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Abstract Evidential reasoning is hard, and errors can lead to miscarriages of
justice with serious consequences. Analytic methods for the correct handling
of evidence come in different styles, typically focusing on one of three tools:
arguments, scenarios or probabilities. Recent research used Bayesian Net-
works for connecting arguments, scenarios, and probabilities. Well-known
issues with Bayesian Networks were encountered: More numbers are needed
than are available, and there is a risk of misinterpretation of the graph under-
lying the Bayesian Network, for instance as a causal model. The formalism
presented here models presumptive arguments about coherent hypotheses
that are compared in terms of their strength. No choice is needed between
qualitative or quantitative analytic styles, since the formalism can be inter-
preted with and without numbers. The formalism is applied to key concepts
in argumentative, scenario and probabilistic analyses of evidential reasoning,
and is illustrated with a fictional crime investigation example based on Alfred
Hitchcock’s film ‘To Catch A Thief’.

Keywords Evidential reasoning · Argumentation · Scenarios · Probabilistic
reasoning · Bayesian networks · Forensic science

1 Introduction

Establishing what has happened in a crime is often not a simple task. Many
errors can be made, with confirmation bias and statistical reasoning errors
among the well-documented sources of mistakes (cf. also Kahneman, 2011).
Recently the number of erroneous convictions in criminal trials in the Nether-
lands was estimated to be in the order of five to ten percent (Derksen, 2016).
As a result, there is a need for analytic tools that can help prevent mistakes.
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In the literature on correct evidential reasoning, three structured analytic
tools are distinguished: arguments, scenarios and probabilities (Anderson
et al., 2005; Dawid et al., 2011; Kaptein et al., 2009). These tools are aimed
at helping organize and structure the task of evidential reasoning, thereby
supporting that good conclusions are arrived at, and foreseeable mistakes
are prevented.

In an argumentative analysis, a structured constellation of evidence, reasons
and hypotheses is considered. Typically the evidence gives rise to reasons for
and against the possible conclusions considered. An argumentative analysis
helps the handling of such conflicts. The early twentieth century evidence
scholar John Henry Wigmore is a pioneer of argumentative analyses; cf. his
famous evidence charts (Wigmore, 1913).

In a scenario analysis, different hypothetical scenarios about what has hap-
pened are considered side by side, and considered in light of the evidence. A
scenario analysis helps the coherent interpretation of all evidence. Scenario
analyses were the basis of legal psychology research about correct reason-
ing with evidence (Bennett and Feldman, 1981; Pennington and Hastie, 1993;
Wagenaar et al., 1993).

In a probabilistic analysis, it is made explicit how the probabilities of the
evidence and events are related. A probabilistic analysis emphasises the vari-
ous degrees of uncertainty encountered in evidential reasoning, ranging from
very uncertain to very certain. Probabilistic analyses of criminal evidence go
back to early forensic science in the late nineteenth century (Taroni et al., 1998)
and have become prominent by the statistics related to DNA profiling.

In a Netherlands-based research project,1 artificial intelligence techniques
have been used to study connections between these three tools (Verheij et al.,
2016). This has resulted in the following outcomes:

– A method to manually design a Bayesian Network incorporating hypo-
thetical scenarios and the available evidence (Vlek, 2016; Vlek et al., 2014);

– A case study testing the design method (Vlek, 2016; Vlek et al., 2014);
– A method to generate a structured explanatory text of a Bayesian Network

modeled according to this method (Vlek, 2016; Vlek et al., 2016);
– An algorithm to extract argumentative information from a Bayesian Net-

work modeling hypotheses and evidence (Timmer, 2017; Timmer et al.,
2016);

– A method to incorporate argument schemes in a Bayesian Network (Tim-
mer, 2017; Timmer et al., 2015a).

Building on earlier work in this direction (Fenton et al., 2013; Hepler et al.,
2007), these results show that Bayesian Networks can be used to model argu-
ments and structured hypotheses. Also two well-known issues encountered
when using Bayesian Networks come to light:

– A Bayesian Network model typically requires many more numbers than
are reasonably available;

1 See http://www.ai.rug.nl/~verheij/nwofs/.

http://www.ai.rug.nl/~verheij/nwofs/
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– The graph model of a Bayesian Network is formally well-defined, but
there is the risk of misinterpretation, for instance unwarranted causal in-
terpretation (Dawid, 2010) (see also Pearl, 2009).

Research has started on addressing these issues by developing an argumen-
tation theory that connects presumptive arguments, coherent hypotheses and
degrees of uncertainty (Verheij, 2014a,b; Verheij et al., 2016).

A key issue addressed in this paper is how to find an appropriate balance
between qualitative and quantitative modeling styles. Building on ideas pre-
sented semi-formally by Verheij (2014b), in the present paper, a formalism is
proposed in which presumptive arguments about coherent hypotheses can
be compared in terms of their strengths. The formalism allows for a qualita-
tive and a quantitative interpretation. The qualitative interpretation uses total
preorders, and the quantitative interpretation probability distributions.

Key concepts used in argumentative, scenario and probabilistic analyses
of reasoning with evidence are discussed in terms of the proposed formal-
ism. The idea underlying this theoretical contribution is informally explained
in the next section. The crime story of Alfred Hitchcock’s famous film ‘To
Catch A Thief’, featuring Cary Grant and Grace Kelly (1955) is used as an
illustration.

2 General idea

The argumentation theory developed in this paper considers arguments that
can be presumptive (also called ampliative), in the sense of logically going
beyond their premises. Against the background of classical logic, an argu-
ment from premises P to conclusions Q goes beyond its premises when Q is
not logically implied by P . Many arguments used in practice are presump-
tive. For instance, the prosecution may argue that a suspect was at the crime
scene on the basis of a witness testimony. The fact that the witness has testi-
fied as such does not logically imply the fact that the suspect was at the crime
scene. In particular, when the witness testimony is intentionally false, based
on inaccurate observations or inaccurately remembered, the suspect may not
have been at the crime scene at all. Denoting the witness testimony by P and
the suspect being at the crime scene as Q, the argument from P to Q is pre-
sumptive since P does not logically imply Q. For presumptive arguments, it
is helpful to consider the case made by the argument, defined as the conjunction
of the premises and conclusions of the argument (Verheij, 2010, 2012). The
case made by the argument from P to Q is P ∧ Q, using the conjunction of
classical logic. An example of a non-presumptive argument goes from P ∧Q
to Q. Here Q is logically implied by P ∧ Q. Presumptive arguments are of-
ten defeasible (Pollock, 1987; Toulmin, 1958), in the sense that extending the
premises may lead to the retraction of conclusions.

In Figure 1, on the left, we see an argument from premises P to conclu-
sions Q. The argument is attacked by a counterargument: the negation of Q,
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Fig. 1 General idea: an argument with a counterargument (left); arguments for conflicting cases
and their comparison (middle); cases and their comparitive value (right)

denoted ¬Q. The case made by the argument from P to Q is P ∧ Q. By con-
sidering the argument from P to the case made P ∧ Q, the argument’s pre-
sumptive character as going beyond the premises is emphasised (Figure 1,
middle). An argument from P to ¬Q makes the case P ∧ ¬Q. The two argu-
ments from P to P ∧ Q and to P ∧ ¬Q are conflicting and make mutually
incompatible cases. When the argument from P to P ∧Q is stronger than the
argument to P ∧ ¬Q, the conflict is resolved, and leads to the presumptive
conclusion Q. The relative strength is indicated in the figure using a >-sign.
The relative strength of these arguments corresponds to a comparative value
of the two cases P ∧ Q and P ∧ ¬Q being made, as suggested by the size of
the corresponding boxes in the figure (Figure 1, right).

The three representations in the figure can each represent the information
that Q follows presumptively from P , but not when also ¬Q. On the left,
this is indicated by the argument from P to Q with counterargument ¬Q.
In the middle, this is indicated by the two presumptive arguments from P
making the cases P ∧Q and P ∧ ¬Q, where the former argument is stronger.
Assuming both P and ¬Q, there is no conflict of arguments. On the right,
this is indicated by considering that P follows from both cases, but one has
a stronger relative value. Assuming both P and ¬Q, only one of the cases
remains, viz. P ∧ ¬Q. In a sense, P ∧Q represents the normal case (given P )
and P ∧ ¬Q the exceptional one.

In Figure 1, no numbers appear. The comparison of the arguments uses
the ordering relation associated with their relative strengths, indicated by the
>-sign (in the middle). Such an ordering relation can be derived from or in-
terpreted in a numeric representation. Figure 2 shows the numeric strengths
s(P,Q) and s(P,¬Q) of the middle arguments, the former larger than the
latter:

s(P,Q) > s(P,¬Q)

We discuss below that the numeric strengths s(P,Q) and s(P,¬Q) can be
derived from a probability function Pr, by treating strengths as conditional
probabilities Pr(Q | P ) and Pr(¬Q | P ). The comparison of the values of the
corresponding cases P ∧Q and P ∧¬Q is equivalently derived from the com-
parison of the Pr(P ∧Q) and Pr(P ∧ ¬Q).
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Fig. 2 Comparing argument strengths
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Fig. 3 Example of a case model

3 Formalism and properties

The formalism uses a classical logical language L generated from a set of
propositional constants in a standard way. We write ¬ for negation, ∧ for con-
junction, ∨ for disjunction,↔ for equivalence, > for a tautology, and ⊥ for a
contradiction. The associated classical, deductive, monotonic consequence re-
lation is denoted |=. We assume a finitely generated language, i.e., a language
generated using a finite set of propositional constants.

First we define case models, formalizing the idea of cases and their prefer-
ences. Cases in a case model must be logically consistent, mutually incompat-
ible and different. Cases are logically consistent as sentences of the classical
language L. Cases are mutually incompatible, in the sense that the conjunc-
tion of case sentences that are not logically equivalent, is inconsistent. Cases
are different in the sense that the set of case sentences cannot contain two
elements that are logically equivalent. The comparison relation must be total
and transitive (hence is what is called a total preorder, commonly modeling
preference relations; Roberts, 1985).

Definition 1 (Case models) A case model is a pair (C,≥) with finite C ⊆ L,
such that the following hold, for all ϕ, ψ and χ ∈ C:

1. 6|= ¬ϕ;
2. If 6|= ϕ↔ ψ, then |= ¬(ϕ ∧ ψ);
3. If |= ϕ↔ ψ, then ϕ = ψ;
4. ϕ ≥ ψ or ψ ≥ ϕ ;
5. If ϕ ≥ ψ and ψ ≥ χ, then ϕ ≥ χ.

The strict weak order > standardly associated with a total preorder ≥ is de-
fined as ϕ > ψ if and only if it is not the case that ψ ≥ ϕ (for ϕ and ψ ∈ C).
When ϕ > ψ, we say that ϕ is (strictly) preferred to ψ. The associated equiva-
lence relation ∼ is defined as ϕ ∼ ψ if and only if ϕ ≥ ψ and ψ ≥ ϕ.

Example. Figure 3 shows a case model with cases ¬P , P ∧Q and P ∧ ¬Q.
¬P is (strictly) preferred to P ∧Q, which in turn is preferred to P ∧ ¬Q.
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Although the preference relations of case models are qualitative, they cor-
respond to the relations that can be represented by real-valued functions.

Corollary 1 Let C ⊆ L be finite with elements that are logically consistent, mutu-
ally incompatible and different (properties 1, 2 and 3 in the definition of case models).
Then the following are equivalent:

1. (C,≥) is a case model;
2. ≥ is numerically representable, i.e., there is a real valued function v on C such

that for all ϕ and ψ ∈ C, ϕ ≥ ψ if and only if v(ϕ) ≥ v(ψ).
The function v can be chosen with only positive values, or even with only positive
integer values.

Proof. It is a standard result in order theory that total preorders on finite
(or countable) sets are the ones that are representable by a real-valued func-
tion (Roberts, 1985). QED

Corollary 2 Let C ⊆ L be non-empty and finite with elements that are logically
consistent, mutually incompatible and different (properties 1, 2 and 3 in the defini-
tion of case models). Then the following are equivalent:

1. (C,≥) is a case model;
2. ≥ is numerically representable by a probability function Pr on the algebra gener-

ated by C such that for all ϕ and ψ ∈ C, ϕ ≥ ψ if and only if Pr(ϕ) ≥ Pr(ψ).

Proof. Pick a representing real-valued function v with only positive values
as in the previous corollary, and (for elements of C) define the values of Pr
as those of v divided by the sum of the v-values of all cases; then extend
by summation to the algebra generated by C. When C is non-empty, Pr is a
probability function on the algebra generated by C. QED

Next we define arguments. Arguments are from premises ϕ ∈ L to con-
clusions ψ ∈ L.

Definition 2 (Arguments) An argument is a pair (ϕ,ψ) with ϕ and ψ ∈ L. The
sentence ϕ expresses the argument’s premises, the sentence ψ its conclusions,
and the sentence ϕ∧ψ the case made by the argument. Generalizing, a sentence
χ ∈ L is a premise of the argument when ϕ |= χ, a conclusion when ψ |= χ, and
a position in the case made by the argument when ϕ ∧ ψ |= χ. An argument
(ϕ,ψ) is properly presumptive when ϕ 6|= ψ; otherwise non-presumptive. An ar-
gument (ϕ,ψ) is a presumption when |= ϕ, i.e., when its premises are logically
tautologous.

Note our use of the plural for an argument’s premises, conclusions and po-
sitions. This terminological convention can be slightly confusing initially, but
has been deliberately chosen since this allows us to speak of the premises p
and ¬q and conclusions r and ¬s of the argument (p ∧ ¬q,r ∧ ¬s). Also
the convention fits our non-syntactic definitions, where for instance an argu-
ment with premise χ also has logically equivalent sentences such as ¬¬χ as a
premise.
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Note that we define presumptions as a specific kind of arguments, viz.
from tautologous premises, and not as propositions. We have done so in order
to emphasize that accepting a presumption is an inferential step that can be
defeated. In this way, presumptions differ from premises, that are the basis
of possible inferences, and not themselves the result of an inferential step.
An example is the presumption of innocence that can be defeated by proof of
guilt. (We formally discuss this example at the start of Section 4.1.)

We define three kinds of valid arguments: coherent arguments, conclu-
sive arguments and presumptively valid arguments. A coherent argument
is defined as an argument that makes a case logically implied by a case in
the case model. A conclusive argument is a coherent argument, for which all
cases in the case model that imply the argument’s premises also imply the
conclusions.

Definition 3 (Coherent and conclusive arguments) Let (C,≥) be a case model.
Then we define, for all ϕ and ψ ∈ L:

(C,≥) |= (ϕ,ψ) if and only if ∃ω ∈ C: ω |= ϕ ∧ ψ.

We then say that the argument from ϕ to ψ is coherent with respect to the case
model. We define, for all ϕ and ψ ∈ L:

(C,≥) |= ϕ⇒ ψ if and only if ∃ω ∈ C: ω |= ϕ∧ψ and ∀ω ∈ C: if ω |= ϕ, then
ω |= ϕ ∧ ψ.

We then say that the argument from ϕ to ψ is conclusive with respect to the
case model.

Example (continued). In the case model of Figure 3, the arguments from > to
¬P and to P , and from P to Q and to ¬Q are coherent and not conclusive
in the sense of this definition. Denoting the case model as (C,≥), we have
(C,≥) |= (>,¬P ), (C,≥) |= (>, P ), (C,≥) |= (P,Q) and (C,≥) |= (P,¬Q).
The arguments from a case (in the case model) to itself, such as from ¬P to
¬P , or from P ∧ Q to P ∧ Q are conclusive. The argument (P ∨ R,P ) is also
conclusive in this case model, since all P ∨ R-cases are P -cases. Similarly,
(P ∨R,P ∨ S) is conclusive.

The notion of presumptive validity considered here is based on the idea
that some arguments make a better case than other arguments from the same
premises. More precisely, an argument is presumptively valid if there is a case
in the case model implying the case made by the argument that is at least as
preferred as all cases implying the premises.

Definition 4 (Presumptively valid arguments) Let (C,≥) be a case model.
Then we define, for all ϕ and ψ ∈ L:

(C,≥) |= ϕ; ψ if and only if ∃ω ∈ C:
1. ω |= ϕ ∧ ψ; and
2. ∀ω′ ∈ C : if ω′ |= ϕ, then ω ≥ ω′.
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We then say that the argument from ϕ to ψ is presumptively valid with respect
to the case model. A presumptively valid argument is properly defeasible, when
it is not conclusive.

Example (continued). In the case model of Figure 3, the arguments from > to
¬P , and from P to Q are presumptively valid in the sense of this definition.
Denoting the case model as (C,≥), we have formally that (C,≥) |= > ; ¬P
and (C,≥) |= P ; Q. The coherent arguments from > to P and from P to
¬Q are not presumptively valid in this sense.

Corollary 3 1. Conclusive arguments are coherent, but there are case models with
a coherent, yet inconclusive argument;

2. Conclusive arguments are presumptively valid, but there are case models with a
presumptively valid, yet inconclusive argument;

3. Presumptively valid arguments are coherent, but there are case models with a
coherent, yet presumptively invalid argument.

The next proposition provides key logical properties of this notion of pre-
sumptive validity. Many have been studied for nonmonotonic inference re-
lations (Kraus et al., 1990; Makinson, 1994; van Benthem, 1984). Given a case
model (C,≥), we write ϕ |∼ ψ for (C,≥) |= ϕ ; ψ. We write C(ϕ) for the set
{ω ∈ C | ω |= ϕ}, and refer to the elements of C(ϕ) as ϕ-cases. For brevity, we
abbreviate ‘presumptively valid’ to ‘valid’.

(LE), for Logical Equivalence, expresses that in a valid argument premises
and conclusions can be replaced by a classical equivalent (in the sense of |=).

(Cons), for Consistency, expresses that the conclusions of presumptively
valid arguments must be consistent.

(Ant), for Antecedence, expresses that when certain premises validly im-
ply a conclusion, the case made by the argument is also validly implied by
these premises.

(RW), for Right Weakening, expresses that when the premises validly im-
ply a composite conclusion also the intermediate conclusions are validly implied.

(CCM), for Conjunctive Cautious Monotony, expresses that the case made
by a valid argument is still validly implied when an intermediate conclusion
is added to the argument’s premises.

(CCT), for Conjunctive Cumulative Transitivity, is a variation of the re-
lated property Cumulative Transitivity property (CT, also known as Cut).
(CT)—extensively studied in the literature—has ϕ |∼ χ instead of ϕ |∼ ψ∧χ as
a consequent. The variation is essential in our setting where the (And) prop-
erty is absent (If ϕ |∼ ψ and ϕ |∼ χ, then ϕ |∼ ψ ∧ χ). Assuming (Ant), (CCT)
expresses the validity of chaining valid implication from ϕ via the case made
in the first step ϕ∧ψ to the case made in the second step ϕ∧ψ∧χ. (See Verheij,
2010, 2012, introducing (CCT).)

Proposition 1 Let (C,≥) be a case model. For all ϕ, ψ and χ ∈ L:

(LE) If ϕ |∼ ψ, |= ϕ↔ ϕ′ and |= ψ ↔ ψ′, then ϕ′ |∼ ψ′.
(Cons) ϕ 6|∼ ⊥.
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(Ant) If ϕ |∼ ψ, then ϕ |∼ ϕ ∧ ψ.
(RW) If ϕ |∼ ψ ∧ χ, then ϕ |∼ ψ.
(CCM) If ϕ |∼ ψ ∧ χ, then ϕ ∧ ψ |∼ χ.
(CCT) If ϕ |∼ ψ and ϕ ∧ ψ |∼ χ, then ϕ |∼ ψ ∧ χ.

Proof. (LE): Direct from the definition. (Cons): Otherwise there would be an
inconsistent element of C, contradicting the definition of a case model. (Ant):
When ϕ |∼ ψ, there is an ω with ω |= ϕ ∧ ψ that is ≥-maximal in C(ϕ). Then
also ω |= ϕ∧ϕ∧ψ, hence ϕ |∼ ϕ∧ψ. (RW): When ϕ |∼ ψ∧χ, there is an ω ∈ C
with ω |= ϕ∧ψ∧χ that is maximal in C(ϕ). Since then also ω |= ϕ∧ψ, we find
ϕ |∼ ψ. (CCM): By the assumption, we have an ω ∈ C with ω |= ϕ∧ψ∧χ that
is maximal in C(ϕ). Since C(ϕ ∧ ψ) ⊆ C(ϕ), ω is also maximal in C(ϕ ∧ ψ),
and we find ϕ ∧ ψ |∼ χ. (CCT): Assuming ϕ |∼ ψ, there is an ω ∈ C with
ω |= ϕ ∧ ψ, maximal in C(ϕ). Assuming also ϕ ∧ ψ |∼ χ, there is an ω′ ∈ C
with ω |= ϕ∧ψ∧χ, maximal in C(ϕ∧ψ). Since ω ∈ C(ϕ∧ψ), we find ω′ ≥ ω.
By transitivity of ≥, and the maximality of ω in C(ϕ), we therefore have that
ω′ is maximal in C(ϕ). As a result, ϕ |∼ ψ ∧ χ. QED

We say that an argument (ϕ,ψ) has coherent premises when the argument
(ϕ,ϕ) from the premises to themselves is coherent. The following proposition
provides some equivalent characterizations of coherent premises.

Proposition 2 Let (C,≥) be a case model. The following are equivalent, for all
ϕ ∈ L:

1. ϕ |∼ ϕ, i.e., the argument (ϕ,ϕ) is presumptively valid;
2. ∃ω ∈ C : ω |= ϕ and ∀ω′ ∈ C: If ω′ |= ϕ, then ω ≥ ω′;
3. ∃ω ∈ C : ϕ |∼ ω.
4. ∃ω ∈ C : ω |= ϕ, i.e., the argument (ϕ,ϕ) is coherent.

Proof. 1 and 2 are equivalent by the definition of |∼. Assume 2. Then there is a
≥-maximal element ω of C(ϕ). By the definition of |∼, then ϕ |∼ ω; proving 3.
Assume 3. Then there is a≥-maximal element ω′ of C(ϕ) with ω′ |= ϕ∧ω. For
this ω′ also ω′ |= ϕ, showing 2. 4 logically follows from 2. 4 implies 2 since L
is a language that generated by finitely many propositional constants. QED

Corollary 4 Let (C,≥) be a case model. Then all coherent arguments have coherent
premises and all presumptively valid arguments have coherent premises.

We saw that, in the present approach, premises are coherent when they are
logically implied by a case in the case model. As a result, generalisations of
coherent premises are again coherent; cf. the following corollary.

Corollary 5 Let (C,≥) be a case model. Then:

If ϕ |∼ ϕ and ϕ |= ψ, then ψ |∼ ψ.

We now consider some properties that use a subset L∗ of the language L. The
set L∗ consists of the logical combinations of the cases of the case model us-
ing negation, conjunction and logical equivalence (cf. the algebra underlying
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probability functions (Roberts, 1985)). L∗ is the set of case expressions associ-
ated with a case model.

(Coh), for Coherence, expresses that coherent premises correspond to a
consistent case expression implying the premises. (Ch), for Choice, expresses
that, given two coherent case expressions, at least one of three options follows
validly: the conjunction of the case expression, or the conjunction of one of
them with the negation of the other. (OC), for Ordered Choice, expresses that
preferred choices between case expressions are transitive. Here we say that
a case expression is a preferred choice over another, when the former follows
validly from the disjunction of both.

Definition 5 (Preferred cases) Let (C,≥) be a case model, ϕ ∈ L, and ω ∈ C.
Then ω expresses a preferred case of ϕ if and only if ϕ |∼ ω.

Proposition 3 Let (C,≥) be a case model, and L∗ ⊆ L the closure of C under
negation, conjunction and logical equivalence. Writing |∼∗ for the restriction of |∼ to
L∗, we have, for all ϕ, ψ and χ ∈ L∗:

(Coh) ϕ |∼ ϕ if and only if ∃ϕ∗ ∈ L∗ with ϕ∗ 6|= ⊥ and ϕ∗ |= ϕ;
(Ch) If ϕ |∼∗ ϕ and ψ |∼∗ ψ, then ϕ ∨ ψ |∼∗ ¬ϕ ∧ ψ or

ϕ ∨ ψ |∼∗ ϕ ∧ ψ or ϕ ∨ ψ |∼∗ ϕ ∧ ¬ψ;
(OC) If ϕ ∨ ψ |∼∗ ϕ and ψ ∨ χ |∼∗ ψ, then ϕ ∨ χ |∼∗ ϕ.

Proof. (Coh): By Proposition 2, ϕ |∼ ϕ if and only if there is an ω ∈ C with ω |=
ϕ. The property (Coh) follows since C ⊆ L∗ and, for all consistent ϕ∗ ∈ L∗,
there is an ω ∈ C with ω |= ϕ∗.
(Ch): Consider sentences ϕ and ψ ∈ L∗ with ϕ |∼∗ ϕ and ψ |∼∗ ψ. Then,
by Corollary 5, ϕ ∨ ψ |∼ ϕ ∨ ψ. By Proposition 2, there is an ω ∈ C, with
ω |= ϕ∨ψ. The sentences ϕ and ψ are elements of L∗, hence also the sentences
ϕ ∧ ¬ψ, ϕ ∧ ψ and ¬ϕ ∧ ψ ∈ L∗. All are logically equivalent to disjunctions
of elements of C (possibly the empty disjunction, logically equivalent to ⊥).
Since ω |= ϕ∨ψ, |= ϕ∨ψ ↔ (ϕ∧¬ψ)∨(ϕ∧ψ)∨(¬ϕ∧ψ), and the elements ofC
are mutually incompatible, we have ω |= ϕ∧¬ψ or ω |= ϕ∧ψ or ω |= ¬ϕ∧ψ.
By Proposition 2, it follows that ϕ ∨ ψ |∼∗ ¬ϕ ∧ ψ or ϕ ∨ ψ |∼∗ ϕ ∧ ψ or
ϕ ∨ ψ |∼∗ ϕ ∧ ¬ψ.

(OC): By ϕ∨ψ |∼∗ ϕ, there is an ω |= ϕmaximal inC(ϕ∨ψ). By ψ∨χ |∼∗ ψ,
there is an ω′ |= ψ maximal in C(ψ ∨ χ). Since ω |= ϕ, ω ∈ C(ϕ ∨ χ). Since
ω′ |= ψ, ω′ ∈ C(ϕ ∨ ψ), hence ω ≥ ω′. Hence ω is maximal in C(ϕ ∨ χ), hence
ϕ ∨ χ |∼ ϕ. Since χ ∈ L∗, ϕ ∨ χ |∼∗ ϕ. QED

The properties in propositions 1 and 3 are the basis of qualitative and quanti-
tative representation results for the inference relation |∼. See Verheij (2016a),
also for other formal properties of the proposal. In Section 4.3, we show
how the probabilistic representation of case models (Corollary 2) gives rise
to probabilistic representations of our three kinds of argument validity: co-
herence, conclusiveness, and presumptive validity.
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The history of research in Artificial Intelligence that combines arguments,
hypotheses and uncertainty is extensive and varied. Without claiming a rep-
resentative selection, we mention a few examples in order to position the
present formalism. We already mentioned the work by Kraus et al. (1990) on
a preferential semantics for non-monotonic inference. Formal differences in-
clude that the present proposal uses cases, not worlds as primitives in the
semantics, and that the (And)-rule (If ϕ |∼ ψ and ϕ |∼ χ, then ϕ |∼ ψ ∧ χ.)
does not hold for our notion of presumptive validity. See Verheij (2016a) for
further formal information. Non-formal differences are that the present pro-
posal is designed to be a balance between qualitative and quantitative mod-
eling, and has been applied to the modeling of evidential reasoning (this pa-
per) and normative reasoning (Verheij, 2016c). Kohlas et al. (1998) proposes
a probabilistic approach to model-based diagnostics using arguments sup-
porting hypotheses about the state of a system. It is discussed that numerical
degrees of support can be looked at as conditional probabilities. Dung and
Thang (2010) defines probabilistic adaptations of abstract and assumption-
based argumentation. Hunter (2013) studies probability distributions in the
settings of abstract and logical argumentation, leading to an analysis of dif-
ferent kinds of inconsistency that can arise. Benferhat et al. (2000) study non-
monotonic reasoning in terms of default reasoning, building on Adams’ ep-
silon semantics in terms of extreme probabilities. Fagin and Halpern (1994)
study reasoning about knowledge and probability, studying a language that
allows for the explicit mentioning of an agent’s numeric probabilistic beliefs.
Satoh (1990) studies non-monotonic reasoning with a probabilistic semantics
such that new information only leads to non-monotonicity when it is contra-
dicting previous information.

4 A formal analysis of some key concepts

We now use the formalism of case models and presumptive validity above
for a discussion of some key concepts associated with the argumentative, sce-
nario and probabilistic analysis of evidential reasoning.

4.1 Arguments

In an argumentative analysis, it is natural to classify arguments with respect
to the nature of the support their premises give their conclusions. We already
defined non-presumptive and presumptive arguments (Definition 2), and—
with respect to a case model—presumptively valid and properly defeasible
arguments (Definition 4). We illustrate these notions in an example about the
presumption of innocence.

Let inn denote that a suspect is innocent, and gui that he is guilty. Then
the argument (inn,¬gui) is properly presumptive, since inn 6|= ¬gui. The
argument (inn ∧ ¬gui,¬gui) is non-presumptive, since inn ∧ ¬gui |=
¬gui.
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inn ∧ ¬gui
¬inn ∧ gui ∧ evi

Fig. 4 A case model for presumption

Presumptive validity and defeasibility are illustrated using a case model.
Consider the case model with two cases inn ∧ ¬gui and ¬inn ∧ gui ∧ evi
with the first case preferred to the second (Figure 4; the size of the cases’ rect-
angles measures their preference). Here evi denotes evidence for the sus-
pect’s guilt. Then the properly presumptive argument (inn,¬gui) is pre-
sumptively valid with respect to this case model since the conclusion ¬gui
follows in the case inn ∧ ¬gui that is a preferred case of the premise inn.
The argument is conclusive since there are no other cases implying inn.
The argument (>,inn)—in fact a presumption now that its premises are
tautologous—is presumptively valid since inn follows in the preferred case
inn ∧ ¬gui. This shows that the example represents what is called the pre-
sumption of innocence, when there is no evidence. This argument is properly
defeasible since in the other case of the argument’s premises the conclusion
does not follow. In fact, the argument (evi,inn) is not coherent since there
is no case in which both evi and inn follow. The argument (evi,gui) is
presumptively valid, even conclusive.

In argumentative analyses, different kinds of argument attack are consid-
ered. John Pollock made the famous distinction between two kinds of—what
he called—argument defeaters (Pollock, 1987, 1995). A rebutting defeater is a
reason for a conclusion that is the opposite of the conclusion of the attacked
argument, whereas an undercutting defeater is a reason that attacks not the
conclusion itself, but the connection between reason and conclusion. Joseph
Raz made a related famous distinction of exclusionary reasons that always
prevail, independent of the strength of competing reasons (Raz, 1990) (see
also Richardson, 2013).

Unlike in the work of Pollock, in the present proposal, undercutting and
rebutting attack are not treated as separate primitives. Instead they are spe-
cializations of a general idea of attack defined in terms of case models. In this
connection, Figure 1 can be confusing as the graphical representation of the
argument and counterargument (in the figure on the left) suggests that ¬Q
attacks the connection between P and Q, much like an undercutter. But the
attack consists in the negation of the conclusion Q of the argument from P ,
reminiscent of a rebutter. We show how the distinction between undercutting
and rebutting attack can still be made in the present proposal.

We propose the following terminology.

Definition 6 (Defeating circumstances) Let (C,≥) be a case model, and (ϕ,ψ)
a presumptively valid argument. Then circumstances χ are defeating or suc-
cessfully attacking when (ϕ ∧ χ, ψ) is not presumptively valid. Defeating cir-
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sus ∧ ¬mis ∧ wit
mis ∧ wit

Fig. 5 A case model for undercutting

cumstances are rebutting when (ϕ ∧ χ,¬ψ) is presumptively valid; otherwise
they are undercutting. Defeating circumstances are excluding when (ϕ ∧ χ, ψ)
is not coherent.

Continuing the example of the case model illustrated in Figure 4, we find the
following. The circumstances evi defeat the presumptively valid argument
(>,inn) since (evi,inn) is not presumptively valid. In fact, these circum-
stances are excluding since (evi,inn) is not coherent. The circumstances are
also rebutting since the argument for the opposite conclusion (evi,¬inn)
is presumptively valid. Note that this example of rebutting defeat is defeat
of a presumption (in the sense of Definition 2), hence can be regarded as a
formalization of the idea of undermining defeat that is the basis of argumen-
tation formalisms in which defeat is assumption-based (Bondarenko et al.,
1997; Verheij, 2003). See also the discussion of arguments with prima facie
assumptions by van Eemeren et al. (2014).

Undercutting can be illustrated with an example about a lying witness.
Consider a case model with these two cases:

Case 1: sus ∧ ¬mis ∧ wit
Case 2: mis ∧ wit

In the cases, there is a witness testimony (wit) that the suspect was at the
crime scene (sus). In Case 1, the witness was not misguided (¬mis), in Case
2 he was. In Case 1, the suspect was indeed at the crime scene; in Case 2, the
witness was misguided and it is unspecified whether the suspect was at the
crime scene or not. In the case model, Case 1 is preferred to Case 2 (Figure 5),
representing that witnesses are usually not misguided.

Since Case 1 is a preferred case of wit, the argument (wit,sus) is pre-
sumptively valid: the witness testimony provides a presumptively valid ar-
gument for the suspect having been at the crime scene. The argument’s con-
clusion can be strengthened to include that the witness was not misguided.
Formally, this is expressed by saying that (wit,sus ∧ ¬mis) is a presump-
tively valid argument.

When the witness was misguided after all (mis), there are circumstances
defeating the argument (wit,sus). This can be seen by considering that Case
2 is the only case in which wit ∧ mis follows, hence is preferred. Since sus
does not follow in Case 2, the argument (wit ∧ mis,sus) is not presump-
tively valid. The misguidedness is not rebutting, hence undercutting since
(wit ∧ mis,¬sus) is not presumptively valid. The misguidedness is exclud-
ing since the argument (wit ∧ mis,sus) is not even coherent.
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Fig. 6 Chained arguments

pun ∧ gui ∧ evi
¬pun ∧ gui ∧ evi ∧ jus ¬gui ∧ evi ∧ ali

Fig. 7 Case model for chained arguments

Arguments can typically be chained, namely when the conclusion of one
is a premise of another. For instance when there is evidence (evi) that a sus-
pect is guilty of a crime (gui), the suspect’s guilt can be the basis of pun-
ishing the suspect (pun). For both steps there are typical defeating circum-
stances. The step from the evidence to guilt is blocked when there is a solid
alibi (ali), and the step from guilt to punishing is blocked when there are
grounds of justification (jus), such as force majeure. Cf. Figure 6.

A case model with three cases can illustrate such chaining:

Case 1: pun ∧ gui ∧ evi
Case 2: ¬pun ∧ gui ∧ evi ∧ jus
Case 3: ¬gui ∧ evi ∧ ali

Cf. Figure 7. In the case model, Case 1 is preferred to Case 2 and Case 3, mod-
eling that the evidence typically leads to guilt and punishing, unless there are
grounds for justification (Case 2) or there is an alibi (Case 3). Cases 2 and 3
are preferentially equivalent.

In this case model, the following arguments are presumptively valid:

Argument 1 (presumptively valid): (evi,gui)
Argument 2 (presumptively valid): (gui,pun)
Argument 3 (presumptively valid): (evi,gui ∧ pun)

Arguments 1 and 3 are presumptively valid since Case 1 is the preferred case
among those in which evi follows (Cases 1, 2 and 3); Argument 2 is since
Case 1 is the preferred case among those in which gui follows (Cases 1 and 2).
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By chaining arguments 1 and 2, the case for gui ∧ pun can be based on the
evidence evi as in Argument 3.

The following arguments are not presumptively valid in this case model:

Argument 4 (not presumptively valid): (evi ∧ ali,gui)
Argument 5 (not presumptively valid): (gui ∧ jus,pun)

This shows that Arguments 1 and 2 are defeated by circumstances ali and
jus, respectively:

Defeating circumstances 1 (attacking Argument 1): ali
Defeating circumstances 2 (attacking Argument 2): jus

The structural relations of the arguments 1 and 2 and their defeating circum-
stances 1 and 2 are graphically shown in Figure 6.

As expected, chaining the arguments fails under both of these defeating
circumstances, as shown by the fact that these two arguments are not pre-
sumptively valid:

Argument 6 (not presumptively valid): (evi ∧ ali,gui ∧ pun)
Argument 7 (not presumptively valid): (evi ∧ jus,gui ∧ pun)

But the first step of the chain—the step to guilt—can be made when there
are grounds for justification. Formally, this can be seen by the presumptive
validity of this argument:

Argument 8 (presumptively valid): (evi ∧ jus,gui)

This example shows how the preference ordering of cases is connected to the
overriding of arguments by their exceptions. Here we see that the exceptional
cases about grounds of justification and alibi are less preferred than Case 1.
One could say that because Case 1 is preferred the exceptional cases 2 and
3 are ignored given only evi as a premise. The three arguments from evi
to each of the cases separately are coherent, but of these only the argument
to Case 1 is presumptively valid. Since Case 3 does not logically imply the
defeating circumstances, adding ali or jus to the premises makes Case 3
no longer coherently supported, hence certainly not presumptively valid. Cf.
Arguments 6 and 7 that make a case that logically implies Case 3, but are not
presumptively valid and not coherent.

4.2 Scenarios

In the literature on scenario analyses, several notions are used in order to an-
alyze the ‘quality’ of the scenarios considered. Three notions are prominent:
a scenario’s consistency, a scenario’s plausibility and a scenario’s complete-
ness (Pennington and Hastie, 1993; Wagenaar et al., 1993). In this literature,
these notions are part of an informally discussed theoretical background,
having prompted work in AI & Law on formalizing these notions (Bex, 2011;
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Verheij and Bex, 2009; Vlek et al., 2015). A scenario is consistent when it does
not contain contradictions. For instance, a suspect cannot be both at home
and at the crime scene. A scenario is plausible when it fits commonsense
knowledge about the world. For instance, in a murder scenario, a victim’s
death caused by a shooting seems a plausible possibility. A scenario is com-
plete when all relevant elements are in the scenario. For instance, a murder
scenario requires a victim, an intention and premeditation. We now propose
a formal treatment of these notions using the formalism presented.

The consistency of a scenario could simply be taken to correspond to log-
ical consistency. A stronger notion of consistency uses the world knowledge
represented in a case model, and emphasises the coherence of a scenario in
the sense of the present formalism. In this way, we connect to the term coher-
ence that also appears in the literature on scenario-based evidence analysis,
with various connotations.

In our proposal, some coherent scenarios fit the world knowledge repre-
sented in the case model better than others, since some are presumptively
valid. We can say that a scenario is plausible (given a case model) when it
is a presumptively valid conclusion of the evidence. Continuing the exam-
ple, the complete scenario vic ∧ int ∧ pre is then plausible given evi, but
also subscenarios such as vic ∧ int (leaving the premeditation unspecified)
and int ∧ pre (with no victim, only intention and premeditation). This no-
tion of a scenario’s plausibility depends on the evidence, in contrast with the
mentioned literature (Pennington and Hastie, 1993; Wagenaar et al., 1993),
where plausibility is treated as being independent from the evidence. The
present proposal includes an evidence-independent notion of plausibility, by
considering a scenario as plausible—independent of the evidence—when it is
plausible given no evidence, i.e., when the scenario is a presumptively valid
presumption. In the present setting, plausibility can be connected to the pref-
erence ordering on cases given the evidence, when scenarios are complete.

In the formal proposal here, besides coherence and presumptive validity,
we have encountered a third notion of validity: conclusiveness. This notion
can be used to represent that there is no remaining doubt about a scenario
given the knowledge in the case model: the scenario is beyond a reasonable
doubt. The doubt that always remains is transferred to doubt about whether
everything that needs to be considered is in the case model. When the case
model is the result of a process of critical, careful and open-minded scrutiny,
and has been performed with appropriate effort, such remaining doubt could
be dubbed ‘unreasonable’ (Verheij, 2014b).

We summarize the discussed definitions of coherence, completeness and
reasonable doubt, each in an evidence-independent and evidence-dependent
variant. Sentences σ are intended to express scenarios, sentences ε the evi-
dence.

Definition 7 Let (C,≥) be a case model, and σ ∈ L. Then we define:

1. σ is coherent if and only if the argument (>, σ) is coherent;
2. σ is plausible if and only if the argument (>, σ) is presumptively valid;
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3. σ is beyond a reasonable doubt if and only if the argument (>, σ) is conclusive.

Definition 8 Let (C,≥) be a case model, and σ and ε ∈ L. Then we define:

1. σ is coherent given ε if and only if the argument (ε, σ) is coherent;
2. σ is plausible given ε if and only if the argument (ε, σ) is presumptively

valid;
3. σ is beyond a reasonable doubt given ε if and only if the argument (ε, σ) is

conclusive.

The completeness of a scenario can here be defined using a notion of maxi-
mally specific conclusions, or extensions, as follows.

Definition 9 (Extensions) Let (C,≥) be a case model, and (ϕ,ψ) a presump-
tively valid argument. Then the case made by the argument (i.e., ϕ ∧ ψ) is
an extension of ϕ when there is no presumptively valid argument from ϕ that
makes a case that is logically more specific.

For instance, consider a case model in which the case vic∧int∧pre∧evi
is a preferred case of evi. The case expresses a situation in which there is
evidence (evi) for a typical murder: there is a victim (vic), there was the
intention to kill (int), and there was premeditation (pre). In such a case
model, this case is an extension of the evidence evi. A scenario can now be
considered complete with respect to certain evidence when the scenario con-
joined with the evidence is its own extension. In the example, the sentence
vic ∧ int ∧ pre is a complete scenario given evi as the scenario conjoined
with the evidence is its own extension. The sentence vic ∧ int is not a com-
plete scenario given evi, as the extension of vic∧int∧evi also implies pre.

Definition 10 Let (C,≥) be a case model, and σ ∈ L. Then we define:

σ is complete given ε if and only if σ ∧ ε is an extension of ε.

In the literature, scenario schemes have been used to represent a scenario’s
completeness (Bex, 2011; Bex and Verheij, 2013; Verheij et al., 2016; Vlek et al.,
2014, 2016), taking inspiration from the use of scripts in artificial intelligence
and cognitive science (Schank and Abelson, 1977). Here the cases in a case
model are used to represent completeness.

4.3 Probabilities

The literature on the probabilistic analysis of reasoning with evidence uses
the probability calculus as formal background. A key formula is the well-
known Bayes’ theorem, stating that for eventsH andE the following relation
between probabilities holds:

Pr(H|E) =
Pr(E|H)

Pr(E)
· Pr(H)
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Thinking ofH as a hypothesis andE as evidence, here the posterior probabil-
ity Pr(H|E) of the hypothesis given the evidence can be computed by multi-
plying the prior probability Pr(H) and the Bayes factor Pr(E|H)/Pr(E).

A formula that is especially often encountered in the literature on eviden-
tial reasoning is the following odds version of Bayes’ theorem:

Pr(H|E)

Pr(¬H|E)
=

Pr(E|H)

Pr(E|¬H)
· Pr(H)

Pr(¬H)

Here the posterior odds Pr(H|E)/Pr(¬H|E) of the hypothesis given the ev-
idence is found by multiplying the prior odds Pr(H)/Pr(¬H) with the like-
lihood ratio Pr(E|H)/Pr(E|¬H). This formula is important since the like-
lihood ratio can sometimes be estimated, for instance in the case of DNA
evidence. In fact, it is a key lesson in probabilistic approaches to evidential
reasoning that the evidential value of evidence, as measured by a likelihood
ratio, does not by itself determine the posterior probability of the hypothesis
considered. As the formula shows, the prior probability of the hypothesis is
needed to determine the posterior probability given the likelihood ratio. Just
as Bayes’ theorem, the likelihood ratio obtains in a probabilistic realization of
a case model in our sense.

In Sections 4.1 and 4.2, we focused on arguments and scenarios, which
have primarily (but not exlusively) been studied using qualitative methods.
Here we show that key notions of our approach can be given a quantitative,
probabilistic representation. In this way, we intend to show the balanced con-
nection between qualitative and quantitative analytic methods.

In particular, we turn to the quantitative representation of our three no-
tions of argument validity: coherence, conclusiveness and presumptive valid-
ity. We use the probabilistic representation of case models as in Corollary 2.
The representing probability functions used there are functions on the algebra
generated by C. It is convenient to extend such functions to the language L.

Definition 11 Let (C,≥) be a case model (with C non-empty) represented
by a probability function Pr as in Corollary 2. Then we define, for all ϕ and
ψ ∈ L:

1. Pr(ϕ) :=
∑

ω∈C and ω|=ϕ Pr(ω);
2. Pr(ψ|ϕ) := Pr(ϕ ∧ ψ)/Pr(ϕ) if Pr(ϕ) > 0.

Note that the extension Pr to L only behaves exactly like the logical general-
ization of a probability function when restricted to sentences corresponding
to the algebra generated by C. Consider for instance a language L generated
by propositional constants p and q and case model ({p}, {(p, p)}) represented
by Pr. Then Pr(p) = 1 and Pr(¬p) = 0, as expected in a probabilistic set-
ting where the probabilities of complements add up to 1. However, Pr(q) and
Pr(¬q) are both equal to 0.

Proposition 4 (Coherence, quantitative) Let (C,≥) be a case model (with C non-
empty) represented by a probability function Pr as in Corollary 2. Then, for all ϕ and
ψ ∈ L, the following are equivalent:
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1. (C,≥) |= (ϕ,ψ);
2. Pr(ϕ ∧ ψ) > 0.

Proof. Immediate using the definitions. An argument (ϕ,ψ) is coherent if and
only if there is a case ω inC from which ϕ∧ψ, the case made by the argument,
follows logically. And, since Pr in Corollary 2 is positive on C, the definition
of the extension of Pr toL gives that this is the case if and only if Pr(ϕ∧ψ) > 0.
QED

Proposition 5 (Conclusiveness, quantitative) Let (C,≥) be a case model (with C
non-empty) represented by a probability function Pr as in Corollary 2. Then, for all
ϕ and ψ ∈ L, the following are equivalent:

1. (C,≥) |= ϕ⇒ ψ;
2. Pr(ψ|ϕ) = 1.

Proof. An argument (ϕ,ψ) is conclusive if and only if it is coherent and all ϕ-
cases in C are also ϕ∧ψ-cases. This is the case if and only if Pr(ϕ∧ψ) > 0 and
Pr(ϕ ∧ ψ) = Pr(ϕ). Since Pr(ϕ ∧ ψ) > 0 implies Pr(ϕ) > 0, that is equivalent
to Pr(ψ|ϕ) = 1. QED

Proposition 6 (Presumptive validity, quantitative) Let (C,≥) be a case model (with
C non-empty) represented by a probability function Pr as in Corollary 2. Then, for
all ϕ and ψ ∈ L, the following are equivalent:

1. (C,≥) |= ϕ; ψ;
2. ∃ω ∈ C:

(a) ω |= ϕ ∧ ψ; and
(b) ∀ω′ ∈ C : if ω′ |= ϕ, then Pr(ω) ≥ Pr(ω′);

3. ∃ω ∈ C:
(a) ω |= ϕ ∧ ψ; and
(b) ∀ω′ ∈ C : Pr(ω | ϕ) ≥ Pr(ω′ | ϕ).

Proof. An argument (ϕ,ψ) is presumptively valid if and only there is a ϕ ∧ ψ-
case ω that is ≥-maximal among the ϕ-cases in C. Hence the equivalence of 1
and 2. Noting that ω |= ϕ∧ψ implies Pr(ϕ∧ψ) > 0, which implies Pr(ϕ) > 0,
which in turn implies that Pr(ω′|ϕ) is defined for all ω′ ∈ C, we find that 2
and 3 are also equivalent. QED

The propositions show how the qualitatively defined notions of coherence,
conclusiveness and presumptive validity have equivalent quantitative char-
acterizations. For presumptive validity, one is in terms of the comparative
value of cases, measured as a probability (part 2 of the proposition), the other
in terms of the comparative strength of arguments, measured as a conditional
probability (part 3 of the proposition).

We discuss an example, adapting our earlier treatment of the presumption
of innocence. Consider a crime case where two pieces of evidence are found,
one after another. In combination, they are considered to prove the suspect’s
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guilt beyond a reasonable doubt. For instance, one piece of evidence is a wit-
ness who claims to have seen the suspect committing the crime (evi), and
a second piece of evidence is DNA evidence matching the suspect’s profile
(evi’). The issue is whether the suspect is innocent (inn) or guilty (gui).
Consider now a case model with four cases:

Case 1: inn ∧ ¬gui ∧ ¬evi
Case 2: ¬inn ∧ gui ∧ evi ∧ ¬evi’
Case 3: inn ∧ ¬gui ∧ evi ∧ ¬evi’
Case 4: ¬inn ∧ gui ∧ evi ∧ evi’

Case 1 expresses the situation when no evidence has been found, hence the
suspect is considered innocent and not guilty. In order to express that by de-
fault there is no evidence concerning someone’s guilt, this case has highest
preference. Cases 2 and 3 express the situation that the first piece of evidence
is found. Case 2 expresses guilt, Case 3 innocence, still considered a possibil-
ity given only the first piece of evidence. In order to express that evi makes
the suspect’s guilt more plausible than his innocence, Case 2 has higher pref-
erence than Case 3. Case 4 represents the situation that both pieces of evi-
dence are available, proving guilt. It has lowest preference. Summarizing the
preference relation we have:

Case 1 > Case 2 > Case 3 > Case 4

Qualitatively, the following hold in this case model:

1. The argument (>,inn) for innocence given no evidence is coherent, pre-
sumptively valid and not conclusive;

2. The argument (>,gui) for guilt given no evidence is coherent, not pre-
sumptively valid and not conclusive;

3. The argument (evi,inn) for innocence given only the first piece of evi-
dence is coherent, not presumptively valid and not conclusive;

4. The argument (evi,gui) for guilt given only the first piece of evidence is
coherent, presumptively valid and not conclusive;

5. The argument (evi ∧ evi’,inn) for innocence given both the first and
the second piece of evidence is not coherent, not presumptively valid and
not conclusive.

6. The argument (evi ∧ evi’,gui) for guilt given both the first and the
second piece of evidence is coherent, presumptively valid and conclusive.

In Tables 1 and 2, we translate these remarks to their quantitative versions us-
ing the Propositions 4, 5, and 6. Here we assume that probability function Pr
represents the case model as in Corollary 2 and has been extended to a func-
tion on L as in the propositions. As expected, the specific numbers used in Pr
do not matter much. It is mostly their relative sizes that count. For instance,
we could use Pr with Pr(Case 1) = 0.4, Pr(Case 2) = 0.3, Pr(Case 3) = 0.2,
and Pr(Case 4) = 0.1. If information about actual distributions for this ex-
ample is available (for instance about the proportion of possible suspects for
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Table 1 Coherence and conclusiveness of the example’s arguments

Argument Coherence Conclusiveness

(>,inn) yes: Pr(inn) > 0 no: Pr(inn) < 1
(>,gui) yes: Pr(inn) > 0 no: Pr(inn) < 1
(evi,inn) yes: Pr(inn ∧ evi) > 0 no: Pr(inn | evi) < 1
(evi,gui) yes: Pr(inn ∧ evi) > 0 no: Pr(inn | evi) < 1
(evi ∧ evi’,inn) no: Pr(inn ∧ evi ∧ evi’) = 0 no: Pr(inn | evi ∧ evi’) < 1
(evi ∧ evi’,gui) yes: Pr(inn ∧ evi ∧ evi’) > 0 yes: Pr(inn | evi ∧ evi’) = 1

Table 2 Presumptive validity of the example’s arguments

Argument Presumptive validity

(>,inn) yes: Pr(Case 1) > Pr(Case 2) > Pr(Case 3) > Pr(Case 4)
(>,gui) no: Pr(Case 2) < Pr(Case 1); Pr(Case 4) < Pr(Case 1)
(evi,inn) no: Pr(Case 3 | evi) < Pr(Case 2 | evi)
(evi,gui) yes: Pr(Case 2 | evi) > Pr(Case 3 | evi) > Pr(Case 4 | evi)
(evi ∧ evi’,inn) no: The argument is not coherent.
(evi ∧ evi’,gui) yes: Pr(Case 4 | evi ∧ evi’) = 1

which there is a witness, but no DNA match), that can be reflected in Pr.
Whichever representation Pr as in Corollary 2 is chosen, the probability cal-
culus is followed. Hence Bayes’ theorem and its odds version using a likeli-
hood ratio hold.

5 Example: Alfred Hitchcock’s ‘To Catch A Thief’

As an example of the development of evidential reasoning in which grad-
ually information is collected, we discuss the crime investigation story that
is the backbone of Alfred Hitchcock’s ‘To Catch A Thief’, otherwise—what
Hitchcock himself referred to as—a lightweight story about a French Riviera
love affair, starring Grace Kelly and Cary Grant. In the film, Grant plays a
former robber Robie, called ‘The Cat’ because of his spectacular robberies, in-
volving the climbing of high buildings. At the beginning of the film, new ‘The
Cat’-like thefts have occurred. Because of this resemblance with Robie’s style
(the first evidence considered, denoted in what follows as res), the police
consider the hypothesis that Robie is again the thief (rob), and also that he is
not (¬rob). Figure 8 provides a graphical representation of the investigation.
The first row shows the situation after the first evidence res, mentioned on
the left side of the figure, with the two hypothical conclusions rob and ¬rob
represented as rectangles. The size of a rectangle’s area suggests the strength
of the argument from the accumulated evidence to the hypothesis. Here the
arguments from res to rob and ¬rob are of comparable strength.

When the police confront Robie with the new thefts, he escapes with the
goal to catch the real thief. By this second evidence (esc), the hypothesis rob
becomes more strongly supported than its opposite ¬rob. In the figure, the
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↓ Evidence Hypotheses

res rob ¬rob

esc

fgt fou
¬fou

pro

cau dau ¬dau

con jwl ¬jwl

fin

Hypothesis 1 Hypothesis 2 Hyp. 3 Hyp. 4

Fig. 8 Example: Hitchcock’s ‘To Catch A Thief’

second row indicates the situation after the two pieces of evidence are avail-
able. As indicated by the rectangles of differently sized areas, the argument
from the accumulated evidence res∧esc to rob is stronger than that from
the same premises to ¬rob. Rectangles in a column in the figure represent
corresponding hypotheses. Sentences shown in a corresponding hypothesis
in a higher row are not repeated. So on the second row, when the evidence
res and esc are taken into account, the rectangles correspond to rob (on the
left) and ¬rob (on the right).

Robie sets a trap for the real thief, resulting in a night-time fight on the
roof with Foussard who falls and dies (fgt). The police consider this strong
evidence for the hypothesis that Foussard is the thief (fou), but not con-
clusive so also the opposite hypothesis is considered coherent (¬fou). In
the figure (third row marked fgt) the hypothesis ¬rob is split into two
hypotheses: one rectangle representing ¬rob∧fou, the other ¬rob∧¬fou,
both in conjunction with the evidence available at this stage of the investi-
gation (res∧esc ∧fgt). With the accumulated evidence res∧esc ∧fgt as
premises, the hypothesis ¬rob∧fou is more strongly supported than the hy-
pothesis ¬rob∧¬fou. The police no longer believe that Robie is the thief.
This is indicated by the line on the left of the third row in the figure. The
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premises res∧esc ∧fgt do not provide support for the hypothesis rob; or,
in the terminology of this paper: the argument from premises res∧esc ∧fgt
to conclusion rob is not coherent.

Robie points out that Foussard cannot be the new incarnation of ‘The Cat’,
as he had a prosthetic wooden leg (pro). In other words, the argument from
res∧esc ∧fgt∧pro to ¬rob∧fou is not coherent. (Cf. the second line in the
fourth row of the figure, corresponding to the hypothesis that Foussard is the
thief.)

Later in the film, Foussard’s daughter is caught in the act (cau), provid-
ing very strong support for the hypothesis that the daughter is the new cat
(dau). The argument from res∧esc ∧fgt∧pro∧cau to dau is stronger than
to ¬dau.

In her confession (con), Foussard’s daughter explains where the jewelry
stolen earlier can be found, adding some specific information to the circum-
stances of her crimes (jwl). The argument from res∧esc ∧fgt∧pro∧cau
∧con to dau ∧ jwl is stronger than to ¬dau ∧ ¬jwl.

The police find the jewelry at the indicated place (fin) and there is no
remaining doubt about the hypothesis that Foussard’s daughter is the thief.
The argument from res∧esc ∧fgt∧pro∧cau∧con ∧fin to ¬dau∧ ¬jwl
is incoherent, as indicated by the line on the right of the bottom row of the
figure. In the only remaining hypothesis, Foussard’s daughter is the thief, and
not Robie, and not Foussard. In other words, the argument from res∧esc
∧fgt∧pro∧cau∧con ∧jwl to ¬rob∧¬fou∧dau is conclusive.

During the investigation, gradually a case model has been developed rep-
resenting the arguments discussed in the example. We distinguish 7 cases, as
follows:

Case 1: rob
∧ res∧esc

Case 2: ¬rob∧fou
∧ res∧esc∧fgt

Case 3: ¬rob∧¬fou∧dau∧jwl
∧ res∧esc∧fgt∧pro∧cau∧con∧fin

Case 4: ¬rob∧¬fou∧¬dau∧¬jwl
∧ res∧esc∧fgt∧pro∧cau∧con

Case 5: ¬rob
∧res∧¬esc

Case 6: ¬rob∧¬fou
∧res∧esc∧¬fgt

Case 7: ¬rob∧¬fou∧¬dau
∧res∧esc∧fgt∧pro∧¬cau

Cases 1 to 4 are found as follows. First the properties of the four main hy-
potheses are accumulated from the columns in Figure 8:

Hypothesis 1: rob
Hypothesis 2: ¬rob∧fou
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Fig. 9 Case model for the example

Hypothesis 3: ¬rob∧¬fou∧dau∧jwl
Hypothesis 4: ¬rob∧¬fou∧¬dau∧¬jwl
Then these are conjoined with the maximally specific accumulated evidence
that provide a coherent argument for them:

Evidence coherent with hypothesis 1: res∧esc
Evidence coherent with hypothesis 2: res∧esc∧fgt
Evidence coherent with hypothesis 3: res∧esc∧fgt∧pro∧cau∧con∧fin
Evidence coherent with hypothesis 4: res∧ esc∧fgt∧pro∧cau∧con
The cases 5 to 7 complete the case model. Case 5 is the hypothetical case
that Robie is not the thief, that there is resemblance, and the Robie does not
escape. In Case 6, Robie and Foussard are not the thieves, and there is no
fight. In Case 7, Robie, Foussard and his daughter are not the thieves, and
she is not caught in the act. Note that the cases are consistent and mutually
exclusive.

Figure 9 shows the 7 cases of the model. The sizes of the rectangles rep-
resent the preferences. The preference relation has the following equivalence
classes, ordered from least preferred to most preferred:

1. Cases 4 and 7;
2. Case 3;
3. Cases 2 and 6;
4. Cases 1 and 5.

Note that the rectangles in Figure 8 can be constructed as combinations of the
rectangles in Figure 9.

The discussion of the arguments, their coherence, conclusiveness and va-
lidity presented semi-formally above fits this case model. For instance, the
argument from the evidential premises res∧esc to the hypothesis rob is
presumptively valid in this case model since Case 1 is the only case implying
the case made by the argument. It is not conclusive since also the argument
from these same premises to ¬rob is coherent. The latter argument is not pre-
sumptively valid since all ¬rob-cases implying the premises (Cases 2 to 7)
have lower preference than Case 1. The argument from res∧esc∧fgt to
rob is incoherent as there is no case in which the premises and the conclusion
follow. Also arguments that do not start from evidential premises can be eval-
uated. For instance, the argument from the premise (not itself evidence) dau
to jwl is conclusive since in the only case implying the premises (Case 3) the
conclusion follows. Finally we find the conclusive argument from premises
res∧esc∧fgt∧pro∧cau∧con∧jwl to conclusion ¬rob∧¬fou∧dau∧jwl
(only Case 3 implies the premises), hence also to dau.
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6 Concluding remarks

In this paper, we have discussed correct reasoning with evidence using three
analytic tools: arguments, scenarios and probabilities. We proposed a formal-
ism in which the presumptive validity of arguments is defined in terms of
case models, and studied properties (Section 3). In particular, we showed that
the qualitative definitions of case models and presumptive validity have a
quantitative representation in terms of probability functions. We discussed
key concepts in the argumentative, scenario and probabilistic analysis of rea-
soning with evidence in terms of the formalism (Section 4). An example of
the gradual development of evidential reasoning was provided in Section 5.

This work builds on a growing literature aiming to formally connect the
three analytic tools of arguments, scenarios and probabilities. In a discus-
sion of the anchored narratives theory by Crombag, Wagenaar and Van Kop-
pen (1993), it was shown how argumentative notions were relevant in their
scenario analyses (Verheij, 2000). Bex has provided a hybrid model connect-
ing arguments and scenarios (Bex, 2011; Bex et al., 2010), and has worked on
the further integration of the two tools (Bex, 2015; Bex and Verheij, 2013). Con-
nections between arguments and probabilities have been studied by Hepler,
Dawid and Leucari (2007) combining object-oriented modeling and Bayesian
networks. Fenton, Neil and Lagnado continued this work by developing rep-
resentational idioms for the modeling of evidential reasoning in Bayesian
networks (Fenton et al., 2013). Inspired by this research, Vlek developed sce-
nario idioms for the design of evidential Bayesian networks containing sce-
narios (Vlek et al., 2014), and Timmer showed how argumentative informa-
tion can be extracted from a Bayesian network (Timmer et al., 2015b). Kep-
pens and Schafer (Keppens and Schafer, 2006) studied the knowledge-based
generation of hypothetical scenarios for reasoning with evidence, later devel-
oped further in a decision support system (Shen et al., 2006).

This paper continues from an integrated perspective on arguments, sce-
narios and probabilities (Verheij, 2014b). In the present paper, that integrated
perspective is formally developed (building on ideas in Verheij, 2014a) using
case models and discussing key concepts used in argumentative, scenario
and probabilistic analyses. Interestingly, our case models and their prefer-
ences are qualitative in nature, while the preferences correspond exactly to
those that can be numerically and probabilistically realized. As such, the
present formal tools combine a non-numeric and numeric perspective (cf. the
paper ‘To Catch A Thief With and Without Numbers’; Verheij, 2014b). The
mathematics of the formalism is studied further in (Verheij, 2016a) and has
been applied to value-guided decision making in (Verheij, 2016c).

The present work does not require modeling evidential reasoning in terms
of full probability functions, as is the case in Bayesian network approaches.
In this way, the well-known problem of needing to specify more numbers
than are reasonably available is addressed. In fact, we have shown an ap-
proach in which the specific numbers of a quantitative representation can be
abstracted to a qualitative representation. Also whereas the causal interpre-
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tation of Bayesian networks is risky (Dawid, 2010), our case models come
with formal definitions of arguments, their coherence, conclusiveness and
presumptive validity.

From a knowledge representation perspective, one relevant question is
what happens in more complex examples than the ones used here. Indeed,
more realistic examples can quickly increase in complexity and may lead to
more cases than can be handled. This question has not been addressed in
this paper. A helpful next step could be to perform a case study of a real
example, but also the formal investigation of the growth of complexity can
prove fruitful.

Another knowledge representation issue is where the case models come
from. In the formal proposal in this paper, the evaluation of arguments and
scenarios happens against the background of a given case model. So such
evaluation requires that a case model is available. No systematic approach for
the development of case models is discussed in this paper. For the Bayesian
network modeling of scenarios, Vlek et al. (2014) provides such a method,
and Timmer et al. (2015a) discusses the inclusion of argumentation schemes
and their critical questions in a Bayesian network model. These works con-
tinue from the use of building blocks and idioms for building a Bayesian
network model of the evidence in a criminal case, pioneered by Hepler et al.
(2007) and Fenton et al. (2013). Perhaps ideas from these systematic modeling
approaches can be adapted to the present setting.

By the present and related studies, we see a gradual clarification of how
arguments, scenarios and probabilities all have their specific useful place in
the analysis of evidential reasoning. By explicating formal bridges between
qualitative and quantitative analytic styles, we have provided an explana-
tion why some prefer to rationally analyze proof numerically, and others
non-numerically. As a result, it seems ever less natural to choose between the
three kinds of tools, and ever more so to use each of them when practically
applicable.
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