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Sanjay Modgil, Henry Prakken

abstract. This chapter reviews abstract rule-based approaches to ar-
gumentation, in particular the ASPIC+ framework. In ASPIC+ and its
predecessors, going back to the seminal work of John Pollock, arguments
can be formed by combining strict and defeasible inference rules and con-
flicts between arguments can be resolved in terms of a preference relation
on arguments. This results in abstract argumentation frameworks (a set
of arguments with a binary relation of defeat), so that arguments can
be evaluated with the theory of abstract argumentation. First the ba-
sic ASPIC+ framework is reviewed, possible ways to instantiate it are
discussed and how these instantiations can satisfy closure and consis-
tency properties. Then the relation between ASPIC+ and other work
in formal argumentation and nonmonotonic logic is discussed, including
a review of how other approaches can be reconstructed as instantiations
of ASPIC+. Further developments and variants of the basic ASPIC+

framework are also reviewed, including developments with alternative
or generalised notions of attack and defeat and variants with further
constraints on arguments. Finally, implementations and applications of
ASPIC+ are briefly reviewed and some open problems and avenues for
further research are discussed.

1 Introduction

One of the oldest research strands in the logical study of argumentation is to
allow for arguments that combine strict and defeasible inference rules. Strict
inference rules are intended to capture deductively valid inferences, where the
truth of the premises guarantees the truth of the conclusion. Defeasible in-
ference rules are instead meant to capture presumptive inferences, where the
premises only create a presumption in favour of the conclusion, which can
be refuted by evidence to the contrary. This approach was introduced in AI
by [Pollock, 1987; Pollock, 1990; Pollock, 1992; Pollock, 1994; Pollock, 1995],
previously studied by e.g. [Lin and Shoham, 1989; Simari and Loui, 1992;
Vreeswijk, 1997; Prakken and Sartor, 1997] and [Garcia and Simari, 2004] and
currently studied by e.g. [Dung and Thang, 2014; Dung, 2014; Dung, 2016] and
in work on the ASPIC+ framework [Prakken, 2010; Modgil and Prakken, 2013;
Modgil and Prakken, 2014; Caminada et al., 2014; Li and Parsons, 2015;
Grooters and Prakken, 2016].

While Dung’s seminal theory of abstract argumentation frameworks [Dung,
1995] has proved to be extremely influential, it adopts a level of abstraction
that precludes provision of guidelines for choosing how to define arguments and
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attacks from knowledge bases, and a study of how these choices should be made
to ensure rational outcomes yielded by evaluation of the justified arguments un-
der Dung’s semantics. The above-mentioned work, which partly originates from
before Dung’s article, addresses these issues. This chapter presents the current
consolidation of this research strand: the ASPIC+ framework for structured
argumentation. The ASPIC framework was initially developed as an output of
a European Union project on argumentation [Amgoud et al., 2006] and further
developed into the ASPIC+ framework, initially in [Prakken, 2010], and sub-
sequently in [Modgil and Prakken, 2013]. The principal aims of ASPIC+ were
to: 1) generalise ASPIC so as to provide a natural knowledge representation
framework in which to formalise a wide variety of existing and novel instantia-
tions of abstract argumentation frameworks, while; 2) providing guidelines for
instantiations that use features typically incorporated at the abstract level of
these frameworks; in particular the use of preferences, which were introduced
at the abstract level to determine the success of attacks as defeats [Amgoud
and Cayrol, 2002], but may violate rationality postulates unless one carefully
accounts for their use when instantiating abstract argumentation frameworks.

Importantly, the strict and defeasible inference rules in ASPIC+are not part
of the logical object language (in which the premises and conclusions of argu-
ments are expressed), but are metalevel rules for encoding inference over well-
formed formulas in some object level language. Also, the ASPIC+ framework
abstracts from the nature and origin of the inference rules and from the nature
of the language over which they are defined. The resulting abstract nature1 of
ASPIC+means that it provides a framework enabling the study of various logi-
cal instantiations of abstract argumentation frameworks, and conditions under
which the extensions of these frameworks (and hence the defined inference re-
lation over the instantiating knowledge base of logical formulae, identified by
the conclusions of justified arguments in extensions) satisfy the rationality pos-
tulates in [Caminada and Amgoud, 2007] (for example that the conclusions of
arguments in an extension are mutually consistent). In fact, Assumption-Based
Argumentation (ABA) ([Bondarenko et al., 1997]), which only has strict rules,
can also be regarded as abstract rule-based argumentation, since ABA also
abstracts from the nature and origin of its inference rules. However, we will
(except for some brief comparisons) not discuss ABA in this chapter, as it is
reviewed in another chapter of this handbook. The same holds for a particular
instantiation of the rule-based approach: Defeasible Logic Programming.

In a rule-based approach, arguments are formed by chaining applications
of inference rules into inference trees or graphs. This approach can be con-
trasted with approaches defined in terms of logical consequence notions, in
which arguments are premises-conclusion pairs where the premises are consis-
tent and imply the conclusion according to the consequence notion of some
adopted ‘base logic’. Examples of this approach are classical-logic argumen-

1The aforementioned features of ASPIC+are shared by earlier work in this tradition, such
as the work of Pollock and [Vreeswijk, 1997], and justifies the title of this chapter.
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tation [Cayrol, 1995; Besnard and Hunter, 2001; Besnard and Hunter, 2008;
Gorogiannis and Hunter, 2011] and its generalisation into abstract Tarskian-
logic argumentation [Amgoud and Besnard, 2013]. It is important to note that,
unlike these logic-based approaches, rule-based approaches in general do not
adopt a single base logic but two base logics, one for the strict and one for
the defeasible rules. This issue will be discussed in detail in Section 3.1 of this
chapter. Moreover, we will review how ‘base logic’ approaches [Hunter, 2010]

can be formalised as instances of ASPIC+ in which the logical language is a
full propositional or first-order language and the only inference rules defined
over this language are strict, and corresponds to the inference rules of the base
logic.

This chapter is organised as follows. In Section 2 we incrementally introduce
features of the ASPIC+ framework. We first introduce the basic framework in
which arguments are built from strict and or defeasible inference rules, and are
grounded in fallible or infallible premises. Various notions of attacks as well
as the use of preferences to determine defeats are defined. The basic frame-
work can thus capture rule-based approaches to argumentation of the type
dating back to John Pollock’s work in formal epistemology, and formalisms for
encoding the well-known schemes and critical questions approach to argumen-
tation developed by the informal logic community (notably [Walton, 1996]),
and widely used to accommodate more human orientated rather than formal
logic based instantiations. We then define a version of ASPIC+ that gener-
alises the standard notion of negation used to identify when the claim of one
argument is in conflict with an element in the attacked argument. In this way
an asymmetric notion of conflict can be represented that allows for instantia-
tions by logical languages with negation as failure, and the study of formalisms
such as ABA as instances of ASPIC+.

In Section 3 we provide guidance on how to choose and define the premises
and strict and defeasible rules that comprise ASPIC+ arguments, and the pref-
erence relations that are used to determine the success of attacks as defeats.
We then specify formal guidelines as to how one should make the aforemen-
tioned choices to ensure satisfaction of the rationality postulates in [Caminada
and Amgoud, 2007]. We also discuss the extent to which reasoning with de-
feasible rules and/or preferences can be reduced to reasoning in systems that
do not distinguish between strict and defeasible rules, and/or do not use pref-
erences. Finally, we discuss how argument schemes with critical questions can
be reconstructed in ASPIC+ as defeasible inference rules.

Section 4 then reviews the relation of ASPIC+ with other works on argu-
mentation and nonmonotonic logic. We show how some existing argumentation
formalisms can be reconstructed in the ASPIC+ framework; in particular, ABA
as formulated in [Dung et al., 2007], the Carneades system [Gordon et al., 2007;
Gordon and Walton, 2009a], and argumentation formalisms based on Tarskian
abstract logics [Amgoud and Besnard, 2013] and in particular classical logic
argumentation [Gorogiannis and Hunter, 2011]. We will also discuss how the
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inference relations of existing non-monotonic logics, in particular Preferred
Subtheories [Brewka, 1989] and Prioritised Default Logic [Brewka, 1994a], can
be endowed with argumentation semantics through instantiation of the AS-
PIC+ framework. We conclude by reviewing how our structured approach to
argumentation sheds light on developments of the theory of abstract argumen-
tation frameworks, including the use of preferences and values, support rela-
tions, attacks on attacks, resolutions of attacks and the dynamics of abstract
argumentation frameworks.

Further developments of the ASPIC+ framework will be discussed in Sec-
tion 5, in particular studies of alternative notions of attack, studies of gener-
alised notions of attack and defeat, and studies of further consistency, minimal-
ity and chaining restrictions on arguments. Implementations and applications
of ASPIC+ are discussed in Section 6 and we conclude with a discussion of
open problems and future research directions in Section 7.

2 ASPIC+: Defining the Framework

2.1 The underlying ideas

People argue to remove doubt about a claim [Walton, 2006, p. 1], by giving
reasons why one should accept the claim and by defending these reasons against
criticism. The strongest way to remove doubt is to show that the claim de-
ductively follows from indisputable grounds. A mathematical proof from the
axioms of arithmetic is like this; its grounds are mathematical axioms, while
its inferences are deductively sound. So such a proof cannot be attacked on
its grounds or its inferences. However, in real life our grounds may not be
indisputable and may provide less than conclusive support for their claim.

Suppose we believe that John was in Holland Park some morning and that
Holland Park is in London. Then we can deductively reason from these beliefs,
to conclude that John was in London that morning. While this reasoning
cannot be attacked, the argument is still fallible since its grounds may turn out
to be wrong. For instance, Jan may tell us that he met John in Amsterdam
that morning around the same time, challenging our belief that John was in
Holland Park that morning, since witnesses usually speak the truth. Maybe
we have a supporting reason for our belief that John was in Holland Park; that
we went jogging in Holland Park and saw John and that our senses are usually
accurate. But given Jan’s testimony, perhaps our senses betrayed us? But
then we discover Jan has a reason to lie, since John is a suspect in a robbery in
Holland Park that morning and Jan and John are friends. We then conclude
that the basis for questioning our belief that John was in Holland Park that
morning (namely, that witnesses usually speak the truth and Jan witnesses
John in Amsterdam) does not apply to witnesses who have a reason to lie. So
our reason in support of our belief is undefeated and we accept it.

This example is displayed in Figure 1, where the strict inference is visualised
with solid lines, the defeasible inferences with dotted lines and the attack rela-
tions with arrow. The defeasible inferences within arguments are supposed to
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Figure 1. An informal example

be licensed by the generalisations in the example.

If we want to formalise a logic for argumentation, then this simple example
already suggests a number of issues to be addressed. First, the claims and
beliefs in our example were supported in various ways: in the first case we
appealed to the principles of deductive inference when concluding that John was
in London. ASPIC+ is therefore designed so that arguments can be constructed
using deductive or strict inference rules that license deductive inferences from
premises to conclusions. However, in the other two cases the reasoning from
grounds to claim appealed to the reliability of, respectively, our senses and
witnesses as sources of information. Should these kinds of support (inferences)
from grounds to claims be modelled as deductive?

To help answer this question, consider that our informal example contains
three ways of attacking an argument: 1) Our initial argument that John was
in London was attacked by the witness argument on its ground, or premise,
that John was in Holland Park that morning; 2) The initial argument was
then extended with an additional argument for the attacked premise, but the
extended argument was still attacked (by the witness argument) on the (now)
intermediate conclusion that John was in Holland Park that morning; 3) Fi-
nally, we counterattacked the witness argument not on a premise or conclusion
but on the reasoning from the grounds to the claim: namely, the inference step
from the premise that Jan said he met John in Amsterdam that morning to
the claim that John was in Amsterdam that morning (note that here we regard
the principle that witnesses usually speak the truth as an inference rule).

Now, returning to the question whether all kinds of inference should be
deductive, the second type of attack would not be possible on the deductively
inferred intermediate conclusion since the nature of deductive support is that if
all antecedents of a deductively valid inference rule are true, then its consequent
must also be true. So if we have reason to believe that the conclusion of a
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deductive inference is not true, then there must be something wrong with its
premises (which may in turn be the conclusions of subarguments). It is for this
very same reason that the third type of attack on a deductive inferential step
is also not possible.

ASPIC+ is therefore designed to comply with the common-sense and philo-
sophically argued position ([Pollock, 1995, p.41]; [Pollock, 2009, p. 173]) advo-
cating the rationality of supporting claims with grounds that do not deductively
entail them. In other words, the fallibility of an argument need not only be
located in its premises, but can also be located in the inference steps from
premises to conclusion. Thus, arguments in ASPIC+ can be constructed using
defeasible inference rules, and arguments can be attacked on both the con-
clusions, and application of, such defeasible inference rules, in keeping with
the interpretation that the premises of such a rule presumptively rather than
deductively support their conclusions.

As well as fallible premises that can be attacked, ASPIC+ also allows to
distinguish premises that are axiomatic and so cannot be attacked. We dis-
cuss the uses of such premises in Section 2.2.1, but for the moment we can
summarise by saying that ASPIC+ arguments can be constructed from fallible
and infallible premises (respectively called ordinary and axiom premises in Sec-
tion 2.2.1), and strict and defeasible inference rules, and that arguments can
be attacked on their ordinary premises, the conclusions of defeasible inference
rules, and the defeasible inference steps themselves. Finally, a key feature of
the ASPIC+ framework is that it accommodates the use of preferences over
arguments, so that an attack from one argument to another only succeeds (as a
defeat) if the attacked argument is not stronger than (strictly preferred to) the
attacking argument, according to some given preference relation. The justified
ASPIC+ arguments are then evaluated with respect to the abstract argumen-
tation framework relating ASPIC+ arguments by the defeat relation. Since
requirements for use of preferences in argumentation (and more generally for
conflict resolution in non-monotonic logics) are well established in the litera-
ture, we will here not justify the need for preferences. However, examples are
given in the remainder of the paper.

2.2 The basic framework with symmetric negation

2.2.1 Argumentation systems, knowledge bases, and arguments

ASPIC+ is a general framework that allows one to choose a logical language L
closed under negation ¬ (which we later replace with a more general notion of
conflict) and two (possibly empty) sets of strict (Rs) and defeasible (Rd) infer-
ence rules. One also specifies well-formed formulas in L that correspond to (i.e.,
name) defeasible rules in Rd via a partial function n. These names can then be
used when attacking arguments on defeasible inference steps. Informally, n(r)
is a well-formed formula (wff) in L which says that the defeasible rule r ∈ R
is applicable, so that an argument claiming ¬n(r) attacks the inference step in
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the corresponding rule2.

Definition 2.1 [Argumentation systems] An argumentation system is a triple
AS = (L,R, n) where:

• L is a logical language with a unary negation symbol ¬.

• R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd) inference rules
of the form ϕ1, . . . , ϕn → ϕ and ϕ1, . . . , ϕn ⇒ ϕ respectively (where
ϕi, ϕ are meta-variables ranging over wff in L), and Rs ∩Rd = ∅.

• n is a partial function such that n : Rd −→ L.

We write ψ = −ϕ just in case ψ = ¬ϕ or ϕ = ¬ψ (we will sometimes informally
say that formulas ϕ and −ϕ are each other’s negation).

It is important to stress here that ASPIC+’s strict and defeasible inference
rules are not object-level formulae in the language L, but are meta to the
language, allowing one to deductively, respectively defeasibly, infer the rule’s
consequent from the rule’s antecedents. Such inference rules may range over
arbitrary formulae in the language, in which case they will, as usual in logic, be
specified as schemes. For example, a scheme for strict inference rules capturing
modus ponens for the material implication of classical logic can be written as
α, α ⊃ β → β3, where α and β are metavariables for wff in L. Alternatively,
strict or defeasible inference rules may be domain-specific in that they reference
specific formulae, as in the defeasible inference rule concluding that an indi-
vidual flies if that individual is a bird: Bird ⇒ Flies. We will further discuss
these distinct uses of inference rules in Section 3.1.

ASPIC+ also requires that one specify a knowledge base from which the
premises of an argument can be taken, where one can distinguish between
ordinary premises which are uncertain and so can be attacked, and axiom
premises that are certain and so cannot be attacked.

Definition 2.2 [Knowledge bases] A knowledge base in an AS = (L,R, n) is
a set K ⊆ L consisting of two disjoint subsets Kn (the axioms) and Kp (the
ordinary premises).

An argumentation theory consists of an argumentation system and a knowl-
edge base:

Definition 2.3 [Argumentation theory] An argumentation theory is a tuple
AT = (AS,K) where AS is an argumentation system and K is a knowledge
base in AS.

ASPIC+ arguments are now defined relative to an argumentation theory
AT = (AS,K), and chain applications of the inference rules from AS into

2n is a partial function since you may want to enforce that some defeasible inference steps
cannot be attacked.

3In this chapter we use ⊃ to denote the material implication connective of classical logic.
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inference graphs, starting with elements from the knowledge base K. In what
follows, for a given argument, the function Prem returns all the formulas of K
(called premises) used to build the argument, Conc returns its conclusion, Sub
returns all its sub-arguments, DefRules returns all the defeasible rules of the
argument and TopRule returns the last inference rule used in the argument.

Definition 2.4 [Argument] An argument A on the basis of an argumentation
theory with a knowledge base K and an argumentation system (L,R, n) is any
structure obtainable by applying one or more of the following steps finitely many
times:

1. ϕ is an argument if ϕ ∈ K with: Prem(A) = {ϕ}, Conc(A) = ϕ, Sub(A) =
{ϕ}, DefRules(A) = ∅, TopRule(A) = undefined.

2. A1, . . . , An → ψ is an argument if A1, . . . , An are arguments such that
there exists a strict rule
Conc(A1), . . . , Conc(An)→ ψ in Rs.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}.
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An),
TopRule(A) = Conc(A1), . . . , Conc(An)→ ψ

3. A1, . . . , An ⇒ ψ is an argument if A1, . . . , An are arguments such that
there exists a defeasible rule Conc(A1), . . . , Conc(An)⇒ ψ in Rd.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1)∪. . .∪DefRules(An)∪{Conc(A1), . . . , Conc(An)⇒
ψ},
TopRule(A) = Conc(A1), . . . , Conc(An)⇒ ψ.

Each of these functions Func are also defined on sets of arguments S = {A1, . . . , An}
as follows: Func(S) = Func(A1)∪ . . .∪ Func(An). Moreover, for any argument
A we define Premn(A) = Prem(A) ∩ Kn and Premp(A) = Prem(A) ∩ Kp.

Example 2.5 Consider a knowledge base in an argumentation system with L
consisting of p, q, r, s, t, u, v, x, d1, d2, d3, d4, d5 and their negations, with Rs =
{s1, s2} and Rd = {d1, d2, d3, d4, d5, d6}, where4

d1: p⇒ q d4: u⇒ v s1: p, q → r
d2: s⇒ t d5: v, x⇒ ¬t s2: v → ¬s
d3: t⇒ ¬d1

4In the examples that follow we may use terms of the form si, di or fi, to identify strict
or defeasible inference rules or items from the knowledge base. We will assume that the di
names are those assigned by the n function of Definition 2.1.
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Let Kn = {p} and Kp = {s, u, x}. Note that in presenting the example, we
have informally used names di to refer to defeasible inference rules. We now
define the n function that formally assigns wff di to such rules, i.e., for any
rule informally referred to as di, we have that n(di) = di, so that ‘n(d1) = d1’
is a shorthand for n(p⇒ q) = d1. In further examples we will often specify the
n function in the same way.5

An argument for r (i.e., with conclusion r) is displayed in Figure 2, with the
premises at the bottom and the conclusion at the top of the tree. In this and the
next figure, the type of a premise is indicated with a superscript and defeasible
inferences, underminable premises and rebuttable conclusions are displayed with
dotted lines. The figure also displays the formal structure of the argument. We

q

r

pn

pn

d1

s1

A1A2A3

A  : p1

A   :2 A   1)q

A   :3 A   ,  1 A     2! r

Figure 2. An argument

have that

Prem(A3) = {p} DefRules(A3) = {d1}
Conc(A3) = r TopRule(A3) = s1
Sub(A3) = {A1, A2, A3}

The distinction between two kinds of inference rules and two kinds of premises
motivates a distinction into four kinds of arguments.

Definition 2.6 [Argument properties] An argument A is strict if DefRules(A) =
∅; defeasible if DefRules(A) 6= ∅; firm if Prem(A) ⊆ Kn; plausible if Prem(A)∩
Kp 6= ∅. An argument is fallible if it is defeasible or plausible and infallible
otherwise. We write S ` ϕ if there exists a strict argument for ϕ with all
premises taken from S, and S |∼ ϕ if there exists a defeasible argument for ϕ
with all premises taken from S.

5In our further examples we will often leave the logical language L and the n function
implicit, trusting that they will be obvious.
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Example 2.7 In Example 2.5 the argument A1 is both strict and firm, while
A2 and A3 are defeasible and firm. Furthermore, we have that K ` p, K |∼ q
and K |∼ r.

In logic-based approaches to argumentation [Besnard and Hunter, 2008;
Amgoud and Besnard, 2013] arguments are often required to be minimal in that
no proper subset of their premises should logically (according to the adopted
base logic) imply the conclusion. In the ASPIC+ context such a constraint
would be fine for applications of strict rules and below we will review work
that imposes such constraints on ASPIC+ arguments (Sections 4.2 and 5.1).
However, minimality cannot be required for application of defeasible inference
rules, since defeasible rules that are based on more information may well make
an argument stronger. For example, Observations done in ideal circumstances
are usually correct is stronger than Observations are usually correct.

Another requirement of logic-based approaches, namely, that an argument’s
premises have to be consistent, can optionally be imposed in basic ASPIC+,
leading to two variants of the basic framework. We define a special class of
arguments whose premises are ‘c-consistent’ (for ‘contradictory-consistent’).
In this way ASPIC+ can be used as a framework for reconstructing logic-based
argumentation formalisms, as we will further discuss in Section 4.2.

Definition 2.8 [c-consistency] A set S ⊆ L is c-consistent if for no φ is it the
case that S ` φ and S ` −φ. Otherwise S is said to be c-inconsistent. We say
that S ⊆ L is minimally c-inconsistent iff S is c-inconsistent and ∀S′ ⊂ S, S′

is c-consistent.

Definition 2.9 [c-consistent arguments] An argument A is c-consistent iff
Prem(A) is c-consistent.

2.2.2 Attack and defeat

ASPIC+ generates abstract argumentation frameworks consisting of arguments
related by binary defeats. Having defined arguments above, we now define the
attack relation and then apply preferences to determine the defeat relation (in
fact [Dung, 1995] called his relation “attack” but we reserve this term for the
basic notion of conflict, to which we then apply preferences).

Attack We first present the three ways in which ASPIC+ arguments can be in
conflict (i.e., attack). Arguments can be attacked on a conclusion of a defeasible
inference (rebutting attack), on a defeasible inference step itself (undercutting
attack), or on an ordinary premise (undermining attack). In Section 2.1 we
argued that arguments cannot be attacked on their strict inferences. In Sec-
tion 3.3 we will also show that attacks on conclusions of strict inferences may
result in violation of rationality postulates. In Section 5.3 we will discuss to
what extent alternative definitions of rebutting attack still make sense.

To define undercutting attack, the function n of an AS is used, which assigns
to elements of Rd a well-formed formula in L. Recall that informally, n(r)
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(where r ∈ Rd) means that r is applicable. Then an argument using r is
undercut by any argument with conclusion −n(r).

Definition 2.10 [Attacks] A attacks B iff A undercuts, rebuts or undermines
B, where:

• A undercuts argument B (on B′) iff Conc(A) = −n(r) for some B′ ∈
Sub(B) such that B′’s top rule r is defeasible.

• A rebuts argument B (on B′) iff Conc(A) = −ϕ for some B′ ∈ Sub(B)
of the form B′′1 , . . . , B

′′
n ⇒ ϕ.

• Argument A undermines B (on ϕ) iff Conc(A) = −ϕ for an ordinary
premise ϕ of B.

This definition allows for a distinction between direct and indirect attack: an
argument can be indirectly attacked by directly attacking one of its proper sub-
arguments. This distinction will turn out to be crucial for a proper application
of preferences when determining whether attacks succeed as defeats.

Example 2.11 In our running example argument A3 cannot be undermined,
since all its premises are axioms. A3 can potentially be rebutted on A2, with
an argument for ¬q. However, the argumentation theory of our example does
not allow the construction of such a rebuttal. Likewise, A3 can potentially
be undercut on A2, with an argument for ¬d1. Our example does allow the
construction of such an undercutter, namely:

B1: s
B2: B1 ⇒ t
B3: B2 ⇒ ¬d1

B3 has an ordinary premise s, and so can be undermined on B1 with an argu-
ment for ¬s:

C1: u
C2: C1 ⇒ v
C3: C2 → ¬s

Note that since C3 has a strict top rule, argument B1 does not in turn rebut
C3.

Argument B3 can potentially be rebut or undercut on either B2 or B3, since
both of these subarguments of B3 have a defeasible top rule. Our argumentation
theory only allows for a rebutting attack on B2:

C1: u
C2: C1 ⇒ v
D3: x
D4: C2, D3 ⇒ ¬t
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All arguments and attacks in the example are displayed in Figure 3.

sp

q

t¬

r

pn

C1

d1¬

C2C3

d2

d3

t

B3B2B1

v

up

s¬
s2

d4

d5

v

up

d4

x
D3

D4

pn

d1

s1

A1A2A3

p

Figure 3. The arguments and attacks in the running example

Defeat The attack relation tells us which arguments are in conflict with each
other. If an argument A successfully attacks, i.e., defeats, B, then A can be
used as a counter-argument to B. Whether an attack from A to B (on its
sub-argument B′) succeeds as a defeat, may depend on the relative strength of
A and B′, i.e., whether B′ is strictly stronger than, or strictly preferred to A.
Only the success of undermining and rebutting attacks is contingent on prefer-
ences; undercutting attacks succeed as defeats independently of any preferences
(see [Modgil and Prakken, 2013] for a discussion as to why this is the case).
ASPIC+ allows for any strict binary preference ordering ≺ on the set of all ar-
guments that can be constructed on the basis of an argumentation theory. Note
that in this chapter we formalise argument orderings not as they are defined
in [Modgil and Prakken, 2013], but as they are defined in an erratum avail-
able online at https://nms.kcl.ac.uk/sanjay.modgil/AIJfinalErratum. The er-
ratum essentially reverts to the directly defined strict partial ordering ≺ over
arguments as employed in [Prakken, 2010]. Then (as illustrated in Section 3.2),
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the non-strict � is defined so that A � B iff A ≺ B or the fallible elements in
A and B that are used in deciding preferences, are the same. Moreover, [Mod-
gil and Prakken, 2013] identify conditions under which argument orderings are
well-behaved in that they ensure satisfaction of the rationality postulates. The
erratum modifies these conditions, which in [Modgil and Prakken, 2013] are
stated by reference to non-strict orderings over sets of defeasible rules (ordi-
nary premises), but in the erratum are stated with respect to strict orderings
over sets of defeasible rules (ordinary premises). This has been done in order
to address a counterexample to rationality pointed out by Sjur Dyrkolbotn
(personal communication), assuming the conditions as stated in [Modgil and
Prakken, 2013]6. We will review these conditions later in this chapter.

Definition 2.12 [Successful rebuttal, undermining and defeat]

• A successfully rebuts B if A rebuts B on B′ and A 6≺ B′.

• A successfully undermines B if A undermines B on ϕ and A 6≺ ϕ.

• A defeats B iff A undercuts or successfully rebuts or successfully under-
mines B. (In general, we say A strictly defeats B if A defeats B and B
does not defeat A).

The success of rebutting and undermining attacks thus involves comparing
the conflicting arguments at the points where they conflict; that is, by com-
paring those arguments that are in a direct rebutting or undermining relation
with each other. The definition of successful undermining exploits the fact that
an argument premise is also a subargument, so the preference A 6≺ ϕ is well
defined.

Example 2.13 In our running example, the undercutting attack of B3 on A2

(and thereby on A3) succeeds as a defeat irrespective of the argument ordering
between B3 and A2. The undermining attack of C3 on B1 succeeds if C3 6≺ B1.
If B2 and D4 are incomparable, then these two arguments defeat each other,
while D4 strictly defeats B3. If D4 ≺ B2 then B2 strictly defeats D4 while if
B2 ≺ D4 then D4 strictly defeats both B2 and B3.

Let us now put all these elements together; that is the arguments and attacks
defined on the basis of an argumentation theory, and a preference ordering over
the arguments (here we write ‘(c-)SAF ’ as meaning ‘SAF or c-SAF ’):

Definition 2.14 [c-SAF s] Let AT be an argumentation theory (AS,KB). A
(c-)structured argumentation framework ( (c-)SAF) defined by AT , is a triple
〈A, C, � 〉 where

• In a SAF , A is the set of all arguments constructed from KB in AS
satisfying Definition 2.4;

6Note that the erratum also addresses a counterexample to rationality in [Dung, 2016].
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• In a c-SAF , A is the set of all c-consistent arguments constructed from
KB in AS satisfying Definition 2.4;

• � is a preference ordering on A;

• (X,Y ) ∈ C iff X attacks Y .

Note that a c-SAF is a SAF in which all arguments are required to have a
c-consistent set of premises.

Example 2.15 In our running example A = {A1, A2, A3, B1, B2, B3, C1, C2, C3, D3, D4},
while C is such that B3 attacks both A2 and A3, argument C3 attacks all of
B1, B2, B3, argument D4 attacks both B2 and B3 and, finally, B2 attacks D4.

2.2.3 Generating abstract argumentation frameworks

We now instantiate abstract argumentation frameworks with ASPIC+ argu-
ments and defeats.

Definition 2.16 (Argumentation frameworks) An abstract argumentation
framework (AF ) corresponding to a (c-)SAF = 〈A, C, � 〉 is a pair (A,D)
such that D is the defeat relation on A determined by 〈A, C, � 〉.

The justified arguments of the above defined abstract argumentation frame-
works are then defined under various semantics, as in [Dung, 1995]:

Definition 2.17 [Dung Semantics] Let (A,D) be an AF and S ⊆ A. Then:

• S is conflict free iff ∀X,Y ∈ S: (X,Y ) /∈ D7.

• X ∈ A is acceptable with respect to S iff ∀Y ∈ A such that (Y,X) ∈ D
: ∃Z ∈ S such that (Z, Y ) ∈ D.

• S is an admissible set iff S is conflict free and X ∈ S implies X is
acceptable w.r.t. S.

• S is a complete extension iff S is admissible and if X ∈ A is acceptable
w.r.t. S then X ∈ S;

• S is a preferred extension iff it is a set inclusion maximal complete ex-
tension;

• S is the grounded extension iff it is the set inclusion minimal complete
extension;

7Note that in [Modgil and Prakken, 2013] we motivate the use of the ASPIC+ attack
relation to define conflict-free sets (a set of arguments is conflict-free if there does not exist
an attack between any of its contained arguments), and then only use the ASPIC+ defeat
relation to determine the acceptability of arguments. It turns out that under certain condi-
tions, this way of evaluating the status of arguments is equivalent to Definition 2.17’s use of
the defeat relation for both determining conflict freeness and acceptability of arguments.
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• S is a stable extension iff S is conflict free and ∀Y /∈ S, ∃X ∈ S s.t.
(X,Y ) ∈ D.

For T ∈ {complete, preferred, grounded, stable}, X is sceptically, respectively
credulously justified on the basis of AF under the T semantics if X belongs to
all, respectively at least one, T extension of AF .

It is now also possible to define a consequence notion for well-formed formu-
las. Several definitions are possible. One is:

Definition 2.18 [Justified Formulae] A wff ϕ ∈ L is sceptically justified on
the basis of a (c-)SAF under semantics T if ϕ is the conclusion of a sceptically
justified argument on the basis of the AF corresponding to the (c-)SAF under
semantics T , and credulously justified on the basis of a (c-)SAF under seman-
tics T if ϕ is not sceptically justified and is the conclusion of a credulously
justified argument on the basis of the AF corresponding to the (c-)SAF under
semantics T .

An alternative definition of skeptical justification is:

A wff ϕ ∈ L is sceptically justified on the basis of the (c-)SAF
under semantics T if all T -extensions of the AF corresponding to
the (c-)SAF contain an argument with conclusion ϕ.

While the original definition of skeptical justification requires that there is one
argument for ϕ that is in all extensions, the alternative definition allows that
different extensions contain different arguments for ϕ. In multiple-extension se-
mantics this can make a difference in, for example, cases with so-called floating
conclusions; cf. Example 25 of [Prakken and Vreeswijk, 2002].

Example 2.19 In our running example, if D4 strictly defeats B2, then we have
a unique extension in all semantics, namely, E = {A1, A2, A3, C1, C2, C3, D3, D4}.
If in addition C3 does not defeat B1, then the extension also contains B1. In
both cases this yields that wff r is sceptically justified.

Alternatively, if B2 strictly defeats D4, then the status of r depends on
whether C3 defeats B1. If it does, then we again have a unique extension in
all semantics consisting of the set S, so r is sceptically justified. By contrast,
if C3 does not defeat B1, we obtain a unique extension with A1, B1, B2, B3,
C1, C2, C3 and D3, so r is neither sceptically nor credulously justified.

Finally, if B2 and D4 defeat each other, then the outcome again depends on
whether C3 defeats B1. If it does, then the situation is as in the previous case –
a unique extension E – but if C3 does not defeat B1, then the grounded extension
consists of A1, B1, C1, C2, C3, D3. So in the latter case, in grounded semantics
r is neither sceptically nor credulously justified. However, in preferred and
stable semantics we then obtain two alternative extensions: the first contains
D4, A2 and A3, while the second instead contains B2 and B3 and so excludes
A2 and A3. So in the latter case r is credulously, but not sceptically justified
under stable and preferred semantics.
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2.3 The basic framework with possibly non-symmetric negation

The notion of an argumentation system in Section 2.2.1, assumed a language
L with a unary negation symbol ¬, which was used in the definition of conflict-
based attack. The standard classical interpretation of ¬ licenses a symmetric
notion of conflict-based attack, so that an argument consisting of an ordinary
premise φ or with a defeasible top rule concluding φ, symmetrically attacks an
argument consisting of an ordinary premise ¬φ or with a defeasible top rule
concluding ¬φ. However, the ASPIC+ framework as presented in [Prakken,
2010; Modgil and Prakken, 2013], accommodates a more general notion of
conflict, by defining an argumentation system to additionally include a function
− that, for any wff ψ ∈ L, specifies the set of wff’s that are in conflict with ψ, so
that one can define both an asymmetric and symmetric notion of conflict-based
attack. Formally:

Definition 2.20 [− function] − is a function from L to 2L, such that:

• ϕ is a contrary of ψ if ϕ ∈ ψ, ψ 6∈ ϕ ;

• ϕ is a contradictory of ψ (denoted by ‘ϕ = −ψ’), if ϕ ∈ ψ, ψ ∈ ϕ.

Now Conc(A) ∈ ϕ (Conc(A) ∈ n(r)) replaces Conc(A) = −ϕ (Conc(A) =
−n(r)) in Definition 2.10’s definition of attacks. This induces a generalised
notion of an argumentation system as a four-tuple AS = (L,−,R, n) where L,
R and n are defined as in Definition 2.1 and − is as just defined. The special
case of Definition 2.1 can then be reformulated as the case where − is defined
in terms of classical negation as α ∈ β iff α is of the form ¬β or β is of the form
¬α (i.e., for any wff α, α and ¬α are contradictories). Below we will continue
to refer to the special case with ¬ as a triple, leaving the − function implicit.

The rationale for these more general notions of conflict and attack is two-
fold. Firstly, one can for pragmatic reasons state that two formulae are in
conflict, rather than requiring that one implies the negation of another; for
example, assuming a predicate language with the binary ‘<’ relation, one can
state that any two formulae of the form α < β and β < α are contradictories.
Secondly, the − function allows for an asymmetric notion of negation. This
enables reconstruction of assumption-based argumentation (ABA) in ASPIC+

(indeed the idea of using a − function is taken from [Bondarenko et al., 1997]).
We briefly review this reconstruction in Section 4.1. Closely related to its use in
reconstructing ABA, the contrary function allows for the modelling of negation
as failure (as in logic programming). Using the negation as failure symbol ∼
(also called ‘weak’ negation, in contrast to the ‘strong’ negation symbol ¬), then
∼ α denotes the negation of α under the assumption that α is not provable
(i.e., the negation of α is assumed in the absence of evidence for α). Given this
intended reading of ∼ it is not meaningful to assert that such an assumption
brings into question (and so initiates an attack on) the evidence whose very
absence is required to make the assumption in the first place. In other words,
if A is an argument consisting of the premise ∼ α, and B concludes α (the
contrary of ∼ α), then B attacks A, but not vice versa. Furthermore, since the
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very construction of A is invalidated by evidence to the contrary, i.e., B, then
such attacks succeed as defeats independently of preferences.

To accommodate the notion of contrary, and attacks on contraries succeeding
as defeats independently of preferences, we further modify Definition 2.10 to
distinguish the special cases where Conc(A) is a contrary of ϕ, in which case we
say that A contrary rebuts B and A contrary undermines B, and then modify
Definition 2.12 so that:

• A successfully rebuts B if A contrary rebuts B, or A rebuts B on B′ and
A ⊀ B′.

• A successfully undermines B if A contrary undermines B, or A under-
mines B on φ and A ⊀ φ.

The definition of undercutting attack does not need to be changed.

To illustrate the use of negation as failure, suppose one wants arguments to
be built from a propositional language that includes both ¬ and ∼. One could
then define L as a language of propositional literals, composed from a set of
propositional atoms {a, b, c, . . . } and the symbols ¬ and ∼. Then:

• α is a strong literal if α is a propositional atom or of the form ¬β where
β is a propositional atom (strong negation cannot be nested).

• α is a wff of L, if α is a strong literal or of the form ∼ β where β is a
strong literal (weak negation cannot be nested).

Then α ∈ β iff (1) α is of the form ¬β or β is of the form ¬α; or (2) β is of the
form ∼ α (i.e., for any wff α, α and ¬α are contradictories and α is a contrary
of ∼ α). Finally, for any ∼ α that is in the antecedent of a strict or defeasible
inference rule, one is required to include ∼ α in the ordinary premises.

Consider now Example 2.5, where we now have that u ∈ ∼ u, and we replace
the rule d4 : u⇒ v with d′4: ∼ u⇒ v, and add ∼ u to the ordinary premises:
Kp = {∼ u, s, u, x}. Then, the arguments C3 and D4 are now replaced by
arguments C ′3 and D′4 each of which contain the sub-argument E : ∼ u (instead
of C1 : u). Then C1 : u contrary undermines, and so defeats, C ′3 and D′4 on
∼ u.

3 Instantiating the ASPIC+ Framework

ASPIC+ is a framework for specifying systems, and so leaves one fully free
to make choices as to the logical language, the strict and defeasible inference
rules, the axioms and ordinary premises in a knowledge base, and the argument
preference ordering. In this section we discuss various more or less principled
ways to make these choices, and then show specific uses of ASPIC+.



18 Sanjay Modgil, Henry Prakken

3.1 Choosing strict and defeasible rules

3.1.1 Domain specific strict inference rules

ASPIC+ allows the specification of domain specific strict inference rules, as
illustrated by the following example (based on Example 4 of [Caminada and
Amgoud, 2007]) in which the strict inference rules capture definitional knowl-
edge, namely, that bachelors are not married.

Example 3.1 Let Rd = {d1, d2} and Rs = {s1, s2}, where:

d1 = WearsRing ⇒ Married s1 = Married → ¬Bachelor
d2 = PartyAnimal ⇒ Bachelor s2 = Bachelor → ¬Married

Finally, let Kp = {WearsRing ,PartyAnimal}. Consider the following argu-
ments.

A1: WearsRing B1: PartyAnimal
A2: A1 ⇒ Married B2: B1 ⇒ Bachelor
A3: A2 → ¬Bachelor B3: B2 → ¬Married

We have that A3 rebuts B3 on its subargument B2 while B3 rebuts A3 on its
subargument A2. Note that A2 does not rebut B3, since B3 applies a strict rule;
likewise for B2 and A3.

In Example 3.1, the rules s1 and s2 are ‘transpositions’ of each other, and
Rs is ‘closed under transposition’, in the sense that:

Definition 3.2 (Closure under Transposition) Let AT = (AS,K) be an
argumentation theory. Then AT is closed under transposition iff if φ1, . . . , φn →
ψ ∈ Rs, then for i = 1 . . . n, φ1, . . . , φi−1,−ψ, φi+1, . . . , φn → −φi ∈ Rs.

In general it is a good idea to ensure that an argumentation theory is closed
under transposition, since a strict (deductive) rule q → ¬s expresses that if q
is true, then this guarantees the truth of ¬s, no matter what. Hence, if we
have s, then q cannot hold, otherwise we would have ¬s. In general, if the
negation of the consequent of a strict rule holds, then we cannot have all its
antecedents, since if we had all of them, then its consequent would hold. This
is the very meaning of a strict rule. So it is very reasonable to include in Rs the
transposition of a strict rule that is in Rs. A second reason for ensuring closure
under transposition is that it ensures satisfaction of [Caminada and Amgoud,
2007]’s rationality postulates, as illustrated later in Section 3.3.

3.1.2 Strict inference rules and axioms based on deductive logics

Some find the use of domain-specific strict inference rules rather odd; why
not instead express them as material implications in L and put them in the
knowledge base as axiom premises? One then reserves the strict inference
rules for general patterns of deductive inference, since one might argue that
this is what inference rules are meant for in logic. ASPIC+ therefore allows
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one to base your strict inference rules (and axioms) on a deductive logic of
one’s choice. One can do so by choosing a semantics for a particular choice
of L with an associated monotonic notion of semantic consequence, and then
letting Rs be rules that are sound with respect to that semantics. For example,
suppose Rs should conform to classical logic, given a standard propositional
(or first-order) language, such that arguments can contain any classically valid
inference step over this language. This can be done in two ways: a crude way
and a sophisticated way.

A crude way is to simply put all valid propositional (or first-order) infer-
ences over your language of choice in Rs. So if a propositional language has
been chosen, then Rs can be defined as follows. (where `PL denotes standard
propositional-logic consequence). For any finite S ⊆ L and any ϕ ∈ L:8

S → ϕ ∈ Rs if and only if S `PL ϕ

In fact, with this choice of Rs, strict parts of an argument don’t need to be
more than one step long. For example, if rules S → ϕ and ϕ → ψ are in Rs,
then S ∪ {ϕ} → ψ will also be in Rs. Note also that using this method, strict
rules will be closed under transposition, because of the properties of classical
logic.

It should be noted that this way of using a logic as the origin of the strict
rule makes some implicit assumptions on the chosen logic, for example that it
is compact (everything implied by an infinite set is implied by a finite subset)
and satisfies the Cut rule (if S implies ϕ and S ∪ {ϕ} implies ψ then S implies
ψ). In Section 5.1 we return to this issue.

Let us illustrate the crude approach with a variation of Example 3.1. We
retain the defeasible rules d1 and d2 but we replace the domain-specific strict
rules s1 and s2 with a single material implication Married ⊃ ¬Bachelor in Kn.
Moreover, we put all propositionally valid inferences over our language in Rs,
including, for example, all inferences instantiating the modus ponens scheme
ϕ,ϕ ⊃ ψ → ψ. Then the arguments change as follows:

A1: WearsRing B1: PartyAnimal
A2: A1 ⇒ Married B2: B1 ⇒ Bachelor
A3: Married ⊃ ¬Bachelor B3: Married ⊃ ¬Bachelor
A4: A2, A3 → ¬Bachelor B4: B2, B3 → ¬Married

Now A4 rebuts B4 on B2 while B4 rebuts A4 on A2.
A sophisticated way to base the strict part of ASPIC+ on a deductive logic of

one’s choice is to build an existing axiomatic system for the logic into ASPIC+.
Its axiom(s) (typically a handful) can be encoded in Kn and its inference rule(s)
(typically just one or a few) in Rs. For example, there are axiomatic systems
for classical logic with just four axioms and just one inference rule, namely,

8Although antecedents of rules formally are sequences of formulas, we will sometimes
abuse notation and write them as sets.
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modus ponens (i.e, ϕ ⊃ ψ,ϕ→ ψ)9. With this choice of Rs, strict parts of an
argument could be very long, since in logical axiomatic systems, proofs of even
trivial validities might be long. However, this difference with the crude way is
not very big, since if we want to be crude, we must, to know whether S → ϕ
is in Rs, first construct a propositional proof of ϕ from S.

With the sophisticated way of building classical logic into our argumentation
system, argument A4 in our example stays the same, since modus ponens is in
Rs. However, argument B4 will change, since modus tollens is not in Rs. In
fact, B4 will be replaced by a sequence of strict rule applications, together being
an axiomatic proof of ¬Married from Married ⊃ ¬Bachelor and Bachelor .

Note that in the sophisticated method, closure under transposition may not
hold; our example above does not contain modus tollens (that is, ϕ ⊃ ψ,−ψ →
−ϕ). However, this desirable form of reasoning can also be enforced without
explicitly transposing rules. Recall that S ` ϕ was defined as ‘there exists a
strict argument for ϕ with all premises taken from S’. Now it turns out that
if ` contraposes, then this is just as good as closure of the strict rules under
transposition. Contraposition of ` means that if S ` ϕ, then if we replace
one element s of S with −ϕ, then −s is strictly implied (if ` corresponds to
classical provability, as enforced by our choice of axioms and inference rules,
then ` does indeed contrapose).

Definition 3.3 [Closure under Contraposition] Let AT = (AS,K) be an ar-
gumentation theory. We say that AT is closed under contraposition iff for all
S ⊆ L, s ∈ S and φ, if S ` φ, then S\{s} ∪ {−φ} ` −s.

Again, as will be discussed in Section 3.3, closure under contraposition also
ensures satisfaction of rationality postulates.

3.1.3 Choosing defeasible inference rules

Regarding the choice of defeasible rules, the question as to whether these can
be derived from a logic of our choice, just as with strict rules, is controversial.
Some philosophers argue that all rule-like structures that we use in daily life are
“inference licenses” and so cannot be expressed in the logical object language.
In this view, all defeasible generalisations are inference rules, whether they are
domain-specific or not, and are applied to formulas from L to support new
formulas from L.

Others (usually logicians) take a more standard-logic approach (e.g. [Kraus
et al., 1990; Pearl, 1992]) whereby all contingent knowledge should be expressed
in the object language, and so they reject the idea of domain-specific defeasible
inference rules (for the same reason they don’t like domain-specific strict rules).
They introduce a new connective, e.g., ;, into L where (informally) p ;

q is read as “If p then normally/typically/usually q”. They then want to
give a model-theoretic semantics for this connective just as logicians give a

9As explained above, this strictly speaking is not a rule but a scheme, with meta variables
ranging over L.
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model-theoretic semantics for all connectives, except that semantics for these
defeasible conditionals focus on a preferred class of models (e.g., all models
where things are as normal as possible) instead of all models of a theory as
in semantics for deductive logics. Hence, the model-theoretic interpretation
of p ⊃ q is that q is true in all models of p, whereas the model theoretic
interpretation of p; q is that q is true in all preferred models of p.

What inference rules for ; could result from such an approach? On two
things there is consensus: modus ponens for ; is defeasibly but not deductively
valid, so the rule ϕ; ψ,ϕ⇒ ψ should go into Rd. There is also consensus that
contraposition for ; is deductively invalid, so the rule ϕ ; ψ → −ψ ; −ϕ
should not go intoRs. However, here the consensus ends. Should the defeasible
analogue of this rule go into Rd or not? Opinions differ at this point10.

Let us illustrate the difference between the two approaches, by including
defeasible modus ponens for ; in Rd, and replacing the defeasible inference
rules d1 and d2 (in Example 3.1) with object-level conditionals expressed in L
and included in Kp:

WearsRing ; Married ∈ Kp and PartyAnimal ; Bachelor ∈ Kp
Rd = {ϕ; ψ,ϕ⇒ ψ}

The arguments then change as follows (assuming the crude incorporation of
classical logic):

A1: WearsRing B1: PartyAnimal
A2: WearsRing ; Married B2: PartyAnimal ; Bachelor
A3: A1, A2 ⇒ Married B3: B1, B2 ⇒ Bachelor
A4: Married ⊃ ¬Bachelor B4: Married ⊃ ¬Bachelor
A5: A3, A4 → ¬Bachelor B5: B3, B4 → ¬Married

Now A5 rebuts B5 on B3 while B5 rebuts A5 on A3.

Concluding, if desired, at least some of the choices concerning defeasible
inference rules can be based on model-theoretic semantics for nonmonotonic
logics. However, it is an open question whether a model-theoretic semantics
is the only criterion by which we can choose our defeasible rules. Some have
based their choice on other criteria, since they do not primarily see defeasible
rules as logical inference rules but as principles of human cognition or rational
action, so that they should be based on foundations other than semantics. For
example, John Pollock based his defeasible reasons on his account of episte-
mology. Others have based their choice of defeasible reasons on the study of
argument schemes in informal argumentation theory. We give examples of both
these approaches in Section 3.5.

10See Chapter 4 of [Caminada, 2004] for a very readable overview of the discussion.
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3.2 Choosing argument preference orderings

A well studied use of preferences in the non-monotonic logic literature is based
on the use of preference orderings over formulae in the language or defeasible in-
ference rules. If ASPIC+ is to be used as a framework for giving argumentation-
based characterisations of non-monotonic formalisms augmented with prefer-
ences, then it needs to provide an account of how these preference orderings
can be ‘lifted’ to preferences over arguments. Since ASPIC+ uses defeasible in-
ference rules and ordinary premises, both may come equipped with preference
orderings ≤ on Rd and ≤′ on Kp, which in general may be distinct, in keeping
with the ontologically distinct nature of rules and premises. For example, the
ordinary premises may represent the content of percepts from sensors or of
witness testimonies, whose preference ordering reflects the relative reliability
of the sensors, respectively witnesses. The defeasible rules may, for example,
be ordered based on probabilistic strength, on temporal precedence (defeasi-
ble rules acquired later are preferred to those acquired earlier), on the basis of
principles of legal precedence, and so on. The challenge is to then define a pref-
erence over arguments A and B based on the preferences over their constituent
ordinary premises and defeasible rules.

We now define two argument preference orderings, called the weakest-link
and last-link orderings. These orderings are in turn based on partial preorders
≤ on Rd and ≤′ on Kp, where as usual, X <(′) Y iff X ≤(′) Y and Y �(′) X
(note that we may represent these orderings in terms of the strict counter-
part they define). However, these preferences relate individual defeasible rules,
respectively ordinary premises, whereas when comparing two arguments, we
want to compare them on the (possibly non-singleton) sets of rules/premises
that these arguments are constructed from. So, to define these argument prefer-
ences, we need to first define a strict set ordering �s over sets of rules/premises,
where for any sets of defeasible rules/ordinary premises S and S′, we intuitively
want that:

1) if S is the empty set, it cannot be that S �s S
′;

2) if S′ is the empty set, it must be that S �s S
′ for any non-empty S .

In other words, arguments that have no defeasible rules (ordinary premises) are,
modulo the premises (rules), strictly stronger than (preferred to) arguments
that have defeasible rules (ordinary premises). Hence the following definition
explicitly imposes these constraints, and then gives two alternative ways of
defining�s; the so called Elitist and Democratic ways (i.e., s = Eli and Dem

respectively). Eli compares sets on their minimal and Dem on their maximal
elements.

Definition 3.4 [Orderings �s] Let Γ and Γ′ be finite sets11. Then �s is de-
fined as follows:

11Notice that it suffices to restrict � to finite sets since ASPIC+ arguments are assumed
to be finite (in Definition 2.14) and so their sets of ordinary premises/defeasible rules must
be finite.
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1. If Γ = ∅ then Γ 6s Γ′ ;

2. If Γ′ = ∅ and Γ 6= ∅ then Γ /s Γ′ ;

else, assuming a preordering ≤ over the elements in Γ ∪ Γ′, then if :

3. s = Eli:

Γ /Eli Γ′ if ∃X ∈ Γ s.t. ∀Y ∈ Γ′, X < Y .

else, if:

4. s = Dem:

Γ /Dem Γ′ if ∀X ∈ Γ, ∃Y ∈ Γ′, X < Y .

For s = Eli or s = Dem: Γ Es Γ′ iff Γ = Γ′ or Γ /s Γ′

Now the last-link principle strictly prefers an argument A over another
argument B if the last defeasible rules used in B are less preferred (/s) than the
last defeasible rules in A or, in case both arguments are strict, if the premises
of B are less preferred than the premises of A. The concept of ‘last defeasible
rules’ is defined as follows.

Definition 3.5 [Last defeasible rules] Let A be an argument.

• LastDefRules(A) = ∅ iff DefRules(A) = ∅.

• If A = A1, . . ., An ⇒ φ, then LastDefRules(A) = {Conc(A1), . . .,
Conc(An) ⇒ φ}, else LastDefRules(A) = LastDefRules(A1) ∪ . . . ∪
LastDefRules(An).

For example, letting K = {p, q}, Rs = {r, s → t} and Rd = {p ⇒ r; q ⇒ s},
then
LastDefRules(A) = {p⇒ r; q ⇒ s} where A is the argument for t.

The above definition is now used to compare pairs of arguments as follows:

Definition 3.6 [Last link principle] Let A and B be two arguments. Then A
≺ B iff:

1. LastDefRules(A) /s LastDefRules(B); or

2. LastDefRules(A) and LastDefRules(B) are empty and Premp(A) /s
Premp(B).

Then B � A iff B ≺ A or, if LastDefRules(A) 6= ∅ then LastDefRules(A) =
LastDefRules(B), else Premp(A) = Premp(B).

Example 3.7 Suppose in our running example that u <′ s, x <′ s, d2 < d5
and d4 < d2. Applying the last-link ordering to check whether C3 defeats B1,
we compare LastDefRules(C3) = {d4} with LastDefRules(B1) = ∅. Clearly,
{d4} /Eli ∅, so C3 ≺ B1, so C3 does not defeat B1. Next, to check whether D4



24 Sanjay Modgil, Henry Prakken

defeats B2, we compare LastDefRules(B2) = {d2} with LastDefRules(D4) =
{d5}. Since d2 < d5 we have that LastDefRules(B2) /Eli LastDefRules(D4),
so D4 strictly defeats B2.

The weakest-link principle considers not the last but all uncertain ele-
ments in an argument.

Definition 3.8 [Weakest link principle] Let A and B be two arguments. Then
A ≺ B iff

1. If both B and A are strict, then Premp(A) /s Premp(B), else;

2. If both B and A are firm, then DefRules(A) /s DefRules(B), else;

3. Premp(A) /s Premp(B) and DefRules(A) /s DefRules(B)

Then B � A iff B ≺ A or, DefRules(A) = DefRules(B) and Premp(A) =
Premp(B).

Example 3.9 In our running example to check whether C3 defeats B1 ac-
cording to the weakest-link ordering, we first compare Premp(C3) = {u} with
Premp(B1) = {s}. Since u <′ s we have that Premp(C3) /Eli Premp(B1). Also,
DefRules(C3) = {d4}/Eli DefRules(B1) = ∅, and so C3 ≺ B1 and C3 does not
defeat B1.
For B2 and D4: Premp(D4) = {u, x} /Eli Premp(B2) = {s} since u <′ s and
x < s′. Then since d4 < d2, DefRules(D4) = {d4, d5} /Eli DefRules(B2){d2}.
So D4 ≺ B2 and B2 strictly defeats D4.

We next present two examples illustrating the suitability of the last-, respec-
tively, weakest-link orderings. Consider an example relating to whether people
misbehaving in a university library may be denied access to the library.12

Example 3.10 Let Kp = {Snores, Professor}, Rd =

{Snores ⇒d1 Misbehaves;
Misbehaves ⇒d2 AccessDenied ;
Professor ⇒d3 ¬AccessDenied}.

Assume that Snores <′ Professor and d1 < d2, d1 < d3, d3 < d2, and consider
the following arguments.

A1: Snores B1: Professor
A2: A1 ⇒ Misbehaves B2: B1 ⇒ ¬AccessDenied
A3: A2 ⇒ AccessDenied

12In all examples below, sets that are not specified are assumed to be empty. Moreover,
sometimes we will attach the rule names to the ⇒ symbol. Note that these attached indices
have no formal meaning and are for ease of reference only.
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Let us apply the ordering to the arguments A3 and B2. The rule sets to
be compared are LastDefRules(A3) = {d2} and LastDefRules(B2) = {d3}.
Since d3 < d2 we have that LastDefRules(B2) /Eli LastDefRules(A3), hence
B2 ≺ A3. So A3 strictly defeats B2, hence A3 is justified in any semantics,
and we conclude AccessDenied.

With the weakest-link principle the ordering between A3 and B2 is different.
Both A and B are plausible and defeasible so we are in case (3) of Defini-
tion 3.8. Since Snores <′ Professor, we have that Premp(A3) �Eli Premp(B2).
Furthermore, the rule sets to be compared are now DefRules(A3) = {d1, d2}
and DefRules(B2) = {d3}. Since d1 < d3 we have that DefRules(A3) �Eli

DefRules(B2). So now we have that A3 ≺ B2. Hence B2 now strictly defeats
A3 and we conclude instead that ¬AccessDenied.

Which outcome is better? Some have argued that the last-link ordering
gives the better outcome since the conflict really is between the two legal rules
about whether someone may be denied access to the library, while d1 just
provides a sufficient condition for when a person can be said to misbehave.
The existence of a conflict on whether someone may be denied access to the
library is in no way relevant for the issue of whether a person misbehaves when
snoring. More generally, it has been argued that for reasoning with legal (and
other normative) rules the last-link ordering is appropriate. However, in an
example of exactly the same form, with the legal rules replaced by empirical
generalisations, intuitions seem to favour the weakest-link ordering:

Example 3.11 Let Kp = {BornInScotland , FitnessLover}, Rd =

{BornInScotland ⇒d1 Scottish;
Scottish ⇒d2 LikesWhisky ;
FitnessLover ⇒d3 ¬LikesWhisky}.

Assume that BornInScotland <′ FitnessLover and d1 < d2, d1 < d3, d3 < d2,
and consider the following arguments.

A1: BornInScotland B1: FitnessLover
A2: A1 ⇒ Scottish B2: B1 ⇒ ¬LikesWhisky
A3: A2 ⇒ LikesWhisky

This time it seems reasonable to conclude ¬LikesWhisky, since the epistemic
uncertainty of the premise and d1 of A3 should propagate to weaken A3. And
this is the outcome given by the weakest-link ordering. So it could be argued
that for epistemic reasoning the weakest-link ordering is appropriate.

3.3 The rationality postulates of Caminada and Amgoud (2007)
and their satisfaction in ASPIC+

ASPIC+ leaves one fully free to choose a language, what is an axiom and what
is an ordinary premise and how to specify strict and defeasible rules. However
some care needs to be taken in making these choices, to ensure that the result of
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argumentation is guaranteed to be well-behaved in the sense that the desirable
properties proposed by [Caminada and Amgoud, 2007] are satisfied. Before
presenting these properties, we define required notions of direct and indirect
consistency in terms of the contrary function (recall Definition 2.20).

Definition 3.12 [Direct and Indirect Consistency] For any S ⊆ L, let the
closure of S under strict rules, denoted Cl(S), be the smallest set containing
S and the consequent of any strict rule in Rs whose antecedents are in Cl(S).
Then a set S ⊆ L is

• directly consistent iff @ ψ, ϕ ∈ S such that ψ ∈ ϕ

• indirectly consistent iff Cl(S) is directly consistent.

Let E be any complete extension of an abstract argumentation framework
corresponding to a (c)-SAF as defined in Section 2.2.3.

Sub-argument Closure: For any argument A in E, all sub-arguments
of A are in E, i.e., for all A ∈ E: if A′ ∈ Sub(A) then A′ ∈ E.

Closure under Strict Rules: If E contains arguments with conclu-
sions α1, . . . .αn, then any arguments obtained by applying only strict
inference rules to these conclusions, are in E, i.e., {Conc(A)|A ∈ E} =
Cl({Conc(A)|A ∈ E}).

Direct Consistency: The conclusions of arguments in E are directly
consistent, i.e., {Conc(A)|A ∈ E} is consistent.

Indirect Consistency: The conclusions of arguments in E are indirectly
consistent, i.e., Cl({Conc(A)|A ∈ E}) is consistent.

We next review the work done on identifying sufficient conditions for AS-
PIC+ satisfying [Caminada and Amgoud, 2007]’s four rationality postulates.

3.3.1 The work of Caminada and Amgoud (2007), Prakken (2010)
and Modgil and Prakken (2013)

The first relevant condition is that an argumentation theory is closed under
transposition or contraposition. If neither is satisfied, then since strict rule
applications cannot be attacked, direct consistency may be violated. Consider
our first version of Example 3.1. Suppose we only have the strict rule s1 so
that B3 cannot be constructed (given the absence of s2). We still have that
A3 rebuts B2. Suppose now that d1 < d2 and we apply the last-link argument
ordering. Then A3 does not defeat B2. In fact, no argument in the example
is defeated, so we end up with a single extension (under all semantics) which
contains arguments for both Bachelor and ¬Bachelor and so violates direct
and indirect consistency. However, with transposition we also have s2. Then
B3 can be constructed, which rebuts A3 on A2. Under the last-link ordering
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(assuming again that d1 < d2) we still have that A3 does not defeat B2, but now
B3 strictly defeats A2. We have a unique extension in all semantics, containing
all arguments except A2 and A3. This extension does not violate consistency.

One might argue that the above violation of consistency, before inclusion
of the transposed rule s2, arises because ASPIC+ forbids attacks on strictly
derived conclusions. Consistency would not be violated if B2 was allowed to
attack A3. However, apart from the reasons discussed in Section 2.2.2, another
reason for prohibiting attacks on strictly derived conclusions is that if allowed,
extensions may not be strictly closed or indirectly consistent, even if the strict
rules are closed under transposition. To see why, suppose we allow attacks on
strict conclusions, so that B2 attacks A3, A2 attacks B3, and A3 and B3 attack
each other in Example 3.1. Suppose also that all knowledge-base items and
defeasible rules are of equal preference, and we apply the weakest- or last-link
argument ordering. Then all rebutting attacks in the example succeed. But
then the set {A1, A2, B1, B2} is admissible and is in fact both a stable and
preferred extension. But this violates strict closure and indirect consistency.
The extension contains an argument for Bachelor but not for ¬Married , which
strictly follows from it by rule s2. Likewise, the extension contains an argument
for Married but not for ¬Bachelor , which strictly follows from it by rule s1.
So the extension is not closed under strict rule application. Moreover, the ex-
tension is indirectly inconsistent, since its strict closure contains both Married
and ¬Married , and both Bachelor and ¬Bachelor .

Other requirements for satisfying the postulates are expressed in the follow-
ing definition of a ‘well-defined’ structured argumentation framework (recall
Definition 2.14), which references the notion of a ‘reasonable’ preference rela-
tion that is subsequently explained and defined:

Definition 3.13 [Well defined (c-)SAFs] A (c-)SAF (A, C,�) defined by an
an argumentation theory AT = (AS,K), where AS = (L,−,R, n) and K =
Kn ∪ Kp, is said to be well defined iff:

• AT is closed under transposition or closed under contraposition.

• ClRs
(Kn) is consistent (in which case K is said to be axiom consistent).

• If A is restricted to be the set of c-consistent arguments, then A is c-classical.
That is to say, for any minimal c-inconsistent S ⊆ L and for any ϕ ∈ S, it
holds that S \ {ϕ} ` −ϕ (i.e., amongst all arguments defined there exists a
strict argument with conclusion −ϕ with all premises taken from S \ {ϕ}).

• well formed if whenever ϕ is a contrary of ψ then:

− ψ /∈ Kn; and

− ψ is not the consequent of a strict rule.

• � is reasonable.

The property of transposition (and the alternative contraposition) has been
discussed above. That the axiom premises are required to be consistent when
closed under strict rules is self-evident given that axiom premises represent
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indisputable information or axioms of a deductive logic. The c-classicality con-
dition is only required to hold when using ASPIC+ to reconstruct Tarskian
logic, and in particular classical logic approaches to argumentation, where A is
restricted to arguments with consistent premises. Intuitively, c-classicality says
that for every minimally c-inconsistent set of wff and any of its elements the
remaining maximally c-consistent subset gives rise to an argument against the
element. The intuition underlying the well-formed property should be apparent
given the motivation for use of the contrary function and preference indepen-
dent attacks on contraries, as discussed in Section 2.3. We now elaborate on
the notion of reasonable preference orderings.

Before doing so, we define the following notion of strict continuations of ar-
guments, which we define in a slightly different way than [Modgil and Prakken,
2013]. The new definition is arguably simpler but does not affect the proofs of
Modgil and Prakken. It identifies arguments that are formed by extending a
set of arguments with only strict inferences into a new argument, so that the
new argument can only be attacked on the arguments that it extends.

Definition 3.14 [Strict continuations] The set of strict continuations of a set
of arguments from A is the smallest set satisfying the following conditions:

1. Any argument A is a strict continuation of {A}.
2. If A1, . . . , An and S1, . . . , Sn are such that for each i ∈ {1, . . . , n}, Ai is a

strict continuation of Si and {Bn+1, . . . , Bm} is a (possibly empty) set of
strict-and-firm arguments, and Conc(A1), . . . , Conc(An), Conc(Bn+1), . . . , Conc(Bm)→
ϕ is a strict rule in Rs, then A1, . . . , An, Bn+1, . . . , Bm → ϕ is a strict
continuation of S1 ∪ . . . ∪ Sn.

If argument A is a strict continuation of arguments {A1, . . . , An}, then A is a
strict argument over {Conc(A1), . . . , Conc(An)}.

Example 3.15 In Example 2.5 (see Figure 3) all arguments are strict contin-
uations of the singleton set containing themselves while A3 is a strict continu-
ation of {A1, A2} and C3 is a strict continuation of {C2}.

Definition 3.16 [Reasonable Argument Orderings] An argument ordering �
is reasonable iff:

1. i) ∀A,B, if A is strict and firm and B is plausible or defeasible, then
B ≺ A;
ii) ∀A,B, if B is strict and firm then B ⊀ A;
iii) ∀A,A′, B such that A′ is a strict continuation of {A}, if A ⊀ B then
A′ ⊀ B, and if B ⊀ A then B ⊀ A′ (i.e., applying strict rules to a single
argument’s conclusion and possibly adding new axiom premises does not
weaken, respectively strengthen, arguments).
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2. Let {C1, . . . , Cn} be a finite subset of A, and for i = 1 . . . n, let C+\i be
some strict continuation of {C1, . . . , Ci−1, Ci+1, . . . , Cn}. Then it is not
the case that: ∀i, C+\i ≺ Ci.

A reasonable argument ordering essentially amounts to requiring that: ar-
guments that are both strict and firm are strictly preferred over all plausible
or defeasible arguments, and no argument is strictly preferred to a strict and
firm argument ( 1i) and 1ii) ); the strength (and implied relative preference) of
an argument is determined exclusively by the defeasible rules and/or ordinary
premises ( 1iii) ); the preference ordering is acyclic (2).

Indeed, a strict relation / (on sets of ordinary premises or defeasible rules)
results in a preference ordering (under either weakest- or last-link) that is rea-
sonable, if / satisfies the following conditions:

Definition 3.17 [Inducing reasonable orderings] / is said to be reasonable
inducing if / is a strict partial ordering (irreflexive and transitive) such that:

for any kr ∈ {LastDefRules, DefRules, Premp}, for all arguments
B1, . . . , Bn, A

such that
⋃n
i=1 kr(Bi) � kr(A), it holds that for some i = 1 . . . n,

kr(Bi) / kr(A)

It can be shown that both /Eli and /Dem (recall Definition 3.4) are reasonable
inducing.

We are now in a position to state some important results proved in [Modgil
and Prakken, 2013]. Any (c)-structured argumentation framework satisfies the
rationality postulate of sub-argument closure. Moreover, if a (c-)structured
argumentation framework is well-defined then the postulates of strict closure
and direct and indirect consistency are also satisfied by the ASPIC+ framework
as defined with the contrary function in Section 2.3.

Theorem 3.18 [Sub-argument Closure] Let ∆ = (A, C,�) be a (c-)SAF and
E a complete extension of the AF corresponding to ∆. Then for all A ∈ E: if
A′ ∈ Sub(A) then A′ ∈ E.

Theorem 3.19 Let ∆ = (A, C,�) be a well-formed (c-)SAF and E a complete
extension of the AF corresponding to ∆. Then

Closure under Strict Rules {Conc(A)|A ∈ E} = ClRs
({Conc(A)|A ∈ E});

Direct consistency {Conc(A)|A ∈ E} is consistent;

Indirect consistency ClRs
({Conc(A)|A ∈ E}) is consistent.

Finally, note that if no strict rules or axiom premises are included in the
argumentation theory, then the preference ordering need not be reasonable in



30 Sanjay Modgil, Henry Prakken

order for all four rationality postulates to be satisfied (indeed no assumptions
as to the properties of the preference ordering are required in this case). Thus
the requirement that the defined (c-)SAF be well-defined does not apply.

3.3.2 The work of Dung and Thang (2014) and Grooters (2014)

For the case without preferences and knowledge bases, [Dung and Thang, 2014]

identify weaker conditions for satisfying the rationality postulates than those
discussed above. [Dung and Thang, 2014] formulate their results in terms
of an adaptation of [Amgoud and Besnard, 2013] abstract-logic approach to
abstract argumentation with abstract attack and support relations between
arguments. After defining their adaptation they apply it to what they call
“rule-based systems”, which are a pair of sets of strict and defeasible rules
defined over a propositional literal language. Since they adopt the ASPIC+

definitions of an argument and of defeat (which they call ‘attack’) they thus
effectively study a class of ASPIC+ instantiations with an empty knowledge
base and with no preferences. Below we summarise their definitions and re-
sults as holding for this class of ASPIC+ instantiations, adapting fragments of
[Grooters, 2014] and [Grooters and Prakken, 2016]. In doing so, we implicitly
assume a given ASPIC+ structured argumentation framework generated by a
rule-based instantiation in the sense of [Dung and Thang, 2014], which we will
call a ‘rule-based’ ASPIC+ SAF .

First, an argument A is a basic defeasible argument iff TopRule(A) ∈ Rd, and
a set X of arguments is called inconsistent if Conc(X) is indirectly inconsistent.

Definition 3.20 [Base of an argument] Let A be an argument and BA a finite
set of subarguments of A. BA is a base of A if

• Conc(A) ∈ ClRs
(Conc(BA));

• For each argument C, C defeats A if and only if C defeats BA.

The following example shows the intuitive idea of a base.

Example 3.21 Let Rs = {c → d} and Rd = {⇒ a;⇒ b; a, b ⇒ c}. Then the
following arguments can be constructed: A1 :⇒ a, A2 :⇒ b, A3 : A1, A2 ⇒ c
and A4 : A3 → d. See Figure 4.
A4 can only be attacked on its subarguments A1, A2, or A3 because of the

strict top rule. Every argument that attacks A1 or A2 also attacks A3, so
every argument that attacks A4 also attacks A3. It is easy to see that every
argument that attacks A3 also attacks A4. Conc(A4) ⊆ ClRs(Conc(A3)), so
{A3} is a base of A4. The same kind of reasoning applies to the fact that the
set {A1, A2, A3} is also a base of A4.
However note that the set {A1, A2} is not a base of A4, because A4 can be
rebutted (on A3) without A1 or A2 being attacked.
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Figure 4. Arguments of Example 3.21

Definition 3.22 [Generation of arguments] An argument A is said to be gen-
erated by a set of arguments S, if there is a base B of A such that B ⊆ Sub(S).
The set of all arguments generated by S is denoted by GN(S).

[Dung and Thang, 2014] show that for every set of arguments S, Sub(S) ⊆
GN(S) and for every complete extension E, GN(E) = E. [Grooters, 2014]

notes that these results immediately imply that each rule-based ASPIC+ SAF
satisfies the closure under subarguments postulate, since for every complete
extension E: Sub(E) ⊆ GN(E) = E ([Dung and Thang, 2014] do not consider
the subargument-closure postulate).

Definition 3.23 [Compact] A rule-based ASPIC+ SAF is compact if for each
set of arguments S, GN(S) is closed under strict rules.

[Dung and Thang, 2014] show that each rule-based ASPIC+ SAF is compact
and that each compact rule-based ASPIC+ SAF satisfies strict closure, so each
rule-based ASPIC+ SAF satisfies the closure under strict rules postulate.

Definition 3.24 [Cohesive] A rule-based ASPIC+ SAF is cohesive if for each
inconsistent set of arguments S, GN(S) is conflicting (attacks itself).

Definition 3.25 [Self-contradiction axiom] A rule-based ASPIC+ SAF is said
to satisfy the self-contradiction axiom if for each minimal inconsistent set X ⊆
L: ¬X ⊆ ClRs

(X) (where ¬X = {¬l | l ∈ L}).

[Dung and Thang, 2014] then show that each cohesive rule-based ASPIC+

SAF satisfies the indirect-consistency postulate and, moreover, that each rule-
based ASPIC+ SAF that satisfies the self-contradiction axiom is cohesive.
Combining these two results, it follows that each rule-based ASPIC+ SAF
that satisfies the self-contradiction axiom, also satisfies indirect consistency.
This result generalises the corresponding results discussed in the previous sub-
section, since satisfying the self-contradiction axiom is a weaker notion than
closure under transposition. First, [Dung and Thang, 2014] prove that the
latter implies the former in that each rule-based ASPIC+ SAF that is closed
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under transposition satisfies the self-contradiction axiom. They then give the
following counterexample to the converse implication.

Example 3.26 Let L = {a,¬a, b,¬b} and Rd = ∅ and Rs = {a → b} ∪
{x,¬x→ y | x ∈ {a, b} and y ∈ L}. This system satisfies the self-contradiction
axiom but is not closed under transposition.

It is worth noting that [Grooters, 2014] generalised all these results to the
case with arbitrary logical languages with symmetric negation, c-consistent
nonempty knowledge bases and reasonable argument orderings, and for both
SAF s and for c-SAF s. Moreover, she did so alternatively for closure under
transposition and closure under contraposition. In doing so, it was shown that
the following weaker version of the self-contradiction axiom suffices:

Definition 3.27 [Weak self-contradiction axiom] A rule-based ASPIC+ (c-
)SAF is said to satisfy the weak self-contradiction axiom if for each minimal
inconsistent set X ⊆ L there is a σ ∈ X such that ¬σ ∈ ClRs

(X).

3.4 On the need for the various elements of ASPIC+

ASPIC+ as a general framework is quite expressive. The question therefore
arises whether all these elements are really needed.

3.4.1 The need for knowledge bases

The ASPIC system as presented in [Caminada and Amgoud, 2007] did not
have knowledge bases. Instead, certain and uncertain premises were encoded
as strict rules→ ϕ and defeasible rules⇒ ϕ. Others, such as [Dung and Thang,
2014], [Li and Parsons, 2015] and [Dung, 2016] also adopt this idea. Yet there
are good reasons to retain knowledge bases. To start with, the distinction
between knowledge (or beliefs) and inference rules is a natural one, widely
adopted in logic. Furthermore, this distinction allows a systematic study of
encodings of logical consequence notions in the set of strict rules, as we will
see below. We therefore conclude that although dispensing with knowledge
bases might have practical advantages in specific applications, a general theory
of argumentation-based inference should retain the formal distinction between
knowledge and inference rules.

3.4.2 The need for strict rules and axiom premises

[Li and Parsons, 2015] show that every ASPIC+ SAF with a weakest-link or-
dering that satisfies the rationality postulates can be translated into a SAF
with no strict rules and no axiom premises and that (for all of [Dung, 1995]’s
semantics) validates exactly the same conclusions as the original SAF. Their
basic idea is that each strict rule is translated to a corresponding defeasible rule
and each axiom premise to an ordinary premise, and the argument ordering is
then extended so as to give the new elements resulting from the translations of
strict rules or axiom premises, precedence over all conflicting elements. While
this result is theoretically interesting, we still believe that the distinction be-
tween strict and defeasible inference rules is a natural one and is philosophically
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grounded. For example, the observation that the inclusion of strict rules al-
lows a systematic study of encodings of logical consequence notions also applies
here. We also believe that the distinction between disputable (ordinary) and
undisputable (axiom) premises is a practically useful one. For these reasons
we claim that a general framework for structured argumentation should leave
room for these distinctions.

3.4.3 The need for preferences

In the context of ABA, [Kowalski and Toni, 1996] proposed a way to encode
preferences with a specific use of assumptions in strict rules with the effect that
if a preferred rule applies, the assumption in a non-preferred conflicting rule is
attacked. The same can in fact be done with defeasible rules. However, [Kowal-
ski and Toni, 1996]’s proposal does not cover any of the argument orderings
discussed in this chapter. Outside of argumentation, a systematic treatment for
[Brewka, 1994b; Brewka, 1994a]’s prioritised default logic was given by [Del-
grande and Schaub, 2000], who showed that prioritised default theories can
be translated into equivalent ordinary default theories. In Section 4.5 we will
discuss the relation between prioritised default logic and ASPIC+.

In general, the question as to whether ASPIC+ argument orderings can be
encoded in ASPIC+ rule sets or knowledge bases is still an open question.
We conjecture that such translations may be very hard to give for argument
orderings that depend on global properties of an argument, such as weakest-link
orderings.

3.4.4 The need for defeasible rules

Perhaps the most controversial issue is whether defeasible inference rules are
needed. In Section 2.1 we illustrated with an informal example that there are
three ways to attack an argument: on its premises, on its defeasible inferences,
and on the conclusions of its defeasible inferences. In Section 2.2.2 we saw
that ASPIC+ explicitly allows all three forms of attack. However, some would
argue that the second and third type of attacks can be simulated using only
deductive rules (specifically the deductive rules of classical logic) by augmenting
the antecedents of these rules with normality premises. For example, with
regard to the second type of attack, could we in our example of Section 2.1 not
say that our argument claiming that John was in Holland Park that morning
since we saw him there has an implicit premise our senses functioned normally,
and that the argument that John was in Amsterdam that morning in fact
attacks this implicit premise, rather than its claim, thus reducing attacks on
conclusions to attacks on premises? With regard to the third type of attack,
could we not say that instead of attacking the defeasible inference step from
Jan’s testimony to the claim that John was in Amsterdam, we could model this
step as deductive, and then add the premise that normally witnesses speak the
truth, and then direct the attack at this premise? In other words, can we reduce
attacks on inferences to attacks on premises? These informal arguments have
some formal backing since, as we will discuss in more detail in Section 5.2, [Dung
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and Thang, 2014] have shown that defeasible inference rules can in ASPIC+

be reduced to strict rules.

In answer to these questions, we first claim that there is some merit in
modelling the everyday practice of ‘jumping to defeasible conclusions’ and of
considering arguments for contradictory conclusions. This is especially im-
portant given that one of the argumentation paradigm’s key strengths is its
characterisation of formal logical modes of reasoning in a way that corresponds
with human modes of reasoning and debate.

We next note that some have argued that such deductive simulations are
prone to yielding counterintuitive results. To illustrate, consider a instantiation
of ASPIC+ with no defeasible rules and in which the strict rules correspond to
classical propositional logic as defined in Section 3.1.2, and assume that natural-
language generalisations ‘If P then normally Q’ are formalised as material
implications P ⊃ Q in Kp. The idea is that since P ⊃ Q is an ordinary
premise, its use as a premise can be undermined in exceptional cases. Observe
that by classical reasoning we then have a strict argument for ¬Q ⊃ ¬P . Some
say that this is problematic. Consider the following example: ‘This alarm
in this building usually does not give false alarms’, so (strictly) ‘false alarms
in this building are usually not given by this alarm’. This strikes some as
counterintuitive, since the first generalisation is consistent with the situation
that this alarm is the only one in the building that gives false alarms, so the
contraposition of ‘If P then normally Q’ cannot be deductively valid.

A more refined classical approach is to give the material implication an
extra normality condition N , which informally reads as ‘everything is normal
as regards P implying Q’, and which is also put in Kp. The idea then is
that exceptional cases give rise to underminers of N . However, (P ∧ N) ⊃ Q
also deductively contraposes, namely, as (¬Q ∧N) ⊃ ¬P , so we still have the
controversial deductive validity of contraposition for generalisations. In the
false-alarm example the contraposition of the rule with the added normality
condition would read: ‘any false alarm in this building which is usual with
respect to false alarms in this building cannot be this alarm’, which is clearly
not deductively entailed by the initial generalisation given that it is consistent
with the situation that this alarm is the only one in the building that gives
false alarms.

One way to argue why classical simulations may give counter-intuitive re-
sults is to recall that a number of researchers provide statistical semantics for
defeasible inference rules. These semantics regard a defeasible rule of the form
P ⇒ Q as a qualitative approximation of the statement that the conditional
probability of Q, given P , is high. The laws of probability theory then tell
us that this does not entail that the conditional probability of ¬P , given ¬Q,
is high. The problem with the classical-logic approach is then that it con-
flates this distinction by turning the conditional probability of Q given P into
the unconditional probability of P ⊃ Q, which then has to be equal to the
unconditional probability of ¬Q ⊃ ¬P .
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So far we have argued that contrapositive inferences with defeasible condi-
tionals cannot be deductively valid (for a more detailed argument see [Modgil
and Prakken, 2014, Section 4.5]). One way to respect this is to formalise defea-
sible natural-language conditionals as domain-specific defeasible inference rules
in ASPIC+ (see Section 3.1.3 above and in more detail [Modgil and Prakken,
2014]). However, this makes it hard to capture some logical properties of de-
feasible conditionals. For example, it might be argued that modus tollens and
contraposition, although deductively invalid, are still defeasibly valid. For in-
stance, in crime investigations the police often reason: if this person was at the
crime, then we must be able to find his DNA at the crime scene; we have not
been able to find his DNA at the crime scene, so presumably he was not at the
crime scene. This seems a perfectly rational way of reasoning, provided that
the modus-tollens inference is regarded as defeasible. Perhaps this can be cap-
tured by formalising generalisations with a defeasible object level connective
;, as discussed above in Section 3.1.3 and by adding the appropriate strict
and defeasible inference rules for ; to Rs and Rd. For example, defeasible
modus tollens could be added as follows:

¬ψ,ϕ; ψ ⇒ ¬ϕ

However, doing so is not straightforward, since the above encoding of the de-
feasible modus pollens principle is in the form of an inference rule used in
construction of ASPIC+ arguments, while in contrast, the current nonmono-
tonic logics for defeasible conditionals model such principles at the level of the
consequence relation (which in ASPIC+ is defined in terms of the outcome of
argument evaluation; cf. Definition 2.18 above). This suggests the following
topic for future research: how to instantiate the sets of strict and defeasible
rules in ASPIC+ in such a way that the semantic insights on defeasible condi-
tionals obtained in other areas of nonmonotonic logic are respected?

So far our discussion has focused on argumentation based reasoning as it
applies to beliefs (i.e., reasoning about what is the case, often called epistemic
reasoning by philosophers). However argumentation is often about what to do,
prefer or value (what philosophers often call practical reasoning). Here too it
has been argued on philosophical grounds that reasons for doing, preferring
or valuing cannot be expressed in classical logic since they do not contrapose.
This view can of course not be based on a statistical semantics, since statistics
only applies to epistemic reasoning. Space limitations prevent us from giving
more details about these philosophical arguments.

Finally, as further discussed in Section 4.1, [Dung and Thang, 2014] show
for the case without preferences and knowledge bases that ASPIC+ defeasible
rules can be equivalently translated into theories of assumption-based argu-
mentation (ABA). Since, as also discussed further in Section 4.1, ABA can be
reconstructed as a special case of ASPIC+ with no knowledge bases, defeasible
rules or preferences, [Dung and Thang, 2014]’s result implies that the defea-
sible rules of ASPIC+ SAFs with no knowledge bases or preferences can be
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translated into strict ASPIC+ rules.

3.4.5 The value of translation results

Translation results like the ones of [Dung and Thang, 2014] and [Li and Par-
sons, 2015] on translating one type of rule into the other, and possible future
results on encoding preferences in rules, are theoretically interesting and may
have practical benefits. For example, [Dung and Thang, 2014]’s result makes
it possible to use ABA tools for implementing fragments of ASPIC+ without
preferences. However, such translation results should be interpreted with care.
Logic is full of such results and they do not necessarily mean that the trans-
lated system is less useful or less interesting. For example, nobody would say
that the fact that all connectives of propositional logic can be translated into
a single one means that presentations of propositional logic with the usual five
or six connectives are unnecessarily complicated; on the contrary, versions with
just one connective would lead to unnecessarily complex knowledge representa-
tions. Likewise, versions of ASPIC+ with both strict and defeasible rules and
with preferences may lead to more compact and more natural representations.
Moreover, nobody would say that translations of modal logic into first-order
predicate logic show that modal logic is superfluous. On the contrary, modal
logics often provide systematic treatments of modalities in ways that their first-
order translations do not. Likewise, ASPIC+ provides a theory of reasoning
with a combination of strict and defeasible rules and allows a general study of
argumentation with preferences, something which formalisms with only strict
or only defeasible rules or formalisms without preferences do not provide.

3.5 Argument schemes and critical questions

We concluded Section 3.1.3 by remarking on the use of defeasible inference rules
as principles of cognition in John Pollock’s work and as argument schemes in
informal argumentation theory. We now illustrate how both approaches can be
formalised in ASPIC+ and how strict inference rules can also be accommodated
when doing so.

John Pollock formalised defeasible rules for reasoning patterns involving per-
ception, memory, induction, temporal persistence and the statistical syllogism,
as well as undercutters for these reasons. In ASPIC+ his principles of percep-
tion and memory can be written as follows:

dp(x, ϕ): Sees(x, ϕ)⇒ ϕ
dm(x, ϕ): Recalls(x, ϕ)⇒ ϕ

In fact, these defeasible inference rules are schemes for all their ground instances
(that is, for any instance where x and ϕ are replaced by ground terms denoting
a specific perceiving agent and a specific perceived state of affairs). Therefore,
their names dp(x, ϕ) and dm(x, ϕ) as assigned by the n function are in fact
also schemes for names. A proper name is obtained by instantiating these
variables by the same ground terms as used to instantiate these variables in the
scheme. Thus it becomes possible to formulate undercutters for one instance
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of the scheme (say for Jan who saw John in Amsterdam) while leaving another
instance unattacked (say for Bob who saw John in Holland Park). Note, finally,
that these schemes assume a naming convention for formulas in a first-order
language, since ϕ is a term in the antecedent while it is a well-formed formula in
the consequent. In the remainder we will leave this naming convention implicit.

Now undercutters for dp state circumstances in which perceptions are unre-
liable, while undercutters of dm state conditions under which memories may be
flawed. For example, a well-known cause of false memories of events is that the
memory is distorted by, for instance, seeing pictures in the newspaper or watch-
ing a TV programme about the remembered event. A general undercutter for
distorted memories could be

um(x, ϕ): DistortedMemory(x, ϕ)⇒ ¬dm(x, ϕ)

combined with information such as

∀x, ϕ(SeesPicturesAbout(x, ϕ) ⊃ DistortedMemory(x, ϕ))

Pollock’s epistemic inference schemes are in fact a subspecies of argument
schemes. The notion of an argument scheme was developed in philosophy and
is currently an important topic in the computational study of argumentation.
Argument schemes are stereotypical non-deductive patterns of reasoning, con-
sisting of a set of premises and a conclusion that is presumed to follow from
them. Uses of argument schemes are evaluated in terms of critical questions
specific to the scheme. An example of an epistemic argument scheme is the
scheme from the position to know [Walton, 1996, pp. 61–63]:

A is in the position to know whether P is true
A asserts that P is true
P is true

Walton gives this scheme three critical questions:

1. Is A in the position to know whether P is true?
2. Did A assert that P is true?
3. Is A an honest (trustworty, reliable) source?

A natural way to formalise reasoning with argument schemes is to regard them
as defeasible inference rules and to regard critical questions as pointers to
counterarguments. For example, in the scheme from the position to know,
questions (1) and (2) point to underminers (of, respectively, the first and second
premise) while question (3) points to undercutters (the exception that the
person is for some reason not credible).

Accordingly, we formalise the position to know scheme and its undercutter
as follows:
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dw(x, ϕ): PositionToKnow(x, ϕ), Says(x, ϕ)⇒ ϕ
uw(x, ϕ): ¬Credible(x)⇒ ¬dw(x, ϕ)

We will now illustrate the modelling of both Pollock’s defeasible reasons and
Walton’s argument schemes with our example from Section 2.1, focusing on a
specific class of persons who are in the position to know, namely, witnesses. In
fact, witnesses always report about what they observed in the past, so they will
say something like “I remember that I saw that John was in Holland Park”.
Thus an appeal to a witness testimony involves the use of three schemes: first
the position to know scheme is used to infer that the witness indeed remembers
that he saw that John was in Holland Park, then the memory scheme is used
to infer that he indeed saw that John was in Holland Park, and finally, the
perception scheme is used to infer that John was indeed in Holland Park. Now
recall that John was a suspect in a robbery in Holland Park, that Jan testified
that he saw John in Amsterdam on the same morning, and that Jan is a friend
of John. Suppose now we also receive information that Bob read newspaper
reports about the robbery in which a picture of John was shown. One way to
model this in ASPIC+ is as follows.

The knowledge base consists of the following facts (since we don’t want to
dispute them, we put them in Kn):

f1: PositionToKnow(Bob, Recalls(Bob, Sees(Bob, InHollandPark(John))))
f2: Says(Bob, Recalls(Bob, Sees(Bob, InHollandPark(John))))
f3: SeesPicturesAbout(Bob, Sees(Bob, InHollandPark(John)))
f4: ∀x, ϕ.(SeesPicturesAbout(x, ϕ) ⊃ DistortedMemory(x, ϕ))
f5: ∀x.InHollandPark(x) ⊃ InLondon(x)
f6: PositionToKnow(Jan, Recalls(Jan, Sees(Jan, InAmsterdam(John))))
f7: Says(Jan, Recalls(Jan, Sees(Jan, InAmsterdam(John))))
f8: Friends(Jan, John)
f9: SuspectedRobber(John)
f10: ∀x, y, ϕ.Friends(x, y) ∧ SuspectedRobber(y) ∧ InvolvedIn(y, ϕ) ⊃ ¬Credible(x)
f11: InvolvedIn(John, Recalls(Jan, Sees(Jan, InAmsterdam(John))))
f12: ∀x¬(InAmsterdam(x) ∧ InLondon(x))

Combining this with the schemes from perception, memory and position to
know, we obtain the following arguments (for reasons of space we don’t list
separate lines for arguments that just take an item from K).

A3: f1, f2 ⇒dw Recalls(Bob, Sees(Bob, InHollandPark(John)))
A4: A3 ⇒dm Sees(Bob, InHollandPark(John))
A5: A4 ⇒dp InHollandPark(John)
A7: A5, f5 → InLondon(John)

This argument is undercut (on A4) by the following argument applying the
undercutter for the memory scheme:
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B3: f3, f4 → DistortedMemory(Bob, Sees(Bob, InHollandPark(John)))
B4: B3 ⇒um ¬dm(Bob, Sees(Bob, InHollandPark(John)))

Moreover, A7 is rebutted (on A5) by the following argument:

C3: f6, f7 ⇒dw Recalls(Jan, Sees(Jan, InAmsterdam(John)))
C4: C3 ⇒dm Sees(Jan, InAmsterdam(John))
C5: C4 ⇒dp InAmsterdam(John)
C8: C5, f5, f12 → ¬InHollandPark(John)

This argument is also undercut, namely on C3, based on the undercutter of the
position to know scheme:

D4: f8, f9, f10, f11 → ¬Credible(Jan)
D5: D4 ⇒uw ¬dw(Jan, Recalls(Jan, Sees(Jan, InAmsterdam(John))))

Finally, C8 is rebutted on C5 by the following continuation of argument A7:

A8: A7, f5, f12 ⇒ ¬InAmsterdam(John)

A8 is in turn undercut by B4 (on A4) and rebutted by C8 (on A5).

Because of the two undercutting arguments, neither of the testimony argu-
ments are credulously or sceptically justified in any semantics. Let us now see
what happens if we do not have the two undercutters. Then we must apply
preferences to the rebutting attack of C8 on A5 and to the rebutting attack of
A8 on C5. As it turns out, exactly the same preferences have to be applied in
both cases, namely, those between the three defeasible-rule applications in the
respective arguments. And this is what we intuitively want.

Finally, we note that counterarguments based on critical questions of argu-
ment schemes may themselves apply argument schemes. For example, we may
believe that Jan and John are friends because another witness told us so. Or
we may believe that Holland Park is in London because a London taxi driver
told us so (an application of the so-called expert testimony scheme).

4 Relationship with other Argumentation Formalisms

As shown in various publications on ASPIC+, its generality allows the recon-
struction of various other systems and frameworks as special cases of ASPIC+.
In this section we review this work in some detail. We also discuss the re-
lationship of ASPIC+ with various developments of abstract argumentation
frameworks.
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4.1 Assumption-based argumentation

Assumption-based argumentation (ABA) emerged from attempts to give an
argumentation-theoretic semantics to logic-programming’s negation as failure,
and has developed into a general framework for nonmonotonic logics [Bon-
darenko et al., 1993; Bondarenko et al., 1997; Toni, 2014]. ABA assumes a
‘deductive system’, consisting of a set of inference rules defined over some log-
ical language. Given a set of so-called ‘assumptions’ formulated in the logical
language, arguments are then deductions of claims using rules and supported by
sets of assumptions. In general, ABA leaves both the logical language and set
of inference rules unspecified, so that like ASPIC+, it is an abstract framework
for structured argumentation. However, unlike ASPIC+, ABA only allows at-
tacks on an argument’s assumptions, so that ABA’s rules are effectively strict
inference rules. In order to express conflicts between arguments, ABA makes
a minimum assumption on the logical language, namely, that each assumption
has a contrary. That b is a contrary of a, written as b = a, informally means
that b contradicts a. An argument using an assumption a is then attacked by
any argument for conclusion a. In [Bondarenko et al., 1997] an argumentation-
theoretic semantics is then given which is very much like [Dung, 1995]’s abstract
approach, except that [Bondarenko et al., 1997] considers sets of assumptions
rather than sets of arguments. However, [Dung et al., 2007] showed that an
equivalent fully argument-based formulation can be given.

In this section we first discuss how ABA can be reconstructed in ASPIC+

and then how some instantiations of ASPIC+ can be reconstructed in ABA.

4.1.1 Reconstructing ABA in ASPIC+

Above we remarked that [Bondarenko et al., 1997]’s version of ABA is strictly
speaking not an instantiation of [Dung, 1995]’s abstract argumentation frame-
works but that [Dung et al., 2007] gave an equivalent formulation of ABA in
such frameworks. [Prakken, 2010] showed that this reconstructed version of
ABA can in turn be reconstructed as a special case of ASPIC+ extended with
possibly non-symmetric negation (see Section 2.3 above). In ASPIC+ as de-
fined by [Prakken, 2010], the ordinary premises were further divided into ‘really’
ordinary premises and assumptions and the assumption premises were used to
model ABA assumptions. However, as observed by [Modgil and Prakken, 2013,
Section 3.1], one can do without such specialised premises and model assump-
tions as ordinary premises. ABA can then be reconstructed as the special case
of ASPIC+ with empty sets of defeasible rules and axiom premises and no
preferences.

First the main definitions of ABA are recalled.

Definition 4.1 (Def. 2.3 of [Dung et al., 2007].) A deductive system is a pair
(L,R) where

• L is a formal language consisting of countably many sentences, and
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• R is a countable set of inference rules of the form α1, . . . , αn → α.13

α ∈ L is called the conclusion of the inference rule, α1, . . . , αn ∈ L are
called the premises of the inference rule and n ≥ 0.

Definition 4.2 (Def. 2.5 of [Dung et al., 2007].) An assumption-based argu-
mentation framework (ABF ) is a tuple (L,R,A,−) where

• (L,R) is a deductive system.

• A ⊆ L, A 6= ∅. A is the set of assumptions.

• If α ∈ A, then there is no inference rule of the form α1, . . . , αn → α ∈ R.

• − is a total mapping from A into L. α is the contrary of α.

ABA arguments are then defined in terms of deductions. To remain as close
as possible to ASPIC+, we here give the tree-based definition of [Toni, 2014]

(with some minor stylistic rephrasings). The proofs of [Prakken, 2010] instead
use [Dung et al., 2007]’s sequence-based definition, which essentially presents
one particular order in which a tree-style argument can be constructed.

Definition 4.3 ([Toni, 2014].) A deduction for a conclusion α supported by
premises S ⊆ L is a finite tree with nodes labelled by sentences in L or by τ14.
Each leaf is either τ or a sentence in S. each non-leave α′ has, as children,
the elements of the body of some rule in R with head α′.

Then an assumption-based argument is defined as follows.

Definition 4.4 (Def. 2.6 of [Dung et al., 2007].) An argument for a conclu-
sion on the basis of an ABF is a deduction of that conclusion whose premises
are all assumptions (in A).

As for notation, the existence of an argument for a conclusion α supported
by a set of assumptions A is denoted by A ` α, or by A `ABF α if it has to be
distinguished from the existence of a strict argument according to Definition 2.4
with the same premises and conclusion; the latter will below be denoted by
A `AT α.

Finally, Dung et al.’s notion of argument attack is defined as follows.

Definition 4.5 (Def. 2.7 of [Dung et al., 2007].)

• An argument A ` α attacks an argument B ` β if and only if A ` α
attacks an assumption in B;

• an argument A ` α attacks an assumption β if and only if α is the
contrary β of β.

13In [Dung et al., 2007] the arrows are from right to left.
14τ represents ‘true’ and stands for the empty body of rules.
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The ASPIC+ argumentation theory corresponding to an assumption-based ar-
gumentation framework is then in [Prakken, 2010] defined as follows.15

Definition 4.6 [Mapping ABFs to ATs] Given an assumption-based argumen-
tation framework ABF = (LABF ,RABF ,A,−ABF ), the corresponding argu-
mentation theory ATABF = (AS ,K), where AS = (LAT ,−AT ,RAT , n) and
K = Kn ∪ Kp, is defined as follows:

• LAT = LABF

• ϕ ∈ ψAT iff ϕ = ψABF

• RAT = Rs = RABF

• Kn = ∅

• Kp = A

• n is undefined.

Then it can be shown that for all ABF s: there exists an argument A `ABF α if
and only if there exists an argument A `AT α. From this it follows for all ABF s
and for every argument A `ABF α and every argument A `AT α: A `ABF α is
attacked by an argument B `ABF β if and only if A `AT α is defeated by an
argument B `AT β. Then the main correspondence result can be proven:

Theorem 4.7 (Thm. 8.8 of [Prakken, 2010]) For all ABF s, and for any
semantics S subsumed by complete semantics and any set E:

1. if E is an S-extension of ABF then EAT is an S-extension of AT , where
EAT = {A `AT α | A `ABF α ∈ E};

2. if E is an S-extension of AT then EABF is an S-extension of ABF ,
where EABF = {A `ABF α | A `AT α ∈ E}.

Theorem 4.7 says that there is a one-to-one correspondence between the exten-
sions of an ABF and those of its corresponding AT . Note also that the above
results carry over to [Verheij, 2003]’s DefLog argumentation system since, as
observed by Verheij, DefLog can be translated into ABA.

One virtue of this reconstruction of ABA in ASPIC+ is that one can then
identify conditions under which ABA satisfies rationality postulates (by requir-
ing, for instance, that the strict rules are closed under transposition).

15In fact, in [Prakken, 2010] the ABA assumptions were translated into ASPIC+

assumption-type premises, which in [Prakken, 2010] was an additional category of premises.
However, as remarked by [Modgil and Prakken, 2013], the translation also succeeds when
defined as below.
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4.1.2 Reconstructing instantiations of ASPIC+ in ABA

[Dung and Thang, 2014] have shown that their rule-based systems, which are
a special case of ASPIC+ with no knowledge base and no preferences, can be
translated into ABA instantiations. They do this by translating every defeasible
rule p1, . . . , pn ⇒ q as a strict rule di, p1, . . . , pn, not¬q → q, where

• di = n(p1, . . . , pn ⇒ q) in ASPIC+;

• di, not¬q ∈ A (i.e., they are ABA assumptions);

• q = not¬q and for all ϕ: ϕ = ¬ϕ and ¬ϕ = ϕ

[Dung and Thang, 2014] then show (on the assumption that ASPIC+ rule
names do not occur as antecedents or consequents in ASPIC+ rules), that for
each semantics subsumed by complete semantics the resulting ABA framework
validates the same conclusions as the original ASPIC+ SAF . Generalising this
result to cases with preferences is still an open question.

4.2 Tarskian abstract logics and classical-logic argumentation

[Amgoud and Besnard, 2013] present an abstract approach to defining the
structure of arguments and attacks, based on Tarski’s notion of an abstract
logic that only assumes some unspecified logical language L, and a consequence
operator over this language, which to each subset of L assigns a subset of L
(its logical consequences). Tarski then assumed a number of constraints on
Cn (see [Amgoud and Besnard, 2013] for a more detailed account of these
constraints). Finally, Tarski defined a set S ⊆ L as consistent iff Cn(S) 6= L.
In [Amgoud and Besnard, 2013], an argument is a pair (S, p) where S ⊆ L is
consistent, p ∈ Cn(S) and S is a minimal (under set inclusion) set satisfying
these conditions. Then (S, p) attacks (T, q) iff {p, q′} is inconsistent for some
q′ ∈ T .

[Modgil and Prakken, 2013, Section 5.2] show that ASPIC+ can be used to
reconstruct, and extend with preferences, the Tarskian logic approach. For the
strict rules, they choose (for any finite S ⊆ L):

S → p ∈ Rs iff p ∈ Cn(S)

Then given any Σ ⊆ L, they let Kp = Σ, Rd = ∅. Also, ∀φ ∈ L, φ has a
contradictory ψ, and if φ = −ψ then Cn({φ, ψ}) = L and if Cn({φ, ψ}) = L
then ∃φ′ ∈ Cn({φ}) s.t. φ′ = −ψ. They then show that given a reasonable
argument preference ordering � (possibly defined on the basis of an ordering ≤′
over Σ), the c-SAF is well defined. Hence one obtains an account of [Amgoud
and Besnard, 2013]’s Tarskian logic abstract argumentation approach that is
extended with preferences and is well behaved with respect to rationality postu-
lates. Two issues to note are that the reconstruction employs ASPIC+ under-
mining attacks, which differ from the abstract logic attacks defined above which
rely on showing that the claim and attacked premises are inconsistent. How-
ever, [Modgil and Prakken, 2013] show that the use of ASPIC+ attacks does
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not change the outcome in the sense that the complete (and hence grounded,
preferred and stable) extensions remain the same irrespective of whether we use
the abstract logic notion of an attack instead. Moreover, ASPIC+ imposes no
subset minimality conditions on the premises of arguments. However, [Modgil
and Prakken, 2013] show that if subset minimal arguments are not strength-
ened by adding ‘irrelevant’ premises – i.e., if A is subset minimal and A ⊀ B
then A′ ⊀ B where Prem(A′) ⊃ Prem(A) – then the conclusions of arguments
in complete extensions remains the same whether or not we exclude arguments
that are not subset minimal.

[Modgil and Prakken, 2013] then applied this to a reconstruction of so-called
classical argumentation [Cayrol, 1995; Besnard and Hunter, 2001; Besnard and
Hunter, 2008; Gorogiannis and Hunter, 2011], which formalises arguments as
minimal classical consequences from consistent and finite premise sets in stan-
dard propositional or first-order logic. In particular, [Gorogiannis and Hunter,
2011] study classical logic instantiations of abstract argumentation frameworks.
[Modgil and Prakken, 2013] reconstruct this as a specific instance of the above
formulation of the Tarskian abstract logic approach, with Cn the classical con-
sequence operator (below denoted as |=). This yields the following instantiation
of ASPIC+:

Definition 4.8 [Classical argumentation with preferences reconstructed in ASPIC+]
Let L′ be a classical-logic language, Σ ⊆ L′ and ≤′ a partial preorder on Σ. A
classical-logic argumentation theory based on (L′,Σ,≤′) is a pair (AS,K) such
that AS is an argumentation system (L,−,R, n) where:

1. L = L′;

2. ϕ ∈ ψ iff ϕ = ¬ψ or ψ = ¬ϕ;

3. Rd = ∅, and for all finite S ⊆ L and p ∈ L, S → p ∈ Rs iff S |= p.

K is a knowledge base such that Kn = ∅ and Kp = Σ.

(A, C,�) is the c-SAF based on (AS,K) as defined in Definition 2.14 and where
� is defined in terms of ≤′ as in Section 3.2.

[Gorogiannis and Hunter, 2011] define seven attack relations and prove that
only the following two ensure satisfaction of the rationality postulate of indirect
consistency:

• Y directly undercuts X if Conc(Y ) ≡ ¬p for some p ∈ Prem(X)

• Y directly defeats X if Conc(Y ) `c ¬p for some p ∈ Prem(X)

Since classical logic can be specified as a Tarskian abstract logic, [Modgil and
Prakken, 2013] can prove via their reconstruction of abstract-logic argumenta-
tion, that the ASPIC+ notion of undermining attacks is equivalent to direct
undercuts and defeats in that the complete extensions generated are the same.
Moreover, from the results described above in Section 3.2 it follows that their
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extension of classical-logic argumentation with preferences satisfies the ratio-
nality postulates. Indeed, [Modgil and Prakken, 2013] argue that the extension
to include preferences is needed if classical-logic argumentation is to be effec-
tively used in arbitrating amongst conflicts, since as shown in ([Cayrol, 1995;
Gorogiannis and Hunter, 2011; Amgoud and Besnard, 2013]), there is a one-to-
one correspondence between the (premises of arguments in in) preferred/stable
extensions of abstract argumentation frameworks instantiated by a classical-
logic knowledge base and the maximal consistent subsets of the knowledge base.
This is to be expected, given the monotonicity of classical logic (and thus the
absence of logical mechanisms to withdraw previously derivable contradictory
inferences).

4.3 Carneades

As shown by [Van Gijzel and Prakken, 2011; Van Gijzel and Prakken, 2012],
the Carneades system of [Gordon et al., 2007; Gordon and Walton, 2009b]

can be reconstructed as a special case of basic ASPIC+ with a generalised
contrariness relation. A Carneades argument is a triple 〈P,E, c〉 where P is a
set of premises, E a set of exceptions and c the conclusion, which is either pro or
con a statement s. Carneades does not assume that premises and conclusions
are connected by inference rules. Also, all arguments are elementary, that is,
they contain a single inference step; they are combined in recursive definitions
of applicability of an argument and acceptability of its conclusion. In essence,
an argument is applicable if (1) all its premises are given as facts or else are
acceptable conclusions of other arguments, and (2) none of its exceptions are
given as facts or as acceptable conclusions of other arguments. A statement
is acceptable if it satisfies its proof standard. Facts are stated by an audience,
which also provides numerical weights for each argument plus thresholds for
argument weights and differences in argument weights. In the publications
on Carneades five proof standards are defined. One is preponderance of the
evidence:

Statement p satisfies preponderance of the evidence iff there exists at
least one applicable argument pro p for which the weight is greater
than the weight of any applicable argument con p.

In the ASPIC+ reconstruction of Carneades the facts are reconstructed as
elements of Kn, while the Carneades notions of applicability and acceptability
are encoded in the ASPIC+ defeasible inference rules. For every Carneades
argument a = 〈P,E, c〉, a defeasible rule P ⇒appa arga is added, saying that
if P then a is applicable16. Moreover, a defeasible rule arga ⇒acca c is added,
saying that if a is applicable, its conclusion is acceptable. Here, appa and acca
are the respective names of these rules in L according to the naming convention
n. Thus a Carneades argument 〈P,E, c〉 pro statement s induces an ASPIC+

argument:

16The idea to make the applicability step explicit by means of an argument node was
adapted from [Brewka and Gordon, 2010].
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A1: P
A2: A1 ⇒appa arga
A3: A2 ⇒acca s

It should be noted that effectively, a Carneades argument is analogous to a
defeasible inference rule, since the representation (P,E, c) does not assume
that the facts P are given as part of the argument; rather it is the applicability
of the argument that depends on facts or arguments for P . This justifies the
translation of Carneades arguments into ASPIC+ defeasible rules.

Next, for each exception e ∈ E, a rule e ⇒ ¬appa is added to Rd and
¬appa = appa is added to the contrariness relation. So such rules can be used
to undercut the ASPIC+ version of an argument on its first step. Moreover,
for each argument b with a conclusion c′ that conflicts with s, we have that
argb = acca if this is dictated by the proof standard for s. For example, if the
standard for s is preponderance of the evidence, then argb = acca just in case
weight(a) ≤ weight(b). Thus the Carneades proof standards and argument
weights are not incorporated in the ASPIC+ argument ordering but in the
ASPIC+ contrariness relation.

For example, a Carneades argument b = 〈P ′, E′, c′〉 where c′ is con s, induces
an ASPIC+ argument:

B1: P ′

B2: B1 ⇒appb argb
B3: B2 ⇒accb ¬s

Then A3 rebuts B3 if weight(b) < weight(a), B3 rebuts A3 if weight(a) <
weight(b) and both rebut each other if weight(a) = weight(b). Since in the
ASPIC+ reconstruction all defeasible arguments are equally strong, all these
rebutting attacks succeed as defeat.

[Van Gijzel and Prakken, 2011; Van Gijzel and Prakken, 2012] then prove
that under this reconstruction, ASPIC+ SAFs corresponding to a Carneades
theory always have a unique extension, which is the same in all of [Dung, 1995]’s
semantics. This perhaps surprising result is partly due to strong non-circularity
assumptions made in Carneades on its ‘inference graph’, which contains all con-
structible arguments. [Van Gijzel and Prakken, 2011; Van Gijzel and Prakken,
2012] also prove that the conclusions of the justified arguments in ASPIC+

correspond to the conclusions of the acceptable arguments in Carneades.

4.4 Defeasible Logic Programming

Defeasible logic programming (DeLP) is a logic-programming-based argumen-
tation system originating from (but not equivalent to) [Simari and Loui, 1992].
The main publication on DeLP is [Garcia and Simari, 2004], which we will take
as the basis for our discussion. Although DeLP is similar to ASPIC+, it can-
not be fully reconstructed as an instance. Elements of DeLP that instantiate
ASPIC+ are a predicate-logic literal language with ordinary negation, a set of



Abstract Rule-Based Argumentation 47

indisputable facts, two sets of strict and defeasible rules, and a binary argument
ordering. DeLP arguments can be reconstructed as ASPIC+ arguments with
the additional constraint that their sets of conclusions are consistent under
application of strict rules in that for no ϕ it holds that Conc(A) ` ϕ,¬ϕ.

DeLP’s definition of attack is similar but not equivalent to ASPIC+’s notion
of rebutting attack. Instead (and translated to ASPIC+ vocabulary), A attacks
B at B’s subargument B′ if Conc(A) ∪ Conc(B′) ` ϕ,¬ϕ for some wff ϕ. Note
that this allows an attack on a conclusion of a strict rule, but such an attack
will never exist without an attack on a previous defeasible step in the argument
as well. Apart from this difference, DeLP’s notion of defeat is defined as in
ASPIC+: A defeats B if A attacks B on B′ and A 6≺ B′. It remains to be
investigated whether adopting DeLP’s notion of rebutting attack in ASPIC+

would lead to different outcomes.
A main difference with ASPIC+ is that DeLP as defined in [Garcia and

Simari, 2004] does not evaluate arguments by generating abstract argumen-
tation frameworks. Instead, DeLP’s notion of warrant is defined in a way
that is similar to the argument game of grounded semantics [Prakken, 1999;
Modgil and Caminada, 2009] but with some significant differences. Briefly,
the argument game for grounded semantics is between a proponent and an
opponent of an argument A, where the proponent begins with A and then the
players take turns such that the opponent defeats or strictly defeats the propo-
nent’s previous argument while the proponent strictly defeats the opponent’s
previous argument; in addition, the proponent is not allowed to repeat his own
arguments. An argument A is justified if the proponent has a winning strategy
in a game starting with A. DeLP’s notion of warrant is equivalent to this no-
tion of justification but its game rules are different. First, if one player weakly
defeats the previous argument then the next player must strictly defeat that
argument, while if one player strictly defeats the previous argument then the
next player may either weakly or strictly defeat it. Second, no player may reuse
a subargument from one of its earlier moves.

It would be interesting to adopt the game rules of grounded semantics in
DeLP’s notion of warrant, which would then establish a clear link between
DeLP and the theory of abstract argumentation. Among other things, this
would facilitate the study of the satisfaction of rationality postulates in DeLP.

4.5 ASPIC+ characterisations of non-monotonic reasoning
formalisms

A key reason for the prominence of argumentation (in particular Dung’s theory
of abstract argumentation frameworks) in knowledge representation and rea-
soning, is its characterisation of non-monotonic reasoning in terms of the di-
alectical exchange of argument and counter-argument. Indeed, in [Dung, 1995],
argumentation-based characterisations of logic programming, [Reiter, 1980]’s
Default Logic and [Pollock, 1987]’s argumentation system are formalised. The
theory thus provides foundations for reasoning by individual computational and
human agents, and distributed non-monotonic reasoning (‘dialogue’) amongst
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agents.

ASPIC+ continues in this tradition, formalising logic programming instan-
tiations of abstract argumentation frameworks, whereby the defeasible rules
are rules in a logic program, the strict rules and axiom premises are empty,
the preference relation is empty, and (as described in Section 2.3) the ordi-
nary premises are the negation as failure (∼) assumptions in the antecedents
of defeasible rules, and we define the contrary function ∀α ∈ L: α ∈ ∼ α.

Brewka’s Preferred Subtheories [Brewka, 1989] can also be formalised as an
instance of ASPIC+’s formalisation of classical-logic argumentation (as out-
lined in Section 4.2). The arguments and attacks are defined by a base Σ
of propositional classical wff equipped with a total ordering ≤′ which is used
by the set comparison /Eli to define weakest link preferences over arguments.
One then obtains an argumentation-based characterisation of non-monotonic
inference defined by Preferred Subtheories. The latter starts with a strat-
ification (Σ1, . . . ,Σn) of the totally ordered Σ (α, β ∈ Σi iff α ≡′ β and
α ∈ Σi, β ∈ Σj , i < j iff β ∈ Σ <′ α ∈ Σ). A ‘preferred subtheory’ (ps)
is obtained by taking a maximal under set inclusion consistent subset of Σ1,
maximally extending this with a subset of Σ2, and so on. Multiple individually
consistent preferred subtheories may be constructed, and [Modgil and Prakken,
2013] show that each ps corresponds to the premises of arguments in a stable
extension. Hence, α is classically entailed from a ps iff α is the conclusion of
an argument in a stable extension. Then α is a sceptical (credulous) Preferred
Subtheories inference iff α is entailed by all (respectively at least one) ps, iff α
is sceptically (credulously) justified under the stable semantics (as defined in
Definition 2.18).

More recently, ASPIC+ has been used to provide an argumentative charac-
terisation of Brewka’s Prioritised Default Logic (PDL) [Brewka, 1994a]. PDL
upgrades [Reiter, 1980]’s Default Logic to include a strict partial ordering <D
on a finite set D of first order normal defaults of the form θ:φ

φ . Then given a set

W of first order formulae, and a linearisation <+ of <D, one iteratively applies
the highest ordered default whose antecedent is in the first order closure of the
result obtained in the previous iteration. Intuitively, one starts with the classi-
cal consequences E0 of W , and then adds the consequent of the highest ordered
default whose antecedent is contained in E0. Then closure under classical con-
sequence obtains E1, to which one adds the consequent of the highest ordered
default whose antecedent is contained in E1, and so on, until En+1 = En is
the unique extension of (D,W,<). In [Young et al., 2016], an ASPIC+ SAF
is defined in which the contrary function is defined so as to formalise classi-
cal negation, Rs characterises inference in first order classical logic, the axiom
premises Kn is defined as W (Kp = ∅), Rd = {θ ⇒ φ| θ:φφ ∈ D} (with the

naming function n undefined), and <D the ordering on Rd. A linear ‘structure
preference’ ordering <SP is defined, which modifies <D so as to account for
the dependency amongst rules in Rd (i.e., for any set of rules applicable given
all rules thus far applied, <SP picks out the <D maximal rule, and the process
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is repeated for the set of rules that are subsequently applicable). Then the
disjoint elitist ordering – Γ �DEli Γ′ iff ∃r ∈ Γ \ Γ′,∀r′ ∈ Γ′ \ Γ : r <SP r′ – is
used to define an ordering over arguments according to the weakest link prin-
ciple. [Young et al., 2016] then show that the single extension E of (D,W,<)
corresponds to the conclusions of arguments in the (provably) unique stable
extension of the corresponding ASPIC+ SAF.

4.6 The relationship of ASPIC+ with developments of the theory
of abstract argumentation frameworks

ASPIC+ is designed to generate abstract argumentation frameworks in the
sense of [Dung, 1995]. Over the years, various extensions of abstract argumen-
tation frameworks with further elements have been proposed, such as with pref-
erences ([Amgoud and Cayrol, 1998]’s preference-based argumentation frame-
works or PAFs), values ([Bench-Capon, 2003]’s value-based argumentation
frameworks or V AFs), attacks on attacks ([Modgil, 2009]’s extended argumen-
tation frameworks or EAFs) and abstract support relations between arguments
(e.g. [Cayrol and Lagasquie-Schiex, 2009]’s bipolar argumentation frameworks
or BAFs). The question arises as to what extent ASPIC+ can be seen as
instantiations of these frameworks. Moreover, work has recently been done on
the dynamics of abstract argumentation frameworks, such as deleting or adding
arguments or attacks; e.g. [Baroni and Giacomin, 2008; Baroni et al., 2011b;
Baumann and Brewka, 2010]. The question also arises as to what extent can the
dynamics of argumentation, as studied in these works, be applied to ASPIC+.
These questions are answered in this section.

4.6.1 E-ASPIC+: Structuring Extended Argumentation
Frameworks

[Modgil, 2009] extended abstract argumentation frameworks to accommodate
arguments that attack attacks, and in so doing enabled integration of arguments
that express preferences over other arguments. The essential idea is that given
an attack from A to B, then if the argument C expresses a strict preference for
B over A, C attacks (and so invalidates the success of) the attack from A to B.
A modified definition of the acceptability of arguments was defined for these
Extended Argumentation Frameworks (EAF s), and [Modgil, 2009] showed that
one can reconstruct [Prakken and Sartor, 1997]’s logic-programming-based ar-
gumentation system with defeasible preferences as an instance of EAFs. In this
reconstruction, arguments built from rules expressing preferences over other
‘object level’ rules, constitute arguments expressing preferences over the argu-
ments built from the object level rules.

However, as with Dung’s original abstract argumentation frameworks, the
abstract EAF s can in principle yield extensions that violate the rationality
postulates. Hence [Modgil and Prakken, 2010] define a version of ASPIC+

– E-ASPIC+ – that generate a special class of bounded hierarchical EAF s in
which the finite arguments A can be stratified into A1, . . . ,An, such that if
C ∈ Ai (i 6= 1) expresses a preference for B over A, then A,B ∈ Ai−1. As
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in ASPIC+ arguments are constructed from strict and defeasible rules, and
axiom and ordinary premises, and in addition to the usual notions of attack,
E-ASPIC+ defines a function over sets of arguments A′ ⊆ A, that maps A′ to
a strict preference over some B,A ∈ A. In this way, EAF s are conservatively
modified to allow for attacks on attacks to originate from sets of, rather than
single, arguments. As well as the notion of a well-defined SAF 17 [Modgil and
Prakken, 2010] additionally identify a condition that if A′ ⊆ A expresses that
A ≺ B and A′′ ⊆ A expresses that B ≺ A, then A′ and A′′ respectively
contain arguments X and Y that have contradictory conclusions, or some X
and Y such that X can be extended by strict rules to an argument X+ such
that X+ and Y have contradictory conclusions. [Modgil and Prakken, 2010]

then show that the generated bounded hierarchical EAF s satisfy [Caminada
and Amgoud, 2007]’s rationality postulates.

4.6.2 Abstract support relations

There have been several recent proposals to extend abstract argumentation
frameworks with abstract support relations, such as [Cayrol and Lagasquie-
Schiex, 2005; Cayrol and Lagasquie-Schiex, 2009; Cayrol and Lagasquie-Schiex,
2013]’s Bipolar Argumentation Frameworks (BAFs), the work of [Martinez et
al., 2006] and [Oren and Norman, 2008]’s Evidential Argumentation Systems
(EASs). Various semantics for such frameworks have been defined, claiming to
capture different notions of support. For example, [Boella et al., 2010a] study
semantics of what they call “deductive” support, which satisfies the constraint
that if A is acceptable and A is a deductive support of B, then B is acceptable.
[Nouioua and Risch, 2011] consider “necessary support”, which satisfies the
constraint that if B is acceptable and A is a necessary support of B, then A is
acceptable.

One question is whether the ASPIC+ notion of a subargument instantiates
any of these notions. Here we first discuss [Dung and Thang, 2014]’s simple
way of formalising [Nouioua and Risch, 2011] intuitions concerning necessary
support, namely, by adding a binary support relation S on A to AFs with the
sole additional constraint that if B supports C and A defeats B then A also
defeats C. The semantics of the resulting abstract argumentation frameworks
is simply defined by choosing one of the semantics for the corresponding pair
(A,D). Thus the support relation S is only used to constrain the defeat relation
D. [Prakken, 2014] calls the resulting frameworks SuppAFs and notes that
ASPIC+ can be reconstructed as an instance of SuppAFs as follows. Take D
to be ASPIC+’s defeat relation and S to be ASPIC+’s subargument relation
between arguments. It is then immediate from Definitions 2.10 and 2.12 that
ASPIC+’s notion of defeat satisfies [Dung and Thang, 2014]’s constraint on D
in terms of S.

An equivalent reformulation of SuppAFs does make use of support relations
in its semantics. In [Prakken, 2013] ASPIC+ as presented above was reformu-

17Where the requirement that an argument ordering is reasonable is adapted to the setting
of EAF s.
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lated in terms of [Pollock, 1994]’s recursive labellings, and this reformulation
was abstracted to SuppAFs in [Prakken, 2014]. First, [Prakken, 2013] defines a
notion of p-defeat (for “Pollock-defeat”), which captures direct defeat between
arguments:

Definition 4.9 [p-Attack] A p-attacks B iff A p-undercuts, p-rebuts or p-
undermines B, where:

• A p-undercuts argument B iff Conc(A) = −n(r) and B has a defeasible top
rule r.

• A p-rebuts argument B iff Conc(A) = −Conc(B) and B has a defeasible top
rule.

• Argument A p-undermines B iff Conc(A) = −ϕ and B = ϕ, ϕ 6∈ Kn.

Definition 4.10 [p-Defeat] A p-defeats B iff:A p-undercuts B, or; A p-rebuts/p-
undermines B and A ⊀ B.

Then [Prakken, 2013] proves that A defeats B according to Definition 2.12
iff A p-defeats B or A p-defeats a proper subargument B′ of B. Now if the
support relation of a SuppAF is taken to be ASPIC+’s notion of an ‘immediate’
subargument and the defeat relation of a SuppAF is taken to be p-defeat, then
the following definition is equivalent to [Dung, 1995]’s semantics for AFs (and
so for SuppAFs).

Definition 4.11 [p-labellings for SuppAFs.] Let (A,D,S) be a SuppAF cor-
responding to a (c-)SAF = (A,D) where D is defined as p-defeat and where
S is defined as (A,B) ∈ S iff B is of the form B1, . . . , Bn → / ⇒ ϕ and
A = Bi for some 1 ≤ i ≤ n. Then (In,Out) is a p-labelling of SuppAF iff
In ∩Out = ∅ and for all A ∈ A it holds that:

1. A is labelled in iff:

(a) All arguments that p-defeat A are labelled out; and

(b) All B that support A are labelled in.

2. A is labelled out iff:

(a) A is p-defeated by an argument that is labelled in; or

(b) Some B that supports A is labelled out.

Exploiting the well-known correspondences between labelling- and extension-
based semantics [Caminada, 2006], [Prakken, 2014] shows that the complete
extensions defined thus for SuppAFs generated from ASPIC+ with p-defeat are
exactly the complete extensions of SuppAFs as generated above from ASPIC+

with defeat.
[Prakken, 2014] also showed for preferred semantics that ASPIC+ instanti-

ates [Oren and Norman, 2008]’s evidential argumentation systems. One might
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expect that classical-logic instantiations of ASPIC+ instantiate [Boella et al.,
2010a]’s version of bipolar argumentation frameworks for “deductive support”.
However, [Prakken, 2014] showed that this is not the case. This raises the ques-
tion as to how one might instantiate [Boella et al., 2010a]’s notion of deductive
support.

More generally, the question arises as to the relation of the various accounts
of abstract support relations with formalisms for structured argumentation. To
the best of our knowledge, the only papers studying this question are [Prakken,
2014] and [Modgil, 2014]. [Modgil, 2014] discusses this issue under the assump-
tion that arguments and their relations are constructed from a ASPIC+ argu-
mentation theory. He discusses how examples in the literature used to motivate
the need for support relations essentially amount to the supporting argument
A concluding some φ that is: 1) either a premise in the supported argument
B; 2) the conclusion of a defeasible rule in B, or; 3) A provides the missing
sub-argument for the enthymeme B (i.e., B is an incomplete argument). For
example, letting A be an argument constructed from α and α ⇒r1 β then il-
lustrating the three cases, B consists of: 1) β and β ⇒r2 δ; 2) γ, γ ⇒r3 β and
β ⇒r2 δ; 3) β ⇒r2 δ.

Given this analysis, the underlying premises and rules can then be seen to
generate additional arguments without the need for support relations; for exam-
ple, in case 1) the additional argument B′ : A⇒r2 δ. Hence, one would expect
that the justification status of arguments obtained by the modified definitions
of acceptability in abstract argumentation frameworks augmented by support
relations, corresponds to their evaluation in a standard abstract argumentation
framework of arguments and attacks, instantiated by the additional arguments
generated by the same premises and rules. In case 1), this would mean that
the status of B in the augmented framework in which B is supported by A, is
the same as the status of B in the original framework consisting of A, B and
B′. However, [Modgil, 2014] shows that this correspondence does not always
hold18. He concludes from this that only when examining abstract concepts in
a structured approach can one gain some insight into the appropriate use of
these abstract level concepts in evaluating arguments. Indeed, [Modgil, 2014]

provides a similar analysis of collective attacks [Nielsen and Parsons, 2007] and
recursive attacks on attacks [Baroni et al., 2011a] that have been incorporated
at the abstract level and that have led to modified definitions of acceptability.

4.6.3 Preference- and value-based argumentation frameworks

[Amgoud and Cayrol, 1998] added to abstract argumentation frameworks (AFs)
a preference relation on A, resulting in preference-based argumentation frame-
works (PAFs), which are triples of the form 〈A, attacks, �〉. An argument A

18Note that [Modgil, 2014] is careful to acknowledge that these observations apply to the
case where arguments and their relations are generated by instantiating sets of formulae,
rather than by human authoring of arguments. He argues that in the latter context addi-
tional relations between arguments incorporated in abstract argumentation frameworks may
well be warranted by human oriented uses of argument, and goes on to argue the need for
complementary empirical studies of human argumentation.
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then defeats an argument B if A attacks B and A 6≺ B. Thus each PAF gen-
erates an AF of the form 〈A, defeats〉, to which Dung’s theory of AFs can be
applied. [Bench-Capon, 2003] proposed a variant called value-based argumen-
tation frameworks (V AFs), in which each argument is said to promote some
(legal, moral or societal) value. Attacks in an V AFs succeed only if the value
promoted by the attacked argument is strictly preferred to the value of the
attacking argument, according to a given ordering on the values (an audience).

The question arises as to what happens if ASPIC+ is reformulated so as to
generate PAFs instead of Dung’s original AF s. This can be easily done, since
ASPIC+ instantiations already generate a set of arguments with an attack
relation and define a binary argument ordering. However, this may lead to
violation of rationality postulates, even in cases where ASPIC+ satisfies them.

Consider the following example from [Prakken, 2012b; Modgil and Prakken,
2013].

A : p
B1 : ¬p
B2 : B1 ⇒ q

Here p and ¬p are ordinary premises. Note that B1 is a subargument of B2.
In ASPIC+ we then have that A and B1 directly attack each other while,
moreover, A indirectly attacks B2, since it directly attacks B2’s subargument
B1. These attack relations are displayed in Figure 5(a).

Figure 5. The attack graph

Assume next that B1 ≺ A and A ≺ B2 (such an ordering could be the result
of a last-link ordering). The PAF modelling then generates the following single
defeat relation: A defeats B1; see Figure 5(b). Then we have a single extension
(in whatever semantics), namely, {A,B2}. So not only A but alsoB2 is justified.
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However, this violates [Caminada and Amgoud, 2007]’s rationality postulate
of subargument closure of extensions, since B2 is in the extension while its
subargument B1 is not. This problem is not restricted to subargument closure;
[Prakken, 2012b] also discusses examples in which the postulate of indirect
consistency is violated.

The cause of the problem is that the PAF modelling of this example cannot
recognise that the reason why A attacks B2 is that A directly attacks B1, which
is a subargument of B2. So the PAF modelling fails to capture that in order
to check whether A’s attack on B2 succeeds, we should compare A not with B2

but with B1. Now since B1 ≺ A, then in ASPIC+ we also have that A defeats
B2; see Figure 5(c). So the single extension (in whatever semantics) is {A},
and so closure under subarguments is respected.

This shows that under the assumption that PAFs (and also V AFs) are
instantiated by logical formulae, then these only behave correctly with respect
to the rationality postulates, if all attacks are direct. We can conclude that for
a principled analysis of the use of preferences to resolve attacks, the structure
of arguments must be made explicit, since the structure of arguments is crucial
in determining how preferences must be applied to attacks.

A more general word of caution is in order here. Although it is tempting
to extend abstract argumentation frameworks with additional elements, one
should resist the temptation to think that for any given argumentation phe-
nomenon the most principled analysis is at the level of abstract argumentation.
In fact, it often is the other way around, since at the abstract level crucial no-
tions like claims, reasons and grounds are abstracted away.

4.6.4 Dynamics of argumentation

Recently much work has been done on the nature and effects of change opera-
tions on a given argumentation state, e.g. [Modgil, 2006; Baroni and Giacomin,
2008; Rotstein et al., 2008; Baumann and Brewka, 2010; Cayrol et al., 2010;
Boella et al., 2010b; Baroni et al., 2011b]. Among other things, enforcing
and preservation properties are studied. Enforcement concerns the extent to
which desirable outcomes can or will be obtained by changing an argumenta-
tion state, while preservation is about the extent to which the current status of
arguments is preserved under change. Almost all this work is done for abstract
argumentation frameworks. In particular, the following operations on abstract
argumentation frameworks have been studied: addition or deletion of (sets of)
arguments and addition or deletion of (sets of) attack relations. Deleting at-
tacks can here be seen as an abstraction from the use of preferences to resolve
attacks into defeats.

The question arises as to what extent this work is relevant for ASPIC+.
Here too our above word of caution applies. At first sight, it would seem
that the most principled analysis of argumentation dynamics is at the level
of abstract argumentation frameworks. However, upon closer inspection it
turns out that such analyses, because they ignore the structure of arguments,
often implicitly make assumptions that are not in general satisfied by ASPIC+
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instantiations (and neither by other formalisms for structured argumentation).
For example, abstract models of argumentation dynamics do not recognise
that some arguments are not attackable (such as deductive arguments with
certain premises) or that some attacks cannot be deleted (for example between
arguments that were determined to be equally strong), or that the deletion
of one argument implies the deletion of other arguments (when the deleted
argument is a subargument of another, as in Figure 5 above), or that the
deletion or addition of one attack implies the deletion or addition of other
attacks (for example, attacking an argument implies that all arguments of
which the attacked argument is a subargument are also attacked; in Figure 5
above attacking B1 implies attacking B2). These considerations imply that
formal results pertaining to the abstract model are only relevant for specific
cases, and fail to cover many realistic situations in argumentation that can be
expressed in ASPIC+. To give a very simple example, in models that allow the
addition of arguments and attacks, any non-selfattacking argument A can be
made a member of every extension by simply adding non-attacked attackers of
all A’s attackers. However, this result at the abstract level does not carry over
to instantiations in which not all arguments are attackable. Here too, we see
the importance of being aware of what the model abstracts from.

For these reasons we have in [Modgil and Prakken, 2012] proposed a model of
preference dynamics in ASPIC+, that arguably overcomes several limitations
of [Baroni et al., 2011b]’s resolution-based semantics for abstract argumen-
tation frameworks when applied to preference-based dynamics.19 The latter
allows that symmetric attacks are replaced by asymmetric attacks (i.e., the
symmetric attacks are ‘resolved’). We argued that from the perspective of in-
stantiated abstract argumentation frameworks, it is the use of preferences that
provides the clearest motivation for obtaining resolutions. But then studying
the use of preferences at the structured ASPIC+ level suggests that one must
also account for the resolution of asymmetric attacks, that preferences may
also result in removal of both attacks in a symmetric attack, and that certain
resolutions may be impossible, because assuming a preference that removes
one attack may necessarily imply removal of another attack, or because some
attacks cannot be removed by preferences (e.g. undercut attacks and attacks
on contraries). These subtleties can only be appreciated at the structured
level, and are thus not addressed by the study of resolutions at the abstract
level adopted by [Baroni et al., 2011b], in which only resolutions of symmetric
attacks are considered, and all possible resolutions are considered possible.

5 Further Developments of ASPIC+

In Section 2 we presented what we called the ‘basic’ ASPIC+ framework in
two stages, first with symmetric negation and then generalising it with possibly
asymmetric negation. As a matter of fact, this basic framework is the result

19We recognise that there may be other uses of resolution-based semantics to which our
criticism does not apply.
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of various revisions and incremental extensions [Amgoud et al., 2006; Prakken,
2010; Modgil and Prakken, 2013; Modgil and Prakken, 2014]. Also, in [Modgil
and Prakken, 2013], the basic framework in fact comes in four variants, resulting
from whether the premises of arguments are assumed to be c-consistent or not
and whether conflict-freeness is defined with the attack or the defeat relation
(recall footnote 7). So instead of a single ASPIC+ framework there in fact
exists a family of such frameworks. And this family is growing. In this section
we discuss recent work that modifies the ASPIC+ framework in some respects,
especially with new constraints on arguments or with modified or generalised
notions of attack. We consider this development of variants of ASPIC+ a
healthy situation, since it amounts to a systematic investigation of the effects
of different design choices within a common approach, which may each be
applicable to certain kinds of problems.

5.1 Consistency and chaining restrictions motivated by
contamination problems

Some recent work on ASPIC+ has studied further constraints on arguments in
an attempt to address the so-called contamination problem originally discussed
by [Pollock, 1994; Pollock, 1995].20 This problem arises if the strict inference
rules are chosen to correspond to classical logic and if they are then combined
with defeasible rules. The problem is how the trivialising effect of the classical
Ex Falso principle can be avoided when two arguments that use defeasible
rules have contradictory conclusions. The problem is especially hard since any
solution should arguably preserve satisfaction of the rationality postulates of
[Caminada and Amgoud, 2007]. In addition, [Caminada et al., 2012] claim
that any solution should also satisfy a new set of postulates that are meant
to express the idea that information irrelevant to a part of the argumentation
system should not affect the conclusions drawn from that part.

The following abstract example illustrates the problem. Assume that the
strict rules of an argumentation system correspond to classical logic, i.e. X →
ϕ ∈ Rs if and only if X ` ϕ and X is finite (where ` denotes classical conse-
quence).

Example 5.1 Let Rd = {p⇒ q; r ⇒ ¬q; t⇒ s}, Kp = ∅ and Kn = {p, r, t},
while Rs corresponds to classical logic. Then the corresponding abstract argu-
mentation framework includes the following arguments:

A1: p A2: A1 ⇒ q
B1: r B2: B1 ⇒ ¬q C: A2, B2 → ¬s
D1: t D2: D1 ⇒ s

Figure 6 displays these arguments and their attack relations. Argument C
attacks D2. Whether C defeats D2 depends on the argument ordering but

20Some parts of this section have been taken or adapted from [Grooters and Prakken,
2016].
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Figure 6. Illustrating trivialisation

plausible argument orderings are possible in which C 6≺ D2 and so C defeats
D2. This is problematic, since s can be any formula, so any defeasible argument
unrelated to A2 or B2, such as D2, can, depending on the argument ordering,
be defeated by C. Clearly, this is extremely harmful, since the existence of
just a single case of mutual rebutting attack, which is very common, could
trivialise the system. For instance, in this example neither of A2 nor B2 are in
the grounded extension, since they defeat each other. But then the grounded
extension does not defend D2 against C and therefore does not contain D2.

It should be noted that simply disallowing application of strict rules to in-
consistent sets of formulas does not help, since then an argument for ¬s can
still be constructed as follows:

A3: A2 → q ∨ ¬s
C ′: A3, B2 → ¬s

Note that argument C ′ does not apply any strict inference rule to an inconsis-
tent set of formulas.

[Grooters and Prakken, 2016] propose the following formalisation of the prop-
erty of trivialisation.

Definition 5.2 (Trivialising argumentation systems) An argumentation
system AS is trivialising iff for all ϕ,ψ ∈ L and all knowledge bases K such
that {ϕ,¬ϕ} ⊆ K a strict argument on the basis of K can be constructed in AS
with conclusion ψ.

The research problem then is identifying classes of non-trivialising argumen-
tation systems. The argumentation system in our example is clearly trivialising
since Rs contains strict rules ϕ,¬ϕ→ ψ for all ϕ,ψ ∈ L.

Example 5.1 does not cause any problems for preferred or stable semantics,
since A2 and B2 attack each other and at least one of these attacks will (with
non-circular argument orderings) succeed as defeat. Therefore, all preferred or
stable extensions contain either A2 or B2 but not both. Since both A2 and B2

attack C (by directly attacking one of its subarguments), C is for each preferred
or stable extension defeated by at least one argument in the extension, so C is
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not in any of these extensions, so D2 is in all these extensions. This is intuitively
correct since there is no connection between D2 and the arguments A2 and B2.
[Pollock, 1994; Pollock, 1995] thought that this line of reasoning for preferred
semantics suffices to show that his recursive-labelling approach (which was
later in [Jakobovits and Vermeir, 1999] proved to be equivalent to preferred
semantics) adequately deals with this problem. However, [Caminada, 2005]

showed that the example can be extended in ways that also cause problems
for preferred and stable semantics. Essentially, he replaced the facts p and r
with defeasible arguments for p and r and let both these arguments be defeated
by a self-defeating argument. On the one hand, such self-defeating arguments
cannot be in any extension, since extensions are conflict free. However, if a
self-defeating argument is not defeated by other arguments, it prevents any
argument that it defeats from being acceptable with respect to an extension.
In our example, if both A2 and B2 are defeated by a self-defeating argument
that is otherwise undefeated, then neither A2 not B2 is in any extension, so
no argument in an extension defends D2 against C. To solve the problem, two
approaches are possible. One is to change the definitions of the argumentation
formalism, while the other is to derive the strict inference rules from a weaker
logic than classical logic.

The first approach is taken by [Wu, 2012] and [Wu and Podlaszewski, 2015],
who for the ASPIC+ framework require that for each argument the set of con-
clusions of all its subarguments are classically consistent. They show that this
solution partially works for a restricted version of ASPIC+ without preferences,
in that for complete semantics, both the original postulates of [Caminada and
Amgoud, 2007] and the new ones of [Caminada et al., 2012] are satisfied. How-
ever, their results do not cover stable, preferred or grounded semantics, while
they give counterexamples to the consistency postulates for the case with pref-
erences.

A second approach to solve the problem is to replace classical logic as the
source for strict rules with a weaker, monotonic paraconsistent logic, in order
to invalidate the Ex Falso principle as a valid strict inference rule. [Grooters
and Prakken, 2016] explored this possibility. They first showed that two well-
known paraconsistent logics, the system Cω of [Da Costa, 1974] and the Logic
of Paradox of [Priest, 1979; Priest, 1989], cannot be used for these purposes,
since they induce violation of the postulate of indirect consistency. They then
investigated Rescher and Manor’s 1970 paraconsistent consequence notion of
weak consequence. A set S of wff’s weakly’ implies a wff ϕ just in case at least
one consistent subset of S classically implies ϕ. While thus initially taking the
second approach, [Grooters and Prakken, 2016] had to combine it with the first
approach (changing the definitions). Chaining strict rules in arguments has to
be disallowed since the notion of weak consequence does not satisfy the Cut
rule. For a counterexample, consider the set Γ = {a,¬a ∧ b}. Then Γ `W b
and Γ, b `W a ∧ b, while it is not the case that Γ `W a ∧ b.

[Grooters and Prakken, 2016] proved that this solution avoids trivialisation
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and for well-behaved c-SAFs satisfies all closure and consistency postulates
(where the strict-closure postulate has to be changed to closure under one-step
application of strict rules). Illustrating their solution with the above example,
we see that the contaminating argument C cannot be constructed since its con-
clusion ¬s follows from no consistent subset of {q,¬q}, while the contaminating
argument C ′ cannot be constructed since it chains two strict rules.

[Grooters and Prakken, 2016] also showed that with [Wu and Podlaszewski,
2015]’s stronger condition that the set of all conclusions of all subarguments of
an argument must be consistent, consistency and strict closure are not satisfied.
[Grooters and Prakken, 2016] did not attempt to prove Caminada et al.’s 2012
‘contamination’ postulates, for two reasons. First, they wanted to obtain results
for all of [Dung, 1995]’s semantics and, second, they argued that Caminada et
al.’s postulates in fact capture a stronger intuitive notion than the notion of
trivialisation.

The work of [Grooters and Prakken, 2016] gives rise to some more general
observations on [Caminada and Amgoud, 2007]’s original postulate of closure
under strict rules. Above we suggested that Rs can be chosen to correspond
to any monotonic logic with consequence notion ` by letting S → ϕ ∈ Rs if
and only if S ` ϕ and S is finite. However, the fact that the weak-consequence
notion `W does not satisfy the Cut rule illustrates that whenRs is thus defined,
a system that is closed under Rs as defined in Section 3.1.2, could allow for
inferences that are invalid according to `. For these reasons, [Grooters and
Prakken, 2016] not only reformulated their definition of strict closure but also
proposed a new rationality postulate of logical closure and showed that their
adapted version of ASPIC+ also satisfies this postulate for well-behaved c-
SAFs.

We also briefly note that [Grooters and Prakken, 2016] also studied mini-
mality constraints on strict-rule applications and the exclusion of circular ar-
guments. They show that if these two constraints are combined with their
adoption of weak consequence as the source of the strict rules, then if both
the knowledge base and the set of defeasible rules is finite, then each argument
has at most a finite number of attackers, i.e., their framework generates so-
called finitary argumentation frameworks in the sense of [Dung, 1995], which
is computationally beneficial.

Finally, [D’Agostino and Modgil, 2016] provide a formalisation of classi-
cal argumentation with preferences in which arguments are triples (∆,Γ, α)
such that α is classically entailed by ∆ ∪ Γ21, and where ∆ are the premises
assumed true, and Γ the premises supposed true ‘for the sake of argument’.
The idea is that if a trivialising argument ({q,¬q}, ∅, s) defeats ({s}, ∅, s) ∈ E
(where E is an extension under any semantics), then Y = (∅, {q,¬q},⊥) defeats

21[D’Agostino and Modgil, 2016] allow for arguments with inconsistent premises, as they
argue that arguments with inconsistent premises, and hence the trivialising effect of such
arguments, should be excluded dialectically (as in real-world reasoning and debate), rather
than checking for consistency prior to inclusion of the argument in an abstract argumentation
framework.
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X = ({q,¬q}, ∅, s) (Y supposes for the sake of argument the premises of X).
Moreover, since the premises whose truth Y commits to are empty, Y cannot
be defeated and so can be included in any E in order to defend ({s}, ∅, s), thus
negating the trivialising effect of X. [D’Agostino and Modgil, 2016] then show
that under certain conditions, the consistency and closure postulates, as well
as Caminada et al.’s additional contamination postulates are satisfied. As the
authors note, an interesting direction for future research would be to see if their
approach can be applied to the full ASPIC+ framework.

5.2 Dung (2016) on rule-based argumentation systems

Recently, [Dung, 2016] has continued the formal study of [Dung and Thang,
2014]’s rule-based argumentation systems. Recall that these comprise of strict
and defeasible inference rules over a propositional literal language, where ax-
iom, respectively ordinary, premises p are simulated with rules → p and ⇒ p.
[Dung, 2016] adds a transitive preference relation ≤ on Rd, so that he defines
rule-based systems as a triple (Rs,Rd,≤). In addition, he confines his study
to knowledge bases with a consistent strict closure. Above we explained that
[Dung and Thang, 2014] adopt the ASPIC+ definitions of argument and defeat
(which they call attack) and thus effectively study a class of ASPIC+ instantia-
tions. [Dung, 2016] also adopts the ASPIC+ definition of an argument and still
assumes that rule-based systems generate abstract argumentation frameworks
in the sense of [Dung, 1995] (in our notation (A,D)). However, Dung now
abstracts from particular definitions of defeat (D) and instead defines proper-
ties that defeat relations should have, thus effectively generalising ASPIC+ on
its notion of defeat. He then studies conditions under which defeat relations
satisfy these properties.

Since this work is quite recent, we confine ourselves to a brief summary and
discussion. In doing so, we will replace Dung’s term ‘attack’ with ‘defeat’, in
order to be consistent with the terminology in this chapter. This replacement
is justified since in [Dung, 2016] it is the attack relation in terms of which
arguments are evaluated, so it plays the role of ASPIC+’s defeat relation.

Dung introduces two new rationality postulates. His postulate for attack
monotonicity informally says that strengthening an argument cannot eliminate
an attack of that argument on another. Let us illustrate this with Figure 2,
interpreting the horizontal arrows as defeat relations. Then this postulate says,
for instance, that if D4’s argument C2 for v is replaced with a necessary premise
v (or in [Dung, 2016]’s case a strict rule→ v) or with a strict and firm argument
from u to v, then the new version of D4 still defeats B2. Next, Dung’s postulate
of credulous cumulativity informally means that changing a conclusion of an
argument in some extension to a necessary fact cannot eliminate that extension.

Dung then identifies several sets of conditions under which one or both of
these postulates and/or the original postulates of [Caminada and Amgoud,
2007] are satisfied. For the details of these very valuable results we refer the
reader to his own publication. Dung then continues by investigating several
definitions of defeat in terms of the preference relation ≤ on Rd on whether
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they satisfy these various postulates. Since he also assumes here that strict
arguments cannot be defeated, this part of his study effectively concerns in-
stantiations of ASPIC+ as defined above in Section 2.2. Here Dung obtains
both positive and negative results. For example, elitist orderings as defined
in [Modgil and Prakken, 2013] are shown to satisfy attack monotonicity but
not credulous cumulativity and indirect consistency, while democratic order-
ings as defined in [Modgil and Prakken, 2013] and Definition 3.4 above are
shown to satisfy credulous cumulativity and indirect consistency but not at-
tack monotonicity. As for Dung’s results on consistency, these are a special
case of [Modgil and Prakken, 2013]’s results for democratic orderings but they
contain counterexamples to their results for the elitist orderings. However,
these counterexamples do not apply to [Prakken, 2010]’s original way to define
the elitist orderings, which has been incorporated in the above Definition 3.4,
or to the erratum to [Modgil and Prakken, 2013] (which is available online at
https://nms.kcl.ac.uk/sanjay.modgil/AIJfinalErratum).

The question arises as to whether Dung’s two new postulates really are de-
sirable in general. Our answer is positive for attack monotonicity but, following
[Prakken and Vreeswijk, 2002, section 4.4], negative for credulous cumulativity.
The point is that strengthening a defeasible conclusion to an indisputable fact
may make arguments stronger than before, which can give them the power to
defeat other arguments that they did not defeat before. This may in turn re-
sult in the loss of the extension from which the conclusion was promoted to an
indisputable fact. We illustrate this with [Dung, 2016]’s own example. Infor-
mally: professors normally teach, administrators normally do not teach, deans
are normally professors and all deans are administrators (so with transposition
anyone who is not an administrator is not a dean). The question is whether
some particular dean teaches. In rules:

Dean ⇒d1 Professor Professor ⇒d2 Teach Administrator ⇒d3 ¬ Teach
Dean → Administrator ¬ Administrator → ¬ Dean → Dean

Assume further that d1 < d3 < d2. We have the following arguments on
whether the dean teaches:

A1: → Dean B1: → Dean
A2: A1 ⇒d1 Professor B2: B1 → Administrator
A3: A2 ⇒d2 Teach B3: B2 ⇒d3 ¬ Teach

(A1 and B1 are, of course, the same argument; B3 is called A3 by [Dung,
2016], while he does not explicitly name A1/B1 and B2.) With the elitist or
democratic weakest-link ordering as defined in Definition 3.4 above, argument
B3 strictly defeats A3, so in all semantics a unique extension is obtained in
which the dean is a professor but does not teach.

Suppose now the defeasibly justified conclusion Professor is added as a fact.
This gives rise to a new argument:
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C1: → Professor
C2: C1 ⇒d2 Teach

Now the elitist ordering yields that C2 strictly defeats B3, so again in all
semantics a unique extension is obtained but now it contains that the dean
teaches. So we have lost the original extension, which illustrates violation of
credulous cumulativity.

In our opinion, this outcome is the intuitive one, since by adding Professor
as a fact, we have promoted its status from a defeasibly justified conclusion to
an indisputable fact; as a consequence, argument A3 can be strengthened by
replacing its defeasible subargument A2 with the strict-and-firm subargument
C1; no wonder then that the thus strengthened argument C2 has, unlike its
weaker version A3, the power to defeat B3.

Despite this minor criticism, we believe that Dung’s latest investigations are
a very valuable addition to the study of rule-based argumentation.

5.3 Variants of rebutting attack

Several papers have considered alternative definitions of rebutting attack in
which an argument can under specific conditions also be rebutted on the con-
clusions of strict inferences.

5.3.1 Unrestricted rebuts

In ASPIC+ as presented so far, arguments can only be rebutted on conclu-
sions of defeasible-rule applications. [Caminada and Amgoud, 2007] call this
restricted rebut. They also study unrestricted rebut, which allows rebuttals on
the conclusion of a strict inference provided that at least one of the argument’s
subarguments is defeasible. Their replacement of restricted with unrestricted
rebut leads to a variant of their simplified version of ASPIC+ (which is in fact
equivalent to [Dung and Thang, 2014]’s rule-based systems). They prove that
for grounded semantics the rationality postulates are (under the usual con-
ditions) satisfied but they provide a counterexample for stable and preferred
semantics, presented above in Section 3.3 with a modification of Example 3.1.

[Caminada et al., 2014] argue in favour of unrestricted rebut on the grounds
that this would lead to more natural presentations of dialogues. They argue
that when applying argumentation in dialogical settings, the notion of restricted
rebuts sometimes forces agents to commit to statements they have insufficient
reasons to believe. In abstract terms, suppose an agent Ag1 submitting an
argument A whose top rule is a strict rule s1 = α1, . . . , αn → α, where for
i = 1 . . . n, αi is an ordinary premise in A or the head of a defeasible rule in A.
Now suppose Ag2 has an argument B that defeasibly concludes ¬α. Since B
does not rebut A on α, then to attack A requires that Ag2 construct, for some
i = 1 . . . n, an argument B′ that extends B and the arguments concluding αj ,
j 6= i, with the transposition si1 = α1, . . . , αi−1,¬α, αi+1, αn → ¬αi. But then
Ag2 is forced to commit to her interlocutors’ arguments concluding αj , j 6= i,
for which she has no reasons to believe.

[Caminada et al., 2014] give the following concrete example.
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John: “Bob will attend conferences AAMAS and IJCAI this year,
as he has papers accepted at both conferences.”
Mary: “That won’t be possible, as his budget of £1000 only allows
for one foreign trip.”

Formally, this discussion could be modelled using an argumentation theory
with Rd ⊇ {accA⇒attA; accI⇒attI; budget⇒¬(attA ∧ attI)} and Rs ⊇ {→
accA; →accI; →budget; attA, attI→attA ∧ attI}.

A direct formalisation of the above arguments is then:

J1: → accA M1: → budget
J2: J1 ⇒ attA M2: M1 ⇒ ¬(attA ∧ attI)
J3: → accI
J4: J3 ⇒ attI
J5: J3, J4 → attA ∧ attI

In ASPIC+, Mary’s argument does not attack John’s argument, since the
conclusion Mary wants to attack (attA∧attI) is the consequent of a strict rule.
Mary can only attack John’s argument by attacking the consequent of one of
the defeasible rules, that is, by uttering one of the following two statements.

Mary′: “Bob can’t attend AAMAS because he will attend IJCAI,
and his budget does not allow him to attend both.”
Mary′′: “Bob can’t attend IJCAI because he will attend AAMAS,
and his budget does not allow him to attend both.”

The associated formal counterarguments are as follows.22

M1: → budget
M2: M1 ⇒ ¬(attA ∧ attI)
J3: → accI J1: → accA
J4: J3 ⇒ attI J2: J1 ⇒ attA
M ′5: M2, J4 → ¬attA M ′′5 : M2, J2 → ¬attI

According to [Caminada et al., 2014] the problem with this is that Mary does
not know which of the two conferences Bob will attend, but ASPIC+ with
restricted rebut forces her to assert that Bob will attend one or the other.
They argue that from the perspective of commitment in dialogue [Walton and
Krabbe, 1995], this is unnatural.

[Caminada et al., 2014] then define a restricted version of basic ASPIC+ as
presented above in Section 2.2 – which they call ASPIC− – that substitutes
strict rules with empty antecedents for axiom premises, and defeasible rules

22Assuming Rs ito be closed under transposition, the fact that Rs contains attA, attI →
attA ∧ attI implies that Rs also contains ¬(attA ∧ attI), attI → ¬attA and attA,¬(attA ∧
attI)→ ¬attI.
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with empty antecedents for ordinary premises. Moreover, ASPIC− allows un-
restricted rebuts on the conclusions of strict rules. They then show that under
the assumption of a total ordering on the defeasible rules, and assuming ei-
ther the Elitist or Democratic set comparisons used in defining weakest- or
last-link preferences, all of [Caminada and Amgoud, 2007]’s rationality postu-
lates are satisfied for well-behaved SAFs, but only for the grounded semantics.
They have thus generalised [Caminada and Amgoud, 2007]’s results for some
specific cases with preferences.

5.3.2 Weak rebuts and an alternative view on the rationality
postulates

[Prakken, 2016] studies a weaker version of unrestricted rebut, motivated by
the general observation that deductive inferences may weaken an argument.
His argument is that when a deductive inference is made from the conclusions
of at least two ‘fallible’ (defeasible or plausible) subarguments, the deductive
inference can be said to aggregate the degrees of fallibility of the individual ar-
guments to which it is applied. This in turn means that the deductive inference
may be less preferred than either of these subarguments, so that a successful
attack on the deductive inference does not necessarily imply a successful at-
tack on one of its fallible subarguments. And this in turn means that there can
be cases where it is rational to accept a set of arguments that is not strictly
closed and that violate indirect consistency. Note that this line of reasoning
does not apply to cases where a deductive inference is applied to at most one
fallible subargument: then the amount of fallibility of the new argument is
exactly the same as the amount of fallibility of the single fallible argument to
which the deductive inference is applied. Accordingly, [Prakken, 2016] defines
weak rebut as allowing rebuttals on the conclusion of a strict inference, pro-
vided that the strict inference is applied to at least two fallible subarguments.
Moreover, he argues that there are cases where argument orderings cannot be
required to satisfy all properties of a reasonable argument ordering as defined
in Definition 3.16.

[Prakken, 2016] illustrates this with the lottery paradox, a well-known para-
dox from epistemology, first discussed by [Kyburg, 1961]. Imagine a fair lottery
with one million tickets and just one prize. If the principle is accepted that
it is rational to accept a proposition if its truth is highly probable, then for
each ticket Ti it is rational to accept that Ti will not win while at the same
time it is rational to accept that exactly one ticket will win. If we also accept
that everything that deductively follows from a set of rationally acceptable
propositions is rationally acceptable, then we have two rationally acceptable
propositions that contradict each other: we can join all individual propositions
¬Ti into a big conjunction ¬T1 ∧ . . . ∧ ¬T1,000,000 with one million conjuncts,
which contradicts the certain fact that exactly one ticket will win.

Many views on this paradox exist. [Prakken, 2016] wants to formalise the
view that for each individual ticket it is rational to accept that it will not
win while at the same time it is not rational to accept the conjunction of
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these acceptable beliefs. He considers the following modelling of the lottery
paradox in ASPIC+. Let L be a propositional language built from the set of
atoms {Ti | 1 ≤ i ≤ 1, 000, 000}. Then let X denote a well-formed formula
X1 Y . . . YX1,000,000 where Y is exclusive or and where each Xi is of one of the
following forms:

• If i = 1 then Xi = T1 ∧ ¬T2 ∧ . . . ∧ ¬Tn
• If i = n then Xi = ¬T1 ∧ ¬T2 ∧ . . . ∧ ¬Tn−1 ∧ Tn
• Otherwise Xi = ¬T1 ∧ . . . ∧ ¬Ti−1 ∧ Ti ∧ ¬Ti+1 ∧ . . . ∧ ¬Tn

Next we choose Kp = {¬Ti | 1 ≤ i ≤ 1, 000, 000}, Kn = {X}, Rs as consisting
of all propositionally valid inferences from finite sets and Rd = ∅.

The following arguments are relevant for any i such that 1 ≤ i ≤ 1, 000, 000.

¬Ti and ¬T1, . . . ,¬Ti−1,¬Ti+1, . . . ,¬T1,000,000, X → Ti (call it Ai)

[Prakken, 2016] then equates rational acceptability with sceptical justification
(see Definition 2.18 above). Making ¬Ti sceptically justified for all i requires
for all i that Ai ≺ ¬Ti, to prevent Ai from defeating ¬Ti. Then we have a
single extension in all semantics containing arguments for all conclusions ¬Ti
but not for their conjunction.

Note that adopting the above argument ordering requires that Condition (2)
of Definition 3.16 of reasonable argument orderings is dropped, since it excludes
such an argument ordering. On the other hand, Condition (1) of Definition 3.16
can be retained. In particular, Condition (1.iii) captures that applying a strict
rule to the conclusion of a single argument A to obtain an argument A′ does not
change the ‘preferedness’ of A′ compared to A. This is reasonable in general,
since A and A′ have exactly the same set of fallible elements (ordinary premises
and/or defeasible inferences). [Prakken, 2016] calls argument orderings that
satisfy Condition (1) of Definition 3.16 weakly reasonable argument orderings.
Finally, he proposes weakened versions of the postulates of strict closure and
indirect consistency, according to which these properties are only required to
hold for subsets of extensions with at most one fallible argument. He then
proves that if weak rebut is allowed in addition to restricted rebut and argument
orderings are required to be weakly reasonable, then the original postulate of
direct consistency plus the weakened postulates of strict closure and indirect
consistency are satisfied if AT is closed under contraposition or transposition
and Prem(A) ∪ Kn is indirectly consistent.

[Prakken, 2016] concludes with some general observations on the relation be-
tween deduction and justification. He argues to have shown that preservation
of truth (the definition of deductively valid arguments) does not imply preser-
vation of rational acceptance, since truth and rational acceptance are different
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things. However, he also argues that deduction still plays an important role in
argumentation. Deductive inference rules are still available as argument con-
struction rules and if an argument with a strict top rule has no attackers or
all its attackers are less preferred, then the argument may still be sceptically
justified. The specifics of the adopted argument ordering are essential here.
For instance, in the lottery paradox the argument ordering might allow that
application of the conjunction rule to a small number of conclusions ¬Ti is still
sceptically justified.

5.4 Attacks from sets of arguments to arguments

[Baroni et al., 2015] consider a variant of ASPIC+ by adapting an idea origi-
nally proposed by [Vreeswijk, 1997] in the context of his ‘abstract argumenta-
tion systems’, which are a predecessor of ASPIC+. In Vreeswijk’s systems a
counterargument is in fact a set of arguments: a set Σ of arguments is incom-
patible with an argument τ iff the conclusions of Σ ∪ {τ} give rise to a strict
argument for ⊥. [Baroni et al., 2015] adapt this idea to ASPIC+, where the
‘nodes’ of the abstract argumentation frameworks generated by the modifica-
tion are sets of arguments instead of individual arguments. They then prove
satisfaction of [Caminada and Amgoud, 2007]’s rationality postulates under
similar conditions as in [Modgil and Prakken, 2013].

[Baroni et al., 2015]’s proposal is motivated by criticism of the ASPIC+

treatment of generalised contrariness relations. However, we believe that they
just criticise specific uses of this generalised contrariness relation and that the
problems they discuss can be avoided by proper definitions of contrariness.
Nevertheless, their ideas are very interesting and also apply to basic ASPIC+

with ordinary negation. For example, it would be interesting to see if their vari-
ant of ASPIC+ provides an alternative way to model the examples discussed
by [Caminada et al., 2014]. More generally, it would be interesting to see if
their variant of ASPIC+ can be reconstructed as generating AFs that allow
attacks from sets of arguments to arguments as in e.g. [Bochman, 2003].

6 Implementations and applications

6.1 Implementations

Various implementations of instantiations of ASPIC+are available online, all
with domain-specific inference rules defined over literal-like languages, and with
argument orderings based on rule preferences.

The original ASPIC inference engine The original inference engine from
the ASPIC project (designed by Matthew South on the basis of a proto-
type of Gerard Vreeswijk) is available online at http://aspic.cossac.org/,
with a demonstrator with example inputs available at http://aspic.cossac.
org/ArgumentationSystem/. Rules can be formulated over a language with
predicate-logic literals with ordinary negation. The implementation allows for
choosing between restricted and unrestricted rebut. The implementation of re-
stricted rebut deviates from its formal definition in that it also allows rebuttals
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between two arguments that both have a strict top rule. Arguments can be
evaluated alternatively with a last- and a weakest-link argument ordering and
with sceptical grounded or credulous preferred semantics.

Visser’s Epistemic and Practical Reasoner Wietske Visser took the AS-
PIC deliverable ([Amgoud et al., 2006]) as the basis for her Epistemic and Prac-
tical Reasoner (EPR), available at http://www.wietskevisser.nl/research/
epr/. Rules can be formulated over a language of propositional literals with or-
dinary negation, optionally augmented with a ‘desirable’ modality for modelling
practical reasoning. EPR implements argument games for sceptical grounded
and credulous preferred semantics, as well as [Prakken, 2006]’s game for com-
bined epistemic and practical reasoning. It also implements as an option
[Prakken, 2005]’s mechanism for accrual of arguments.

ArgTech’s TOAST Mark Snaith of ArgTech at the University of Dundee,
Scotland, developed an implementation called TOAST ([Snaid and Reed, 2012])
based on [Prakken, 2010], available at www.arg-tech.org/index.php/toast-an-aspic-implementation/.
Rules can be formulated over a language of propositional literals with ordinary
negation plus optionally a user-specified contrariness relation. TOAST allows
for argument evaluation with an elitist weakest- or last-link ordering and in
grounded, preferred, stable and semi-stable semantics. Interestingly, TOAST
can receive input specified in the AIF format, so that it can be connected to
argumentation tools that can export to AIF ([Bex et al., 2013a]). More on this
will be said in the following subsection.

6.2 Logical specifications of the Argument Interchange Format

There is substantial interest in the development of argumentation support tools
enabling the structuring of individual arguments and the dialogical exchange
of argument in offline and online tools supporting human reasoning and debate
(for example see www.arg-tech.org). A key aim is to then organise human
authored arguments into abstract argumentation frameworks, so ensuring that
the assessment of arguments is formally and rationally grounded and enabling
‘mixed initiative’ argumentation integrating both machine and human authored
arguments [Modgil et al., 2013]. These developments, as well as the burgeoning
interest in logic-based models of argument, have motivated formulation of a
standardised format – the Argument Interchange Format (AIF ) [Chesñevar et
al., 2006] – for representation of human authored arguments and arguments
constructed in logic.

The AIF is an ontology that broadly speaking distinguishes between infor-
mation (propositions and sentences) and schemes which are general patterns
of reasoning such as applications of inference rules, or conflict or preferences
between information. Instances of these information and schemes classes consti-
tute nodes that can be organised into AIF graphs representing argumentation
knowledge. In [Bex et al., 2013b], two-way translations are defined between
AIF graphs and both ASPIC+ and E-ASPIC+ argumentation theories, and a
number of information preserving properties are proved in both cases. The lat-



68 Sanjay Modgil, Henry Prakken

ter essentially prove that given certain assumptions on the given AIF graphs,
the translation functions are identity-preserving (i.e. translating from the AIF
graph to (E-)ASPIC+ and back again yields the same graph as we started out
with).

One can then translate AIF representations of human authored arguments
and their interactions defined in the above-mentioned argumentation support
tools, and translate these to instantiations of (E-)ASPIC+ so enabling evalu-
ation under Dung’s semantics. This is explored in [Bex et al., 2013b], in which
arguments and their interactions authored in the Rationale tool [ter Berg et
al., 2009] are translated to the AIF and then to ASPIC+ arguments, attacks
and defeats. In this way, ASPIC+ is placed in the wider spectrum of not just
formal but also philosophical and linguistic approaches to argumentation.

6.3 Other applications of ASPIC+

ASPIC+ has been applied both in purely theoretical models and in imple-
mented architectures.

6.3.1 Theoretical applications

Some theoretical applications of ASPIC+ amount to the formulation of sets of
argument schemes for specific forms of reasoning in ASPIC+. [van der Weide
et al., 2011] and [van der Weide, 2011] use a combination of ASPIC+ and
[Wooldridge et al., 2006]’s system for meta-argumentation for specifying argu-
ment schemes for reasoning about preferences in argumentation-based decision
making. [Bench-Capon and Prakken, 2010] and [Bench-Capon et al., 2011]

formulate argument schemes for policy debates in E-ASPIC+. [Prakken et al.,
2015] and [Bench-Capon et al., 2013], inspired by earlier AI & Law work of
e.g. [Ashley, 1990] and [Aleven, 2003], model factor-based legal reasoning with
precedents in ASPIC+, with argument schemes formalised as defeasible rules
and auxiliary definitions concerning (sets of) factors, their origins, their rela-
tions and their preferences as first-order axioms. This allows the formalisation
of arguments like the following:

Plaintiff The current case and precedent Bryce share pro-plaintiff
factors {f1, f2} and pro-defendant factors {f3}, the pro-plaintiff
factors outweigh the pro-defendant factors since Bryce was decided
for the plaintiff; therefore, the current case should be decided for
me.

Defendant But unlike the current case, Bryce also contained pro-
plaintiff factor f4, so it is relevantly different from the current case,
so the outcome of Bryce does not control the current case.

Plaintiff But the current case contains factor f5 and both f4 and
f5 are a special case of the more abstract factor f6, so this difference
between Bryce and the current case is not relevant.

Other theoretical applications of ASPIC+ concern case studies. [Prakken,
2012a] modelled the legal and evidential reasoning in the American Popov v.



Abstract Rule-Based Argumentation 69

Hayashi case, an ownerships dispute between two baseball fans about a baseball
hit in the 500th homerun of a famous American baseball player. [Prakken,
2015] modelled a legislative debate and an American labour law dispute as
argumentation-based decision making involving goals, values and preferences.

Finally, some theoretical applications use ASPIC+ as a component of a more
general reasoning model. [Müller and Hunter, 2012] used a simple instantiation
of ASPIC+ with no knowledge base, only defeasible rules and no preferences
as a reasoning component in a formal model of decision making. [Prakken et
al., 2013] applied ASPIC+ in a dialogue model of collaborative IT security
risk assessment. Finally, [Timmer et al., 2017] used ASPIC+ for generating
explanations of forensic Bayesian networks.

6.3.2 Applications in implemented architectures

Some implemented architectures proposed in the literature have used imple-
mentations of ASPIC+ as a component. [Kok, 2013] used ASPIC+ as the
agent reasoning mechanism in a testbed for inter-agent deliberation dialogue,
meant for testing whether the use of argumentation is beneficial to the indi-
vidual agents or to the group to which they belong. This testbed is available
online at https://bitbucket.org/erickok/baidd. [Toniolo et al., 2015] used
ASPIC+ as a reasoning component in their CISpaces sensemaking tool for intel-
ligence analysis. [Yun and Croitoru, 2016] used the original ASPIC inference
engine for reasoning with possibly inconsistent ontologies in ontology-based
data access. Finally, [van Zee et al., 2016] used the TOAST implementation
of ASPIC+ as a component of a framework for rationalising goal models using
argument diagrams.

7 Open problems and avenues for future research

The study of abstract rule-based argumentation with both strict and defeasible
rules has a long history, ultimately going back to the seminal work of [Pollock,
1987], passing through intermediate stages [Simari and Loui, 1992; Pollock,
1995; Vreeswijk, 1997; Prakken and Sartor, 1997; Garcia and Simari, 2004] and
currently consolidated in the work on ASPIC+. As this chapter has shown,
the approach is a fruitful one, a mature metatheory is developing and there
is a growing number of implementations and applications. Yet many open
questions and avenues for future research remain. Here we list some of the (in
our opinion) most important ones.

• The study of argument preference relations and their properties is rel-
atively underdeveloped. More can be done here, for example, relating
argument orderings to work in decision theory or to probability theory
(see also the next point), or combining different preference criteria for
different kinds of problems, such as for epistemic versus practical reason-
ing.

• A recent research trend in formal argumentation is the combination of
argumentation-based inference with probability theory. This is not sur-
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prising, since argumentation has from the early days been proposed as a
model for reasoning under uncertainty. One question that arises here is
how characterisations of the strength or relative preference of arguments
relate to probability theory. Much recent work on probabilistic argu-
mentation assigns probabilities to arguments in abstract argumentation
frameworks, as in [Li et al., 2012; Hunter and Thimm, 2014]. However,
assigning probabilities to arguments is problematic, since in probability
theory probabilities are assigned to the truth of statements or to outcomes
of events, and an argument is neither a statement nor an event. What
is required here is a precise specification of what the probability of an
argument means in terms of its elements. How to do this in the context
of abstract rule-based argumentation is still largely an open question. A
preliminary answer is given by [Hunter, 2013] but only for the case of
classical-logic argumentation.

• The contamination problems referred to in Section 5.1 remain to be solved
for the fully general ASPIC+framework. As briefly discussed at the end
of Section 5.1, the work of [D’Agostino and Modgil, 2016] suggests direc-
tions for future development of the ASPIC+framework such that one can
establish conditions under which the additional rationality postulates of
[Caminada et al., 2012] are satisfied.

• In contrast to abstract argumentation, the study of computational aspects
of rule-based argumentation and the various ways it can be instantiated
is seriously underdeveloped. Much work can still be done on algorithms
and complexity results for rule-based argumentation involving defeasible
rules and preferences.

• While there is a growing body of work on the dynamics of abstract argu-
mentation, the work of [Modgil and Prakken, 2012] in ASPIC+ is to our
knowledge still the only account of the dynamics of structured argumen-
tation. Much remains to be done here.

• Another important research topic is implementation of more expressive
instantiations than those existing today. It would, for example, be inter-
esting to integrate state-of-the art propositional, first-order or modal-logic
theorem provers in ASPIC+ implementations.

• Finally, with an eye to practical applications it is important to conduct
comparative case studies involving various formalisms, such as ASPIC+,
assumption-based argumentation, Carneades or [Brewka and Woltran,
2010]’s abstract dialectical frameworks. It would be especially interest-
ing to study issues like naturalness and conciseness of representations.



Abstract Rule-Based Argumentation 71

Acknowledgments

We would like to express our thanks to those who have worked on the precursors
of the ASPIC+ framework (reviewed at the beginning of this chapter), as well
as those who have provided valuable feedback (including Peter Young and Leon
van der Torre), and those who have taken the time and effort to critically and
constructively study ASPIC+ and as a consequence have helped us improve
ASPIC+; notably, Phan Minh Dung in [Dung, 2016] and especially Sjur Dyrkol-
botn (personal communication), whose constructive observations motivated us
to write the erratum (https://nms.kcl.ac.uk/sanjay.modgil/AIJfinalErratum)
to [Modgil and Prakken, 2013].

BIBLIOGRAPHY
[Aleven, 2003] V. Aleven. Using background knowledge in case-based legal reasoning: a

computational model and an intelligent learning environment. Artificial Intelligence,
150:183–237, 2003.

[Amgoud and Besnard, 2013] L. Amgoud and Ph. Besnard. Logical limits of abstract argu-
mentation frameworks. Journal of Applied Non-classical Logics, 23:229–267, 2013.

[Amgoud and Cayrol, 1998] L. Amgoud and C. Cayrol. On the acceptability of arguments
in preference-based argumentation. In Proceedings of the 14th Conference on Uncertainty
in Artificial Intelligence, pages 1–7, 1998.

[Amgoud and Cayrol, 2002] L. Amgoud and C. Cayrol. A model of reasoning based on the
production of acceptable arguments. Annals of Mathematics and Artificial Intelligence,
34:197–215, 2002.

[Amgoud et al., 2006] L. Amgoud, L. Bodenstaff, M. Caminada, P. McBurney, S. Parsons,
H. Prakken, J. van Veenen, and G.A.W. Vreeswijk. Final review and report on formal
argumentation system. Deliverable D2.6, ASPIC IST-FP6-002307, 2006.

[Ashley, 1990] K.D. Ashley. Modeling Legal Argument: Reasoning with Cases and Hypo-
theticals. MIT Press, Cambridge, MA, 1990.

[Baroni and Giacomin, 2008] P. Baroni and M. Giacomin. Resolution-based argumentation
semantics. In Ph. Besnard, S. Doutre, and A. Hunter, editors, Computational Models of
Argument. Proceedings of COMMA 2008, pages 25–36, Amsterdam etc, 2008. IOS Press.

[Baroni et al., 2011a] P. Baroni, F. Cerutti, M. Giacomin, and G. Guida. Afra: Argumenta-
tion framework with recursive attacks. International Journal of Approximate Reasoning,
52:19–37, 2011.

[Baroni et al., 2011b] P. Baroni, P.E. Dunne, and M. Giacomin. On the resolution-based
family of abstract argumentation semantics and its grounded instance. Artificial Intelli-
gence, 175:791–813, 2011.

[Baroni et al., 2015] P. Baroni, M. Giacomin, and B. Lao. Dealing with generic contrariness
in structured argumentation. In Proceedings of the 24th International Joint Conference
on Artificial Intelligence, pages 2727–2733, 2015.

[Baumann and Brewka, 2010] R. Baumann and G. Brewka. Expanding argumentation
frameworks: Enforcing and monotonicity results. In P. Baroni, F. Cerutti, M. Giacomin,
and G.R. Simari, editors, Computational Models of Argument. Proceedings of COMMA
2010, pages 75–86. IOS Press, Amsterdam etc, 2010.

[Bench-Capon and Prakken, 2010] T.J.M. Bench-Capon and H. Prakken. A lightweight for-
mal model of two-phase democratic deliberation. In R.G.F. Winkels, editor, Legal Knowl-
edge and Information Systems. JURIX 2010: The Twenty-Third Annual Conference,
pages 27–36. IOS Press, Amsterdam etc., 2010.

[Bench-Capon et al., 2011] T.J.M. Bench-Capon, H. Prakken, and W. Visser. Argument
schemes for two-phase democratic deliberation. In Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Law, pages 21–30, New York, 2011. ACM
Press.

[Bench-Capon et al., 2013] T.J.M. Bench-Capon, H. Prakken, A.Z. Wyner, and K. Atkin-
son. Argument schemes for reasoning with legal cases using values. In Proceedings of



72 Sanjay Modgil, Henry Prakken

the Fourteenth International Conference on Artificial Intelligence and Law, pages 13–22,
New York, 2013. ACM Press.

[Bench-Capon, 2003] T.J.M. Bench-Capon. Persuasion in practical argument using value-
based argumentation frameworks. Journal of Logic and Computation, 13:429–448, 2003.

[Besnard and Hunter, 2001] Ph. Besnard and A. Hunter. A logic-based theory of deductive
arguments. Artificial Intelligence, 128:203–235, 2001.

[Besnard and Hunter, 2008] Ph. Besnard and A. Hunter. Elements of Argumentation. MIT
Press, Cambridge, MA, 2008.

[Bex et al., 2013a] F.J. Bex, J. Lawrence, M. Snaith, and C. Reed. Implementing the argu-
ment web. Communications of the ACM, 56:66–73, 2013.

[Bex et al., 2013b] F.J. Bex, S.J. Modgil, H. Prakken, and C.A. Reed. On logical specifica-
tions of the argument interchange format. Journal of Logic and Computation, 23:951–989,
2013.

[Bochman, 2003] A. Bochman. Collective argumentation and disjunctive logic programming.
Journal of Logic and Computation, 13:405–428, 2003.

[Boella et al., 2010a] G. Boella, D.M. Gabbay, L. van der Torre, and S. Villata. Support in
abstract argumentation. In P. Baroni, F. Cerutti, M. Giacomin, and G.R. Simari, editors,
Computational Models of Argument. Proceedings of COMMA 2010, pages 111–122. IOS
Press, Amsterdam etc, 2010.

[Boella et al., 2010b] G. Boella, S. Kaci, and L. van der Torre. Dynamics in argumentation
with single extensions: attack refinement and the grounded extension (extended version).
In P. McBurney, I. Rahwan, S. Parsons, and N. Maudet, editors, Argumentation in Multi-
Agent Systems, 6th International Workshop, ArgMAS 2009, Budapest, Hungary, May
12, 2009. Revised Selected and Invited Papers, number 6057 in Springer Lecture Notes in
AI, pages 150–159. Springer Verlag, Berlin, 2010.

[Bondarenko et al., 1993] A. Bondarenko, R.A. Kowalski, and F. Toni. An assumption-
based framework for non-monotonic reasoning. In Proceedings of the second International
Workshop on Logic Programming and Nonmonotonic Logic, pages 171–189, Lisbon (Por-
tugal), 1993.

[Bondarenko et al., 1997] A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni. An
abstract, argumentation-theoretic approach to default reasoning. Artificial Intelligence,
93:63–101, 1997.

[Brewka and Gordon, 2010] G. Brewka and T.F. Gordon. Carneades and abstract dialectical
frameworks: A reconstruction. In P. Baroni, F. Cerutti, M. Giacomin, and G.R. Simari,
editors, Computational Models of Argument. Proceedings of COMMA 2010, pages 3–12.
IOS Press, Amsterdam etc, 2010.

[Brewka and Woltran, 2010] G. Brewka and S. Woltran. Abstract dialectical frameworks.
In Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth
International Conference, pages 102–111. AAAI Press, 2010.

[Brewka, 1989] G. Brewka. Preferred subtheories: An extended logical framework for de-
fault reasoning. In Proceedings of the 11th International Joint Conference on Artificial
Intelligence, pages 1043–1048, 1989.

[Brewka, 1994a] G. Brewka. Adding priorities and specificity to default logic. In C. MacNish,
D. Pearce, and L. Moniz Pereira, editors, Logics in Artificial Intelligence. Proceedings of
JELIA 1994, number 838 in Springer Lecture Notes in AI, pages 247–260, Berlin, 1994.
Springer Verlag.

[Brewka, 1994b] G. Brewka. Reasoning about priorities in default logic. In Proceedings of
the 12th National Conference on Artificial Intelligence (AAAI-94), pages 247–260, 1994.

[Caminada and Amgoud, 2007] M. Caminada and L. Amgoud. On the evaluation of argu-
mentation formalisms. Artificial Intelligence, 171:286–310, 2007.

[Caminada et al., 2012] M. Caminada, W.A. Carnielli, and P.E. Dunne. Semi-stable seman-
tics. Journal of Logic and Computation, 22:1207–1254, 2012.

[Caminada et al., 2014] M. Caminada, S. Modgil, and N. Oren. Preferences and unrestricted
rebut. In S. Parsons, N. Oren, C. Reed, and F. Cerutti, editors, Computational Models
of Argument. Proceedings of COMMA 2014, pages 209–220. IOS Press, Amsterdam etc,
2014.

[Caminada, 2004] M. Caminada. For the sake of the Argument. Explorations into argument-
based reasoning. Doctoral dissertation Free University Amsterdam, 2004.



Abstract Rule-Based Argumentation 73

[Caminada, 2005] M. Caminada. Contamination in formal argumentation systems. In Pro-
ceedings of the Seventeenth Belgian-Dutch Conference on Artificial Intelligence (BNAIC-
05), Brussels, Belgium, 2005.

[Caminada, 2006] M. Caminada. On the issue of reinstatement in argumentation. In M. Fis-
cher, W. van der Hoek, B. Konev, and A. Lisitsa, editors, Logics in Artificial Intelligence.
Proceedings of JELIA 2006, number 4160 in Springer Lecture Notes in AI, pages 111–123,
Berlin, 2006. Springer Verlag.

[Cayrol and Lagasquie-Schiex, 2005] C. Cayrol and M.-C. Lagasquie-Schiex. On the accept-
ability of arguments in bipolar argumentation. In L. Godo, editor, Proceedings of the 8nd
European Conference on Symbolic and Quantitative Approaches to Reasoning with Un-
certainty (ECSQARU 05), number 3571 in Springer Lecture Notes in AI, pages 378–389,
Berlin, 2005. Springer Verlag.

[Cayrol and Lagasquie-Schiex, 2009] C. Cayrol and M.-C. Lagasquie-Schiex. Bipolar ab-
stract argumentation systems. In I. Rahwan and G.R. Simari, editors, Argumentation in
Artificial Intelligence, pages 65–84. Springer, Berlin, 2009.

[Cayrol and Lagasquie-Schiex, 2013] C. Cayrol and M.-C. Lagasquie-Schiex. Bipolarity in
argumentation graphs: Towards a better understanding. International Journal of Ap-
proximate Reasoning, 54:876–899, 2013.

[Cayrol et al., 2010] C. Cayrol, F Dupin de Saint-Cyr, and M.-C. Lagasquie-Schiex. Change
in abstract argumentation frameworks: adding an argument. Journal of Artificial Intel-
ligence Research, 38:49–84, 2010.

[Cayrol, 1995] C. Cayrol. On the relation between argumentation and non-monotonic
coherence-based entailment. In Proceedings of the 14th International Joint Conference
on Artificial Intelligence, pages 1443–1448, 1995.
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