojif and only if W(¢) isequal to d.
2. 1f W(¢ ~ ) and W(d) are both equal to j, then W(() isequd toj.
The set Sis cdled the extent of the interpretation. If W is an interpretation, J(W) denotes the set of
sentences that are assigned the value j under W, and D(W) the set of sentences assigned the value d.
The dements of J(W) are said to be justified in W, those in D(W) defeated.

It should be noted that sentences of the language can be neither justified nor defeaed in an interpretation,
sincean interpretation's extent is not necessarily equal to the whole language.® When an interpretation has
the whole language & its extent, i.e., any sentence of the language is either justified or defeaed in the
interpretation, the interpretation is said to be total.

Note dso that, whil e by the first constraint the justification status of a sentence x¢ in an interpretation
isafunction of the status of ¢, the second constraint shows that the justification status of a sentence ¢ ~
Y isnot afunction of the statuses of ¢ and . Of the eght passhle assgnments of justification statuses to
three sentences ¢, Y and ¢ ~ ), constraint 2 only excludes one, viz. that in which ¢ and ¢ ~ § are
justified, while Y is defeaed. The meaning of a cnditional ¢ ~ Y issimply that its consegquent follows if
its antecadent applies. (Thisisin stark contrast with the truth functionality of the material implication of
standard logic, of which the truth coincides with the antecadent's falsity or the mnsequent's truth.)

Example (3.4)
In ead row of the table on the left, the justified and defeaed sentences of an interpretation are li sted.
In the table on the right, examples of status assgnments that are not interpretations are listed.

Notation (3.5)

Examples of interpretations Examples of non-interpretations
Justified sentences Defeated sentences Justified sentences | Defeated sentences
xp p p, xXp .

P, XXp Xp p Xp
P,.g.p~q - P, xXp Xp, XXp
P, xXq,pxq q Pp.P~(q -
a.pP~q xp P.P>Q q
XQ,p~>q q Xp, 4, *p~¢ :

p.q (P~ 0q) pP~q

P, Xg, I, pxg, xg~>r |9

For an interpretation W, W = ¢ denotesthat the sentence ¢ isjustified in the interpretation W.

There is no dedicated notation for a sentence being defeaed in an interpretation, but note that by

constraint 1 in definition (3.3), W = x¢ denotesthat ¢ isdefeaed in W.

6

interpretations might be an interesting topic for further reseach.
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Models can be regarded as interpretations of sets of sentences as strict theories: all sentences in the set
of sentences are assumed to be justified. An interpretation is a model of a theory if al sentences in the
theory are justified in the interpretation.

Definition (3.6): models of theories, satisfiability
If T isaset of sentencesand W is an interpretation, such that W = ¢ for any sentence ¢ in T, then the
interpretation W is a model of the theory T, which is denoted as W = T. A set of sentences is
satisfiableif it hasamodel.

Example (3.7)
ThesatsT;={p,pxp} and T, ={p,q, p~r, q x r} are not satisfiable, whilethe sets T ={p, p~ q,
gxrtandTs={p~q, (p~0q) xr, xrxx(p~q)} aesaisfiable.

The mnsequences of atheory are & usual defined as those sentences that are justified in all models of the
theory. Note that in determining the cnsequences of a theory it is considered as grict, i.e.,, non
defeasible. The interpretation of theories as defeasible is the topic of the next sedion.

Definition (3.8): consequences of theories
If T is aset of sentences and ¢ a sentence then ¢ is a consequence of the theory T if, for any
interpretation W, if W e T, then W = ¢. That ¢ is a mnsequence of atheory T isdenoted as T & ¢.
The set of consequences of T is denoted Cn(T).

Example (3.9)
The sets T, and T, of example (3.7) are not satisfiable, and therefore have dl sentences of the
language & their consequences. The sets T; and T, have T3 O {q, xr} and T, O {xr, xx(p ~ Q)} as
their sets of consequences.

The set Cn(T) of consequences of a theory T can be charaderized by rules of inference Cn(T) is the
closure of T under the rules of inference ¢, ¢ ~ Y / P (~-Modus ponens, or Modus ponens, for short) and
¢, x¢ / P (avariant of Ex falso quodlibet). The dosure of T under (~-)Modus ponens alone is denoted as
Mp(T). Mp(T) is the smallest set that contains T and that is closed under rule gplicaion. For satisfiable
T, Mp(T) and Cn(T) coincide. Note that Cn(T) and Mp(T) are dso closed under the rule of inference ¢, ¢
x P/ x that might be cdl ed x-Modus ponens.

Definition (3.10)
A set of sentences S is conflict-free if there is no sentence ¢ in S, such that x¢ isin S. A set of
sentences Sis closed under Modus ponensif whenever ¢ ~ and ¢ arein S, then isin S.

The defeaed sentences of an interpretation are 'encoded' in the justified sentences: a sentence ¢ in an
interpretation is defeaed when and only when the sentence x¢ is justified. As a result, the defeaed
sentences of an interpretation are in a predse sense superfluous in the charaderizaion of an
interpretation: only the justified sentences suffice in order to charaderize a interpretation, as in the
following property.

Property (3.11)
A set of sentences C is corflict free ad closed under Modus ponens if and only if there is an
interpretation W such that C is equal to J(W), the set of justified sentences of W.

Proof: The 'if'-part foll ows by checking the definitions. The 'only if'-part is based onthe following construction. If C
is conflict free ad closed under Modus ponens, then the mapping that assgns the value j to al sentencesin C,
andthe valuedto al sentences ¢, for which x¢ isin C, is an interpretation.

If Cisconflict freeand closed under Modus ponens, the interpretation that is constructed in the proof of
the property above is denoted as W¢. Clealy, it follows that, for any such C, J(W¢) is equal to C, and
that, for any interpretation W, Wy, is equal to W. This gives a mnvenient charaderizaion of worlds in
terms of sets of sentencesthat is often used throughout the paper.
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Since the notion of a satisfiable set of sentences is important in DEFLOG, it is natural to look for a
syntadic charaderization. It is provided by the notion of argument.

Definition (3.12)
A set of sentencesisan argument if its closure under Modus ponensis conflict free

Property (3.13)
A set of sentences Cisan argument if and only if Cis stisfiable.

Proof: Use property (3.11).

Definition (3.14): arguments for and against, attack, incompatibility

0] An argument C supports or is an argument for a sentence ¢ if C = ¢. An argument C attacks or is
an argument against ¢ if C = x¢. The sentences in an argument C are dso cdled its premises, the
sentences ¢ such that C = ¢, its conclusions.

(i)  Anargument C attacks an argument C' if C attadks a sentencein C'.

(iii)  Arguments C and C' are compatible if C O C' is an argument, and ctherwise incompatible. The
argumentsin a wlledion {C}; o, are compatible if their union O; 5, C; is an argument, otherwise
incompatible.

The set of sentences{p, p ~ g} isan argument, the set {p, p ~ q, xq} isnot. The agument {p, g, p ~ (g X
N} hasp, gand p~ (g xr) aspremises, and p, g, p~ (g < r), g x r and xr as conclusions.

If C attacks C', then C and C' are incompatible. If the agumentsin a wlledion {C}; o, are pairwise
compatible, the wlledion is not necessarily compatible. For instance, the three aguments {p}, {q} and
{p x q} are pairwise mmpatible, but the olledion containing all three aguments is not compatible. The
incompatibility of two arguments does not imply that one of them attacks the other. E.g., the aguments
{p, q} and{p ~r, g~ xr} areincompatible, but neither attadks the other.

Property (3.15)
If Cisanargument for ¢, then there is a Modus ponens derivation with premisesin C and conclusion
¢. If Cis an argument against ¢, then there is a Modus ponens derivation with premises in C and
conclusion x¢.

Proof: Use property (3.11).

In the foll owing figure, three aguments are graphicaly suggested.

Mo

The bottoms of the dpine shapes consist of the premises of the agument; the tops are the conclusions.
Argument A has conclusion ¢, argument B conclusion x¢ and argument C has premise ¢. B attadks C,
but not necessarily A (since ¢ might not be apremise of A). A and B are incompatible, and B and C too.

If Cisan argument, then its closure under Modus ponens charaderizes an interpretation, cf. (3.11). It
is denoted as Wc. For arguments C, it does not in genera hold that J(W(¢) is equal to C. It does hold that
J(W¢) isequal to Cn(C).

Definition (3.16)
Let C be an argument. Then W¢ isthe interpretation specified by the argument C.

The following monotonicity property obtains. Cf. the properties (4.6) and (6.6) below.
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Property (3.17)
Let T and T' be theories, such that T isasubset of T'. If T hasno model, T' does not have one. If T and
T' both have amodel, say W and W', respedively, and ¢ isjustified in W, then ¢ isjustified in W'. If
¢ isdefeaed in W, it isdefeaed in W'. If ¢ isin the extent of W, it isin the extent of W'

Proof: Use properties (3.11) and (3.15).
4 Extensionsasinterpretations of defeasible theories

The models of a theory, defined in the previous sdion, can be regarded as interpretations of strict
theories. a model of a theory is an interpretation in which all sentences of the theory are wnsidered to
expressjustified statements. In this dion, the notion of extensions of a theory is introduced. Extensions
are interpretations of theories as defeasible statements. The main ideais that an extension of atheory isan
interpretation spedfied by a part of the theory that is an argument against the remainder of the theory. In
other words, in an extension of atheory, the theory is lit in ajustified and a defeaed part. The justified
part is an argument against the defeded part and spedfies the extension. In this way, many sets of
sentences that are not satisfiable ae given sensible interpretations as defeasible theories.

Before the formal definition is given, some examples are discussed. The foll owing definition comesin
handy.

Definition (4.1)
Let A be aset of sentences and C an argument. Then CisaA-argument if C isasubset of A.

Some simple but important examples are the foll owing.

Example (4.2)

0] Consider theset A = {p, g, q x p}. Thetheory A saysthat p, that g, and that q attadks p. A isclealy
not satisfiable. It contains an argument however that attacks all sentences outside the agument:
{q, g x p} isindead an argument, and attadks p. In the interpretation spedfied by {q, q x p}, xp, q
and g x p arejudtified, and pisdefeaed. Thisinterpretation is the theory's extension.

(i) Considertheset A ={p, q,r,gxp, rxaq}. The theory A says that p, that g, that r, and that q
attadks p, while q is on its turn attadked by r. Again the theory is not satisfiable. Still there is a A-
argument, viz. {p, r, g x p, r X g}, that attadks all sentences of the theory not iniit, in this case only
g. In the interpretation it spedfiesal sentencesin A are justified, except g, which is defeded. This
interpretation is the theory's extension.

(i) Consider the set A = {p, xp}. The theory A says that p, and that it is defeaed that p. It is not
satisfiable. However the interpretation spedfied by the agument {xp} in which xp isjustified and
p isdefeded isthe theory's extension.

Here isthe formal definition of extensions.

Definition (4.3): extensions
If Aisaset of sentences and E an interpretation, then E is an extension of the theory A if and only if E
isan interpretation that is edfied by a A-argument J that attacks any sentence ¢ in A\ J. The set J(E)
n Aisthejustified part of the theory in the extension, the set D(E) n A the defeated part.

If Eisan extension of A and Jisasin the definition, E = W;. Since Jis stisfiable, its st of consequences
is equal to Mp(J). Any sentence ¢ in Jis justified in E, i.e., E(¢) = j, and any sentence Y in A\ Jis
defededinE, i.e, E(Y) = d.

In the table, the splitting of some theories (among them those of example (4.2)) into sets of justified
and defeaed sentences, as in the definiti on of extensions, is snown. Each splitting in the table corresponds
to an extension, by taking the interpretation spedfied by the justified sentences of the theory.
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Defeasible theory Justified part Defeated part
P, Xp Xp p

pP.PXQq, g pXxa .9 p
P.PXQ,Q9,gxrr I ppXQggKrr q

p.P~Qq, *p p~ 0, Xp p

PP~ X(P~ad) |px(pP~0) pP~q
p.pxXQ,Q9,g~>r pXd.q.9~>Tr p

Another fundamental charaderistic for the interpretation of sets of sentences as defeasible theories is the
following.

Property (4.4)
A theory can have zeo, one or several extensions.

Proof: Cf. the foll owing examples.

Example (4.5)

0] The threetheories {p, p > p}, {p, p ~ q, xqg}, {pi | i isanatural number} O {p; x p; | i and j are
natural numbers, such that i <j} ladk extensions. For the latter theory, this can be seen as follows.
Assume that there is an extension E in which for some natural number n p, isjustified. Then al p,
with m > n must be defeaed in E, for if such a p,,, were justified, p, could not be justified. But that
isimpossible, for the defea of a p,, with m > n can only be implied by a justified p,y with m' > m.
As aresult, no p can be justified in E. But then al p; must be defeaed in E, which isimpossble
sincethe defea of ap; can only be implied by ajustified g with j > i. (Note that any finite subset
of the latter theory has an extension, while the whole theory does not. This shows a 'norn-
compadness property’ of extensions.) See &so example (6.10) below.

(i)  Thethreetheories{p, g, px g, px a}, {p. Pi X Pis1 | i isanatural number} and {x'p | i is a natural
number} have two extensions. (Here x'p denotes, for any natural number i, the sentence @mposed
of alength i sequence of the mnnedive x, foll owed by the constant p.)

(iii)  Thetheory {p, xp} hasaunique extension, just as the other example theoriesin the table aove.

It follows that, although a theory that is not satisfiable, can have an extension, not all theories have an
extension: such theories are neither 'strictly satisfiable’ nor 'defeasibly satisfiable'. Such sets of sentences
can neither be interpreted as a strict theory nor as a defeasible theory.

The following ronmonotonicity property obtains. Cf. the properties (3.17) and (6.6).

Property (4.6)
Let A and A’ be theories, such that A is asubset of A'. If A has an extension, A" need not have one. If A
and A' both have an extension, say E and E', respedively, and ¢ is justified in E, then ¢ neal not be
justified in E'. If ¢ is defeated in E, it need not be defeaed in E'. If ¢ isin the extent of E, it nead not
bein the extent of E'.

Proof: While {p} hasan extension, {p, p x p} doesnat. While pisjustified in the extension of {p}, it isnot in that of
{p, 0, g @ p}. While xp isjustified in the extension d {xp}, it is not in that of { xp, g, g x xp}. Whiler isin the
extent of the extension o {p, p~r}, itisnotinthat of {p,p~r, g, qxp}.

The following rotational convention is osmetimes useful.

Convention (4.7)

If Sisaset of sentences, then xS denotes the set {x¢ | ¢ isan element of S} and x'Stheset {¢ | x¢ is

an element of S}.

For determining the extensions of atheory, the following simple property can be helpful.

7 A property P of setsis cdled compad if a set S has property P whenever all its finite subsets have the property.

Cf. the mmpadnessof satisfiability in first-order predicae logic.
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Property (4.8)
If E is an extension of atheory A, then J(E) O Mp(A) and D(E) O x*Mp(A).

Proof: Let the set J be @& in definition (4.3). Then E = W,. Therefore JE) = Mp(J) and sinceJ 0 A and Mp is
monaonous, JE) O Mp(A). Since E = W, it follows that D(E) O x*XE). Then by JXE) O Mp(A), also D(E) O
xMp(n).

Obvioudly, it isnot in general the case that Mp(4) is a subset of the extent of an extension of the theory A.
An exampleisthetheory A ={p, p ~ g, xp} that has a unique extension spedfied by xp and p~ g. In the
extension, p is defeated and g not taken into acount..

The following propasition gathers ome dternative definitions of extensions.

Proposition (4.9)

Let E be an interpretation and A a set of sentences. Then the foll owing are equivalent:

0] E isan extension of the theory A.

(i)  There ae sets of sentencesJand D withA=J0 D, J n D =0, such that JE) = Mp(J) and
D(E) O D.

(iii)  There ae setsof sentencesJand D withA=J0O D, Jn D =0, such that J(E) = Mp(J) and J(E)
0 xD.

(iv) E=W,y, 4 and EE=x(A\NIE)).

(v) Eisaninterpretation spedfied by a maximal satisfiable subset of A and with A in its extent.

Proof: (i) = (ii): Let Jbe & in the definition of extensionsand let D be A\ J. Then Jand D are asin (ii). (ii) = (iii):
For any interpretation E and any set of sentences D, it follows from D(E) O D that J(E) O xD. (iii) = (iv): Note
that J=A n JE) and D = A\ JE). (iv) = (v): J=A n J(E) isamaximal satisfiable subset of A sincefor any ¢ in
AnotinJ, it obtainsthat J= x¢. (V) = (i): Let Jbe amaximal satisfiable subset of A spedfying E. Any ¢ inA\J
isin E's extent. It cannot be in J(E) for then J O (¢) would be satisfiable. Therefore it must be in D(E). But then
x¢p must bein JE). SinceJ pedfiesE, x¢ isa mnsequenceof J.

By part (iv) of the propasition, the set J as it occurs in the definition of extensions can be extraded from a
given extension of the theory: the set Jis equal to A n J(E). Note however that an extension E of atheory
A can be spedfied by other subsets of A than A n J(E), viz. subsets J for which it holdsthat A n J(E) =
Mp(J). For instance, the unique extension E of the theory {p, p~ q, p x r, q} is gedfied by {p, p ~ q},
which is a proper subset of A n J(E).

The following property charaderizes the extensions of satisfiable theories: they are just the
interpretations gedfied by the theory. In addition, it is dated that an extension of a theory is also an
extension of certain other sets of sentences.

Property (4.10)

0] If Tis stisfiable, then T has aunique extension, viz. the interpretation W that is gpedfied by T.

(i) If Eisanextension of A, then E is an extension of any set of sentences A', such that J(E) n A O A'
0 JE) O D(E).

Proof: Property (i) follows from the fad that if E isan extension d T and ¢ were asentencein T that isdefeged in E,
then T n JE) & x¢ and T would not be satisfiable. For property (ii), first notethat A' n JE) =A n JE) and O O
A"\ J(E) O D(E), and then use part (iv) of proposition (4.9).

Note that, though acording to property (ii) above an extension E of atheory A isaso an extension of any
set A', such that JE) n A O A'0 JE) O D(E), such aset A' can have an extension that is not an extension
of A. Thefollowingis an example.

Example (4.11)
Thetheory A={p,p~qgq~rr~s gx(r-~s),sx(p~ g} hasone etenson, viz. the
interpretation spedfied by A\ {r ~ s}, inwhich r ~ sis defeaed. JE) O D(E) has a second extension,
viz. theinterpretation spedfied by {s} O A\{p~ q}.
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In the following sedions, the notion of extensions as interpretations of defeasible theories is further
investigated.

In the following, the notion of extensions is further investigated. One of the ams is to better
understand the paossibili ty that a theory has zero, one or several extensions. Let's cdl the posshility that a
theory does not aways have an extension the extension existence problem, and the posshility that a
theory has more than one extension the extension multiplicity problem. One toal will be the notion of
stages.

5 Stages

Even if atheory has no extension, its sibsets can have extensions. The extensions of subsets of a theory
are cdled the theory's stages.® The extensions of the subsets of a theory can be regarded as preliminary
stages on the path towards an extension of the whole theory. One wuld say that at these preliminary
stages less information as it is expressed in the theory, is taken into account than at an extension. Even if
the theory as awhole lacks an extension, its gages can provide interesting information about the theory.

Definition (5.1): stages
Aninterpretation Sis a stage of the theory A if and only if it is an extension of a subset of A. If Sisa
stage, theset A n (J(S) O D(9)) is the scope of the stage. If Sis a stage, the sets J and D, where J :=
JS) n Aand D :=D(S) n A, are the j-scope and the d-scope of the stage, respedively. A sentence ¢
in A that isin the scope of astage Sistaken into account at the stage S.

The scope of a stage atheory can be regarded as the subset of the theory that has been taken into acount
at the stage.® A stage's sope should be mntrasted with the stage's extent, which is the whole set of
sentences (not in general a subset of A) that are asdgned a defea status in it (cf. definition (3.3)). For
instance, in the stage of the theory {p, xp, p ~ q} spedfied by the set {p, p ~ g}, g isin the stage's extent,
but not in its scope sinceit is not in the theory.

Example (5.2)
Thesets [0, {p}, {*p}, {p~ o}, {p, p~ d} and {xp, p~ g} spedfy the stages of the theory {p, xp, p
~ (}. Itsunique extension is edfied by {xp, p ~ g}. Note that the scopes of the stages pedfied by
{xp} and {xp, p ~ g} include the sentencep.

Not all subsets of atheory occur as the scope of one of the theory's gages. There ae two fundamentally
different reasons for this. The first is that the subset does itself not have an extension. For instance, the
subset {p, p x p} of the theory {p, p % p, 0, g x p} does not occur as the scope of a stage. The second
reason is that if Sisan extension of a subset A' of a theory A, then the scope of the stage S of A is not
necessarily equal to A'. The scope is then necessarily a larger subset of A. For instance, the stage
(acualy: the extension) of the (satisfiable) theory {p, g, p ~ g} spedfied by the set {p, p ~ g} has the
whole theory asits cope.

The stages of a theory correspond exadly to the interpretations that are spedfied by the satisfiable
subsets of A:

Property (5.3)
Aninterpretation Sis a stage of the theory A if and only if Sis gedfied by a satisfiable subset T of A,
i.e., S= WT.

Proof: If T is a satisfiable subset of A, then T has a unique extension, viz. W+, by part (i) of property (4.10). Asa
result, it is astage of A. If Sis a stage of the theory A, it is by definition an extension of a subset A' of A. By part
(iv) of proposition (4.9) it is edfied by A" n J(S), which is a satisfiable subset of A.

8
9

For the development of my ideas on stages, see dso Verheij, 1996a and 1996b.

As aresult, the stages of a theory can be regarded as threevalued interpretations of the theory, viz. the values
justified’, 'defeaed' and 'not taken into acount'. Together with the alditional value 'uninterpreted’ suggested in note
6, one can look at stages as four-valued interpretations of the whole language. Again, whether this is a fruitful view,
isleft for further reseach.
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As a result, the stages of a theory are exadly the interpretations gpedfied by the theory's arguments (cf.
definition (3.14)).

Note that extensionally stages coincide with satisfiable subsets, but not intensionally. One notion
asciated with the stages of a theory is their scope, which is not as reaily suggested by the theory's
satisfiable subsets.

A charaderistic phenomenon of argument defea that is made explicit in the stages of atheory, is the
posshili ty that the defea status of a sentence dianges on the basis of additi onal information.

Example (5.4)

0] The sets {p, p X q} and {xp, g, p X q} spedfy stages of the theory {p, g, p X q}. The latter
spedfies the theory's extension. In the former, p isjustified since the dtad g is not yet taken into
acourt. In the latter, p has become defeated sinceit is attacked by q.

(i)  Thestages gedfied by thesets{p, px g, qx r}, {xp,q, px q, X r} and{p, xq,r,px g, g x r}
of the theory {p, g, r, pix g, g X r} (the latter of which is the theory's unique extension) show the
reinstatement of a sentence: p is consecutively justified, defeaed, and then again justified.

It isanatural step to accentuate the stages in which a maximal subset of the theory, is taken into acount.
Such stages that have maximal scope, are cdled maximal stages.

Definition (5.5): maximal stages
An interpretation E is a maximal stage of the theory A if and only if it has maximal scope anong the
stages of A.

Note that a maximal stage of atheory, i.e., a stage with maximal scope, also has maximal extent among
the theory's gages, but that not all stages with maximal extent are maximal stages. The stage of the theory
{p, p~ q, xp} that is pedfied by the set {p, p ~ q} has maximal extent (it is the stage that has maximal
extent among the stages with q in their extent), but does not have maximal scope: its sope does not
contain xp, whil e the theory has a full-scope stage, namely its extension spedfied by {p ~ g, Xp}.

Property (5.6)
Extensions are maximal stages, but not in general vice versa.

Proof: The scope of an extension of atheory is maximal sinceit is equa to the whaole theory. Example (5.7) below
shows that maximal stages are nat in genera extensions.

Example (5.7)
The theory {p, p x p} hasthe interpretations pedfied by {p} and {p % p} as maximal stages, but no
extension. The theory {p, p ~ q, Xq} has the interpretations edfied by {p, p ~ q}, {p, xq} and {p ~
g, g} as maximal stages, but has no extension. Cf. part (i) of example (4.5).

Property (5.6) implies that the number of maximal stages is equal to or larger than the number of
extensions. Example (5.7) shows that the number of maximal stages can indeed be larger than the number
of extensions. This can however only be the cae if atheory lacks an extension, as the foll owing property
shows. It says that for theories with an extension the notion of extension coincides with the notion of
maximal stage.

Property (5.8)
If atheory has an extension, then any maximal stage of the theory is an extension.

Proof: If E is an extension of atheory A, then its £opeis equal to A. As aresult, any maximal stage must have A as
its ope, and is therefore dso an extension.

As aresult of this property, if a theory has an extension, the number of maximal stages of the theory
equals the number of extensions.

Whil e the number of maximal stages is equal to or larger than that of extensions, the question arises
whether there is an analog for maximal stages of the extension existence problem: are there theories
laking a maximal stage? Two of the three sample theories lacking an extension (discussed in example
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(4.5) above) were shown to have maximal stages (example (5.7) above). The third sample theory without
an extension also lacks a maximal stage.

Example (5.9): a theory without maximal stage
Thetheory A = {p; | i isanatural number} O {p; X p; |i and j are natural numbers, such that i <j} has
no maximal stage. This can be seen as follows. Among its dages are the interpretations S, spedfied
by the sets{p,} O {p;i X p; | i and ] are natural numbers, such that i < j}, where n is a natural number.
Inastage S, p,isjustified and any p; with i < nis defeded. The extents of the stages S, exhaust the
whoale theory, so a maximal stage must have the whale theory as its extent, i.e., must be an extension.
However, the theory does not have an extension, cf. example (4.5), part (i).

Note that in the example, the non-existence of a maxima stage proves a ‘non-compadness
property: the sample theory A has the property that for any finite subset A’ of the theory there is a stage
the scope of which contains A', while for the whole theory there is not. (It is even the cae that any
finite subset of A has an extension.)

The analog of property (4.4) for maximal stagesis the following.

Property (5.10)
A theory can have zeo, one or several maximal stages.

Proof: The property foll ows from property (5.8), example (4.5) and example (5.9).

Maximal stages are the result of maximizing the scope of the stages of a theory. Another way to
maximize stages is by maximizing only the justified sentences in the scope of the stages. Stages that are
maximal in this soond way are cdled the satisfiability classes of a theory, since they turn out to
correspond exadly to the maximal satisfiable subsets of the theory.

Definition (5.11): satisfiability classes
A stage S is a satisfiability class of the theory A if Sis a stage of A such that the j-scope of Sis
maximal among the stages of A.

Property (5.12)
Let Sbe aninterpretation and A a set of sentences. Then the foll owing are equivalent:
0] A stage Sisasatisfiability classof the theory A.
(i)  Sis pedfied by amaximal satisfiable subset of A.
(i)  Sisastage such that J(S) is maximal among the stages of A.

Proof: Asaume that S is a satisfiability class with j-scope J. J is stisfiable. If T with A O T O Jis stisfiable, it
spedfies a stage with j-scope J. By the maximality of J, it follows that T = J. Assume that S is edfied by a
maximal satisfiable subset T of A. Then S= Wy and J(S) = Mp(T). If S isastage of A with J(S) O JS), then S
is pedfied by the satisfiable set JS) n A O T. Then the maximality of T implies that JS) n A = T, and
therefore S' = S. Asaume that Sis a stage with j-scope J such that J(S) is maximal among the stages of A. If S'isa
stage with j-scope J with A 0 J O J, then JS) = Mp(J) O Mp(J) = JS) by the monatonicity of Mp. By the
maximality of J(S), it follows that J(S) = JS). ButthenJ=JS) n A=JS) n A=1J.

Example (5.13)
Consider the theory {p, g, r, p X q, q X r} that was already discussed in part (ii) of example (5.4)
above. Its stisfiability classes that have dl the dtack sentences of the theory in their extent, are
spedfied by the sets{q, px g, qx r} (in which p isdefeaed, q justified and r not taken into acount)
and {p, r, px g, g X r} (in which p and r are justified and g dfeaed). The latter is the theory's
extension.

Note that the example shows that satisfiahility classes are ‘insensitive’ to the posshbility of
counterattack and reinstatement: the stage in which p comes out as defeaed and g as justified is from
the paint of view of satisfiability classes as good as the stage in which the outcome is the other way
around.

Satisfiahili ty classes and maximal stages are the maxima of two different partial orderings on the set of
stages of atheory. The partial orderings are defined as foll ows.
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Definition (5.14): a stage extending another stage
Sextends S, denoted as Sx S, if the scope of Sisa subset of that of S.
S compatibly extends S, denoted as S= S, if the j-scope of Sis a subset of the j-scope of S' and the d-
scope of Sisasubset of the d-scope of S.

Note that < and = are not defined in terms of set inclusion of the extents of stages (which might be
confusing gven the terminology), but of their scopes.

Property (5.15)
Let Sand S be stages of atheory. Then, if SE= S, Sx S.

Proof: If XS) n A 0 XS) n A, then XS) 0 XS). If XS) 0 XS), then D(S) T D(S).

The satisfiability classes of a theory are the =-maxima among the theory's gages and its maximal stages
the x-maxima.

Property (5.16)
Any maximal stage of atheory is a satisfiabili ty class, but not in general viceversa.

Proof: Any <x-maximum is also =-maximal. The satisfiability classof the theory {p, g, p x d} spedfied by {q} isnot
a maximal stage since the stage (actually: extension) spedfied by {p, p X d}, in which qis defeaed, has larger
scope.

Corallary (5.17)
Any extension of atheory is a satisfiahility class, but not in general viceversa.

Proof: Combine the properties (5.6) and (5.16).

The number of satisfiability classes is larger than or equal to the numbers of maxima stages and
extensions. Indeed, in contrast with the situation for maximal stages and extensions, any theory has one or
more satisfiability classes.

Theorem (5.18)
0] Any theory A has one or more satisfiability classes.
(i) If Sisastageof A, then A has a satisfiabili ty class that is compatible with S.

Proof: For part (i), consider the partial ordering = on the set of stages. Apply Zorn's lemma (or, if you prefer, one of
its weakenings) after observing that the stage spedfied by the empty set of sentences is a stage ad that totally
ordered chains of stages (S); have asupremum, viz. W;, where J is the union o al sets JS). For part (i),
consider the partia ordering = onthe set of stages compatible with S.

Property (5.19)
A theory has a maximal stage if and only if the partial ordering < on the theory's satisfiability classes
has a maximum.

Proof: The property foll ows direcly from the definiti ons.

Corallary (5.20)
Any finite theory has a maximal stage.

Proof: The number of satisfiability classes of a finite theory is finite (e.g., since the number of partia justificaion
status assgnmentsiis) and finite partia orderings have amaximum.

Recdl that finite theories do not always have an extension. Cf. part (i) of example (4.5).
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Definition (5.21): compatibility of stages
Stages Sand S of atheory A are compatible if thereisastage S, such that S= S"and S = S'. Stages
are incompatible if they are not compatible. A colledion of stages {S}i o, is compatible if there is a
stage S, suchthat S = Sforaliinl.

The definition matches the notion of compatibility of arguments, cf. the arrespondence between stages
and arguments foll owing from (5.3).

Example (5.22)
The stages pedfied by the sets{p, g} and {p ~ r, q ~ xr} are not compatible. Note that the example
shows that if two stages are incompatible, there need not be asentence that is justified in one and
defeded in the other (in contrast with a property of didedicdly justifying stages, defined and
discussed below, property (6.11)).

Compatihility in pairs of the stagesin a wlledion of stages{S}; o, does not imply compatibility. Seethe
corresponding example for arguments below definition (3.14).

Property (5.23)

0] Stages Sand S of atheory A are compatible if and only if J(S) O J(S) is stisfiable.

(ll) If Sand S are Compatlblestages, then S WJ(S) 0XS) and S WJ(S) 0 XS)-

(i)  If Sand S' are compatible stages, and S" isa stage such that S=S" and S' = S", then Wy o 5=
S

Proof: Part (i) can be seen asfollows. Let S" be astage such that S= S"andS = S'. Then J(S) O JS) O XS"), which
is stisfiable. If J(S) O J(S) is stisfiable, then it spedfies astage S' = Wyg) 0 ys), sSuchthat SES"andS = S'.
Part (ii) followsimmediately. For part (iii ), note that from S= S"and S = S', it follows that J(S) O XS) O XS")
and therefore WJ(S) nyxs)E WJ(S') =S"

Notation (5.24)
If Sand S are compatible stages, then S || S’ denotes the stage Wyg g ys)- S S is the union of the
stagesSand S.

Property (5.25)
If S; and S; are different satisfiability classes of the theory A, then S; and S, are incompatible.

Proof: If S; and S, were compatible satisfiabili ty classs, their union S; LI S, would exist and would be asatisfiability
class If S; and S, are different, thiswould contradict their maximality with resped to the partial ordering .

Corallary (5.26)
If S; and S; are different maximal stages or extensions of atheory A, then S, and S, are incompatible.

Proof: Maximal stages and extensions are satisfiabili ty classes.
6 Dialectical justification

An important question to ask is whether it is posshle to find a aiterion that determines whether a
particular sentenceis dialedicdly interpretable with resped to atheory, either asjustified or as defeaed.
That isthe topic of this sdion. The result is the notion of dialedicd justification that can be regarded as
an analog in defeasible reasoning of valid consequencein deductive reasoning.

A relevant property of extensionsis expressed in the foll owing propasition.

Proposition (6.1)
Let E be an extension of atheory A. Then J(E) is a A-argument that attadks any A-argument C that is
incompatible with J(E).

Proof: SinceE is an extension, JE) is stisfiable. Hence aA-argument C that is incompatible with J(E) cannot be a
subset of J(E) since JE) is not incompatible with any of its aubsets. Therefore there is a sentence ¢ in C that is
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not in J(E). Since E is an extension, it isin D(E). But for any sentence ¢ in D(E) it holds by the definition of
extensions that J(E) = x¢, i.e., J(E) attacks C.

The following corollary is a 'locdized' version of propasition (6.1), that will be the starting point of
sedion 10, where the internal structure of dialedicd justificaion isinvestigated.

Corallary (6.2)
Let E be an extension of atheory A, ¢ a sentence that isjustified in E, and C a J(E)-argument for ¢.
Then for any A-argument C' that is incompatible with C, there is a A-argument C" that is compatible
with C (in fad a J(E)-argument), such that C" attacks C'.

Proof: Take J(E) in the role of C". Since C is a subset of J(E), C' is incompatible with JE). Hence J(E) attadks C'
acording to the propasition.

The property of the agument J(E) in propasition (6.1) above is aufficiently important to deserve aname
of itsown.

Definition (6.3): dialectically justifying arguments
A A-argument Cisdialectically justifying with resped to A if and only if C attadks any A-argument C'
that isincompatible with C.

Definition (6.4): dialectically justifiable and defeasible sentences
A sentence ¢ is dialectically justifiable with resped to A if and anly if there is a A-argument C for ¢
that is diadedically justifying with resped to A. Such an argument C is then caled a dialectical
judtification of ¢, and C dialectically justifies ¢ with resped to A. A sentence ¢ is dialectically
defeasible with resped to A if and only if x¢ is diaedicdly justifiable with resped to A. If Cisa
dialedicd judtification of ¢, then the agument C dialectically defeats ¢ with resped to A.

Example (6.5)

0) The agument {p, r, q x r} didedicdly justifies p with resped to the theory {p, g, r, px q, q X r}
(seepart (ii) of example (5.4) and example (5.13)). The agument {p} does not diaedicdly justify
p sincethe incompatible agument {q, p x g} is not attacked. The agument {r, g x r} diaedicdly
defeas g with resped to the theory.

(i)  Sentences can be both dialedicdly justifiable and defeasible with resped to atheory. Consider the
theory {p, g, p x g, p X g} (seepart (i) of example (4.5)). Then p and g are both diaedicdly
justifiable and defeasible with resped to the theory. The agument {p, p x g} dialedicdly justifies
p and daedicdly defeds q, while the agument {q, p x g} dialedicdly defeasp and daedicdly
justifies g.

(i) A sentence need not be dialedicdly justifiable or defeasible with resped to a theory. For instance,
the sentence p is not didledicdly justifiable axd not dialedicadly defeasible with resped to the
theory {p, p x p} (seepart (i) of example (4.5)).

The following ronmonotonicity property obtains. Cf. the properties (3.17) and (4.6).

Property (6.6)
Let A and A' be theories, such that A is a subset of A'. If a sentence ¢ is dialedicdly justifiable with
resped to A, it need not be dialedicdly justifiable with resped to A'. If a sentence ¢ is didedicdly
defeasible with resped to A, it need not be dialedicdly defeasible with respedt to A'. If asentence ¢ is
didedicdly justifiable or defeasible with resped to A, it can be neither dialedicdly justifiable nor
dialedicdly defeasible with resped to A'.

Proof: While p is dialedicdly justifiable with resped to {p}, it is not with respea to {p, g, g x p}. While xp is
dialedicdly defeasible with respea to {xp}, it is not with resped to {xp, g, g x xp}. While r is didedicdly
justifiable with respea to {p, p ~ r}, it is neither diaedicdly justifiable nor didedicdly defeasible with resped
to{p,p~r,0 qxp}.
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Property (6.7)

0] If Cisadiaedicd justificaion of ¢ with resped to A, then Cisadiadedicd justificaion for al its
conclusions.

(i) If Cisadidedicdly justifying argument with resped to A, then Cn(C) (which is equal to Mp(C))
isaso daedicdly justifying.

Proof: Part (i) of the property is adired consequence of the definitions. Part (ii) foll ows by noting that any argument
C' that isincompatible with Mp(C) is also incompatible with C.

The new terminology leals to the following rephrasing of propasition (6.1).

Corollary (6.8)

0] The set of justified sentences of an extension of atheory is a diaedicaly justifying argument with
resped to the theory.

(i) If ¢ isajudtified sentence in an extension of a theory A, then ¢ is didedicdly justifiable with
resped to A and J(E) isadiadedicd justificaion of ¢.

(i) If ¢ is a defeded sentence in an extension of a theory A, then ¢ is didedically defeasible with
resped to A and J(E) isadialedicd justificaion of x¢ with resped to A.

Proof: The arollary isareformulation o proposition (6.1) using the new terminology.

The following ron-trivia sufficient condition for the non-existence of extensions is implied by the
corollary.

Corollary (6.9)
A theory A has no extension if there is a sentence in A that is neither dialedicdly justifiable nor
dialedicdly defeasible with resped to A.

Proof: Any sentencein A is either justified or defeded in an extension of A and therefore dialedicdly justifiable or
defeasible with resped to A.

The oorollary can explain all examples of theories without extensions that have been encountered above
(part (i) of example (4.5)): in all there is a sentencethat is neither dialedicdly justifiable nor dialedicaly
defeasible. Nevertheless the condition in corollary (6.9) is not necessary for the non-existence of an
extension. It does not obtain that a theory has an extension if any sentence in the theory is dialedicdly
justifiable or defeasible, as the following example shows.

Example (6.10)
Thetheory A={p, 0, pXQq,qxp,r,rxrssxs pxr, dxs} hasno extension. Nevertheless all
sentences in the theory are dialedicdly justifiable or defeasible with resped to A. The A-arguments
{p,p>xa},{a,gxp}, {p xr,pxr} and {q, xs, q x s} are didedicd justificaions with resped to A
of p, g, xr and xs, respedively.

The following propasition shows when the union of two daedicdly justifying arguments is not
dialedicdly justifying.

Proposition (6.11)
Let C and C' be dialedicdly justifying arguments with resped to a theory A. Then the following are
equivalent:
0] C O C'isnot adialedicdly justifying argument with resped to A.
(i) COCisnotanargument.
(i) Cand C'are not compatible.
(iv) Thereisad, suchthat C didedically justifies ¢ while C' dialedicdly defeds ¢.
(v) Thereisad inA, suchthat C diaedicdly justifies ¢ while C' didedicdly defeats ¢.
(vi) Thereisad inC O C', suchthat C dialedicdly justifies ¢ while C' didedicdly defeas ¢.
(vii) CattaksC'
(viii) CattadksC and C' attacks C.
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Proof: That (i) follows from (ii), which follows from (iii ), which follows from (iv), which follows from (v), which
foll ows from (vi), which follows from (vii) (use property (6.7)), which foll ows from (viii ), isimmediate. It is left
to show that (viii ) follows from (i). Assume first that C O C'is nat an argument. Then C and C' are incompatible,
and since eab isdiadedicdly justifying it follows that C attadks C' and that C' attacks C. Assume secondthat C
O C'is an argument. The proof of the proposition is finished, when it is shown that C O C' is then diaedicdly
justifying. Let C" be an argument that isincompatible with C 0 C'. In the cae that C" isincompatible with C', C'
attacks C" since C' isdiadedicdly justifying. In the cae that C" is compatible with C', C isincompatible with the
argument C' O C", and therefore C attacks C' O C" since C is diadedicdly justifying. Since C and C' are
compatible it follows that C attadks C". In bah cases C O C' attacks C". It follows that C O C' is diaedicdly
justifying.

The result can be generalized to arbitrary colledions of diaedicdly justifying arguments:

Proposition (6.12)

Let {C}i o, be a olledion of didedically justifying arguments with resped to atheory A, and let C

beitsunion [J; 5, C;. Then the following are equivalent:

0] Cisnot adiaedicdly justifying argument with resped to A.

(i)  Cisnot an argument.

(i)  {C}ino,isnot compatible.

(iv)  There aei andjinl, suchthat C; and C; are incompatible.

(v) Thereisa¢ andthere aei andjinl, suchthat C; dialedicaly justifies ¢ while C; didedicaly
defeds ¢.

(vi) Thereisa ¢ in A and there ae i and j in I, such that C; dialedicdly justifies ¢ while C;
dialedicdly defeats ¢.

(vii() Thereisa ¢ in C and there ae i and j in |, such that C; dialedicdly justifies ¢ while C;
dialedicdly defeats ¢.

(viii) There aei andjinl, such that C; attacks C;.

(ix) Thereisan attadk loopamong the C;, i.e., there aenoi(0), ..., i(n), such that Cjyy attadks Cis1)
for k from0to n-1, and Ci(n) attacks Ci(O)-

(x)  There aei andj in | such that C; attacks C; and C; attadks C;.

Proof: Again the implications from bottom to top are immediate. It remains to show that (i) implies (x). Assume first
that C is not an argument. Then there aei(0), ..., i(n) in | (with n> 0), such that Cjg) 0 Cj(y) O ... O Cj(yy isnot an
argument, while Ciiq) O ... O Ci(y is. Then Cj) is incompatible with the agument Ciiyy O ... O Cj. Since Cy) is
didedicdly justifying, it therefore dtadks Ciy) O ... O Ci. Cjg) then attadks one of Cyy), ..., Cin), Say Cip). By
applying the previous proposition it follows that Ci;) also attadks Cj). Assume second that C is an argument.
That Cisthen daedicdly justifying can be seen as follows. Let C' be an argument that is incompatible with C.
Then there aei(0), ..., i(n) in I (with n> 0), such that C' 00 Cjq O Cj;yy O ... O Cy(y is not an argument, while C'
0 Cigy O ... O Cy(yy is. Therefore Cj(g) isincompatible with the agument C' O Ciyy O ... O Ci(y. It follows that Cjg
attacks one of C', Cyy), ..., Cir. Since C isan argument, Cj(o) attacks C'. A fortiori, C attacks C'.

The propasitions (6.11) and (6.12) have some important coroll aries.

Coroallary (6.13): reduction
Let A be atheory. Then the foll owing are equivalent:
0] There isan incompatible wlledion of dialedicdly justifying arguments.
(i)  Thereisanincompatible pair of diaedicdly justifying arguments.
(i)  Thereisapair of diadedicdly justifying arguments that attad ead other.

Corollary (6.14): union
If C and C' are compatible dialedicdly justifying arguments, then also C O C' is dialedicdly
justifying. (Similarly, for any compatible wlledion of dialedicdly justifying arguments: the union of
a mmpatible wlledion of dialedicdly justifying argumentsis again dialedicdly justifying.)

Corollary (6.15): separation

If C and C' are incompatible dialedicdly justifying arguments, then there ae oppaites ¢ and x¢,
such that C £ ¢ and C' £ x¢, or such that C = x¢ and C' = ¢. (Similarly, for any incompatible
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colledion of dialedicdly justifying arguments. given an incompatible lledion of diaedicdly
justifying arguments, there ae oppaites that are the cnsequence of the unions of compatible
subcolledions.)

The union and separation properties are caitral in the treament of the ectension existence ad
multi plicity problemsin sedion 9 (cf. section 12.4).
A stronger version of separation foll ows immediately from the definition of dialedicd justification:

Corollary (6.16): separation at the base
If C and C' are incompatible dialedicdly justifying arguments, then there is a sentence¢ in C O C,
such that C = x¢ or C' = x¢. (Similarly, for any incompatible olledion of dialedicdly justifying
arguments: given an incompatible wlledion of diaedicdly justifying arguments, there is a sentence
in the union of the mlledion that is attadked by the union of a cmpatible subcoll edion.)

In sedion 124, some variants of diaedicad judtificaion are treded. Each ladks at least one of these
properties.

7 Dialectically justified stages

Ead justified sentence of an extension is dialedicdly justified by the justified sentences of the extension,
as was established in propasition (6.1). The analog for the justified sentences of stages, maximal stages or
satisfiability classes does not obtain. For instance, the justified sentences in a stage of a theory are not
necessarily dialedicdly justified by the justified sentences of the stage. This leals to the notion of
dialedicdly justified stages.

Definition (7.1): dialectically justified stages
A stage Sis adialectically justified stage of the theory A if and only if Sisastage of A, for which it
obtains that J(S) diaedicdly justifies any sentencein J(S) and daedicdly defeds any sentencein
D(9).

Property (7.2)
Let S be astage of the theory A. The following are equivalent:
0] Sisadiaedicdly justified stage.
(i)  JS) didedicdly justifies any sentencein J(S).
(iii)  Forany ¢ inJ(S), thereisasubset C of J(S) that dialedicdly justifies ¢ with resped to A.
(iv)  Sis pedfied by the union of a mmpatible wlledion of dialedicdly justifying arguments.
(v)  Sis pedfied by adiadedicdly justifying argument.

Proof: (ii) follows from (i) by the definition of dialedicdly justified stages. (iii) follows trivialy from (ii). Assume
(iii). For any ¢ in J(S), pick aCy O J(S) that didledicaly justifies ¢. Then by the union property (6.14) the union
C of the Cy is a dialedicdly justifying argument. But obviously C is equal to J(S) and therefore spedfies S.
Assume (iv). Then by the union property (6.14) the union d the wlledion d justifying arguments is a
diaedicdly justifying argument. It also spedfies S. Assume (v) and let C be adialedicdly justifying argument
spedfying S. Then Mp(C) = XS). Now by part (ii) of property (6.7) JS) isdialedicdly justifying and (i) foll ows.

In analogy with the cae of stages in general, there ae two dfferent ways to 'maximize’ dialedicdly
justified stages. The first posshility isto maximizethe j-scope, i.e., the set of sentences in the theory that
are justified in the dialedicdly justified stage. The second posshility isto consider dialedicdly justified
stages in which the scope is maximal, i.e., in which the interpreted part of the theory is as large &
posshle. Maximal dialedicdly justified stages of the first type ae dialectically preferred stages, those of
the second type maximal dialectically preferred stages. Diadledicdly preferred stages are the analog
among diadedicdly justified stages of the satisfiability classes among stages in general, maximal
dialedicdly preferred stages that of maximal stages.

Definition (7.3): dialectically preferred stages and maximal dialectically preferred stages

0] A stage S is a dialectically preferred stage of the theory A if and only if S is a diaedicdly
justified stage of A such that J(S) n A is maximal among the diaedicadly justified stages of A.
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(i) A stage S is a maximal dialectically preferred stage of the theory A if and only if Sis a
diaedicdly justified stage of A such that the scope of S is maxima among the dialedicdly
justified stages of A.

The dialedicdly preferred stages of a theory are the =-maxima among the theory's dialedically justified
stages. A theory's maximal dialedicdly preferred stages the <-maxima.

It will not be surprising that maximal dialedicdly preferred stages are dialedicdly preferred stages
and that extensions are maximal dialedicdly preferred stages. However, there exist theories that have
dialedicdly preferred stages that are not maximal dialedicdly preferred stages, and theories that have
maximal dialedicdly preferred stages that are not extensions.

Property (7.4)

0] Any maximal dialedicdly preferred stage of atheory is a diadedically preferred stage, but not in
genera viceversa.

(i)  Any extension of atheory isamaximal dialedically preferred stage, but not in general viceversa.

Proof: (i) Any <-maximum is also =-maximal. Example (7.5) below shows that there is a theory with a dialedicdly
preferred stage that is not maximal dialedicdly preferred. (ii) Propasition (6.1) and its paraphrase (6.8) show that
extensions are didedicdly preferred. Extensions are maximal dialedicdly preferred stages snce their scope is
the whale theory. The theory {p, p % p} has no extension, but the empty stage spedfied by the empty set as
maximal diaedicdly preferred stage.

Example (7.5)
Thetheory {p,q,r,px0q,gxp,qxr,rxr} hasthe stage spedfied by {q, g x p, g x r}, inwhich p
and r are defeaed and qis justified, as extension, and therefore a maximal diaedicdly preferred
stage. The stage spedfied by {p, p x g}, in which p isjustified, q is defeaed and r is not taken into
acourt, isadiaedicdly preferred stage, that is not maximal dialedically preferred.

Didedicdly preferred stages are not necessarily satisfiability classes and satisfiability clases are not
necessarily dialedicaly preferred stages, as the following example shows. The further investigation of the
relation between satisfiability classes and dialedicdly preferred stagesis postponed to the next sedion.

Example (7.6)
The theory {p, p x p} has stisfiability classes {p} and {p x p}, neither of which is a dialedicdly
preferred stage. Its only diaedically preferred stage (which is therefore dso maximal dialedicdly
preferred) is the empty stage spedfied by the empty set of sentences.

Neverthelessan analog of property (5.25) and corollary (5.26) is easily proven.

Theorem (7.7)
If P, and P, are different dialedicdly preferred stages or maximal dialedicdly preferred stages of the
theory A, then P; and P, are incompatible.

Proof: If P, and P, were compatible, their union P; || P, would be adiaedicdly justified stage by the properties
(6.14) and (7.2). Since P, and P, are different, P, LI P, would compatibly extend P, and P,, while P, || P, would
not be equal to one of P; and P,, contradicting the =-maximality of P, and P..

Since by property (7.4) there can be more didledicdly preferred and maximal dialedically preferred
stages than there ae extensions, the question again arises whether all theories have a diaedicdly
preferred stage and a maximal dialedicdly preferred stage. It turns out that indeed all theories have a
dialedicdly preferred stage, but that not all theories have amaximal dialedicdly preferred stage.

Theorem (7.8)

0] Any theory A has at least one dialedicdly preferred stage.

(i) If Sis a didedicdly justified stage of A, then A has a dialedicdly preferred stage that is
compatible with S.

(iii)  Not al theories have amaximal dialedicdly preferred stage.
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Proof: (i) Consider the partial ordering = of the set of dialedicdly justified stages. Observe that the empty stage (i.e.,
the stage with empty extent) is a dialedicdly justified stage for any theory. Unions of totally ordered chains (S);
of didedicdly justified stages have adidedicdly justified stage as supremum S, viz. the stage spedfied by the
union o al sets JS). (Here the properties (6.14) and (7.2) are used.) By Zorn's lemma (or one of its weakenings)
C has a maximum. (i) Apply Zorn's lemma (or one of its weakenings) to the partial ordering = of the set of
diaedicdly justified stages that are compatible with S. (iii) Example (7.12) below shows that there is a theory
withou maximal dialedicdly preferred stage.

The mnstruction of an example of a theory without a maximal dialedicdly preferred stage, discussed
below as example (7.12), is rather involved. For instance, example (5.9) of a theory without a maximal
stage has a maximal diaedicdly preferred stage, viz. the empty stage. One reason that the nstruction of
a munterexample is not simple, is that analogs of property (5.19) and corollary (5.20) about maximal
stages obtain for maximal dialedicdly preferred stages.

Property (7.9)
A theory has a maximal dialedicdly preferred stage if and only if the partial ordering < on the
theory's dialedically preferred stages has a maximum.

Proof: The property foll ows direcly from the definiti ons.

Coroallary (7.10)
Any finite theory has a maximal dialedicdly preferred stage.

Proof: The number of didedicdly preferred stages of a finite theory is finite and finite partial orderings have a
maximum.

In the discussion of example (7.12) of a theory without a maximal dialedically preferred stage, the
following lemmais useful.

Lemma (7.11)
In adiadedicdly preferred stage S of a theory A, any sentence ¢ in A, for which any A-argument C
that isincompatible with { ¢} contains a sentence Y that isdefeaed in S, isjustified in S.

Proof: Let ¢ be asentence for which the mndition of the lemma obtains. If ¢ isnot justified in S, it is defeaed or not
taken into acount. Assume first that ¢ is defeaed in S. Then J(S) supports x¢, and therefore J(S) is an argument
that isincompatible with {$}. The mndition d the lemma then says that J(S) contains a sentencethat is defeaed
in S, which isimposshle. Asaime secondthat ¢ is not taken into acourt in S. Then J(S) O {¢} is dialedicdly
justifying, which can be seen as follows. Let C be a A-argument incompatible with JS) O {¢}. If C is
incompatible with J(S), then J(S) attacks C since J(S) is dialedicdly justifying. If C is compatible with J(S), then
C O XS) is incompatible with {¢}, so by the mndition of the lemma C O J(S) contains a sentence Y that is
defeaed in S. The sentence  must be in C, and sinceit is defeaed JS) attads Y. It follows that J(S) O {¢} is
dialedicdly justifying. As aresult, the stage spedfied by JS) U {¢} isdidedicdly justified (cf. property (7.2)),
while it compatibly extends S, which implies that it is equal to S (since S is didedicdly preferred). This
contradicts that ¢ isnot taken into acount in S.

Example (7.12): a theory without maximal dialectically preferred stage
Consider the theory A consisting of the foll owing sentences:
pi, O, Ii, for any natural number i
pi % pj for al i and j withi <j
pi x g and p x q; for al i
pi x rforali and k with k<i
rexnforal k
Then the foll owing are the 'initials' of some of A's gages.

S Po(do) (r)) (P2 O1- (p2) 02 - (p3) O3 - (Pa) 04 -
St (Po) Qo ()  Pr(@) () (P2 G- (Ps) 0 - (P4) 94 -
S (Po) do(r)) (P Q1 (r)  p2(a) () (P3) Oz~ (Pa) 04 -

S (Po) Qo (r)) (P ar(r) (P2 G2 (r)  pP3(as) () (Ps) Qa-
Si (P0G () (P d(r) (P2 G(r)  (Ps) ds(ra)  Pa(da) (ra)
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The sentences in bradkets () are defeded at the stage. The other listed sentences are justified. The

hyphens - indicae sentences that are not taken into acmunt. For instance, at S, po is justified, qg is

defeded and r; is not taken into acwunt. For any natural number i, S is defined as the stage & which

0 pi isjustified and, for any j such that i # j, p; is defeaed, and

(i) o isdefeded and, for any j suchthat i # J, g; isjustified, and

(iii)  foranyjsuchthati=>j, r; is defeaed and, for any j such that i <, r; is not taken into aceourt,
and

(iv) any sentencein A of theform ¢ x Y isjustified.

The following properties obtain, asis proven below:

a Eadh stage S isdiaedically preferred.

b. S and § areincompatibleif i # j.

C. If i <j, then the scope of S isaproper subset of the scope of S.

d If astage Sisdiaedicdly preferred, such that, for somei, p; isjustified in S, then Sis equal to
S.

e If astage Sisdidedicdly preferred, such that no p is justified, then al p; are defeaed, al g
arejustified and no r; istaken into aceunt in S. The scope of this dage is properly contained in
the scope of any of the stages S.

f. A has no maximal dialedicdly preferred stage.

Proof: The properties a, b and ¢ follow from the definitions. Property d is shown as follows. Assume that p; is
justified in adialedicdly preferred stage S. Then g andall p; with j > i are defedted. If, for somej, p; is defeaed,
then by lemma (7.11) g; isjustified since Sis dialedicaly preferred. So any g; with j > i isjustified. No p with k
<iisjudtfied sincethen p would be defeaed. Assume now that, for somek < i, py is not taken into acount at S.
Then also g is not taken into acount, for otherwise g, would be justified or defeaed, making p, defeated or
justified, respedively, which would be impossble. But if p, and g, are not taken into acourt, then the stage
spedfied by JS) O {q} would be didedicdly justified, contradicting the =-maximality of S among the
diaedicdly justified stages. Therefore no p, with k < i isnat taken into acount. As aresult, al p, withk <i are
defeaed, and then by the lemma dl g, with k < i are justified. Property e follows from the lemma gplied to the
sentences q;. Property f follows from the other properties as follows. Assume that S is a maximal diaedicdly
preferred stage of A. Then either thereisap; that isjustified in S or there is no such p. The former isimposshble
since by d S would have to be equal to a stage S, but no stage S is maximal dialedicdly preferred by b and c.
The latter is imposshle since S would be equal to the didedicdly preferred stage in property e, which has a
scope that is properly contained in the scope of eat of the dialedicdly preferred stages S, contradicting that Sis
maximal diaedicdly preferred.

Note that the example proves a non-compadness property: though any finite stage of the sample theory
has a maximal dialedically preferred stage (by corollary (7.10)), the whole theory does not. Cf. also
example (5.9) and one of the sample theoriesin part (i) of example (4.5).

8 Thereations between the types of stages

Among the stages of a theory, the following spedal types have been distinguished: extensions, maximal
stages, satisfiability classes, didedicdly justified stages, diaedicdly preferred stages and maximal
dialedicdly preferred stages. Severa relations between types of stages have drealy been encountered. In
this sdion, the previously found relations are recaitulated and a number of other relations are
established.'°

Satisfiability and diaedicd justifiability divides the types in two main groups. The 'satisfiability
group' consists of the extensions, the maximal stages, the satisfiability classes and the stages. The
‘dialedicd justification group’ consists of the extensions, the dialedicdly justified stages, the dialedicdly
preferred stages and the maximal dialedicdly preferred stages. Note that the type of extensions belong to
bath groups.

The relations between the types of stages within a group have drealy been investigated. If E, M, SC,
S, DJ, P and MP denote the sets of extensions, maximal stages, satisfiability classes, stages, didedicdly
justified stages, diaedicdly preferred stages and maximal diaedicdly preferred stages of a theory,

19 This sdion extends my ealier work on the relations between types of stages (Verheij, 1996a).
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respedively, the relations between the types within the same group can be summarized as in the following
figure.

satisfiability
types

Im

=—> M =5 SC=3 S

dialectic?l justification E csMPc—s P <3 DJ
ypes

The arows indicae inclusion maps between the sets of stages. All inclusions have been proven ealier (in
the properties (5.6) and (7.4)). They were dso shown to be proper inclusions, in the sense that for eat
inclusion there eists atheory for which the inclusion is proper.

In this dion, the relations between the stage typesin different groups are investigated. The main tool
is the diadedicdly justified restriction of stages. The dialedicdly justified restriction of a stage is the
largest substage of a stage that is diaedically justified. For any stage, the dialedicdly justified restriction
exigts, asthe following propasiti on shows.

Proposition (8.1)
Let S be astage of atheory A. Consider the union J(S)|y of al dialedicaly justifying subsets of J(S).
Then the stage Sl spedfied by J(S)|y is ajustified stage.

Proof: The proposition foll ows immediately from the properties (6.14) and (7.2).

Definition (8.2): dialectically justified restrictions
If Sis a stage of a theory A, then the stage S|y occurring in propasition (8.1) is the dialectically
justified restriction of S.

By propgsition (8.1), there is a (surjedive) map from the set of stages to the set of didedicadly justified
stages, that maps a stage S to its justified restriction Sy. In the following, the properties of this map are
investigated.

The didedicdly justified restriction of a stage is a diaedicdly justified stage. One might hope that,
by dialedically justified restriction, stages of one of the other satisfiability types E, M and SC map nicdy
to stages of a dialedicd justificaion type DJ, P or MP. For instance, it could be that the dialedicdly
justified restriction of a maximal stage is aways maximal dialedicdly preferred, or that any maximal
diaedicdly preferred stage is the dialedicdly justified restriction of a maximal stage. One such relation
istrivial: since any extension isits own dialedicadly justified restriction, the restriction of any extension is
an extension and any extension is the restriction of an extension.

Surprisingly, as will be shown below, no other relation of this kind obtains. More predsely, the
images of the sets M and SC under the restriction map are not in genera included in MP or P, and the
originals of MP and P do not in general include M or SC. The following four new types of stages are
found in thisway.

SCDJ.  The set of diaedicdly justified stages that are the dialedicdly justified restriction of a
satisfiabili ty class.

MDJ: The set of diadedicdly justified stages that are the didledicdly justified restriction of a
maximal stage.

PSC: The set of satisfiability classes that have adialedicdly preferred stage as diaedicdly
justified restriction.

MPSC: The set of satisfiability classes that have a maximal diaedicdly preferred stage &
didedicdly justified restriction.

The SCDJ and MDJ types belong to the group of dialedicd justification types. The PSC and MPSC types
belong to the group of satisfiability types. Note that except for their existence a independent types of
stages, these four new classes do not seem to be very interesting. Their existence stresses that
satisfiability and daedicd justificaion are very different notions.

In the following figure, the inclusion and daedicdly justified restriction maps between the stage
types are summarized. The more interesting ‘old’ stage types have been highlighted by the use of a bold
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font. The verticd arrows indicae the dialedicdly justified restriction maps, al of which are surjedive.
The arow from E to E indicates the identity map. All other arrows indicae inclusion maps.

M
satisfiability E = — s S
types _% 7 o B
“ MPSC PC
MDJ
dialectical justification ¢ SCDJ =5 DJ

types < 7

MP — > P

That the maps in the figure eist is easy to check using what has been discussed before. The surjedivity
of the didedicdly justified restriction maps follows from the definitions of the new stage types. For
particular theories sme or even al of the maps can coll apse into identities. An extreme example is the
theory {p} in which al setsin the figure except DJ are equal to the singleton set consisting of the theory's
extension (spedfied by p). For this theory, DJ consists of two stages, viz. the empty stage and the theory's
extension.

In general, however, any inclusion map is proper, in the sense that for any inclusion map there is a
theory for which the inclusion of the sets is proper. For most inclusion maps, this is easy to check using
examples encountered ealier. For instance, it foll ows from the existence of dialedicdly preferred stages
that are not maximal dialedically preferred, that there ae theories A, such that PSC , is a proper subset of
MPSC 5. Showing the propernessof the foll owing inclusion maps requires new examples:

P O SCDJ, but P# SCDJ: example (8.3), part (i)
SCDJODJ, but SCDJ# DJ.  example (8.3), part (ii)
PSC 0O SC, but PSC # SC: example (8.3), part (i)

All obtaining inclusions are shown in the figure. Example (8.3), part (iii ), shows that PSC » M and MDJ
& P. Example (8.3), part (iv), shows that MPSC ¢ M, MPSC 2 M, PSC ¢ M, MDJ 2 MP, MDJ 2 MP
and MDJ» P.

Example (8.3)

0] Let'sagain look at thetheory {p, g, r, px g, g X r}. Its stisfiability class pedfied by {q, px q, q
X r} has the empty stage & dialedicdly justified restriction. The empty stage is not dialedicdly
preferred. The only dialedicdly preferred stage is the theory's extension spedfied by {p, r, p x q,
g x r}. The only satisfiabili ty classof which it isthe restriction is the extension itself.

(i)  The stage S spedfied by {p, p x g, q x r} of the theory in part (i) is didedicdly justified. It has
one satisfiability class compatibly extending it, viz., the theory's extension. The diaedicdly
justified restriction of the extension is the extension itself and is not equal to S. As a result, the
stage Sisin DJ, but not in SCDJ.

(i) Thetheory {p,q,r,px g, qxr,rxr} hastwo maximal stages (but no extension). Thefirst, My, is
spedfied by {p, pix g, g r, r x r}: pisjustified, q is defeaed and r is not taken into aceunt. M,
is the theory's maximal dialedicdly preferred stage, and therefore equal to its diaedicdly
justified restriction. The seand, M., is edfied by {q, pix g, g X r, r X r}: p is not taken into
acount, q is judtified and r is defeaed. The dialedicdly justified restriction of M, is the empty
stage, which is not dialedicdly preferred. M, is a maxima stage, that is not the dialedicdly
justified restriction of adidedicdly preferred stage.

(iv) Thetheory {p, Q, r1, Iz 3, PX 0, X P, XTIy, X X Fa, F3X I, [ X I, I3 X I3} iSan example
of atheory with a maximal dialedicdly preferred stage, for which no compatible maximal stage
with larger or equal extent exists. The theory has one maximal stage and one maximal dialedically
preferred stage, but they are not compatible. The theory's maximal stage M is edfied by p, r; and
the atack sentences of the theory: in M, pisjustified, q defeaed, ry justified, r, defeaed and r; not
taken into acount. Its dialedicdly justified restriction is the dialedicdly preferred stage P
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spedfied by p and the dtack sentences (in which ry and r, are not taken into aceunt). The theory's
maximal dialedicdly preferred stage MP, is gedfied by g and the dtadck sentences of the theory:
in MP, p is defeaed, q justified, r; defeaed, and r, and r3 not taken into ac@unt. It is its own
diaedicdly justified restriction. M has larger scope than MP, but M's diaedicdly justified
restriction has small er scope than that of MP.

Corollary (8.4)
Let #E, #M, #SC, #DJ, #P and #MP denote the number (or cardinality) of extensions, maximal stages,
satisfiability classes, diaedicdly justified stages, didedicdly preferred stages and maximal
dialedicdly preferred stages of atheory, respedively. Then the foll owing inequaliti es hold:
0] #E < #M < #SC
(i) HE<#MP<#P<#DJ
(i) 1<#P<#SC
The inequalities are sharp, in the sense that al equalities can occur. No ather inequalities hold in
general.

Proof: The parts (i) and (ii) follow from the inclusions discussed above. Part (iii ) follows from part (i) of theorem
(7.8) above, and from the inclusion of P in SCDJ and the surjedion of SC is onto SCDJ. Example (8.3) provides
courterexamples to several of the missng inequalities. The theory {p, g, r, p X q, g X I, r x g} is a
courterexample to the inequality #SC = #DJ. Its only dialedicdly justified stage is the empty stage, whil e there
are several sdtisfiability classes. The theory {p, g, p x @} is a @unterexample to #SC < #DJ. It has four
dialedicdly justified stages, viz. those spedfied by the subsets of {p, p x g}, and three satisfiability classes,
spedfied by the threetwo-element subssets of {p, g, p @ q}.

9 Theextension existence problem and the extension multiplicity problem

As noted in property (4.4), atheory can have zeo, one or several extensions. The posshility that a theory
does not aways have an extension was cdled the extension existence problem, and the posshility that a
theory has more than one extension the extension multiplicity problem. In this sction these problems are
investigated.

According to corollary (6.8), al justified sentences of a theory's extension are dialedicdly justifiable
with resped to the theory, and all defeated sentences diaedically defeasible. As a result, a theory has no
extension if there is a sentence in the theory that is neither didedicdly justifiable nor diaedicdly
defeasible with resped to the theory (corollary (6.9)). The opposite of the latter does not hold: example
(6.10) shows atheory for which all sentences are dialedicdly justifiable or defeasible with resped to the
theory, whil e the theory lacks an extension.

It turns out that the dialedicd justifiability (or defeasibility) of a sentence does not guarantee that
there is an extension in which the sentence is justified (or defeded, respedively). A weeker conclusion
does follow however: for any dialedically justifiable sentence there is a dialectically preferred stage in
which the sentenceisjustified (and similarly for adialedicdly defeasible sentence).

Proposition (9.1)
A sentence ¢ is dialedicdly justifiable with resped to atheory A if and only if there isa didedicdly
preferred stage of A in which ¢ isjustified. A sentence ¢ is dialedicdly defeasible with resped to a
theory A if and only if thereisadialedicdly preferred stage of A in which ¢ is defeaed.

Proof: The proposition foll ows from the properties (6.14) and (7.2) and from part (ii) of theorem (7.8).

The propasition leals to the following important charaderizaion. It solves the 'diaecticdly preferred
stages multiplicity problem’, i.e.,, the analog of the extension multiplicity problem for dialedicdly
preferred stages. (Note that the 'dialedicdly preferred stage existence problem' has arealy been solved:
any theory has one or more dialedicdly preferred stages.)

Theorem (9.2)
A theory A has two or more dialedicdly preferred stages if and only if there is a sentence ¢ that is
both dialedicdly justifiable and defeasible with resped to A. Equivaently, a theory A has a unique
didedicdly preferred stage if and only if there is no sentence ¢ that is both didedicdly justifiable
and defeasible with respea to A.
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Proof: The 'if'-part (of the first equivalence) foll ows from proposition (9.1) and theorem (7.7). The 'only if'-part is
sea as follows. Two daedicdly preferred stages P; and P, must be incompatible by theorem (7.7). Therefore
JP) n A and JP,) n A are incompatible. Since J(P,) n A is adidedicdly justifying A-argument, J(P,) n A
attadks JP,) n A. Therefore there is a ¢, such that J(P) n A = x¢, while ¢ isin JP,) n A. Choose such a ¢.
Since J(Py) = Cn(J(Py) n A), ¢ isin J(P,). Asaresult, ¢ isjustified in P, and defeaed in P,. Since the stages are
dialedicdly preferred, ¢ must then bedialedicdly justifiable and defeasible with resped to A.

Theorem (9.3)
Let n be anatural (or cardinal) number. A theory A has exadly n dialedicdly preferred stages if and
only if n is equa to the maximal number of mutually incompatible diaedicdly justifying A-
arguments C.

Proof: Combine proposition (9.1) and theorem (7.7).

Deding with the extension existence problem requires the notions of dialedicd justifiability in a mntext
and of disambiguating arguments.

Definition (9.4): dialectical justifiability in a context
A sentence ¢ is dialectically justifiable in the context C with respect to A if and only if there is an
argument C' that contains C and that dialedicdly justifies ¢ with resped to A. A sentence ¢ is
dialectically defeasible in the context C with respect to A if and only if x¢ isdiaedicdly justifiablein
the context C with resped to A.

Definition (9.5): disambiguating arguments
A A-argument C is disambiguating if there is no sentence that is both dialedicdly justifiable and
defeasible in the context C with resped to A.

As aresult, if a disambiguating argument C is didedicdly justifying, there is only one dialedicdly
preferred stage compatibly extending the stage spedfied by C.

Theorem (9.6)
A theory A has no extension if and only if, for any disambiguating A-argument C, there is a sentence
in A that is neither dialedicdly justifiable nor dialedicdly defeasible in the context C with resped to
A. Equivalently, a theory A has one or more extensions if and only if there is a disambiguating A-
argument C, in the context of which any sentence in A is dialedicdly justifiable or diaedicdly
defeasible with resped to A.

Proof: Consider a disambiguating argument C, such that any sentence ¢ in A is dialedicdly justifiable or defeasible
in the context C with resped to A, say by a diaedicaly justifying argument C, containing C. The wlledion
{Cs}¢ in a is compatible, since otherwise C would not be disambiguating (property (6.12)). The union of the
colledion spedfies an extenson o A. Consider now a theory A with an extension E. Then JE) is a
disambiguating dialedicdly justifying A-argument, such that any sentence in A is didedicdly justifiable or
defeasible in the context J(E) with resped to A.

The importance of the theorem is that it gives necessary and sufficient conditions for the (non-)existence
of an extension in terms of the notion of dialedicd justificaion. It shows that if al sentences of a theory
are diaedicdly interpretable with resped to the theory (i.e., didedicdly justifiable or diaedicadly
defeasible), while the theory still ladks an extension, it must be the cae that the dialedicd justificaion or
defea of one sentence is incompatible with that of another. The sentences of the theory must be
didedicdly judtifiable in different, incompatible ‘choices’ of context. Of course such incompatible
didedicd justificaions can be extended to dfferent and therefore incompatible dialedicdly preferred
stages. In a oontext that is not disambiguating, this cause for the non-existence of an extension can be
obscured. In a disambiguating context, no incompatible doices of justificaions can be made. The
following provides an example.

The theorem shows that dialedicd justificaion is the 'right' tod to investigate the locd structure of
the extensions of atheory.
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Example (9.7)
Let'sreconsider thetheory A ={p, g, px 0, QX p, I, rxr,s sxs pxr,qxs} of example (6.10).
Although all sentences are didedicdly justifiable or defeasible with resped to A, there is no
disambiguating diaedicdly justifying argument C, such that all are diadedicdly justifiable or
defeasible in the context C with resped to A. The dialedicdly justifying A-arguments{p, p x q} for p
and {p, xr, p x r} for xr are incompatible with the dialedicdly justifying A-arguments{q, g x p} for q
and {q, xs, g x s} for xs.

Corollary (9.8)
A diaedicdly preferred stage P of a theory A is an extension if and only if any sentencein A is
diaedicdly justifiable or defeasible in the antext J(P) with resped to A. Equivalently, adiaedicdly
preferred stage P of a theory A is not an extension if and only if there is a sentence that is neither
dialedicdly justifiable nor defeesible in the mntext J(P) with resped to A.

Proof: Notethat if Pisadiaedicdly preferred stage, J(P) is disambiguating, and apply theorem (9.6).

Theorem (9.6) gives criteria for the case that no extension of atheory exists, and for the cae that at least
one extension exists. The following corollary gives a aiterion for the ase that at least two extensions
exist.

Corollary (9.9)
A theory A has two o more extensions if and only if there ae two o more incompatible
disambiguating dialedicdly justifying A-arguments C and C', in the cntext of which any sentencein
Aisdidedicdly justifiable or defeasible with resped to A.

Proof: The arollary follows by the cmmbination d theorems (9.6) and (9.2).

Corollary (9.10)
Let n be anatural (or cardinal) number. A theory A has exadly n extensionsif and only if nisegual to
the maximal number of mutually incompatible disambiguating A-arguments C, in the context of which
any sentencein A isdiaedicdly justifiable or defeasible with resped to A.

10 Dialectical argumentsand theinternal structure of dialectical justification

In the present sedion, the interna structure of arguments dialedicdly justifying a sentence ¢ is
investigated. At the aore of such an argument there is an argument for ¢. In general, such an argument is
not dialedicdly justifying, namely in case it does not attack all arguments incompatible with it. A
dialedicd justificaion of ¢ is thus in general larger than an argument for ¢. In genera, it not only
contains an argument for ¢, but also arguments attacking the aguments incompatible with the agument
for ¢ (cf. corollary (6.2)). It isthe goal of this dion to investigate how an argument must be extended in
order to become dialedicdly justifying.

In order to probe & deeply as possble into the internal structure of dialedicd justification, the
investigation will be in terms of elementary arguments and elementary incompatibility, defined as
foll ows.

Definition (10.1): elementary arguments and elementary incompatibility

0] An argument C is an elementary argument for a sentence ¢ if C is the only argument for ¢ that is
contained in C.

(i)  Let C be ar argument. An argument C' is elementarily incompatible with C if there is a minimal
unsatisfiable subset C" of C O C', such that C' = C"\ C. C' elementarily attacks C if C' and C' is
elementarily incompatible with C and C' attadks C.

For instance, the agument {p, p ~ q, g} is an argument for g, but not an elementary argument. Also the
argument {p,p~q,q~r,r~ g} for qisnot elementary. The agument {p, g} isincompatible with {xp},
but not elementarily incompatible. The set { xp} is elementarily incompatible with {p, g} though. This
shows that the incompatibili ty relation is symmetric, while the dementary incompatibili ty relation is not.
Also{p} and {p ~ q, p x g} areincompatible, showing that there need not be asentence ¢, such that ¢ is
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a aonsequence of one agument and x¢ of the other. If C elementarily attacks C' at ¢, then C is an
elementary argument for ¢.

Another natural minimality definition for incompatible aguments would be minimal incompatibili ty.
In that case some cuses of incompatibility cannot be distinguished however. It can for instance be the
case that an argument attacks another argument, while there is no corresponding minimally incompatible
attacking argument. E.g., the agument {p, p ~ xq} (minimally) attacks the agument {q, g ~ xp}, but is
not minimally incompatible with it. The former is elementarily incompatible with the latter though since
{p, p~ xq, g} isminimally unsatisfiable.

Cf. aso definition (3.14) and the remarks foll owingit.

In the following, some examples of increasing complexity are discussed as a preliminary to the
systematic investigation of the internal structure of dialedicd justificaion in terms of elementary
arguments and elementary incompatibility.

Example (10.2)

Consider the theories Ay = {p}, A = {p, xp} and A, = {p, xp, xxp}. Their respedive unique
extensions are spedfied by the aguments {p}, {xp} and {p, xxp}. As a result, p is diaedicdly
justifiable with resped to A and A,, but didledicdly defeasible with resped to A;. Let's now try to
explain this in terms of the dementary arguments and elementarily incompatible aguments of the
theories. The only minimal argument for pis{p}. Let'scdl it C,. In A, and A,, there is one agument
elementarily incompatible with it, viz. C, = {xp}. On its turn, there is one agument elementarily
incompatible with C; in A, viz. C, = {xxp}. Moreover, C, attadks Cy and C, attacks C;.

The situation is summarized in the figure below. Here and in the following, only elementary
arguments and arguments elementarily incompatible with another argument are shown. The dpine
shapes indicae the aguments. That an argument attacks another argument is indicated by a aoss-
headed arrow. Each row corresponds to one of the theories. The dpine shapesin a clumn indicae the
same agument.

Ny M
TAY] Mx— M

Ly, Mx— [Ax— M
Co C, C,

The threesystems of arguments { Cg}, { Co, C1} and { Cy, Cy, C,} contain al information that explains
the status of p. For A, the situation is smple: C, is a A-argument for p, and there ae no arguments
incompatible with it. For A, the situation is thus: though C, is a A-argument for p, there is an
argument attacking it, viz. C,. Note that while C, is also incompatible with C,, the situation is not
symmetric, since Cy does not attack C;. Since from A,, there is no argument attacking C,, the
argument C, cannot be extended to an argument didedicdly justifying p. In A,, this is remedied by
the agument C,: it is an argument attadking C,, thereby making it posshble to extend C, to the
dialedicdly justifying argument C, O C,. In Ay, there is one agument that is incompatible with C,,
viz. Cy. Since Gy isitself attadked by C,, all argumentsincompatible with C, are dtaded.

The figure below summarizes the situation. The black arguments are the aguments that are only
incompatible with arguments that are themselves attacked.

Ny M
AV Mx— M

N, Mx— NAx— M

Go G G
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The threetheories il lustrate the foll owing slogan: an argument can only be extended to a dialedicdly
justifying argument if ead argument incompatible with it is attacked.

Example (10.3)
The theory A = {p, p ~ q, 1, r ~ xp} alows non-trivial derivations (in contrast with the previous
example). The theory's extension E is gedfied by p ~ g, r and r ~ xp. The sentence q is not justified
in E (g isnot taken into acmunt) since{r, r ~ xp} isan argument attacking the only argument {p, p ~
g} for g, and there is no attack against it.

Example (10.4)
An argument can be incompatible with or attadked by more than one agument. The theories A; = {p,
J1, O2, T1, M2, 01~ XP, 02 ~ XP, F1 ~ XQy, I ~ X0} and A, = A \ {r5} show that each attacking argument
must be dtadked. In the extension of Ay, p isjustified, in that of A,, defeated. There ae two arguments
attadking the (trivial) argument {p} for p, viz. the aguments {qi, g ~ xp} and {d,, G ~ *p}. In Ay,
there ae aguments attacking each, viz. {ry, ry ~ xq.} and {r,, r, ~ Xq}. In A,, the latter is missing.
The relations between the aguments concerning p are summarized in the foll owing figure.

/ﬂ x— M
N l)(\
M — M
/MX— M
A A
)\‘

Example (10.5)
The theories Ay = {p, q, 1, T2, 4~ Xp, r1 ~ Xq, > ~ Xq} and A, = A; \ {ry} show that one agument
suffices as an attack against incompatible or attacking arguments, even if there ae severa. In the
extension of A, p isjustified. The agument {qg, q ~ xp} attadks the agument {p} for p. In A4, the
argument is attacked by two elementary arguments, viz. {ry, ry ~ xqg} and {r,, r, ~ xq}. From A,, the
latter is missng, but still p isjustified in the extension of A,. Cf. the following figure.

M

—
A M M
1 e — )\‘

M

A, a—n

Example (10.6)

For an argument to be dialedicdly justifying, it does not suffice that there ae aguments attacking
against only the aguments attacking it (see &so the sedions 124 and 13.3 on the notion of
admissibility). Thetheory A, ={p,p~r, q, q ~ xr} isan example. The aguments {p, p ~ r} and {q,
g ~ xr} are incompatible with ead other, but neither attads the other. As a result, the aguments
attadk al arguments attacking them, since there ae none. Still, A; has no extension. The theory A, =
A; O {xqg} does have an extension sincethe agument { xq} attacks {q, q ~ xr}. A,'s extension is the
interpretation spedfied by {p, p ~ r, g ~ xr, xg}, in which p and r are justified, and qis defeaed.

The figure summarizes the situation. The adossed line indicaes elementary incompatibili ty in both
diredions.
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Example (10.7)

A related theory illustrating that a diadedicdly justifying argument must attack all arguments
incompatible with it, is the theory A's = {p, p ~ q, p x g}. The dementary argument {p} for p is
elementarily incompatible with the agument {p ~ g, p x q}. Neither argument is attadked by an
argument. The theory has no extension, while A, = A"y O {x(p x @)} has one. Cf. the following figure,
in which the aossed arrow indicates (one-diredional) elementary incompatibili ty.

A, LA <A

A, M <o—MNx—M

Definition (10.8): opposites

Sentences ¢ and Y are oppositesif ¢ isequal to x or P isequal to x¢.

A sentence ¢ that is not of the form x|y, has one oppdasite, viz. x$. A sentence ¢ of the form xy has two
oppaites, viz. x¢ (which is equal to xx) and Y. For a sentence ¢ of the form x, | is conveniently
denoted as x™¢.

Example (10.9)

34

The sentence xp has two oppaites, viz. p and xxp. Arguments for either of p's oppcites are
incompatible with arguments for p, and must be dtadced if p is to be justified in an extension.
Consider the theory A = {qo, 01, 02, Qo ~ P, 1 ~ %P, G2 ~ Xxp}. There ae threenon-trivial arguments
from A: the first {do, o ~ p}, the second {qy, q; ~ *p}, the third { gy, g2 ~ x*xp}. They are denoted C,
C, and C,, respedively. C, and C,; are (elementarily) incompatible with ead other, just as C; and C..
(Cf. the figure below.) The theory A has no extension since none of the incompatible aguments is
attacked. From ead of the theoriesAg = A O {ro, o X Qo}, Ay =A O {ry, ryx gy and A, = A 0 {rp, 1 %
02}, anew argument {r;, r; x g} (fori =0, 1 or 2) can be mnstructed, denoted C';. C'; attacks C;. Only
A, has a (unique) extension, viz. the interpretation spedfied by { g, G, 0o ~ P, 01 ~ XP, Gz ~ XXP, I4, I1
X 0u}, in which p and xxp are justified, q; is defeaed (by r;) and xp is not taken into acount (since
the agument C, of xp is attadked). In A;, C; is attacked by C';, so that all arguments (elementarily)
incompatible with C, and C, (there is only one: C,) are dtadked. Ay and A, have no extension. In A,
for instance only one of the two arguments Cy and C, incompatible with C; is attacked, viz. the
argument C,, which is attacked by C'o. From A, there is no argument attacking the agument C,
incompatible with C,. For A, similar remarks apply. From the union Ay, of the theories A and A,
arguments attacking either argument incompatible with C, can be @nstructed, viz. Cy and C». Asa
result, Ag, has a (unique) extension, viz. the interpretation spedfied by {qi, go ~ p, 01 ~ Xp, 02 ~ XXp,
lo, fo X Qo M2, F2 X G}, in which xp isjustified, go and o, are defeaed (by ro and r,), and p and xxp are
not taken into acwunt (sincethe aguments Cy and C, of p and xxp are atadked).
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In the previous examples, for determining whether a sentence ¢ is justified in an extension of atheory A,
it sufficed to consider the structure of the graph of arguments formed by all elementary arguments for ¢,
al arguments elementarily incompatible with those aguments, the aguments elementarily incompatible
with those, etc. and the type of incompatibility (viz., attacking or not). If al arguments incompatible with
an argument were dtacked, the agument would be dfective.

In general, considering the dialectical graph concerning a sentence ¢ does not suffice to determine
whether it is didedicdly justifying. A complicaion occurs when the sentences in one agument occur in
another. The following two examples dow first a theory in which such a problem arises, and then a
similar example that is not problematic. The relevant notions are indirect support are indirect
incompatibility.

Definition (10.10)
Let A be atheory and C an elementary A-argument for a sentence ¢. Then C (directly) supports ¢. A
A-argument C indirectly supports ¢ if there is a series of A-arguments C,, Cy, ..., C, with nan even
natural number larger than 2, such that the foll owing obtain:
0] Coy isan elementary argument for ¢, and C, isequal to C.
(i)  Foral oddi from0to n, C; is elementarily incompatible with C;_;.
(i)  Foral eveni from 2 to n, C; elementarily attacks C;.;.
A A-argument C is directly incompatible with ¢ if there is such a series with n equal to 1, and
indirectly incompatible if thereis a such a series with nan odd natural number larger than 1.

Example (10.11)
A difficulty arisesin thetheory A = {p, g, r, px g, qX r, r X p}. A part of the graph of arguments
relevant for justifying p is indicaed in the following figure. The three aguments depicted are {p, r x

p}, {a, pxqt and{r,gxr}.

M — M

p q

\/
o

Note that any argument that attacks (or is incompatible with) another argument is itself attacked. Still
A has no extension. The problem arises by the fad that p occurs both at a (diredly or indiredly)
incompatible and at a (diredly or indiredly) supparting placein the dialedicd graph. The cause of the
difficulty isthat p plays oppasing roles with resped to the justification of g. It can be seen that thisis
the caise of the missng extension if one cnsidersthetheory A'= (A\{rx p}) O {s, r X s}, in which
the role of attadking r is taken over from p by the sentence s. The theory A' has an extension, viz. the
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interpretation spedfied by {q, s, px g, QX r, r X s}, in which p and r are defeded. The situation is
depicted in the foll owing figure.

P M P A
p q r s

Example (10.12)

Thetheory A={p,p~q,r,r x(p~ q), pxr} hasthe interpretation spedfied by {p,p~q,r x (p ~
g), p > r}, inwhich p and garejustified and r is defeaed, asits extension. The role of p injustifying q
is noteworthy: p occurs not only in the only elementary argument {p, p ~ g} for g, but aso in the
argument {p} that attacks the agument {r, r x (p ~ q)} against p ~ g that attacks the agument for g.
The sentence p occurs bath in a (diredly or indiredly) supparting and in a (diredly or indiredly)
incompatible position. A part of the graph of arguments relevant for justifying q is indicaed in the
following figure. It is suggested that q is a @nclusion of the left-most argument and that p is a
premise in two of the indicaed arguments. The double role of p dces not lead to a problem.

q
M— Mx—M
p p

As a result, sentences dould not occur in arguments with different roles, viz. both in a (diredly or
indiredly) supparting argument and in a (diredly or indiredly) incompatible one.

The examples above leal to the following definitions of elementary dialedical graphs and justifying
dialedicd arguments. The dialedicd graph concerning a sentence ¢ with resped to a theory A is the
graph of elementary A-arguments for ¢, the aguments elementarily incompatible with them, those
elementarily incompatible with the latter, etc.

Definition (10.13): elementary dialectical graphs
The elementary dialectical graph concerning ¢ with respect to A is the smallest colledion {Cj}; o, of
A-arguments, such that the foll owing obtain:
0] Any elementary A-argument for ¢ isin the clledion.
(i) If Cisan argument in the mlledion and C' a A-argument that is elementarily incompatible
with C, then C'isin the lledion.

Note that the dementary didedicad graph concerning ¢ consists of the aguments that (diredly or
indiredly) suppart ¢ and those that are (diredly or indirealy) incompatible with it.

Below it will be shown that the dialedicd justifiability of a sentence ¢ with resped to A coincides
with the existence of a subgraph of the dementary dialedicd graph concerning ¢ that has properties as
ill ustrated by the examples above. Such spedal subtrees are dialectical arguments justifying ¢.

Definition (10.14): justifying dialectical arguments

A dialectical argument justifying ¢ with respect to A is a (non-empty) subcolledion {C}; o of the

elementary dialedicd graph { Ci}; o, concerning ¢ with resped to A, such that the foll owing obtain:

0] There isan elementary A-argument for ¢ isin the subcoll ection.

(i)  No argument in the colledion both (diredly or indiredly) suppats ¢ and is (diredly or
indiredly) incompatible with ¢.

(i) If Cis an argument in the subcolledion that is diredly or indirealy incompatible with an
argument for ¢ in the subcoll edion, then there is an argument in the subcoll edion that attacks
it.

(iv) If Cis an argument in the subcolledion that diredly or indiredly suppats ¢, then al A-
arguments in the dementary dialedicd graph that are incompatible with C are in the
subcolledion.

The union of the agumentsin adiaedicd argument justifying ¢ that diredly or indiredly suppat ¢,

are the justified premises of the didedicd argument. The union of the aguments in a dialedicd

argument justifying ¢ that are diredly or indiredly incompatible with ¢, are the defeated premises of
the dialedicd argument. The sentences supparted by the set of justified premises of a diadedicd
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argument justifying ¢ are the justified conclusions of the dialedicd argument. The sentences attacked
by the set of justified premises of a didedicd argument justifying ¢ are the defeated conclusions of
the dialedicd argument.

Note that there is a dight abuse of terminology here, since dialedicad arguments are not a spedal kind of
arguments (in the sense of definition (3.14)), but graphs of arguments. Normally, no confusion is to be
expeded. If required, one wmuld speek of monolectical arguments when referring to arguments in the
sense of satisfiable sets of sentences, as in definition (3.14).

Note the difference between dialedicdly justifying arguments, which are satisfiable sets of sentences
of a spedal kind, and justifying daedicd arguments, which are cetain subcolledions of elementary
dialedicd graphs. The dosely related terminology is not coincidental, as the foll owing propasition and
theorem show.

Proposition (10.15)
Let {C}i o be adialedicd argument justifying ¢ with resped to a theory A. Then the set C of
justified premises of the dialedicd argument is an argument dialedically justifying ¢ with resped to
A.

Proof: First it must be shown that C is an argument, i.e., that it is stisfiable. Assume to the contrary that C is not
satisfiable. Then there is aminimal subset C* of C that is not satisfiable. C* isfinite, say C* = { o, ..., d}. For
ead ¢, there isa C; in the dialedicd argument that contains ¢; and diredly or indiredly suppats ¢. For any t
from 0 to n, let C*, be the set C* \ C,. Then C*, is satisfiable and therefore C*, is elementarily incompatible with
C.. As a result, C*, is diredly or indiredly incompatible with ¢ and cccurs in the dialedicd argument.
Subsequently, thereisa C**, in the diadledicd argument that attadks C*,. So, thereis a sentence Y in C*,, attadked
by C**.. But since C*, is a subset of C*, thereisat with 0<t'<n, such that ¢ = ¢,. So C**, attadks dso Cy. A
fortiori, C**, is incompatible with C,. But then C** indiredly supports ¢, sinceit attadks C*,, and is indiredly
incompatible with ¢, since it is incompatible with C,. This contradicts the definition of a justifying dialedicd
argument. So Cis stisfiable dter all.

Seand it must be shown that C is didedicdly justifying with resped to A. Consider an argument C' that is
incompatible with C. Let @ be asentence, such that C 0 C' = @ and C O C' = xy. By the cmmpadnessof the
consequence nation &, there is afinite subset C* of C, suchthat C* 0 C' = ¢ and C* O C' = x. Let Cy, ..., C, be
arguments diredly or indiredly suppating ¢ in the diadedicd argument, such that C* 0 Cy O ... O C,.. Pick a
maximal number of indicesi(0), ..., i(m) from among the indices O, ..., n, such that C* = C' O C) O ... O Cimy
is stisfiable. Then thereis an index i from among theindices 0, ..., n, such that C** isincompatible with C;. Let
C*** be asubset of C** that is elementarily incompatible with C;. But C; diredly or indiredly suppats ¢, so
C*** ocaurs in the dialedicd argument, as an argument diredly or indiredly incompatible with ¢. As a result,
there is a C*** * in the didedicd argument that attadks a sentence x in C***, C** ** js a subset of C sinceit
diredly or indiredly supports ¢. Therefore dso C is an argument against . The sentencex is an element of C** \
Cig O ... 0 Cimy O C' sinceif x were an element of Ciig) O ... O Ciyy, X would be an element of C and C would
not be satisfiable. Thisimpliesthat C attadks C', asrequired.

Finaly, it must be deded that ¢ is a onclusion of C, which follows from the fad that any dialedicd
argument justifying ¢ contains an elementary A-argument for ¢.

Theorem (10.16)
There is an argument C dialedicdly justifying a sentence ¢ with resped to A if and only if thereisa
dialedicd argument justifying ¢ with resped to A.

Proof: The 'if'-part of the theorem foll ows from the propaosition. For the ‘only if'-part of the theorem, a dialedicd
argument justifying ¢ must be cnstructed given an argument C dialedicdly justifying ¢. The cnstruction goes
by induction onn, asfollows. At n = 0, start with the lledion of elementary C-arguments for ¢. At an odd level
n+1, add all arguments that are dementarily incompatible with the aguments added at level n. At an even level
n+1, add all elementary C-arguments that attadk an argument added at level n. That at least one such argument
exists, is s1own as follows. Pick an argument C,, added at the odd level n. C, is added as an argument that is
eementarily incompatible with an argument C,.;, added at level n-1. C,.., is a subset of C, since n-1 is even.
Therefore C, and C are incompatible. Since C is didedicdly justifying, C attadks C,. But then there is dso an
eementary C-argument that attacks C,.. It remains to be dhedked that no argument added in the cnstruction both
(diredly or indirealy) supports ¢ and is (diredly or indiredly) incompatible with ¢. Assume to the cntrary that
such an argument C* is added in the @nstruction. Then there would be sequences of arguments C,, ..., Cy41 and
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Co, ...,C'y, asin the definition of indired support and incompatibility, all added in the construction, with C, and
C', elementary arguments for ¢ and Cy;; and C'y equal to C*. But then there is an elementary C-argument C**
added in the cnstruction that attadks C,.q = C*. But bath C* and C** are subsets of C, contradicting the
satisfiability of C.

This theorem shows that a justifying dialedicd argument reveds the interna structure of a dialedicdly
justifying argument.

Note that the dementarity conditions on the aguments that form a justifying dialedicd argument
serve to enforce that justifying dialedicd arguments expose the internal structure of dialedicd
justification to the highest posshble degree

How dothe justifying dialedicd arguments as defined here relate to the naive dialedicd arguments of
sedion 2?7 Apart from the difference in presentation between the two, where justifying diaedicd
arguments are formally elaborated, while naive dialedicd arguments were only informally presented,
there is also a conceptual difference In justifying dialedicd arguments, a stronger notion of defense
against counterarguments is used, viz. diaedica justificaion, acording to which any incompatible
argument must be atadked. Naive dialedicd arguments can only model what might be cdled 'naive
dialedicd justificaion, acording to which any argument that attacks a cnsequence of an argument
must be ataded. Naive didedicd justificaion is a weaker notion of dialedicd justificaion (just like
admissibili ty) that does not suffice in the analysis of the internal structure of dialedicd justification and
dialedicd interpretation as extensions. Cf. also sedion 12.4.

An interesting topic of reseach is whether the extension existence and multiplicity problems are
simplified or even disappea for theories with well-behaved elementary dialedicd graphs. A simple and
often powerful property is the well-foundedness of the tree expansion of a graph. A treeis well-founded if
it contains no infinite branches. In the literature, well-foundedness has been fruitfully used in the mntext
of argument defea. For instance, Dung (1995 proves that his argumentation frameworks have aunique
stable extension when they are well-founded.

Unfortunately, the tree pansion of the dementary dialedical graph of an unsatisfiable theory A is
never well-founded. This can be seen as follows. Let C be any minimal unsatisfiable subset of A. Then C
can be split into two non-empty digoint subsets C' and C" that are dementarily incompatible with ead
other. By choosing C', such that it is a minimal argument for a sentence ¢, it follows that the tree
expansion of the dialedica graph concerning ¢ with resped to A contains C', C*, C', C", ... as an infinite
branch. As a result, considering only theories with well-founded daedicd trees would exclude dl
unsatisfiable theories.

It is then natura to consider the restricted tree e&pansion of the dialedicd graph, which does not
include dl arguments that are dementarily incompatible with ather arguments, but only those that attack
arguments in the graph. If one restricts the tree epansion of the dialedicd graph to attads only, the
notion of well-foundedness does no longer exclude dl unsatisfiable theories. A simple example is the
theory {p, 0, p % g} that has a unique extension. Its 'attack treé is clealy well-founded, though its full
dialedicd treeis not. It might be hoped that it holds in general that theories with well-founded attack
have aunique extension. Thisis however not the cae. An exampleisthetheory {p, p ~ q, p x g} that has
well-founded attadk, but no extension. Examining the example, it can be mnjedured that the problem is
that the theory does not only have attack-type counterarguments. the agument {p, p X g} is a
counterargument to {p, p ~ g}, but does not attad it.

It turns out that theories with well-founded attadk and only attack-type counterarguments indeed have
aunique extension. The foll owing definition formali zes the relevant notions.

Definition (10.17): well-founded attack and only attack-type counterarguments

0] The set of sentences A is a theory with well-founded attack if there is no infinite sequence of
arguments Co, C,, C,, ...,where eat C; is attacked by its suiccessor Ci.1.

(i)  Theset of sentences A is atheory with only attack-type counterargumentsif for al A-arguments C
and C' with C = x¢ and C' = ¢, it holds that ¢ isan element of C'.

The following theorem can now be proven. It is a generdizaion of Dungs (1995 result that well-
founded argumentation frameworks have aunique stable extension (cf. sedion 13.2 below).

Theorem (10.18)

If A is atheory with well-founded attad and only attadk-type munterarguments, then A has a unique
extension. The extension isalso A's unique dialedically preferred stage.
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Proof: For any A-argument C, define FA(C) as the union of al A-arguments that are only attadked by A-arguments
that are d@tadked by C. Claim: the union of the sets I, Fa(O), Fa(FA(O)), ..., denoted G(A), spedfies an extension
of A. The daim is siown in two steps. First, it is sown that G(4) is stisfiable. Since F, is monaonic and
minimal incompatible subsets of G(A) would be finite, it suffices to show that FA(C) is satisfiable for any
argument C. Asuume that F»(C) is not satisfiable, i.e., there ae F5(C)-arguments C' and C" for sentences x¢ and
¢, respedively. Since A has only attack-type murterarguments, ¢ is an element of C". Since C" is a subset of C;
O ...0 C,, for cetain arguments Cy, ..., C, that are only attadked by A-arguments that are dtaded by C, ¢ isan
element of one of the C;, say Cip). So C' attadks Cj(q) and therefore C attadks C'. But then it foll ows that C attadks
itself, contradicting that C is stisfiable.

Semnd, it is shown that if G(A) is not an argument against al sentences in A \ Cn(G(4)), it is not well-
founded. Asaume that ¢y isin A\ Cn(G(A)), while G(4A) is not an argument against ¢o. Since G(A) is a subset of
FA(G(2)) (even equd to it), G(A) does not attadk all A-arguments attadking the agument Co = { ¢}, for otherwise
0o would bein G(A). So there is a A-argument C; with C; £ x¢, that is not attadked by G(4). C; attadks Cy. Cy
canna be asubset of Cn(G(4)), for then G(A) would be an argument against ¢,. So there is a sentence ¢ in C;
that isnot in Cn(G(A)). Asaresult, ¢, isin A\ Cn(G(4)), while G(A) is not an argument against ;. Repeding the
above with ¢, in the placeof ¢,, an argument C, attacking C; and a sentence ¢, in A \ Cn(G(A)) that is not
attacked by G(A), are found Continuing inductively, one finds a sequence of arguments Cy, Cy, C,, .., eah
attacked by its successor.

11 Representational issues
In this ®dion, anumber of representational issues is discussed. How expressve is DEFLoG?™
11.1 Non-defeasible and defeasible assumptions

In several logicd models for defeasible reasoning, theories are divided into two parts. One part of a
theory consists of the non-defeasible assumptions, the other of the defeasible assumptions. Above, no
such distinction has been made. The set of assumptions was encoded as an unstructured set of sentences.
As a result, DEFLOG's definitions and proofs are simpler since they do not need to kee tradk of two
distinct parts of a theory. The question arises whether the ladk of this distinction in DEFLOG is a
limitation. It is not, in the sense that it is easy to define the extensions of 'mixed theories, consisting of a
non-defeasible and a defeasible part, in terms of the definition of DEFLOG's extensions of ‘completely
defeasible' theories, as foll ows.

Let (T, A) be apair of sets of sentences. Then the following definition of extension has the dfed that
the sentencesin T are interpreted non-defeasibly, while the sentencesin A are interpreted defeasibly in an
extension:

An extension of the theory (T, A) isan extension E of T O A, such that the sentencesin T are justified
inE.

Below, this definition of extensions of mixed theoriesis occasionally useful.
11.2 Defeasible vs. inconclusive conditionals

DEerL0G's conditional s are defeasible in the sense that a conditional ¢ ~ Y in atheory or following from a
theory can be defeaed in an extension of the theory. In this sense, conditionals are treaed on a par with
the non-conditional sentences. Any sentence, whether it is a nditional or not, can be defeaed in an
extension of atheory, even though it isin the theory's Modus ponens closure.

For conditionals, there is however a second way in which they can be cnsidered to be defeasible, that
is typicd for conditionals only: it can be that under exceptional circumstances the conditiona is not
followed, while it is not itself defeaed. Under such circumstances the wnditional does not imply its
consequent even though its antecadent does. In order to distinguish this ssoond type of defeasibility for

11 Sedion 13 on related reseach shows aspeds of DEFLOG's expressveness For instance, the treament of Reiter's
logic for default reasoning (sedion 13.1) shows how defeasible rules of inference can be modeled in DEFLOG, while
the treament of Vreeswijk's abstrad argumentation systems (sedion 13.2) shows the modeling of defeasible
arguments (in the sense of derivations).
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conditionals, such conditionals are cdegorized as inconclusive here. In contrast, when a conditional is
said to be defeasible, the standard DEFLOG type of defeasibility is meant that is not spedfic for
conditi onals.

An example might clarify the distinction between defeasible and inconclusive @nditionals. Let p = g
be a onditional and let r expressan exceptional circumstance Then if p = g isadefeasible conditional, r
will make p = q itself defeaed. The result isthat g does not follow if p oltains. In a sense, the conditional
itself has disappeaed. If p = g isaninconclusive conditional, however, r will not make the conditiona p
= ( defeded, but only its effed, viz. that the conditional makes that g follows from p. By r, p = q dces
not have the effed that q follows from p, even though the mnditional itself is not defeaed. Only the
conditional's effea has disappeared.

DerLoG's conditionals are defeasible (just like any sentence), but not inconclusive since in any
interpretation when a oonditional and its antecalent are justified the conditiona's consequent is also
justified. Again the question arises whether thisis alimitation.

It is not, since there is a simple way to incorporate inconclusive conditionals in DEFLOG. Let — be a
new connedive that will be used to express an inconclusive nditional. The following scheme of
(defeasible) assumptions aufficesto make — function as an inconclusive conditi onal:

CRad DR (Rl

By the scheme, > is turned into a wnnedive such that ¢ » Y normally implies ¢ ~ . As a result, it
normally follows from ¢ — @ and ¢ via ¢ ~ W that Y. But since the scheme is to be interpreted
defeasibly, the effed of the mnditional ¢ — Y can be blocked. That there ae exceptional circumstances
in which the conditional ¢ »  does not have its normal effect, is graightforwardly expressed as x((¢ —
) ~ (& ~ ). If required, this expresson can be abreviated as ~(¢ — ). Asaresult, ~ is a dedicaed
kind of negation for conditionals. Note that ~ is not an ordinary connedive, sinceit cannot be dtached to
any sentence, but only to conditionals: while ~(p > ) and ~(p > (g > r)) are sentences, ~p is not.

As an example of the mixed theories discussed in sedion 11.1, it is $own how a system is arrived at
inwhich all sentences are interpreted non-defeasibly, whil e the system's conditionals are inconclusive.

Let T be ay theory consisting of sentences using only the wnnedives — and ~ (with the restriction
that ~ only occursin front of a>»-conditional sentence). Note that in T, DEFLOG's connedives ~ and x do
not occur, except 'hidden’ in sentences of the form ~(¢ — ) that abbreviate x((¢ — W) ~ (¢ ~ W)). Let A
consist of all sentences of the scheme (¢ » §) ~ (¢ ~ ). Consider the extensions of the mixed theory
(T, A), as defined at the end of sedion 11.1, as the interpretations of a theory T about inconclusive
conditionals. Such interpretations are referred to asthe {>, ~}-extensions of T.

Note that in { >, ~}-extensions of atheory T no sentenceof T is defeaed. In particular, no sentence ¢
= | or ~(¢ — ) can be defeaed. The only sentences that can be defeaed are of the form (¢ — @) ~ (¢
~ ). The oonditional ~ is inconclusive as planned: it can be the cae that sentences ¢ — Y and ¢ are
bath justified while g is not. A simple example is provided by the theory T consisting of the following
four sentences:

p-a,r—>~(p>a,pr

Initsunique extension, p — g and ~(p — ) arejustified and qis not interpreted. Note that in this example
p — g cannot be reinstated (i.e., made dfedive again) by adding {—, ~}-sentencesto T, sincer isastrict
assumption. If r would itself have been the @mnclusion of an inconclusive @nditional (as e.g. in the theory
consistingof p— q,r— ~(p>q), p, r', r' = ), the conditional p >» q could be reinstated by blocking that
conditional (in the exampler' — r, that is blocked by adding ~(r' = r)).

The system of {>, ~}-extensions dows that DEFLOG's use of defeasible mnditionals does not
predude the modeling of inconclusive mnditionals.

11.3 Toulmin's argument scheme

The following figure is adapted from Toulmin's The Uses of Argument (1958, p. 104).
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D So0,Q,C

Since
W
Unless
R
On acourt of

B
D for Datum W for Warrant
Q for Qualifier B for Backing
Cfor Clam R for Rebuttal

The Datum consists of certain facts that suppart the Claim. The Warrant justifies that the Datum supparts
the daim, while the Badking provides on its turn suppart for the Warrant. A Rebuttal provides conditions
of exception, that weaken the Warrant, and the Qualifier can expressa degree of force that the Datum
givesto the Claim by the Warrant.

Toulmin's -cdled argument scheme has had a ntinuous influence on argumentation researchers
(cf., e.g., Bench-Capon, 1995 Van Eemeren et al., 1996. In the discusson of naive dialedicd arguments
(sedion 2), some @mnnections between Toulmin's £heme and DEFLOG have been mentioned.

As examples of the qualifier Q, Toulmin mentions modal qualifiers, such as 'probably’ and
‘presumably’. Since DEFLOG's language has no modal operators, the qualifier Q of the scheme has no
counterpart in DEFLOG. In the following, the qualifier and the daim are therefore taken together in the
‘qualified claim' QC.

A straightforward way to model the relation between datum D, claim C and warrant W in DEFLOG is
to think of the warrant W as the mnditional D ~ QC: it is the formal expression of the conditional
connedion between the two statements D and QC. A difference with Toulmin is that in his examples
warrants often express a more general connedion between statements, viz. one between patterns of
statements. One way to ded with thisisto extend DEFLOG's language with variables.

The relation between the bading B and the warrant W is expressble by the mnditional B ~ W, which
isthen - using the mnception of warrants above - equal to B ~ (D ~ QC). An example is the foll owing:

Thieves should be punished ~ (Johnisathief ~ John should be punished)
This conditional can be regarded as an instance of the foll owing scheme:
Thieves should be punished ~ (Person is athief ~ Person should be punished)

This sheme represents the @mnnedion between the 'unconditional' form of a rule statement (Thieves
should be punished) with its ‘conditional’ form (Person is a thief ~ Person should be punished).

Note that in this conception of data, claims, warrants and badings both the mnnedion between datum
and claim and that between badking and warrant are expressed as a anditional, the former as D ~ QC,
the latter as B ~ (D ~ QC). This suggests a slight generali zation of Toulmin's <heme: there could be a
statement supparting the conditional B ~ (D ~ QC). In other words, the backing B and the warrant W can
themselves be @nsidered as datum and claim of a Toulmin scheme. This would involve abadking B' for
whichB'~ (B ~ W), i.e,B'~ (B ~ (D ~ QC)). Thefollowingis an example:

The rule that thieves should be punished applies ~ (Thieves should be punished ~ (Johnis a thief ~
John should be punished))

Note by the way that the conception of data, claims, warrants and badings as presented here interprets

them in a pure Modus ponens context, asin the following figure. On the left, the warrant W is replaced by
the mnditional D ~ QC with which it isidentified.
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B B ~ (D ~ QC) B BoW

QC QC

Each statement in the scheme can of course itself again occur in another scheme, possbly in a different
role. The most obvious example of thisisthat the daim of one scheme @an be the datum of the next.

What about Toulmin's notion of rebuttal R? A first obvious conception of the role of Toulmin's
rebuttal R is as an attack of the qualified claim QC. This conception is in fact suggested by Toulmin's
graphicd representation. The mnnedion would then be represented as R x QC. An example would be the
following:

Johndied last yea x John should be punished

In a second conception of the role of Toulmin's rebuttal R, it attadks the wnnedion between data and
claim (just as Poll ock's undercutting defeaers, to be discussed in the next sedion). The mnnedion would
then be represented as R x (D ~ QC). Hereis an example:

Johnisaminor first offender x (Johnisathief ~ John should be punished)

In athird conception of the role of arebuttal R, it is considered to attack the cnnedion between backing
and warrant, which can be represented asR x (B ~ (D ~ QC)). The following is an example:

John aded under force majeure x (Thieves sould be punished ~ (Person is a thief ~ Person should
be punished))

The interpretation of Toulmin's scheme within DEFLOG as discussed here (with the threevariants for the
role of rebuttals) adds all of DEFLOG's machinery to it: the notions of extensions of theories and of
dialedicd justificaion become relevant. In this way, the DEFLOG interpretation of the scheme is more
spedfic than Toulmin's original description.

Let's briefly consider extensions in the context of the DEFLOG interpretation of Toulmin's <heme.
The foll owing threetheories correspond to the three @nceptions of Toulmin's rebutters. In each, a datum,
badking and rebutter are defeasibly assumed:

D,B,R,B»(D—»QC),RXQC
D,B,R,B»(D—»QC),RX(D»QC)
D,B R,B»(D—»QC),RX(B*(D—*QC))

Of the threetheories, only the latter has an extension. For instance, in the first theory the derivation R, R
x QC / xQC of xQC does not sufficeto block the derivation

B B~ (D~ QC)

D D~ QC

QC

of QC. For blocking the latter, attadking one of its premisesis required.

Arguably, it is then better to interpret Toulmin's <heme in terms of the inconclusive @nditional —
discussed in section 11.2. The warrant W is then interpreted as D — QC. The bading is conneded to the
warrant by assuming B > (D » QC), and the rebuttal for instance by assuming R >» ~(D » QC) or R »
~(B » (D » QC)). The theories

D, B, R, B » (D » QC), R = ~(D » QC)
D, B, R, B » (D » QC), R ~(B » (D » QC))

both have a{>, ~}-extension.
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11.4 PollocKs uncercutting and rebutting defeaters

Pollock has distinguished two types of reasons leading to defea (e.g., Pollock, 1987, 1995, p. 40-41, p.
85-86). He spedks of x as a rebutting defeater when ¢ is areason for Y and X is a reason for denying .
According to Pollock, rebutting defeaers are to be aontrasted with undercutting defeaters. In Pollock's
words, undercutting defeaers attack the @nnection between the reason and a wnclusion rather than
attadking the conclusion diredly. In DEFLOG, no corresponding distinction between types of defeatersis
made sincein DEFLOG's language both types are expressible.

An undercutting defeaer presuppaoses a reason ¢ for a anclusion Y. In DEFLOG, this is represented
by the pair of sentences ¢ and ¢ ~ . If now ¥ is an undercutting defeaer attadking the @nnection
between ¢ and Y, this can be represented by the sentencex » (¢ ~ ). Assume now that ¢, ¢ ~ Y, X and
X X (¢ ~ ) are part of a defeasible theory A. Then in any extension of A in which ¢, x and X > (¢ ~ )
are dl threejustified, it must be the case that ¢ ~  is defeaed: it follows from x and X x (¢ ~ @) that
x(¢ ~ ). Asaresult, it does not follow from ¢ that . Thisis exadly as required: defeasibly it isthe case
that ¢ justifies . By the undercutting exception X the mnnedion between the two is lost. Note that in
DEFLOG the sentences ¢, ¢ ~ W, X and X % (¢ ~ W) do not have to be part of the defeasible theory A
itself; it can be sufficient that they foll ow from the theory.

A rebutting defeder also presuppaoses areason ¢ for a cnclusion Y. If now X is a rebutting defeder
(with respea to ¢ as areason for P), x must be areason denying Y. Let's interpret such a reeson as a
reason for not-Y. Here the nature of the negation not-y of  is left implicit. It could be the dasscal or
intuiti onistic negation of , but in the present context also the defeat of Y (i.e., Xy) isareasonable option.
A first attempt to model the rebutting defeater x in DEFLOG would include the five sentences ¢, ¢ ~ U, X,
X ~ not-Y and X x (¢ ~ W) in atheory (or would make them follow from a theory). But then a rebutting
defeaer would be nothing more than an undercutting defeaer - as represented by the four sentences ¢, ¢
~ P, xand x % (¢ ~ W) - that is a reason for denying - represented by the fifth sentence x ~ not-.
Inded this representation does not corredly capture the ideaof a rebutter. For in this representation, x
would still attack the mnnedion between ¢ and Y if it were defeated that x ~ not-). So even if the
reason ¥ prima facie denying Y is not actually denying g, it would imply that ¢ ~  is defeaed.

In the crred way to represent the rebutting defeater x the statement X x (b ~ ) isreplaced by (x ~
not-y) ~ (X X (¢ ~ ). Only if the statements (X ~ not-Y) ~ (X x (¢ ~ ), X ~ not-y and x are dl three
justified, it follows that ¢ ~ ( is defeaed. As a result, X only has its rebutting effed if it is acually
denying .

This acount of Pollock's rebutting defeaers can immediately be generalized to what might be cdled
‘priority defeaers. A priority defeater exists in the situation that the occurrence of one reason blocks the
occurrence of another reason. When X is a reason for w that when it occurs blocks areason ¢ for (), then
X as areason for w is a priority defeater for ¢ as a reason for . Priority defeaters are analogous to
rebutting defeaers with the difference that a priority defeaer does not need to deny the wnclusion of the
reason it attadks, but can attack any reason. Priority defeaters occur frequently in the law (cf., e.g., Hage,
1997, and Prakken, 1997). It can for instance be the cae that the gplication of one legal rule is excluded
in case another rule is applied. An example is the Lex superior deroga legi inferiori principle, acording
to which of two rules with conflicting conclusions only the one made by the highest authority applies.
When x asareason for wisapriority defeaer for ¢ asareason for , this can be expressed as (X ~ w) ~
X > (¢ ~ ). When X ~ wand x are both justified, then ¢ ~ | is defeaed. As a result, x only has its
defeding effect when it isadualy justifying .

Another kind of generalization of Pollock's rebutting defeaers is what might be cdled ‘outweighing
defeders. A set of reasons for a mnclusion are an outweighing defeater when they block a set of reasons
against the anclusion. The ideais that then the pros outweigh the cons. The ideaof outweighing has for
instance been studied in the mntext of legal reasoning by Hage (1997 and Verheij (1996h). Outweighing
defeders can be regarded as 'multi-reason’ rebutters. An interesting difference with 'single-reason’ is the
intuition that it can be the cae that reasons that are individually outweighed by another reason, might
together be stronger than the oppasing reason. Asaume that ¢, and ¢, are reasons for x, and that ¢ is a
reason for not-x that individually rebuts both ¢, and ¢,. We then have the foll owing:

¢l! ¢21 llJ

d1~X
$2~ X
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P ~ not-x
(W ~ not-x) ~ (W ~ x(¢1 ~ X))
(W ~ not-x) ~ (W ~ x(¢2 ~ X))

That ¢, and ¢, together outweigh Y can be represented as foll ows:

(@1~ X) ~ (92~ X) ~ (91~ (¢2 ~> X(Y ~ not-X))))

By this sntence, Y cannot be areason for not-x when ¢, and ¢, are reasons for x. On its own, the
representation of outweighing is not sufficient. The set of nine sentences above has two extensions, onein
which x isjustified by ¢, and ¢, and the other in which not-x isjustified by W. The caise is that Y can
till rebut ¢, and ¢, individually, even when they are both justified.

There ae two ways of completing the representation of outweighing to resolve this. The first uses the
following two sentences:

b1~ (62~ *((W ~ not-x) ~ (Y ~ x(¢1 ~ X))))
b1~ (62~ *((W ~ not-x) ~ (W ~ x(¢2 ~ X))))

These sentences have the effed that { does no longer rebut ¢, and ¢, individually when ¢, and ¢, are
both justified. A second way of completing the representation of outweighing wses the ideaof accrual of
reasons. It requires the use of the inconclusive conditional — discussed in section 11.2 as a representation
of prima facie reasons. So ¢, ~ X, ¢» ~ X and Y ~ not-x are replacal by ¢, — X, ¢» > x and Y > not-x.
Then the accua of ¢, and ¢, asreasons for X is represented thus:

(91> X) ~ (92> X) ~ (91 (92~ X))))

The sentence expresses that if ¢, and ¢, are eab areason for ¥, then they also form together a reason for
X. (Note that ¢; » (¢, » X) can be regarded as a conditional with the cnjunction of ¢, and ¢, as
antecalent.) When ead individual reason is defeded, their combination need not be. The ideais that
combined reasons can be stronger than the individual reasons.

The ~-analog of the accual sentence viz. (¢1 ~ X) ~ (92 ~ X) ~ ((§1 ~ ($> ~ X)))), does not work
sinceit only hasits acauing effea when both ¢, ~ x and ¢, ~ x are not defeaed, while accuing is only
interesting in case ¢, ~ X or ¢, ~ X isdefeaed.

The ideaof acaua has been adopted by Hage (1997, e.g., p. 203-204) and Verheij (1996b, e.g., p.
161-162) and contested by Poll ock (1995 p. 101-102) and Prakken (1997, p. 198-200).

A remark similar to the one ending the discussion of Toulmin's shemeisin place Poll ock's defeders
(and priority and outweighing defeaers) might well be represented somewhat better in terms of the
inconclusive mnditional > discused in sedion 112, instead of in terms of DEFLOG's defeasible
conditional ~. We saw that in the cae of outweighing defeaers the ideaof acaual of reasons requires >»
instead of ~. A »—-representation is also dightly closer to Pollock's acamunt of defeaers snce Pollock's
reasson statements sem to be intended as inconclusive rather than as defeasible mnditionals (with
obtaining antecedent).

11.5 Collective and indeterministic defeat

In much work on dialedicd argumentation, some general principle to preserve @nsistency is modeled.
For instance, it can be regarded as unwanted that the cnsequents of a set of conditionals of which the
consequents are inconsistent, all follow from the aitecedents. Two straightforward principles to preserve
consistency in situations like this might be cdled the collective and indeterministic defeat (cf. Verheij,
19%h, p. 124-5). In colledive defed, none of the ansequents of the anditionals follows, while in
indeterministic defea one of the cnsequents does not follow. Both in colledive and indeterministic
defed, the inconsistency is resolved. In indeterministic defea, each choice of blocked conseguent is
allowed, ead leading to a different resolution of the inconsistency.

Colledive defea is for instance built into Pollock's (1995 OSCAR and in Reason-Based Logic
(Hage, 1996 1997, Verheij, 1996b). In both cases, colledive defed is an utimate remedy: only when
other means of conflict resolution (by explicit information, like in OSCAR on the basis of rebutting or
undercutting defeaters, and in Reason-Based Logic by exclusionary reasons or weighing reasons) have
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failed, the remaining conflict is resolved by a form of colledive defea. Pollock handles colledive defea
by an additional evaluation status that he cdls provisional defeat (Pollock, 1995, p. 112-4). In Reason-
Based Logic the conclusions of pros and cons are blocked when neither outweigh the other (e.g., Hage,
1997 p. 163-4).

Indeterministic defea occurs for instancein the systems of Lin (1993 and Vreeswijk (1997). In Lin's
system, only one of two arguments (in the sense of derivations) with oppasing conclusions can be an
element of an 'argument structure', that is Lin's counterpart of extensions. Vreeswijk's system refines
indeterministic defea by the use of a @nclusive force relation on arguments (also in the sense of
derivations). If there is no information about the mnclusive force relations between the aguments
involved in a conflict (i.e., a set of arguments with inconsistent conclusions), any choice of a single
argument in the aonflict can resolve it by being left out of an extension. However when an argument in
the @nflict has stronger conclusive force than another, it cannot be chosen to resolve the @nflict by
being left out of an extension. In Vreeswijk's system, indeterministic defeat is the primary resort for
resolving conflict, but it can be influenced by the mnclusive forcerelation. It can for instance be the cae
that by the mnclusive forcerelation only one choiceisleft. (See éso sedion 13.2.)

Modeling colledive and indeterministic defea in DEFLOG requires a method that is smilar to the
modeling of inconclusive conditionals in sedion 11.2. Let > be a onnedive for which the principle of
colledive or indeterministic defea should apply.

The first axiom scheme that is needed expresses that a =-conditional normally implies its ~-
counterpart:

o (=20~ ~y)

The second axiom scheme expresses the defea of the first axiom scheme in case of a cnflict of
conditi onals:

Wi (@1~ (92~ (.~ (@0~ (912 Y1) ~ (92 = W2) ~ (. ~> ((9n = W) > X(P1)).))))--))),

where Wy, W,, ..., Y, are inconsistent (with resped to some logicd standard), and @; is (¢; = ;) ~
(6 ~ @) for somei with1<i<n.

W, W, ...and W, together express that the conditionals ¢; = Y1, b = Y,, ...and ¢, = Y, are wlledively
defeded in case of a cnflict, in the sense that then none of the conditionals ¢; ~ Wy, ¢ ~ Wy, ...0r dp ~
Y, follows, and therefore no consequent Y-, Yo, ...or Yy,

Indeterministic defea can be modeled by blocking the W, for j # i when W, is adive. Thisis expressd
by athird axiom scheme as foll ows:

x®P; ~ xW; foriandjwithl<i,j<nandjZi.

The dfed of this sheme is that when W; is adive (i.e., when ®; obtains) the other W; should be blocked.
In other words, when ¢; = (); does not lead to ¢; ~ ; al othersdo.

Note that colledive defea leals to one extension, while indeterministic defed leads to many (in fad
one for eat choice of conflict resolution).

12 Variations

In the present sedion, some variations of the definitions of DEFLOG are discussed.

12.1 Sandard logical connectives

No attention has been paid to the standard connedives, expressng conjunction, negation and material
implicaion. DEFLOG's connedives x and ~ differ from the standard connedives in two important
respeds. First the connective ~ is not 'truth-functional'. It is a bit awkward to spedk of truth functionality

here since in DEFLOG justification statuses play the role of truth values.*? Put more acarately, the
justification value of a cmpasite sentence ¢ ~ Y in an interpretation is not in general a function of the

121t should be noted however that spesking of truth values or of justificaion statuses is merely a matter of the use
of different labels, espedally in order to avoid the multitude of connotations that are related to the label 'truth values.
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justification values of the sentences ¢ and s in the interpretation. For instance if ¢ and  are both
justified in an interpretation, then ¢ ~ Y can be justified, defeaed or unevaluated. Second the semantics
of the mnnedives x and ~ ispartial. To be predse, sentences of the form x¢ or ¢ ~ Y are not necessrily
evaluated in an interpretation, not even if the sentences ¢ and Y are.

This raises the question whether DEFLOG can incorporate the standard connedives. The aiswer is yes,
and there ae & least threeinteresting ways to dothis.

A first, conservative way to incorporate the standard connedives is to add new connedives to
DerFLOG's language, and axiomatize their intended meaning in terms of a set of assumptions. Let - and —»
be mnnedives that are intended to express $andard negation and material implication. (Recdl that these
two are functionally complete for the truth-functional connedives.) Consider the set of sentences Tpyop
consisting of all sentences of the following forms:

o-W-9)
0-W-x)-¢->w)~>(~X)
¢->-U) - (W-9)

G-W)~ (¢~

The first three schemes are familiar from Hilbert-style versions of standard proof theory, in which there
are some axiom schemes and only one rule of inference, viz. Modus ponens. The fourth scheme links the
standard connedive - with DEFLOG's ~. Its role is to validate Modus ponens for the wnnedive - using
the fact that it is already valid for ~.*®

The following property holds.

Property (12.1)
If SO {¢} isaset of sentences that only contain the wnnedives - and -, then S O Tyop Eperios ¢ if
and mly if S FHilbert ¢

In the second way to incorporate the standard connedives, DEFLOG's connedives x and ~ are used to
express sandard negation and material implicéation, respedively. Consider the set of sentences T* o,
consisting of all sentences of the foll owing forms:

o~ W~9)
@~>W-~>x)~>{¢~>w)~(~X)
(x¢ ~ Q) ~ (W~ ¢)

If one reads x as dandard negation and ~ as material implicaion, the three schemes are aain those
famili ar from Hilbert-style versions of proof theory. The following property foll ows from the soundness
and completeness(for standard logic) of the Hilbert-style proof theory, and from the fact that in DEFLOG
~ validates Modus ponens (i.e., in any interpretation in which ¢ ~ @ and ¢ are justified, also @ is
justified). The property is gronger than property (12.1) above.

Let W be aDEFLOG interpretation. Then the following are equivalent:
1. Wistotal and amodel of T yop.
2. W isan interpretation with the foll owing two properties:
a. For any sentenced, W(x¢) =j if and only if W(¢d) #j.
b. For al sentences$ and Y, W(d ~ ) = if and only if W(d) #j or W(Q) =j.

Proof: That part of property 2 follows from property 1 is sen by naoting that the following are dl equivalent. (i)
W(x) =J. (it) x¢ O JW). (i) IW) FperLoc *9- (iV) IW) Friiet X9 (V) It does not hold that W) Friper §- (Vi)
It does nat hold that W) Eperioc §- (Vii) = ¢ O JW). (viii) W() # j. The totality of the interpretationis used in

13 The notions of validating and vali dity are here used in the standard sense: Modus ponensis valid for a onditional
= if the truth (or justifiedness or other positive evaluation) of sentences ¢ and ¢ = Y in some interpretation (or
posdble world or other semantic whole) impli es the truth (or the justifiednessor the positive evaluation, respedively)
of the sentence in that interpretation (or that possble world or that semantic whole, respedively).
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the eguivalence of (iv) and (v). Part b follows smilarly. An interpretation W that obeys part a of property 2 is
total'* sincethen if ¢ isnot justified in W, it follows that x¢ is justified, and therefore that ¢ is defeated in W.

The oonstraints aand b o interpretations are the analogues of the standard constraints on interpretations
for standard negation and material implication.

Let's cdl interpretations that obey the eguivalent conditions above standard interpretations. For
standard interpretations, the foll owing ‘triviality result’ obtains.

Property (12.2)
Let A be aset of sentences and W a standard interpretation. Then W is an extension of A if and only if
W isasatisfiahili ty class of A.

This triviality result is perhaps the primary reason why in standard logic the notions of extension and
dialedicd justificaion do not arise. It collapses into the notion of maximal consistency (the standard
counterpart of DEFLOG's satisfiabili ty classes).

Note that the result also gives a cmnnedion between DEFLOG and the maximal consistent set approach
to defeasible reasoning, asit has been proposed by, e.g., Rescher (1964 and Poodle (1988).

The triviaity result follows from the following dightly more general theorem (cf. a similar result by
Bondarenko et al., 1997).

Theorem (12.3)
Let A be aset of sentences, such that, for any sentence ¢ and any subset S of A, it obtainsthat SO {$}
isnot satisfiable if and only if S x¢. Then the extensions of A coincide with the satisfiability classes
of A.

Proof: It suffices to show that eat satisfiability classof A is an extension. Let SC be one of A's sttisfiability classes,
and let C be the maximal subset of A spedfying SC. Consider a sentence ¢ in A that is not justified in SC, i.e, ¢
isnotin Mp(C). Then C O {¢} is not satisfiable, since C is a maxima satisfiable subset of A (property (5.12)).
Hence, by the sssumption d the theory, C & x¢.

The third way to incorporate the standard connedives is by extending DEFLOG's language and adding
standard constraints that must obey in an interpretation. If the mnnectives = and » are alded to the
language in order to express $andard negation and material implication, the following constraints would
have to be alded to definition (3.3), in which DEFLOG's interpretations are defined:

3. For any sentenced, W(=¢) =j if and only if W() #j.
4. For all sentences¢ and Y, W(d — ) =j if and only if W(d) #j or W() =]j.

Note that interpretations obeying these cnstraints are total with resped to standard negation —: for any
sentence ¢, either ¢ or ¢ is justified in an interpretation. (Here it is assumed that the badground
negation is dandard: either ¢ isjustified in an interpretation or it is not.) Interpretations are still not total
with resped to 'dialecticd negation' x, sinceit can be the caethat ¢ and x¢ are bath not justified.

Two new schemes of tautologies that obtain in interpretations obeying the alditional constraints 3 and
4 above ae thefollowing:

X¢—>—|¢
G-~>u)-(-v)

Note that in these tautology schemes the occurrences of — cannot al be replaced by ~, without making
the scheme @ntingent. For example, the instances of the schemes x¢ ~ = ¢ and (¢ ~ P) ~ (¢ ~ Q) are
not justified in al interpretations obeying 3 and 4. Note that the scheme (¢ - §) ~ (¢ ~ ) that was used
in the first way of incorporating the standard connedives is not tautologous.

14 Recdl that atotal interpretation is an interpretation with the whole language @ its extent, i.e., an interpretation in
which any sentence of the language is either justified or defeaed.
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12.2 Symmetric defeat and symmetric dialectical justification

An obvious variation of the definitions of DEFLOG is symmetric DEFLOG. In symmetric DEFLOG, it does
not only follow from the justifiedness of a sentence x¢ that the sentence ¢ is defeated as in ‘ordinary’
DEFLOG, but it aso follows from the justifiedness of ¢ that the sentence x¢ is defeated. The latter does
not obtain in ordinary DEFLOG.

An additional constraint on interpretations (definition (3.3)) is al that is needed. For any sentence ¢ it
must hold that:

3. W(¢) =j if and only if W(xd) =d.
Note the subtle difference with the other constraint about defea sentences:
1. W(x¢)isequa tojif and only if W(¢) isequal to d.

By constraint 1, the justifiednessof x¢ expresses the defeat of ¢. By constraint 3, the justifiedness of ¢
expreses the defea of x¢. With only constraint 1, the set of defeded sentences of an interpretation is
faithfully mirrored in the set of justified sentences: ead defeaed sentence ¢ corresponds to the justified
sentence x¢. After adding constraint 3, the set of defeaed sentences of an interpretation aso contains a
faithful mirror image of the set of justified sentences: each justified sentence ¢ corresponds to a defeaed
sentence x¢. From constraints 1 and 3 it follows that a sentence ¢ is justified in an interpretation if and
only if the sentence xx¢ isjustified, and that a sentence ¢ is defeded in an interpretation if and only if the
sentence xx¢ is defeaed.

The figure below illustrates the situation. The large ovals represent the sets of justified and defeaed
sentences of an interpretation. The small ovals are the crresponding subsets of sentences of the form x¢.

Ordinary DEFL OG Symmetric DEFL OG

Justified Defeded Justified Defeded
sentences sentences sentences sentences

Let J and D denote the set of justified and defeded sentences in an interpretation, respedively. Then in
ordinary DEFLOG it holds that xD is a subset of J. In symmetric DEFLOG, it also holds that xJ is a subset
of D. Thisleals to two chains of inclusions holding in symmetric DEFLOG:

JUxD O xxJ O xxxD [ ...
D O xJ0xxD 0O xxxJ[J ...

The theory of ordinary DEFLOG developed in the previous ctions can be naturally adapted for
symmetric DEFLOG. Again satisfiable sets of sentences T have aunique model W+ with a minimal set of
justified sentences. As a result satisfiable sets of sentences gedfy an interpretation Wy, and definition
(4.3) of extensions gill makes snse in the mntext of symmetric DEFLOG. The sets of justified sentences
of interpretations can - in analogy with property (3.11) - be charaderized as the sets that are @nflict-free
closed under Modus ponens and closed with resped to dauble dialedica negation, i.e., ¢ isin the set if
and only if xx¢ isinit. The set of consequences Cn(T) of a set of sentences T is the dosure of T under
the rules of inference ¢,  ~ Y / Y (Modus ponens), ¢, x¢ / Y (a variant of Ex falso quodlibet), xx¢ / ¢
and ¢ / xx¢.
A natural alternative to definition (4.3) of extensions for symmetric DEFLOG is the foll owing:
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Definition (12.4): symmetric extensionsin symmetric DEFLOG
If Aisaset of sentences and E an interpretation, then E is a symmetric extension of the theory A if and
only if E is an interpretation that is gedfied by a A-argument J, such that, for any ¢ in A\ J, an
oppaite of ¢ isa mnsequence of J.

Recdl definition (10.8) of the oppasites of a sentence: the oppasites of a sentence ¢ are x¢ and x™, if it
exists.

There ae more theories with symmetric extensions in symmetric DEFLOG than in ordinary DEFLOG.
For instance, the theory {p, p ~ g, Xq} does not have an ordinary DEFLOG extension, but has a symmetric
DEFLOG extension, viz. the (symmetric) interpretation in which q isjustified and xq defeaed. However,
also in symmetric DEFLOG there ae theories without extensions, e.g., the theory {p, p X p}.

That there ae more extensions in symmetric DEFLOG is the result of the fad that more aguments
serve & attacks of other arguments, in the sense that they can resolve incompatibilities. In ordinary
DEFLOG, an argument C attadks another argument C' if the defea of a sentencein C' follows from C. In
symmetric DEFLOG, it makes ®nse to define that an argument C attacks another argument C' if the
oppaite of asentencein C' follows from C.

The cantral theorems of ordinary DEFLOG seem to have analogues for symmetric DEFLOG. | have not
discovered interesting properties holding for symmetric DEFLOG, but not for ordinary DEFLOG.

12.3 Deep and shallow attack

Assume that the sentence ¢ isjustified in an extension of a theory A and that there is a non-trivial Modus
ponens derivation of ¢ with premisesin A, i.e., a derivation with at least one instance of Modus ponens.
Then, in order to defea ¢, it doesin general not suffice to add an attad X to the theory. Often the theory
A O {x, X x ¢} (where x is asentencethat is not an element of A, nor is a subsentence of an element of
A) has no extension. A simple example shows this. The theory {p, g, g ~ p} hasaunique extension, while
the theory {p, 9, g ~ p, I, r X p} has no extension. The reason why this happens is that blocking the
derivation g, q ~ p / p o p requires that one of its premises is defeaed, viz. g or g ~ p. If only its
conclusion p is attacked, an incompatibili ty remains.

In order to defea ¢, no reason Y for ¢ can be justifying. In other words, if there is a justified reason
Y, the conditional Y ~ ¢ expressing its connection with ¢ should be dtadked as well. However, if thereis
anon-trivial derivation of Y ~ ¢, the agument above can be repeded: it can be the case that the theory A
O{Gxxo} O{xxW~9) A=~ ¢} hasno extension. An example is the theory {p, qo, 01, 01 ~ (Qo
~Pp), L rxprx(g~ p)} that has no extension since the derivation g;, gy ~ (Jo ~ p) / o ~ p IS not
blocked.

The point can be repeaed for conditionals with ¢ asits degp consequent. Here the deep consequent of
a onditional is defined asfollows. If ¢ ~ Y isa conditional for which () isnot a cnditional then the deep
consequent of ¢ ~ Yisy. If ¢ ~ Y isa oonditiona for which ¢ is a conditional X ~ w then the dee
consequent of ¢ ~ Y isthe degp consequent of X ~ w. For instance, the degy consequentsof p~ g, p~ (q
~T1), (P~ Q) ~ (rx(s~t))andareq, r and x(s~ t), respedively.

This suggests a distinction between deeg and shallow attack of a statement. A shallow attack of a
statement ¢ in a theory A is then a statement x in A for which aso x x ¢ isin A. A deep attack of a
statement ¢ in atheory A consists of an attack of the statement, but also of each conditional with ¢ asits
consequent or asits deep consequent.

Consider the following derivation of p with premises in the theory {do, q1, 02, G2 ~ (1 ~ (o ~ P))}-
The leftmost sentences of the derivation expressthe statements attacked by a deep attadk of p.

0~ (G~ (o~ P) 02

G~ (0o~ P) (o]

Go~ P Go

p
For a statement r to be adeep attack of pit isrequired that all of the following are included in the theory:

rxp
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I > (do~P)
rx (.~ (G~ )
r > (0~ (A~ (o~ P)))

Note that for blocking the derivation shown r and r x (q, ~ (01 ~ (do ~ p))) would suffice. For any
individual derivation, attacing a premise would suffice

However deep attack of a statement abstrads from individua derivations. It is a stronger type of
attack with its own 'semantics. Deep attack of a statement involves not only the atack of the statement
itself, but of any possble 'badkbone’ of a derivation of the statement. Here the badbone of a Modus
porens derivation (with all majors in Modus porens instances on the left as in the figure @ove) consists
of the string of leftmost sentences that diredly leads to the derivations conclusion. Formally, the
badkbone of a Modus porens derivation is defined as follows. A trivial derivation ¢ has ¢ as its
badkbone. If M(¢ ~ Y) and M(¢) are derivations, then the derivation M(¢p ~ ), M(d) / Y has the
badkbone of M(¢ ~ Y) extended with ¢ ~ Y asits backbone.

Dee attadk can be thought of as a long - adtually infinite - conjunction. If dee attad is expressed
using the mnnedive xx, the foll owing suggests a definition:

O XxxP:=¢ Xy, plusforany x, & x (x ~ W), plusforany x, X', & X (X'~ (x ~ )), plus...

Eadh of the foll owing theories has an extension:

P, 4, g~ P, I r>xxp
P, Qo, O, Q1 ~ (Qo ~ P), I, I XX p
P, Qo 01, G2, 02 ~ (G2~ (Qo ~ P)), I, F XX p

It should be noted that degp attadk does not guarantee the existence of an extension, as adding the
sentence xp xx xp to any of the theories above shows.

Both DEFLOG's ordinary, 'shallow' attadk, and deg attadk as discussed here, have useful
charaderistics. DEFLOG's shallow attack shows that attacking a statement does not suffice in order to
defed the statement, but that any of its derivations need be blocked. Deep attadk is a tod to make it
posshle to read the defea of a statement by adding one dtadk without bothering about all possble
derivations. DEFLOG's shallow attadk has a simpler semantics than deep attadk, in the sense that the
semantics of dee attad is expressble in that of DEFLOG's sallow attack (as the infinite njunction
above suggests).

12.4 Admisshility, naivedialedical justification anddialedical justification: a meta-analysis

An argument is dialedicdly justifying if it attacks any argument incompatible with it (cf. definition
(6.3)). In the literature, a variant of dialedicd justification occurs that goes by the name of admissibili ty,
acording to which an argument is admissible if it attadks any argument attacking it (cf. Dung, 1995
Bondarenko et al., 1997, see &so sedion 13.3). Obvioudly, in DEFLOG, diadedicdly justifying arguments
are dso admissble, while there ae almissble aguments that are not dialedicdly justifying.*®

Another variant of dialedicd justification (in fad onethat | at first thought to be the cantral notion) is
naive dialedicd justification: an argument is naivdy dialedically justifying if the agument attadks any
argument attacking the agument itself or one of its consequences. (Cf. also the naive diadedicd
arguments of sedion 2. See the discusson after theorem (10.16).) Clealy, didedicdly justifying
arguments are dso naively didedicdly justifying, and naively diaedicdly justifying arguments are
admissible.

Why has in DEFLOG diaecticd justificaion been chosen instead of admissibility and naive dialedical
justification, that to some may seem more natural and at least simpler? The reason is that dialedical

15 Admisshility in DEFLOG depends of course on its notions of argument and attack. The results in sedion 13.3
show that DerLoG's admisshility are indeed an extrapolation of Dung's admisshility. In fact DEFLoG's dialedicd
justificaion is too, since & will be seen admisshility and daledicd justificaion coincide on Dung's restricted
language. Thouwgh extensiondly the definitions coincide on Dung's restricted language, the intensiona difference
remains. in admisshility, only attacks must be wuntered by attacks, while in daledicd justificaion all
incompatibles must be cuntered by attacks. The intensiona difference ca howvever only be etensionally
appredated on DErFLOG's richer language, asis espedally shown in the present sedion.

50 August 11, 2000



justification has properties that make it espedally suitable for the analysis of extensions. In this sdion,
some of these properties are discussed. By a meta-analysis, it is siown how the properties operate in some
of DEFLOG's central theorems.

Among the useful properties of dialedicd justification are the foll owing:

Union
If C and C' are compatible didedicdly justifying arguments, then also C O C' is didedicdly
justifying. (Similarly, for any compatible wlledion of diaedicdly justifying arguments: the union of
a ompatible olledion of dialedicdly justifying argumentsis again dialedicdly justifying.)

Localization
Let E be a1 extension of atheory A. Then there is a @lledion {C}; o, of didedicdly justifying
arguments that covers J(E), i.e., JE) isequal to O; o, C;.

Separation
If C and C' are incompatible didedicdly justifying arguments, then there ae oppaites ¢ and xd,
such that C = ¢ and C' £ x¢, or such that C £ x¢ and C' = ¢. (Similarly, for any incompatible
colledion of dialedicdly justifying arguments. given an incompatible lledion of diaedicdly
justifying arguments, there ae oppaites that are the cnsequence of the unions of compatible
subcolledions.)

The union and separation properties were stated ealier as the corollaries (6.14) and (6.15). The
locdizdion property isan immediate mnsequence of part (i) of corollary (6.8).

For our meta-analysis, these properties are generalized from dialedicd justificaion to a genera
property of arguments ®. Let @,(C), abbreviated ®(C), expressthat the agument C has the property ®
with resped to atheory A. An argument C is a ®-argument of a theory A if ®,(C). Then the properties
can be thus paraphrased:

Union
If C and C' are compatible ®-arguments, then C 0 C' is also a ®-argument. (Similarly, for any
compatible mlledion of ®-arguments: the union of a compatible wlledion of d-argumentsisagain a
®-argument.)

Localization
Let E be a1 extension of a theory A. Then there is a mlledion {C}; o, of ®-arguments that covers
JE),i.e, JE)isequd to ;g C.

Separation
If C and C' are incompatible ®-arguments, then there ae oppaites ¢ and x¢, suchthat C=¢ and C' =
x¢, or such that C £ x¢ and C' = ¢. (Similarly, for any incompatible clledion of ®-arguments: given
an incompatible wlledion of ®-arguments, there ae oppasites that are the aonsequence of the unions
of compatible subcolledions.)

It is not hard to see that admissibility has the locdization and union properties, but not the separation
property, while naive diadledicd justification has the locdizaion property, but lacks both union and
separation.

For instance, the theory { p1, p1 ~ q, P2, P2 X g} shows that naive dialedicd justification does not have
the union property. The aguments {p,} and {p; ~ g} are two compatible, naively dialedicaly justifying
arguments with resped to the theory, while their union {ps, p. ~ g} is not, since it does not attadk the
argument {p,, p. X g} that attadks its consequenceq.

That neither for admissbility nor for naive dialedicd justificaion, the separation property obtains,
can be seen by inspedion of the theory {p1, p1 ~ Q, P2, P2 ~ (0 % g)}. With resped to the theory, there ae
four maximal admissible aguments, viz. ead three-element subset of the theory. These ae dso the
maximal naively dialedicdly justifying arguments. (Note that each argument of the theory is admissible
and naively didedicdly justifying since there ae no attadks) Any pair of these aguments is
incompatible, yet there is no sentence that is defeaed by an argument, let alone by an admissble or
naively dialedically justifying argument, asisrequired by the separation property.

The proofs of the locdizaion property for admissibility and naive dialedicd justification are
straightforward. The proof of the union property for admissibility is aimost trivial (in contrast with the
proof of its dialedicd justification analogue) since any attack of the union of a wlledion of argumentsis
also an attack of one of the agumentsin the wlledion.
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Note dso that the 'empty’ property of arguments, viz. satisfiability or ‘argumenthood, that any
argument satisfies, has the locdization and union properties. Locdization foll ows from the satisfiability
of the set of justified sentences of an extension, and the union property is for satisfiability trivial. The
incompatible aguments {p} and {p x p} show that satisfiabili ty lacks the separation property.

In order to show the use of the properties, several of DEFLOG's definitions are generalized from
dialedicd justification to a general property of arguments ®, asfoll ows.

Definition (12.5)

(i) A stageSisad-stageif itis gedfied by a ®-argument.

(i) A stage Sis ®-preferred with resped to atheory A if J(S) n A is maximal among the theory's ®-
arguments.

Definition (12.6)

(i) A sentence ¢ is ®-justifiable with resped to atheory A if it is a mnsequence of a ®-argument of the
theory, and ®-defeasible if x¢ is a mnsequence of a d-argument. A sentenceis ®-interpretable with
resped to atheory A if it is ®-justifiable or ®-defeasible with resped to the theory. A sentenceis ®-
ambiguous with resped to atheory A if it is ®-justifiable and ®-defeasible with resped to the theory.

(i) Let C be an argument. A sentence ¢ is @-justifiable in the context C with resped to atheory A if itisa
conseguence of a ®-argument of the theory that contains C, and ®-defeasible in the context C if x¢ is
a mnsequence of a ®-argument that contains C. A sentence is ®-interpretable in the context C with
resped to atheory A if it is ®-justifiable or ®-defeasible in the mntext C with resped to the theory. A
sentence is ®-ambiguous in the context C with resped to a theory A if it is ®-justifiable and ®-
defeasible in the context C with resped to the theory.

Definition (12.7)
An argument C is ®-disambiguating with resped to a theory A if there is no sentence that is ®-
ambiguous in the context C with resped to the theory.

The foll owing theorem holds.

Theorem (12.8)
(i) Let A be aset of sentences and let ® have the union property. Then the following hold:
a.  Any pair of ®-preferred stages of the theory A isincompatible.
b. If thereis a ®-ambiguous ntence with resped to the theory A, then there ae & least two ®-
preferred stages.
(i) Let A be aset of sentences and let @ have the union and the locdizaion property. Then the
following hold:
a.  If Eisanextension, then J(E) isa ®-argument.
b. Thereisno extension of the theory A if for any ®-disambiguating context C there is a sentence
¢ in A that is not ®-interpretable in the mntext C with resped to A.
(iii) Let A be aset of sentences and let @ have the union and the separation property. Then the foll owing
hold:
a  There is a ®-ambiguous ntence with resped to the theory A if there ae & least two @-
preferred stages.
b. If there is no extension of the theory A, then for any ®-disambiguating context C there is a
sentence ¢ in A that is not ®-interpretable in the context C with resped to A.

Proof: (i) a If P, and P, are preferred and compatible, their union U is a ®-stage with JU) n A O (J(Py) n A) O
(J(P5) n A). (i) b. Apply Zorn's lemma to the ®-arguments that are wmpatible with a ®-justificaion o the ®-
ambiguous entence and to those cmpatible with a ®-justification d its opposite. (i) a. By locdization, JE) is
the union of d-arguments, and therefore by union itself a ®-argument. (ii) b. Let E be an extension. Then, by (ii)
a., JEE) isad-argument. J(E) is disambiguating, and any sentencein A is ®-interpretable in the context C. (iii) a.
Let P, and P, be different preferred stages. By (i) a. (and the union property), they are incompatible. So by the
separation property, there ae oppasites ¢ and P, such that J(P;) n Ak ¢ and J(P,) n A = Y. Asaresult, ¢ or @ is
a ®-ambiguous entence with resped to the theory A. (iii) b. Let C be ®-disambiguating and let for any sentence
¢ in A Cy be ad-justification d ¢ or of x¢ that contains C. The wlledion d the Cy is compatible, since

52 August 11, 2000



otherwise there would (by the separation property) be ad-ambiguous entencein the cntext C. The union of the
C, isad-argument (by the union property) and spedfies an extension o the theory A.

Sincediaedicd justification has the union, the separation and the locdization properties, al parts of the
theorem can be instantiated for diadledicd justificaion. The instantiations for dialedicd justificaion of
al parts of the theorem have been proven ealier. Part (i) a. is theorem (7.7) and (i) b. is the 'if*-part of
theorem (9.2). Part (ii) a. occursin corollary (6.8), and (ii) b. isthe if'-part of theorem (9.6). Part (iii) a. is
the ‘only if*-part of theorem (9.2), and (iii) b. the 'only if'-part of theorem (9.6).

Since amissibility has the union and the locdizaion property, the parts (i) and (ii) of the theorem
hold for admissibility. Since naive dialedicd justificaion only has the locdization property, no part of
the theorem is relevant for naive dialedicd justificaion. It is not hard to find counterexamples against
part (i ) for admissibility and against all partsfor naive dialedicd justification.

For a property @ with the union, the locdizaion and the separation property, like diaedicd
justification, the theorem can be summarized as follows.

Coroallary (12.9)

Let A be aset of sentences and let @ have the union, the separation and the locdi zation property. Then

the foll owing hold:

(i) Any pair of ®-preferred stages of the theory A isincompatible.

(i) Thereisa ®-ambiguous sntence with resped to the theory A if and only if there ae & least two
@-preferred stages.

(iii) Thereisno extension of the theory A if and only if for any ®-disambiguating context C thereisa
sentence ¢ in A that is not ®-interpretable in the context C with resped to A.

(iv) Let n be anatura (or cardinal) number. A theory A has exadly n extensions if and only if nis
equal to the maximal number of mutually incompatible ®-disambiguating arguments C, in the
context of which any sentencein A is @-interpretable with resped to A.

Except for part (i) of the crollary (that only depends on the union property), which obtains for
admissibility, no part of the mrollary obtains for admissibility or naive dialedicd justification. All parts
of the wrollary obtain for dialedicd justification, as was shown ealier.

| know of one other property of arguments than dialedicd justificaion that has the union, the
separation and the locdizaion property. It is weak dialectical justification. An argument is wegly
didedicdly justifying if it attacks a consequence of any argument incompatible with it. The difference
with dialedicd justification is that the atack of a cnsequence of an incompatible agument suffices
instead of an attack of the agument itself. For weak dialedicd justificaion, al results of the theorem and
the wrollary obtain. My preference for the notion of dialedica justification stems from its property of
separation at the base:

Separation at the base
If C and C' are incompatible ®-arguments, then thereisa sentenced in C 00 C', such that C = x¢ or C'
E x¢. (Similarly, for any incompatible lledion of ®-arguments: given an incompatible wlledion of
®-arguments, there is a sentence in the union of the mlledion that is attacked by the union of a
compatible subcolledion.)

Didedicd judtification has the property of separation at the base, while naive didedicd justification
does not have it. By the property, ®-ambiguity becomes an ambiguous ®-interpretabili ty of a sentencein
a theory, and not merely of one of its consequences. To me, the former seems to be most appropriate.
Note that separation at the base follows diredly from the definition of dialedicd justificaion. | do not
know of other properties of arguments than dialedicd justificaion with the properties of union,
separation at the base and locdization. Still there does not seem to be adired proof that dialedicd
justification is the only such property of arguments.

13 Related research
In the following, reseach related to DEFLOG is discussed. Since terminology is not at all standard

throughout the literature, it will sometimes be the cae that a term asit is used by another author has a
different meaning than it hasin DEFLOG.
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13.1 Reiter'slogic for default reasoning

Animportant and still i nfluential logicd model of defeasible reasoning is Reiter's (1980 logic for default
reasoning. The following is a restatement of Reiter's definition of extension. For any set S of first-order
sentences (i.e., closed first-order formulas), Th(S) denotes the set of sentences that are first-order
provable from S. Let L¢, denote the set of first-order sentences

Definition (13.10): Reiter'slogic for default reasoning
0] A default is an expresson of the form a : MBy, ..., MB,, / v, where a, B4, .., Bm, and y are first-
order sentences.
(i) A default theory isapair (D, W), where D isa set of defaults and W a set of first-order sentences.
(iii) Let (D, W) be adefault theory. For any subset S of Ly, define I'(S) as the smallest set ' of first-
order sentences satisfying the foll owing threeproperties:
D1. wdr
D2. Th(M) =T
D3. Ifa:MBy,....MB,/yODanda O, and =B, ...,7Bm 0 Stheny O T.
(iv) A setof first-order sentences E is an extensionfor (D, W) if and only if I'(E) = E.

Let now Lper o denote the language of DEFLOG that uses the first-order sentences as ®ntence onstants.
Let the DEFLOG trandation of adefault a : MBy, ..., MB,/ y be the set of m+1 sentences a ~ y, =31 % (a
~Y), ...and =B, x (0 ~ y), and let the DEFLOG trandation D* of a set of defaults D be egual to the union
of al the trandations of the defaultsin D. Let T, be the set of DEFLOG sentences { ¢, ~ (¢, ~ (...(d, ~
W)..)) | ¢1, §2, vy P o W With ¢y, dp, ..., y, W O Lgo}, where -, denotes first-order consequence The
following propasition establishes a formal connedion between Reiter's logic for default reasoning and
DEFLOG.

Propasition (13.11)
E is a Reiter extension of (D, W) if and only if E = Thyo(J(E*) n Ls,) for some DEFLOG extension E*
of the theory Ty, 0 W O D* with Ty, O W O J(E*).

Proof: Let E be aReiter extension o (D, W). Let * be qual to T,, DEDO {a ~y|a: MBy, ..., MBn/yOD, =B, O
E, .., BnOE O{-Bix(a~y)|a:MBy .. MB,/yOD}. J is DErFLoG-satisfiable sincefor no default a :
MBy, ..., MBn/yO D both a ~ yisin J* andthereisani such that = 3; isin J*. J* contains al sentencesin Ty, O
W O D* except the o ~ y for which thereisan i for which - 3; isin J*. But for such a ~ y, J* contains x(a ~ y)
since J* then contains = 3; and = 3; x (a ~ y) for somei. So J* spedfies a DEFLOG extension E* of the theory Ty,
0O W O D*. Since JE*) = Mp(J*), it follows that Ty, 0 W O J(E*) and that E = Thio(J(E*) n Ly).

Let E* be aDEFLOG extension d the theory Ty, 0 W O D* with Ty, O W O J(E*). It needs to be shown that
I(E) = E, where E = Thyo(XE*) n Lso). In order to show that I'(E) O E, it suffices to ched that E satisfies the
properties D1, D2 and D3 (with E in the places of bath S and I'). For D3, note that if, for some default a : M,
...y MBy / y O D, it hdds that a isin E and =, ..., -Bm O E, then a and a ~ y are both justified in E*, and
therefore y is in JE*). For I'(E) O E, note that any ¢ in E O JE*) O Mp(T;, O W O D*) is a DerLoG
consequence of a minimal argument C O J(E*) consisting of sentences from T;,, W and D*. Since C n D*
contains only sentences of the form a ~ y for a default a : My, ..., MB, / y O D, for which thereisno =f3; in
J(E*) OE, it then follows that ¢ isin I (E).

A formal connedion between Reiter's logic for default reasoning and argument defea has also been
shown by Dung (1995.

13.2 Vreeswijk's abstract argumentation systems

In Vreeswijk's (1993 1997) abstrad argumentation systems, the defea of arguments as derivations is
studied. Vreeswijk's arguments are constructed from given sets of strict and defeasible rules of inference
In case a ontradiction can be derived, one of the agumentsinvolved in the derivation is considered to be
defeded. Asaresult, the cnflict isresolved. The seledion of the defeaed argument among al arguments
involved in the conflict is, guided by a given conclusive force relation between arguments. If no
defeasible agument involved in the wnflict has gronger conclusive force than any of the others, then
eadt can be seleded as defeded. If one has dronger conclusive force than another, it cannot be seleded
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as the defeded argument. If more than one agument can be seleded as the defeaed argument, ead
choice gives rise to a separate extension. Assume for instance that the three defeasible aguments o, 0,
and 03 can be extended to a derivation of a ntradiction. If none of the aguments has dronger
conclusive force than another, there ae three etensions, viz. the three sets of two arguments {01, 05},
{0y, 03} and {0, o3}. If for instance o; has gronger conclusive force than o,, {0, 03} is not an
extension.

Below some of Vreeswijk's (1997 definitions are remunted, some of them dlightly adapted. Sincein
Vreeswijk's formalism rules and arguments are dways treded separately, no notational precaitions were
necessary to distinguish a rule of inference from its instance in a derivation, i.e., in an argument. Since
below the distinction is necessary in order to prevent ambiguity, rules of inference ae denoted using the
symbols —» and =, while their instances in arguments are denoted using » and =. Vreeswijk's (1997
numbering is foll owed.

Definition (13.12): Vreeswijk's abstract argumentation systems

2.2 Alanguagisaset L containing a distinguished element [.

2.3 A gtrict rule of inference is a formula of the form ¢4, ..., ¢, - ¢, where ¢4, ..., ¢, is a finite,
posshly empty, sequencein L and ¢ isamember of L. A defeasible rule of inferenceis aformula
of the form ¢4, ..., §, = ¢, where ¢4, ..., §, is afinite, possbly empty, sequencein L and ¢ isa
member of L.

25 Anargumentois
a amember p of L. Its conclusion and only premiseisp.

b. aformula of the form oy, ..., 0, = ¢, where g,, ..., 0, is afinite, posgbly empty, sequence
of arguments, such that the conclusions of oy, ..., 0, are ¢4, ..., §,, respedively, for some
rule ¢4, ..., o, - ¢. Its conclusion is ¢, its st of premises is the union of the sets of
premises of 0y, ..., 0.

C. aformula of the form oy, ...,0, = ¢, where oy, ..., 0, is afinite, passbly empty, sequence
of arguments, such that the mnclusions of gy, ..., 0, are ¢4, ..., d,, respedively, for some
rue ¢4, ..., o, = ¢. Its conclusion is ¢, its st of premises is the union of the sets of
premises of oy, ..., 0.

210 Anargumentisdtrictif it isbuilt using strict rules only, otherwise defeasible.

2.1 Anabstract argumentation systemisatriple (L, R, <), where L isalanguage, R is a set of rules of
inference and < is a reflexive and transitive order on arguments. For arguments 0 and T, 0 < T
denotesthat o < T whilenot T < ©.

3.2 A subset Pof L isincompatibleif there exists a strict argument with conclusion .

41 A base setis afinite compatible subset of L. If P is a base set, an argument is based onP if its
premises are in P. A set of arguments isincompatible if the set of conclusions of the agumentsis
incompatible. A set of argumentsisincompatible with an argument o if Z 0 {o} isincompatible.

2.15 Anargument o undermines aset of arguments 2 if thereisatinZ witht<o.

42 Let P be abase set, and let 0 be an argument. A set of arguments Z is a defeater of o if X is
incompatible with o and not undermined by it.

417 Let P be abase set. A relation |~ between P and arguments based on P is a defeasible entail ment
relationif, for every argument o based on P, it holdsthat P |~ o if and only if
a the set P contains o, or

b. for some aguments oy, ...,0, and asentence¢ inL, P|~ 0y, ...,0,and 0 = 0y, ...,0, = ¢,
or
C. for some aguments g, ...,0, and asentenced inL, P |~ 0y, ...,0,and 0 =0y, ...,0, = ¢

and no set of arguments Z with P |~ X isa defeaer of o.
4.18 A set of arguments 2 is an exension of P if there exists a defeasible entailment relation  such that
>={o|P|~a}.

Note that some of Vreeswijk's terminology also occurs in DEFLOG, but in a different meaning. Examples
are Vreeswijk's arguments, incompatibility and extensions which are differently defined in DEFLOG.
When confusion is likely, we speak for instance of DEFLOG arguments and AA S arguments, where AAS
abbreviates 'abstrad argumentation systems'.

In the following, a formal connection between Vreeswijk's abstrad argumentation systems and
DEFLOG is established. Assume an argumentation framework (L, R, <) as given.
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As @ntential constants in DEFLOG, the union of four setsis used: the set L, the set of rules R, the set
of arguments and the set of conclusive force statements o < 1. In this way, a large part of the formal
apparatus of Vreeswijk's abstrad argumentation systems can be trandated into DEFLOG'S language.
Consider for instance the cnstruction of an AAS argument o(p) = g from an AAS argument o(p) with
conclusion p and a defeasible rule of inference p = . This construction can now be expressed within
DEFLOG by the sentence (p = q) ~ (o(p) ~ (o(p) = q)). (Note that here the notational distinction between
rules of inference and their instances in arguments are needed in order to prevent ambiguity.)

Consider now the following four schemes of DEFLOG sentences. The first two model AA'S argument
construction, the second two AA S defeat.

B (@ bn=> ) > (01~ (... (On~> (01, ... On 2 D)) ...)

Here ¢y, ...,¢,— ¢ isarule and 0y, ...,0, are aguments with conclusions ¢, ..., 9.

(i) (@1 - On=>0)~> (01~ (...(On~> (01, ..., On = 9)) ...)

Here ¢4, ...,0, = ¢ isarule and 0y, ..., 0, are aguments with conclusions ¢, ..., ¢,

(i) P~ (e (Pr~> (T~ (oo (T~ X((91, -+, O =) ~» (01~ (... (On ~> (O, ..., 0n = 9)) ... ) -0))) )
Here p4, ..., pr are strict rules of inference that can be used to extend oy, ..., 0, = ¢ and the
arguments Ty, ..., T; to an argument with conclusion . The other elements of the scheme ae & in
(ii).

(iv) (01>1) ~>(P1~> (o (Pr~> (T2~ (oo (T~ %P1~ (oo (Pr > (T2~ (oo (T~ X((91, -G = ) ~ (02
~> (. (0h~> (01 ey G =) ) - D)) 2))) 20))) 1))

All elements of the scheme ae ain (iii ).

Before the explanation of the schemes, it can be noted that the second scheme occurs as a subscheme of
the third scheme, which on itsturnis a part of the fourth. Using convenient abbreviations, the structure of
the third and fourth schemes gands out more dealy as follows:

(i) pr~ (oo (pr~> (T2~ (o (T~ X(00)) ... ) -.0)
(V) (0:>T0) ~ (Pr~> (- (Pr ~> (T2~ (o (T~ X(iiT)) -0 ))) -0 ))

By the schemes (i) and (ii), arguments can be expanded by the goplication of strict and defeasible rules.
By scheme (iii ), argument expansion by applicétion of a defeasible rule is blocked if the expansion could
lead to an argument with conclusion [. Thisis achieved by an attack of scheme (i) in case there ae strict
rules and additi onal arguments from which an unwanted argument for [ could be constructed. By scheme
(iv), the gplicaion of the defeasible rule is reinstated in case the resulting argument has dronger
conclusive force than one of the other arguments needed to construct the unwanted argument for [I.
Formally this is expressed by an attack of scheme (iii) in case a1 appropriate cnclusive force statement
obtains, in addition to the rules and arguments needed for the construction of an argument for .

Asan illustration, one example is worked out. Let the language L consist of the sentences [, py, P., q
and - g. Consider the threerules of inferencep; = g, p» = ~qand g - q - 0. With resped to the abstrad
argumentation framework with these rules and an empty conclusive force relation, the base set {p1, p2}
has two AAS extensions, viz. the sets of arguments {p,, p2, P. = q} and {py, P>, P> = —q}. If the
argument p; = q has gronger conclusive force than the agument p, = - q in the dstrad argumentation
framework, then the base set { p,, po} hasonly {p., p., p1 = q} asan extension.

In the following the instances of the schemes (i) to (iv) are listed that can be used to mimic
Vreeswijk'stechnical apparatusin DEFLOG. Assume first that the conclusive forcerelation is empty. Then
the following are needed.

) @-g-0)~(P:=29~>({(p2=2-09) ~>({(P.=20,p2=~0) = 1))
(id) (pr=0) ~ (P~ (Pr=0)

(iLb) (p2=-0) ~ (P2~ (P2= —0))

(i (@ -9-0~(p1=0) ~ *((p2=-0) ~ (P2~ (P2 = ~0))))
(iii.b) (q, =g~ 0)~ ((p2=—~0) > *x((PL=0) ~ (P~ (p1 = 0))))

By (i), the aguments p; = g and p, = —q for g and =g can be extended to the agument (p; = q, p. =

-q) » Oif therule g, -q - O and the aguments p, = q and p, = —q oltain. By (ii.a), the defeasible
argument p, = q can be formed from the rule p, = g and the agument p;. By (ii.b), p, = —~q can be
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formed from p, = -q and p,. The sentences (iii.a) and (iii.b) make (ii.a) and (ii.b) defeasible. For
instance, (ii.a) expresses the situation that the rule q, -q -» O and the agument p; = g make the
construction sentence (ii.a) for the agument p, = - q defeaed.

The DEFLOG theory consisting of p;, p, and the above sentences (i), (ii.a), (ii.b), (iii.a) and (iii .b) has
two extensions, one in which (ii.a) is defeaed and one in which (ii.b) is. In the first DEFLOG extension,
the three agument expressing sentences py, p. and p, = q are justified, while p, = —q is not taken into
acount, and in the second py, p> and p, = —q are justified, while p; = g is not taken into acournt. As a
result, the two DEFLOG extensions correspond to the two AA S extensions of the base set {py, p2} -

Assume now that (p; = q) > (p. = —Q), i.e, that the agument p; = g has dronger conclusive force
than the agument p, = - q. Then the foll owing instance of scheme (iv) doesthe trick.

(iv) (P29 >(P=-0)~(@~9-0)~>(Pr=0)~
*((9. =9~ 0) ~ (P22 ~9) » x((PL= Q) ~ (P~ (PL = D))

It says that the conclusive force mmparison (p; = q) > (p> = =), the rule (g, —~q - 0) and the agument
(p1 = g) make the blocking sentence (iii .b) defeaed. As a result, the DEFLOG theory consisting of py, p»
and the @ove sentences (i), (ii.a), (ii.b), (iii.a), (iii.b) and (iv) has only one extension, viz. the one in
which (ii.b) and (iii .b) are defeaed. Only the DEFLOG extension in which p;, p, and p, = q are justified
remains, in correspondence with the only remaining AA S extension.

Let now Apas consist of al sentences of one of the schemes (i) throudh (iv). Note that only for the
sentences of the forms (ii) and (iii) an attadk is available (as expressed in (iii ) and (iv), respedively).

Proposition (13.13)
A set of AAS arguments E is an AAS extension of a base set P with resped to an abstrad
argumentation system (L, R, <) if and only if E is equal to the set of justified statements in a DEFLOG
extension of thetheory P 0 R O < O Apas that express an AAS argument.

Proof: Given an AAS extension E as in the proposition, it is posshle to construct aDErFLOG extension d PO R O <
O Aaas The defeat of no sentencein P O R O < is derivable from the theory since the defea sentences do nd
even ocaur in a sentence in the theory. (Recdl that the defea sentence of a sentence ¢ is x¢.) The only defea
sentences that occur in a sentencein the theory are the defeat sentences of sentences in Aaas of the forms (i) and
(iii). E determines which sentences of the forms (ii) and (i) adually are to be mnsidered defeaed. Let Dy
consist of the form (ii) sentencesin Aaas that expressthe nstruction of an argument oy, ...,6, = ¢ that isnot in
E, while the aguments o, ..., 0, arein E and the rule ¢4, ..., ¢, = ¢ isin R. Let D) consist of the form (jii)
sentences that expressthat an argument o, ..., 0, = ¢ canna be nstructed, while it isin E, and whil e there ae
arguments Ty, ..., Ty in E and strict rules py, .., pr in R that can be used to expand it to an argument for [J. Claim:
(PO RO < 0O Apas) \ (Dgiy O Dyiiy) spedfies a DEFLOG extension d the theory P O R 0 < 0 Aaas, in which
exadly the sentencesin Dy O Dy are defeaed. The daim foll ows from two observations. First, observe that for
any sentencein Dy; expressng the wnstruction o an argument oy, ..., 0, = ¢ there must be aguments Ty, ..., T;
in E and strict rules py, ..., P in R that can be used to construct an argument for [, while ay, ..., 0, = ¢ does not
have stronger conclusive forcethan one of the aguments 1y, ..., T,. Asaresult, a orresponding form (iii ) sentence
can be used to derive its defea, while no form (iv) sentence can defend against that. Second, observe that for any
sentence in Dg;;) expressng the atadk of a form (i) argument construction sentence, there must be an argument
among the 1y, .., T; that has weeker conclusive force than oy, ..., 0, = ¢. As aresult, its defea can be derived
from an appropriate form (iv) sentence

That the set of justified statements in a DEFLOG extension d the theory P 0 R O < O Aaas is an AAS
extension o P with resped to (L, R, <) follows from simil ar observations.

A mgjor difference between DEFLOG and Vreeswijk's abstrad argumentation systemsis that the former is
sentence-based, whil e the latter is derivation-based, in the sense that in DEFLOG the statements expressed
by sentences can be defeaed, while in Vreeswijk's abstrad argumentation systems derivations (in his
system cdled arguments) are the objed of defea. Verheij's CUMULA (19961 is in a similar way
derivation-based. The reconstruction of Vreeswijk's abstrad argumentation systems shows how DEFLOG
can incorporate the derivation-based approach by including sentences that express derivations in the
logicd language.

Another important difference is that Vreeswijk's abstrad argumentation systems defea is non-
deterministic, in the following speda sense: when some AAS arguments are involved in a nflict, each
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can be chosen as defeaed, merely by its being involved in the conflict. The theory does not prescribe
which from among the aguments to choose & defeaed. The choice ca be restricted by the conclusive
force relation: an argument that is gronger than another argument in the cnflict cannot be dosen as
defeded. DEFLOG is deterministic, in the spedal sense that when a statement is defeded in an extension
of atheory thisis an explicit consequence of the justified part of the theory. That it till can occur that
there ae several extensionsis not the result of non-deterministic choice but of dialedicd ambiguity (i.e.,
the posgbili ty that a sentenceis both dialedicdly justifiable and defeasible).

The result is for instance that Vreeswijk's abstrad argumentation systems are not very well suited for
modeling Poll ock's undercutters. If for instance p undercuts q as a reason for r, then Vreeswijk interprets
thisin terms of the conditional q > r (cf. Vreeswijk's notation, 1997, p. 277; the conditional > is not to be
confused with the mnclusive forcerelation on arguments). He first enforces a mntradiction between g > r
and - (q > r), where the latter is made to follow from p, and then adds that the agument for = (q > r) has
stronger conclusive force than an argument for q > r. Vreeswijk would use astrict ruleq>r, =(q>r) -
0, adefeasible rule p = = (g > r), and the stipulation that the AAS argument p = = (q > r) (or any other
argument ending like this) has stronger conclusive force than the AAS argument q > r (and any other
argument with this conclusion). As a result, that p undercuts q as a reason for p must partly be expressed
in the fixed conclusive force relation on arguments, that is expressed outside the logicd objed language.
To me it seems much more natural that undercutters (and for that matter all other defea information) are
expressbleinthe logicd objed language, like in DEFLOG.

13.3 Dungs admissble sets

Dung's (1995 notion of admissble sets of unstructured arguments turned out to be afruitful abstradion
of ideas from nonmonotonic reasoning and logic programming.*® Dung's definitions provided inspiration
for several of DEFLOG's definitions (and for some of my ealier work on dialedicd argumentation, e.g.,
Verheij, 1996a and 1996b). The foll owing recaitulates some of Dung's definiti ons.

Definition (13.14): Dung's admissble sets

0] An argumentation framework is a pair <AR, attacks> where AR is a set of arguments and attacks
isabinary relation on AR. If (A, B) O attacks, then the agument A attacks the agument B. A set
of arguments S attacks an argument A if there is an argument B in Sthat attacks A.

(i)  Given an argumentation framework <AR, attacks>, aset S 0 AR of arguments is conflict-freeif
there ae no arguments A and B in S such that A attacks B.

(iii)  Anargument A 0 AR isacceptable with resped to a set S of arguments if, for ead argument B O
AR, if B attacks A then S attadks B.

(iv) A conflict-freeset of arguments Sis admissible if each argument in Sis accetable with resped to
S.

(v) A preferred exension of an argumentation framework <AR, attacks> is an admissble set that is
maximal with resped to set inclusion.

(vi) A corflict-freeset of arguments Sisastable exensionif S attacks any argument not in S.

The DEFLOG translation of an argumentation framework <AR, attacks> goes as follows. The aguments
of AR are used as the dementary sentences of DEFLOG's language. If <AR, attacks> is an argumentation
framework, then the theory AR O {A x B | (A, B) O attacks} is its DEFLOG trandation. The following
propositi on establi shes aformal connedion between Dung's admissble sets and DEFLOG.

Propasition (13.15)

Let A be the DEFLOG trandation of an argumentation framework <AR, attacks>. Then the foll owing

obtain:

0] A set of arguments S O AR is conflict free(in Dung's ®nse) if and only if Sis stisfiable (in
DEFLOG's ®nse).

(i) A conflict free set of arguments S 0 AR is admissble (in Dungs ®nse) if and only if Sis
didedicdly justifying with resped to A (in DEFLOG's sense).

(iii) A set of arguments S 0 AR is a preferred extension of <AR, attacks> (in Dungs ®nse) if and
only if S spedfiesapreferred stage of A (in DEFLOG'S ®nse).

16 Admissbility has also been discussed in sedion 12.4.
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(iv) A setof arguments SO AR isastable extension of <AR, attacks> (in Dunds nse) if and only
if Sspedfiesan extension of A (in DEFLOG'S nse).

Proof: All parts of the propositi on follow by straightforward definition chedking.

The major difference between DEFLOG and Dung's definitions is that DEFLOG has a logicd language in
which information concerning justificaion, attack and defea can be expressed, whereass Dung uses an
unstructured language and a fixed set of attack relations. As a result of its expressve language, DEFLOG
allows very flexible representations. Sentences like p, ~ (g x r) and p, x (g x r) expressng that q attacks
rif p, and that p, attadks that g attadks r, have no counterpart in Dung's argumentation frameworks.

A natural way to define dialedicd justification in Dungs framework is the foll owing:

A corflict free set of arguments C (in Dung's ®nse) is dialectically justifying (in Dungs
framework) if C attadks any corflict freeset of arguments C', such that C O C' is not conflict free

It follows by straightforward definition checking’ that the notions of admissibility and daledicd
justification that differ on DEFLOG's language (see epedally section 12.4) coincide on Dung's restricted
language.

Bondarenko, Dung, Kowalski and Toni (1997) have used admissibility in their discussion of an
abstrad, argumentation-theoretic goproach to default reasoning. Their setting is just as Dung's (1995
related to DEFLOG's, yet they focus on deductive systems. Interestingly, whereas in DEFLOG dialedicd
negation x is treded as an ordinary connedive, Bondarenko, Dung, Kowalski and Toni consider the
guestion which sentences are the antraries of others as part of the domain theory (as the mapping from
sentences to their contraries is explicitly represented in their assumption-based frameworks). It seems that
the notion of dialedicd justification can be diredly transplanted to their system. For the reasons,
discussed in section 12.4, it is probable that diadedicd justificaion has better properties for analyzing
assumption-based frameworks than admissibili ty.

By the technical closeness of DEFLOG and the gproadies of Dung (1995 and Bondarenko, Dung,
Kowalski and Toni (1997), several of DEFLOG's properties have dired analogues in the latter work. Using
the propasition, many results on DEFLOG are immediately relevant for Dung's admissible sets (and vice
versa, of course). For instance the results on the extension existence problem and the extension
multiplicity problem in section 9 and on the internal structure of dialedicad justificaion in sedion 10 can
be eaily trandated to Dung's framework. The former give anongst others necessary and sufficient
conditions for the existence of Dungs gable extensions and for the multiplicity of Dung's gable
extensions in terms of dialedicd justificaion, and equivaently in terms of admissibility (by the
equivalence of dialedicd justificaion and admissibility on Dung's restricted language, discussed above).
The results of sedion 8 on types of stages can also be transplanted to Dung's preferred extensions. For
instance, it is not the case that Dungs preferred extensions are in general maximal stages, or can in
general be extended or compatibly extended to maximal stages (cf. also Verheij, 19963).'8

13.4 Reason-Based Logic

Reason-Based Logic (Hage, 1996 1997; Verheij, 1996b) is a formal model of rules and reasons, inspired
by the use of these notionsin the field of law. In Reason-Based Logic, rules are individuals that can have
properties. Key properties of rules distinguished in Reason-Based Logic are their validity, applicability or
exclusion. These properties are part of the core of Reason-Based Logic - they belong to its ‘logicd
constants. Rules can however also have other properties. For instance, they can be just, or eff ective.

In order to alow rules to have properties, they are not represented as sentences, but as terms. In
Reason-Based Logic, the validity of arule with antecadent ¢ and consequent  is for instance epressed
by the sentence Valid(rule(d, Y)). Reason-Based Logic assumes a trandation from sentences to terms.

17 Let C be amissble (and therefore mnflict fred, and C' conflict freewhile C O C' is not corflict free Then C
attadks C' or C' attadks C. If C' attacks C, there is an argument a in C' that attadks an argument  in C. But B is
accetable with resped to C, so C attadks a. So C is diaedicdly justifying. Let C be didedicdly justifying, and let
o be ar argument in C. If B attadks a, then {B} isa onflict freeset attacking C, while C O {f} is not conflict free
Therefore C attadks { B}, a is accetable with resped to C and C is admissble.

18 As a result, Prakken and Vreeswijk's (to appear, sedion 51) claim that preferred extensions correspond to
maximal partial status assgnmentsis mistaken.
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The main relations between the mre properties of rules in Reason-Based Logic ae (in Verheij's
(1996h) version) encoded in its mantic constraints. For instance, rules can only be excluded if they are
valid. It should be stressed that only the main relations between Reason-Based Logic's core properties are
encoded in the semantic constraints. For instance, the semantic oonstraints do not determine which rules
are valid. It is a starting point of Reason-Based Logic that the question whether a rule is valid can be
answered differently in different contexts. As a result, the representation of the fads about rules is to a
large extent left to the domain theory.

The semantic constraints of Verheij's (19961 version of Reason-Based Logic can be used to define a
monotonic conseguence notion. However, since in Reason-Based Logic rules can be excluded and the
reasons for a cnclusion can outweigh the reasons against it, it is also natural to study nonmonotonic
consequence notions for Reason-Based Logic. For instance, fixed pant definitions in the style of Reiter's
logic for default reasoning have been applied to Reason-Based Logic.

Similarly, DEFLOG can be used to spedfy nonmonotonic aspeds of Reason-Based Logic. Here an
axiom system is presented that gives an idea how the representation of rules and their properties in
Reason-Based Logic can be modeled in DEFLOG.

(i) ¢~ (valid(rule(d, g)) ~ Reason(d, )

(i)  Reason(9, Y) ~ Y

(i)  Excluded(rule(d, W) ~ x(¢p ~ (Valid(rule(d, ) ~ Reason(¢, ¥)))

(iv)  Outweighs({¢1, ....0n}, {W1, ... W}, X) ~ X(Reason(y;, not-X) ~ not-X)

(v)  Reason(Ym.a, not-x) ~ x(Outweighs({ ¢4, ..., ¢n}, {W1, ..., W}, X) ~ x(Reason(y;, not-x) ~ not-X))

(vi)  Reason(d, g) ~ Valid(rule(d, v))
(vii) Excluded(rule(¢, g)) ~ Vaid(rule(d, )

(viii) Outweighs({¢1, ..., ¢n}, {W1, ..., P}, X) ~ Reason(¢;, x)
(ix)  Outweighs({s, ..., dn}, {Ws, ..., Ym}, X) ~ Reason(y;, not-x)

Note that ¢, | etc. are used as metavariables for corresponding sentences and terms in these axiom
schemes. In schemes (iv), (v) and (ix), not-x is a metavariable that stands for the negation of x, where the
type of negation isleft implicit here. In scheme (v), it is assumed that Y., differsfrom gy, ..., Y.

By axiom scheme (i), if the antecadent of a valid rule is satisfied, it becomes a reason for the rule's
consequent. According to axiom scheme (ii), if there is a reason for some @nclusion, the @nclusion
follows. Both schemes are defeasible, though, as the schemes (iii) and (iv) show. If arule is excluded, it
does not give rise to a reason (scheme (iii ). If the reasons ¢4, ..., §, for a wnclusion x outweigh the
reasons Y, ..., P, against it, the latter do not lead to their conclusion not-x (scheme (iv)). By scheme (v),
outweighing has no effed if there is an oppasing reason that is not considered.

While the axiom schemes (i) to (v) express central properties of rules in Reason-Based Logic, the
schemes (v) to (ix) are mostly auxiliary. Schemes (vi) and (vii) state that only valid rules give rise to
reasons or can be excluded. By schemes (viii) and (ix), outweighing adually concerns reasons for and
against a mnclusion.

Detail s about Reason-Based Logic can be found in the work of Hage (1996 1997) and Verheij
(1996h).

13.5 Winning strategies in dialogue games

In the mntext of dialedicd argumentation, i.e., argumentation with arguments and counterarguments, it is
natural to consider dialogue games in which one of the game players tries to justify some statement, while
the other tries to show that it is not justified or that it is defeaed. For instance, Prakken and Sartor (1997)
have used a dialogue game in order to charaderizetheir category of justified arguments. The basic ideais
that an argument is justified if there is a winning strategy for the player that starts a dialogue game by
claiming the agument.

Here the definitions as given by Prakken (1997 are given. Not al notions occurring in the definitions
are formally defined here. They are recounted as an illustration. The numbering is taken from Prakken
(1997, p. 166-167).
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Definition (13.16)
6.5.2 A dialogue based on a default theory I is a nonempty sequence of moves move = (Player;, Arg;)
(with i > 0), such that
1. Arg O Args-
2. Player; =Pif and only if i isodd and Player; = O if and only if i iseven;
3. If Player; = Player; = Pand i # ], then Arg; # Arg;
4. If Player; = P, then Arg; strictly defeas Arg;_q;
5. if Player; = O, then Arg; defeats Arg;.s.
6.5.3 A dialoguetreeisatreeof moves such that
1. Each branchisadiaogue;
2. If Player; = P, then the children of move are dl defeaers of Arg;.
6.5.4 A player wins a dialogue if the other player cannot move. And a player wins a dialogue tree if and
only if it winsall branches of the tree
6.5.5 Anargument A isjustified if and only if there exists a dialogue treewith A asits root, and won by
the propanent.

Player P is the proponent and player O the oppment of the agument with which the dialogue starts. The
players exchange aguments as alowed by the default theory (conditions 1 and 2 under 6.5.2). By
condition 3, the propanent is not alowed to repea his moves. Conditions 4 and 5 state that ead newly
adduced argument must be a ounterargument to its predecessor (in the sense of the system defined by
Prakken and Sartor). Note the asymmetry between the proponent and the oppment: while apropanent's
argument must strictly defea its predecessor, the oppanent only needs to provide adefeding argument.

Diaogue trees (6.5.3) are those wlledions of dialogues that show the propoent's readion to any
posshle munterargument by the oppaent. Winning atree(6.5.4) means that the propanent has awinning
strategy. Finally, in 6.5.5, an argument is defined to be justified when its proponent has a winning
strategy.

The ideaof winning strategies in dialogue games is closely related to that of a justifying dialedica
argument as it was defined in sedion 10 on the internal structure of dialedicd argumentation (definition
(10.14)). In fad, ajustifying diadledicd argument corresponds exactly to a winning strategy for the first
player in the following argumentation game:

Definition (13.17)

0] An argumentation game concerning ¢ with resped to atheory A isa(finite or infinite) sequence of
A-arguments Cy, C,, ... (where the indices are natural numbers > 0) , such that
a C, isan elementary argument for ¢, and
b. Ci+1 and C; are dementarily incompatibleif i is odd, and
C. Ci.+1 elementarily attacks C; if i iseven, and
d. if i and j have different parity, then C; and C; are not equal.

If the agument sequence is finite, the length of the game is the number of arguments in the
sequence

(i)  Anargumentation game has ended if it is not a proper initial of another argumentation game, or if
it isinfinite. An ended argumentation game iswon by the second player if thereisafina argument
with even index. Otherwise the game iswon by the first player.

(iii)  Thefirst player has a winning strategy in the agumentation game wncerning ¢ with resped to A
if thereisamap S from the set of argumentation games I" concerning ¢ with resped to A that have
an even index fina argument Cr, to the set of A-arguments, such that S(I') is an argument
elementarily attacing Cr.

Since ended argumentation games can be finite or infinite, there ae two types of winning for the first
player: the gameisfinite and the last argument has oddindex, or the game isinfinite. The intuition behind
the second type of winning is that in that case the first player has a reply to any move by the second
player. As aresult, the first player succeals in attadking all counterarguments by the second player. The
map S in the definition of the first player having a winning strategy indicates which move the first player
can make in reply to any previous move by the second player.

Proposition (13.18)

There existsadiaedicd argument justifying ¢ with resped to atheory A if and only if the first player
has a winning strategy in the agumentation game cncerning ¢ with resped to A.
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Proof: The proposition foll ows from the observations that argumentation games correspondexadly to theinitia parts
of branches in a justifying dialedicd argument, and that ended argumentation games correspond exadly to the
full branches of ajustifying dialedicd argument. The crrespondenceis sich that the length of the indices of the
arguments in abranch of ajustifying dialedicd argument is equal to the index of the arresponding argument in
an argumentation game. Since by the definition of a justifying dialedicd argument, it has no kranches ending
with an even length index, eah even length game can be continued by the first player by playing the next
argument in the branch corresponding to the game.

14 Thecomparison and the attack metaphor in dialectical argumentation

Inthefield of diadedicd argumentation, two guiding metaphors can be distinguished, viz. the comparison
and the atack metaphor.’® Both can be regarded as attempts to adapt pure maximal consistency for
modeling dialedicd argumentation. The first is the comparison metaphor. In this metaphor, the defeat of
a statement (or argument or rule of inference or derivation, or whatever is one's favorite objed of defed)
is the result of comparing the statements (or ...) that are involved in a conflict. Usualy, the comparison
involves notions like strength or priority, that are usualy taken as a primitive. In the cmparison
metaphor, one starts with a symmetric notion like cnflict, that is then asymmetricized by a comparison
relation. When two statements are @nflicting and one has priority, the other is defeated. Pollock's (1987
rebutting defeaers are a paradigmatic example of defea like in the wmparison metaphor. The
comparison metaphor is also at the heat of Vreeswijk's (1997 work.

The second is the atack metaphor. In this metaphor, defed is the result of a battle between statements
(or arguments or whatever) some of which attack others. Some of the statements (or ...) are defeaed, viz.
those that are dtadked by an urdefeaed statement; others remain undefeated, e.g., those that are not at all
attadked, or that are only attadked by arguments that are themselves defeated. The notion of attad is
taken as a primitive. Attack is usualy taken as an asymmetric relation. Pollock's (1987 undercutting
defeders are aparadigmatic example of defed like in the atack metaphor. Dung's (1995 work and
Verheij's (19960 CuUMULA are based on the dtack metaphor.

The two metaphors are to some extent interchangeale. Asume that the statements ¢ and Y are
conflicting. Then the priority of ¢ over  or the atadk of Y by ¢ has the same result: ¢ is undefeaed and
Y defeaed.

For quite some time, | considered the dtack metaphor more satisfadory than the mparison
metaphor.”® My main reasons were thredold. First, undercutters are harder to explain using the
comparison metaphor (cf. the discussion of Vreeswijk's treament of undercutters in sedion 13.2).
Sewnd, | considered defed as the immediate result of an asymmetric relation like atack, while the
comparison metaphor naturally starts with a symmetric relation like @nflict. Third, in the cae of the
defed of structured arguments, the comparison metaphor seemed to imply the unnatural separation of
argument construction on the one hand and comparison and defea on the other.

| have changed my opinion, since in DEFLOG, the comparison and the dtack metaphor merge into
one, while none of my threereasons against the comparison metaphor obtain. Any defeded statement ¢
corresponds to a justified statement x¢, with which it is conflicting (in the sense that ¢ and x¢ cannot
bath be justified in an interpretation). This ssems a coice for the comparison metaphor. Another of
DerFLOG's traits is however more like the atack metaphor, viz. the inherent asymmetry between ¢ and x¢
that is built into the definition of extensions. By this asymmetry, the defea of ¢ coincides with the
justification of xd, but not the other way around. The defea of x¢ does not coincide with the justification
of ¢, but with that of xx¢. (Note that the asymmetry is taken away in symmetric DEFLOG, discussed in
sedion 122, suggesting that symmetric DEFLOG is less appropriate for modeling diaedicd
argumentation than ordinary, asymmetric DEFLOG.)

The mixture of the mmparison and the dtack metaphor in DEFLOG explains why both have been
fruitfully adopted, whil e as yet neither has successfully claimed its primacy.

% In my disertation (Verhej, 1996, p. 164-5), | spoke in a similar vein o inconsistency-triggered and
courterargument-triggered defed.

20 see eg. my ledure notes on attadk and defeat at http://www.metajur.unimass.nl/~bart/teacing/defarg/. Amongst
others, adiscusson with Algandro Garcia made me doukt my position.
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15 DEFLOG asa dialectical logic

DEFLOG can be regarded as what might be cdled a diaedicd logic, viz. a logic in which not only
attention is paid to justification, but also to defed. Dialedicd logics can be cntrasted with deductive
logics, in which only justification is addressed. Here justificaion might be interpreted in terms of rules of
inference. A paradigmatic example of a deductive logic is dandard propasitional logic with its mantics
in terms of valuations and its proof theory in terms of (e.g.) rules of inference Here the differences
between DEFL OG and standard propositional logic aslogics are briefly addressed.

The difference between the logicd languages of DEFLOG and propasitional logic is only superficial.
Whereas DEFLOG only uses two sentential connedives ~ and X, propositional logic uses -» and =, and
usually several more, like [0, O and <. It is well-known however that a propasitional |anguage using only
- and - as connedives does not diminish its expressveness The reason why in DEFLOG only ~ and x
are used is that they seem to suffice for adialedicd logic. Sincethe interpretation of ~ validates Modus
ponens, it is possble to mimic many deductive logics (in fad al deductive logics that have aHil bert-style
proof theory, based on Modus ponens only). It has been shown (espedally in the sedions 11 and 13) that
many notionsin the field of defeasible reasoning can be modeled when DEFLOG's dialecticd negation x is
added.

A difference between DEFLOG and propgsitional logic drealy arises at the level of interpretations.
Whereas DEFLOG's interpretations are valuations of the language's subsets, those of propasitional logic
are dways total: any sentence of the language must be asigned a truth value. The reason for this
differenceis that DEFLOG's 'partial’ interpretations can be thought of as worlds as they are spedfied by a
theory about the world. Since such a theory does not necessarily provide mmplete information (in the
sense of having for any sentence ¢ either ¢ or its negation as a cnsequence), it makes snse to consider
the partial interpretations of DEFLOG. Note that in propgasitional logic there is formally an analog for
DEFLOG's partial interpretations, viz. the sets of sentences that are dosed under valid consequence.

The next difference between DEFLOG and propasitional logic occurs when theories are interpreted.
The interpretation of atheory in propasitional logic ae its models, which are the interpretations in which
al sentences in the theory are paositively evaluated, viz. as true. In contrast, in DEFLOG, a theory is
interpreted in terms of its extensions, in which some sentences of the theory are evaluated pasitively and
others negatively, viz. as justified and defeaed, respedively. The reason is that in DEFLOG a theory is
interpreted as a defeasible specification of the world. On the one hand, the sentences in the theory express
statements about the world that are assumed to state truths. On the other hand, the theory cen itself
expressthat statements in the theory or following from it are not to be asaumed to state truths. As aresult,
DEFLOG provides a distinct way of interpreting sets of sentences, next to their ordinary interpretation as
strict theories. In the ordinary, strict interpretation of theories, the sentences in atheory are dl assumed to
state truths. The distinct way of interpretation isto consider a set of sentences as a dialectical theory that
expresses defeasible assumptions about the world. The result is that there ae two kinds of satisfiability.
The first is dandard, 'strict' satisfiability, when a theory has a model. The other is 'diaedicd’
satisfiability, when a theory has an extension. Note that an extension of a theory can be regarded as a
spedfic kind of consistency maintenance (just like taking maximal satisfiable subsets) since ay
extension of a theory seleds a satisfiable subset of the theory. However it has been shown above
(espedally in sedion 8) that there ae many satisfiable subsets of a theory (al corresponding to the
theory's dages) that do not correspond to extensions.

The notion of valid consequence in propasitional logic, acording to which a conclusion foll ows from
atheory in caseit is true in any model of the theory, has a @munterpart in DEFLOG's notion of dialedical
justification. Just as a theory has valid consequences, it has dialedicdly justifiable cnsequences. An
important differenceis that the notion of validity is monotonic, in the sense that a valid consegquence of a
theory is also a valid consegquence of any larger theory. Dialedicd justification is nonmonotonic: if a
statement is dialedicdly justifiable with resped to a theory it need not be dialedicdly justifiable with
resped to alarger theory. Dialedicd justification does also not obey the inclusion property sinceit is not
the case that any statement expressed by the theory is diadledicdly justifiable with resped to the theory.
Valid consequence has the inclusion property.

Another difference aises with resped to inconsistency: wherea an inconsistency in propaositi onal
logic triviali zes the theory, since any conclusion follows from a theory that has both a @mnclusion and its
negation as a @nseguence, its analog in DEFLOG, viz. dialedicad ambiguity, is not trivializing: the

2L such aset is confusingly often caled a theory, in contrast with the use of that term in the present paper, where a
theory isjust any set of sentences.
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existence of a statement that is both dialedicdly justifiable and diaedicdly defeasible with resped to a
theory does not imply that any statement is dialedicdly justifiable. Note dso that while inconsistency
corresponds to non-satisfiabili ty in propasitional logic, the analogous correspondence between didedicd
ambiguity and daedicd non-satisfiability (in the sense of not having an extension) does not hold:
dialedicd ambiguity is the first step towards ambiguous dialedicd satisfiability, in the sense of having
more than one extension. The predse @rrespondence between diadledicd ambiguity and dialedicd non-
satisfiability is gated in theorem (9.6) and corollary (9.10). It is sgnificantly more cmplex than the
equivalence of inconsistency and non-satisfiabili ty in propasitional logic.

Therole of valid proofsin propasitional logic is smilar to that of the justifying dialedicd arguments
of DEFLOG. Whereas avalid proadf shows the internal structure of valid consequence, in the sense that it
explicates the inference steps that lead from a theory to its conclusion, justifying dialedical arguments
show the internal structure of diadledicd justification. Justifying dialedicd arguments do however not
only explicae the inference steps that lead from a theory to its conclusion (in DEFLOG simply a sequence
of applicaions of ~-Modus ponens), but also which attadks are required against incompatibiliti es. An
important limitation follows: the set of justifying dialedicd arguments with resped to a theory is not
reaursively defined in terms of the theory as is the cae for the set of valid proofs. As a result, the
justifying dialedicd arguments are not in general readily computable.

These diff erences show that the dialedicd logic DEFLOG differs sgnificantly from deductive logic as
exemplified by standard propasitional logic. DEFLOG can in an important sense, however, be regarded,
not as a modificaion, but as an expansion of deductive logic: its core is a deductive logic built around a
Modus ponens validating conditional ~, to which dialedicd negation x has been added.

16 Conclusion

When theories are interpreted daledicdly, i.e., as sts of sentences expressing juxtaposed oppaing and
contradicting statements, some of which can be justified and athers defeaed, more theories are
interpretable then when theories are interpreted 'monoledicdly’, i.e., as ts of sentences assumed to be
all true. In other words, there ae more theories with extensions than theories with models.

A fundamental complicaion of diaedicd interpretation of theories in terms of extensions is that
theories can have z&o, one or several extensions. The extension existence problem asks for a necessary
and sufficient criterion for the existence of an extension of a theory. The extension multiplicity problem
asks for anecessary and sufficient criterion for the existence of multiple extensions of atheory.

In the present paper, the notion of dialedicd justificaion has been introduced: an argument is
didedicdly justifying when it attacks al arguments that are incompatible with it. The properties of
dialedicd judtification, espedally the union, locdization and separation properties, make it particularly
suitable for the analysis of extensions. It has been shown that the notion of dialedicd justificaion gives
rise to necessary and sufficient criteria that solve the extension existence and the extension multiplicity
problems. The ideais that an extension exists if and only if there is a part of the theory in the mntext of
which no sentence of the theory is dialedicdly ambiguous (i.e.,, both diaedicdly justifiable and
dialedicdly defeasible), while dl sentences of the theory are didedicdly interpretable (i.e., either
didedicdly justifiable or diaedicdly defeasible) in the cntext of that part of the theory. Multiple
extensions exist if and only if there ae multi ple incompatible parts with these properties.

It has been shown that a simple, dialedicdly interpreted logicd language using ordinary connedives
x and ~ is suitable & a language for the analysis of central topics of dialedical argumentation, such as
Toulmin's argument scheme, Pollock's rebutting and undercutting defeaers, and priority and weighing
defeders. An important consequence of the doice of language is that in DEFLOG all information
concerning justificetion and defed is expressblein the logica objed language as contingent information.
There is no need for separate dasses of defeasible rules of inference, priority information or pre-defined
conclusive force relations between arguments. All these kinds of information can be expressed dredly in
DEFLOG's language, along with the other contingent information.

The internal structure of didedicd justificaion has been analyzed, in terms of justifying diaedicd
arguments (that differ subtly from the naive dialedicd arguments of sedion 2).

The ideaof stages provides a different approach towards the investigation of the locd properties of
didedicd interpretation of theories in terms of extensions. A theory's gtages are the diaedicd
interpretations of parts of the theory. Instead of maximizing only the justified sentences of a theory in a
stage, it is also pasdble to maximize the whole set of interpreted sentences of a theory. It turns out that
the types of maximization are perpendicular, in the sense that maximizaion in one sense does not imply
maximality in the other sense. The result is a plethora of types of stages, with few interrelations. To me,
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this suggests that one should not consider ead as a different type of dialedicd interpretation of theories,
as is for some types suggested in the work of Dung (1995 and Bondarenko et al. (1997) and aso in
Prakken & Vreeswijk's overview (to appear), but merely as partial interpretations with an interesting
speda property. In other words, to me, there is only one ‘genuine’ dialedicd semantics, viz. didedicd
interpretation as extensions. All other notions, such as stisfiability classes, diaedicadly preferred stages
and maximal stages, are in the first placetoolsin the investigation of the properties of extensions. The use
of the notion of dialedicd justificaion in the extension existence and the extension multiplicity problems
is an example of the goplication of such todls.
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