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Abstract. One way of reasoning with uncertainties in the context of law is to use
probabilities. However, methods for reasoning about the probability of guilt in a
court case requires us to specify a prior probability of guilt, which is the probability
of guilt before any evidence is known. There is no accepted approach for specify-
ing the prior probability of guilt but multiple solutions have been proposed. In this
paper, we consider three approaches: a prior that is based on the population, a prior
based on the number of agents that have similar opportunity as the suspect and a
prior that represents a legal norm. For comparing and evaluating the approaches,
we use an agent-based model as a ground truth in which all probabilities are known.
With the data generated in the ground truth model, we investigate how the choice
of prior influences the posterior probability of guilt for both guilty and innocent
agents. Using a decision threshold, we can determine the effect of the three ap-
proaches on the rates of correct and incorrect convictions and acquittals. We find
that the opportunity prior results in higher rates of both correct convictions and
false convictions and requires more assumptions and access to data and knowledge
than the legal prior and population prior.

Keywords. Opportunity prior, Legal probabilism, Bayesian Networks, Agent-
based modelling

1. Introduction

Judges reason under uncertainty when they decide in court cases. They weigh pieces of
evidence to conclude whether a suspect is guilty. However, evidence presented in court
might be difficult to interpret, incomplete or untrustworthy and how strongly any piece
of evidence relates to the final verdict is often left implicit. The uncertainty in going
from evidence to conclusions can be expressed explicitly through probabilistic degrees
of belief. Reasoning about probabilities of events, for example through Bayes’ Theorem,
requires specifying prior and conditional probability distributions over the events. Hence,
if the judge has to decide on a posterior probability of guilt given the evidence, the prior
probability of guilt has to be assigned. This is the so-called ‘problem of the prior’ [1].

For some events, prior probabilities can be set using statistical estimates such as
frequentist base rates. However, taking the base rate of guilt over all court cases results in
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a prior that is inconsistent with the presumption of innocence. For example, 90% of the
court cases in The Netherlands end in conviction,2 therefore, only weak evidence would
be necessary to come to a posterior probability of guilt that is above the probability of
0.95 that is typically proposed as the threshold of ‘beyond reasonable doubt’ [1].

As an alternative to the conviction base rate, other approaches have been proposed
for establishing a prior probability of guilt by Lindley [2], Fenton, Neil, Dahlman and
Lagnado [3] and Dahlman [4]. Both Lindley and Fenton et al. propose a prior that is
based on location and population of a given crime scene. In contrast, Dahlman proposes
a method for setting the prior of guilt based on a legal norm.

These different methods for setting priors have been proposed in the literature, but it
is unclear how to compare and evaluate their performance. This paper proposes a method
for testing the different methods of setting the priors by using an agent-based model
(ABM) in combination with a Bayesian network (BN). In the ABM, criminal behaviour
of agents can be simulated and the statistical patterns of behaviour by the agents can be
represented in a Bayesian network. By setting different priors in the Bayesian network,
the effects of each prior setting method on the false conviction and false acquittal rates
can be investigated by using the simulation as a ground truth.

The rest of the paper is structured as follows. In Section 2, the three methods for set-
ting the priors and their introduction into Bayesian Networks are introduced. In Section
3, the simulation and Bayesian Networks are described. Section 4 shows the results of
the true and false positive rates of the networks given the priors used. Section 5 discusses
existing problems in the literature in light of these findings. Section 6 concludes.

2. State of the Art

In this section, the different methods for setting the priors, which are the population
prior, the legal prior and the opportunity prior are described. These priors will be used as
priors in Bayesian Network idioms for reasoning. Bayesian Networks are introduced as
a method for modelling the evidence in the simulation.

2.1. Methods for Setting Prior Probabilities of Guilt

Both the population prior and the opportunity prior assume that a crime has occurred,
and the prior specifies who could have done it [4]. They take as a prior 1

S , where S is the
number of possible perpetrators.

The Population prior was proposed by Lindley ([2], p 218). The number of possible
perpetrators S is set to the size of the population of the country in which the crime is
committed.

The Opportunity prior was proposed by Fenton et al., this prior aims to set S based
on the number of agents with a similar opportunity as a given suspect. This is formalized
as follows: First the number of agents at the crime scene n is determined. One of these
agents must be the perpetrator, hence, a prior probability of guilt of 1

n . Second, opportu-
nity is defined as the number of agents N who had the same opportunity as the suspect
to be present at the crime scene. Since there are n agents at the crime scene and there are

2In 2021, in the Netherlands, in 90% of the court cases before appeal, the suspect was deemed guilty https:
//www.cbs.nl/nl-nl/cijfers/detail/83944NED.
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N agents who could have been there with the same possibility as the suspect, the prior
for being present at the crime scene is n

N . The number of agents who could have been
present is based on the last known location of the given suspect. This way opportunity
prior allows us to set the prior probabilities of two events: the event for a suspect being
at the crime scene: n

N , and the event of committing the crime, conditioned on the event
that the suspect was at the crime scene: 1

n .
The Legal prior was proposed by Dahlman [4] and represents a legal norm. Instead

of being based on a set of possible perpetrators, using this prior neither assumes that a
crime has been committed, nor assumes our knowledge of the size of the set of possible
perpetrators. Instead, this method conceptualizes the prior as a legal norm. Any case
should start with a prior probability of guilt for any suspect of 1

100 and a prior probability
for not guilty of 99

100 , although these values are essentially arbitrary.

2.2. Bayesian Networks

A Bayesian Network (BN) is a tuple 〈V,E,P〉 consisting of a directed acyclic graph
(DAG) with nodes V representing random variables and directed edges E, which to-
gether capture the independence relation over the variables in joint probability distribu-
tion P [5]. P is defined through the chain rule P = ∏n

i=1 Pr(Vi|parents(Vi)). It combines
for every node Vi ∈ V the distributions Pr(Vi|parents(Vi)) for every combination of val-
ues for the parents3 of Vi in the graph; these distributions are specified in node probabil-
ity tables (NPTs). We assume variables are Boolean with possible values {T,F}. BNs,
or sub-structures of BNs called idioms, have been proposed for representing reasoning
in court cases [6,7,8,9,10,11,12]. Fenton et al. proposed a BN idiom for reasoning about
the opportunity prior [3], of which a simplified version is used in this paper (Figure 2,
with the nodes AtCrimeScene and Guilty). Combined with a threshold t, BNs can work as
classifiers. We will take a posterior probability of Guilty = true given the evidence above
the threshold t = 0.95, i.e., P(guilty|evidence)> 0.95, to result in a positive, or ‘guilty’
classification, while a probability below the threshold would be a negative, or ‘innocent’
classification. The threshold of 0.95 was chosen because it expresses the concept ‘beyond
reasonable doubt’, for the sake of the current discussion [1].

2.3. Agent-Based Models

Agent-Based Models (ABMs) have been used to provide a ground truth of data for test-
ing methods in the legal domain [8]. They provide a controlled environment in which
human-like behaviour can arise due to agent-agent and agent-world interactions. The
data gathered from the simulation about the statistical trends present in the behaviour of
the agents can then be used to model the simulation in a Bayesian Network.

3. Method

We used an ABM to model a simplified theft scenario where we know for sure that a theft
was committed, by exactly one criminal. We use three pieces of evidence. In the ABM,
agents with different roles moved around in a spatial environment and their behaviour
was observed by us and modelled in a Bayesian Network.

3Parents of Vi are nodes Vj such that Vj →Vi.
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3.1. Simulation of the Theft Scenario

The ABM was programmed in a 25-by-25 patches Netlogo environment [13] in which
200 agents moved around between 8 stores. One of those 200 agents was the victim with
a wallet, and there was one thief who attempted to steal the wallet.4 All 8 stores had a
camera that observed locations of the agents within a radius of 25 and an angle of 145,
which were initialised randomly for every run. In every run, one agent was the victim
with the wallet and there were three suspects: the thief, or the guilty suspect, an agent
that was picked randomly out of the population: the innocent random suspect and the
innocent agent that is the closest to the crime scene: the innocent bystander suspect.
While both innocent suspects had the same behaviour as all the other agents, the thief had
a special behavioural pattern: It had a vision range of 15 and a vision angle of 360, it saw
a victim, moved towards them and stole the wallet. During the stealing, the thief could
be caught red-handed. The Netlogo patch, or location at which the wallet was stolen, is
the crime scene (CS) and the epoch at which it was stolen is the crime time (CT). After
stealing, the thief would drop the wallet to get rid of the evidence. Other agents were
able to pick up the wallet. The simulation ran on after the stealing event took place for
on average 10 epochs.

There were three pieces of evidence in the simulation, which each could be true or
false for each suspect. These pieces were: EredHanded, representing whether the sus-
pect was caught red-handed during the crime; Ewallet, representing whether the suspect
was holding the wallet at the end of the simulation; and EseenCS, representing whether
the suspect was seen by cameras at CS at CT (T ), seen away from CS (F), or not seen
by cameras at all (NA).

For the opportunity prior, we counted the number of agents that were present on
the crime-scene patch as N, and we calculated N by counting the number of agents that
were within the area A in time Δt, where A is centered on CS, with radius r the distance
between CS and a known location of the suspect at time x, and Δt was the time interval
either between x and the crime time, or between the crime time and x.

The simulation was run 1000 times. In every run, information was collected to cal-
culate n, N, which were the location and time of the crime, and the locations of all agents
at every time step and the frequencies of Guilty, EredHanded, Ewallet, EseenCS. This
is the ground truth. Additionally, in every run, for every suspect, an evidence set was
collected: 〈 Ewallet = {T,F}, Eredhanded = {T,F}, EseenCS = {T,F} 〉, or when the
agent is not seen on camera at CT 〈 Ewallet = {T,F}, Eredhanded = {T,F} 〉.

3.2. Modelling the Theft Scenario with Bayesian Networks

We created a model of the different priors as well as the events and evidence of the simu-
lation, in Bayesian Networks. The nodes in the BN were as follows: For the evidence, we
represented Ewallet,EredHanded,EcameraCS as nodes. We represented the hypothesis
of guilt of the agents in the node Guilty. For the opportunity prior method, we needed a
node to account for the event of some agent being at the crime scene, for which we used
the node AtCrimeScene.

The structure of the Bayesian Network depended on which prior we used. The legal
and population BNs had the structure as shown in Figure 1, and connected each piece

4Simulation code and more extended description is available at https://github.com/aludi/JURIX2023

L. van Leeuwen et al. / Evaluating Methods for Setting a Prior Probability of Guilt66

https://github.com/aludi/JURIX2023


of evidence as a child to the Guilty node, following the evidence-idiom [10]. For the
opportunity prior (Figure 2), we followed a simplified version of the opportunity idiom
suggested by [3]. The structure was simplified because we did not have separate nodes
for n and N, but instead calculated the values of the priors directly in the nodes.

The node probability tables (NPTs) shown for every BN are obtained from the
frequencies of the events within the simulation over 1000 runs, except the parameters
p1, p2,n,N. For the legal prior, we set Pr(guilty) = p1 = 1

100 in the legal-BN. In the
population prior we set Pr(guilty) = p2 =

1
200 in the population-BN. Pr(guilty) = 1

n and
Pr(atCrimeScene) = n

N . Since n and N differ per run of simulation and per suspect, a
new BN based on Figure 2 was created for every run for every suspect, resulting in
1000 ·3 = 3000 BNs with each their own values of n and N.

Guilty

EseenCS
EredHanded

Ewallet

Guilty
T F

p1,2 q1,2

EseenCS
Guilty T F

F 0.058 0.942
T 0.905 0.095

EredHanded
Guilty T F

F 0 1
T 0.013 0.987

Ewallet
Guilty T F

F 0.020 0.980
T 0.291 0.709

Figure 1. Bayesian Network for Legal prior (p1 = 1
100 ,q1 = 1 − p1) and Population prior

(p2 = 1
200 ,q2 = 1 − p2), legal-BN and population-BN. Evidence strength expressed as likelihood ratios:

EredHandedLR+ = ∞, EwalletLR+ = 14.55, EseenCSLR+ = 16.4 (Evidence for being guilty).

AtCrimeScene

GuiltyEseenCS

EredHanded
Ewallet

AtCrimeScene
T F

n
N 1− n

N

Guilty
AtCrimeScene T F

F 0 1
T 1

n 1− 1
n

EseenCS
AtCrimeScene T F

F 0.035 0.965
T 0.951 0.049

EredHanded
Guilty T F

F 0 1
T 0.013 0.087

Ewallet
Guilty T F

F 0.020 0.980
T 0.291 0.709

Figure 2. Bayesian Network structure for using the opportunity prior with parameters n and N that
are determined per run of simulation, opportunity-BN. Evidence strength expressed as likelihood ratios:
EredHandedLR+ = ∞, EwalletLR+ = 14.55, EseenCSLR+ = 27.2 (Evidence for being at crime scene).
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Figure 3. Frequency of posterior probabilities Pr(guilty|E) for (left) Opportunity-BN and (right) Legal-BN
for three types of suspect: guilty, random innocent agent and innocent bystander, with a vertical line marking
the threshold t = 0.95 of reasonable doubt.

3.2.1. Calculating the Posterior Probability of Guilt Given the Evidence

For every suspect in each run, we had three Bayesian Networks; one for each method of
setting the prior and a set of evidence er,s, where e is the set of evidence found in run
r ∈ {1,2, ...,1000} for suspect s∈ {guilty,bystander,random}. For every suspect in each
run, we first fine-tuned the opportunity-BN by setting n and N to the values found for
that suspect in the run. The legal-BN and the population-BN were not changed. The evi-
dence er,s was entered into each BN to calculate the posterior probability Pr(guilty|er,s).
Calculations were performed using [14].

4. Results

For every suspect (s) in each run (r), posterior probabilities for the legal-BN (leg)
Pr(guilty|er,s)leg, the population-BN (pop) Pr(guilty|er,s)pop and the opportunity-BN
(opp) Pr(guilty|er,s)opp are calculated. This results in 1000 posterior probabilities calcu-
lated per suspect. Figure 3 (left) shows a histogram of the frequency distribution of pos-
terior probabilities as calculated by the opportunity-BN (Figure 2) for each of the three
suspects. In all 1000 runs, the random innocent suspect has a posterior probability of
guilt that is at most 0.05. The posterior of the innocent bystander ranges between 0 and
1, but is most frequently less than 0.05, and in two runs, this posterior is at least 0.95.
Hence, both innocent suspects mostly have low posterior probabilities of guilt. For the
guilty suspect, however, the posterior probability of guilt is greater than 0.95 in 489 out
of 1000 runs. Hence, in nearly half of the runs, the Pr(guilty|er,s) > 0.95 for the guilty
suspect.

Figure 3 (right) shows the histogram of the posterior probabilities for the legal-BN
(Figure 1). Compared to the BN with the opportunity prior, the variation in the posteriors
is only due to the different evidence sets, and not a varying prior (which is always 1

100 ,
compared to the opportunity BN where the values of n and N, and hence the prior, as
well as the evidence set, can vary per run). Both innocent suspects never have a posterior
probability greater than 0.2. Pr(guilty|er,s)> 0.95 for 13 out of 1000 runs. The results of
the population-BN are not shown; they are similar to the results of the legal-BN.

We can consider the effect of each possible evidence set on the posterior probability
for the opportunity-BN and the legal-BN for the guilty suspect (Figure 4) and for the
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innocent bystander (Figure 5). The boxplots for the opportunity-BN display a greater
variation of values than the boxplots for the legal-BN; this is because, even though the
weight of each evidence set is the same in both networks, the prior probability of guilt
does not vary in the legal-BN, but varies in the opportunity-BN due to the different values
of n (agents at CS) and N (agents with similar opportunity) in each run. When we look
at the posterior probabilities per evidence set, we see that in evidence sets that contain
EredHanded = T , for both the legal and the opportunity-BN, the posterior probability
of guilt is always 1. This evidence only occurs for the guilty suspect and never for the
innocent suspect.

We consider a set of evidence Ewallet = T,Eredhanded = F,EseenCS = T . This
set of evidence can occur both for the guilty suspect as well as for innocent suspects. We
see that for this set, in the opportunity-BN, the posterior probability Pr(guilty|Ewallet =
T,Eredhanded = F,EseenCS = T ) > 0.95 is usually true for both the guilty suspect
and the innocent bystander, as the box of the boxplot is past the 0.95 line. On the other
hand, in the legal-BN, Pr(guilty|Ewallet = T,Eredhanded = F,EseenCS = T ) = 0.7.
Hence, this is a combination of evidence for which the innocent bystander has a posterior
probability of guilt beyond a reasonable doubt in the opportunity-BN, yet has a posterior
probability of guilt of 0.7 in the legal BN.

To show the effect of a choice of threshold t for reasonable doubt on the performance
of the Bayesian Networks as a classifier, a receiver-operating characteristic (ROC) curve
was plotted. The ROC curve plots the true positive rate (y-axis) against the false pos-
itive rate (x-axis) for varying values of t. A true positive case is a guilty suspect with
Pr(guilty|e) > t and hence is correctly classified as guilty. A false positive case is when
Pr(guilty|e)> t for an innocent suspect, such that they would be incorrectly classified as
guilty. A good classifier has a high number of true positives and a low number of false
positives, which in a ROC plot is represented as a data point in the upper-left corner. We
plot ROC curves for both opportunity-BN and legal-BN (Figure 6), where we take the
false positive rate to be (red) the false positive rate for the innocent bystander, and (blue)
the false positive rate for the random innocent. We test thresholds 0 ≤ t ≤ 1 with steps of

Figure 4. Boxplot showing, for every possible combination of evidence in the ABM, the posterior probability
of guilt given that evidence, for the guilty agent, for opportunity-BN and legal-BN. The vertical line marks the
threshold t = 0.95 of reasonable doubt.
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Figure 5. Boxplot showing posterior values per evidence set for the innocent bystander suspect for opportuni-
ty-BN and legal-BN. The vertical line marks the threshold t = 0.95 of reasonable doubt.

0.01. Points on the ROC curve marked with stars designate points at which 0.85 ≤ t ≤ 1,
all of which are relatively high thresholds. We see that in these cases, the false positive
rate is near 0. For the legal prior, the true positive rate is also 0. For the opportunity
prior, the true positive rate ranges between 0.2 and 0.7 for the innocent random agent at
a false positive rate of 0. For the innocent bystander with the opportunity prior, we see
a true positive rate of 0.7, yet this comes at the cost of a higher false positive rate than
for the innocent random agent. Hence, the opportunity prior results in false positives:
It incorrectly classifies innocent agents as being guilty. We see in general that the BNs
performs better as a classifier for the innocent random agent than the innocent bystander.
In general, we see that the best classification occurs at a threshold t < 0.85.

Figure 6. Receiver-operating characteristic (ROC) curves for both comparisons for both opportunity BN and
legal BN. The positive case is the guilty agent, while the negative case is the innocent bystander (red) or the
innocent random agent (blue). Stars (overlapping) designate points at which 0.85 ≤ t ≤ 1.

5. Discussion

With a threshold of reasonable doubt set at t = 0.95, there is a difference in rates of true
positives and false positives between the BNs that use the opportunity prior and the BNs
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that use the population prior and legal prior. We find that the opportunity-BNs better
separate guilty from innocent suspects, yet, under some circumstances, would result in
false positives for the innocent bystander under inconclusive evidence. Both the legal-
BN and the population-BN have a low true positive rate and a low false positive rate,
which means that they are ineffective, yet do no harm through false conviction. In the
sequel, we consider the risk of false convictions, the background assumptions necessary
for each method, and reasonable doubt.

What are the background assumptions for each method? Both the population
prior and the opportunity prior assume that a crime has happened. The population prior
assumes that a crime has happened within a certain territory (over which a population
can be defined) and sets as prior the total number of agents in that total territory, which
is in our case N = 200. The opportunity prior needs the most assumptions: In our im-
plementation it requires specifically a precise location of the crime scene at a known
time and to calculate N, we need to have one suspect, a certain identification of that
suspect at a certain location and time, and know the number of N agents who were in
the area A. Assuming that a crime has happened and that only one suspect was guilty
leaves no space for integrating alternative scenarios. Additionally, a suspect should not
be appointed without already establishing evidence, yet the process of picking exactly
one suspect is not included in the model. The process through which these factors are
established is left out of the formalism of the opportunity prior and it is unclear how
reasoners and modellers can explicitly model sources of uncertainties about any of these
factors. The legal prior makes no such assumptions. How these assumptions should be
modelled is a question for future research.

When does the opportunity prior method risk false convictions? In [4], it was
predicted that low values of n and N might give rise to false convictions and here we
find that this is the case. Given the strength of available evidence in the simulation,
we find that for all suspects that are convicted, innocent or guilty, it is the case that
n ≤ 2 and N < 25. However, there are also suspects with n ≤ 2 and N < 25 that are
acquitted when we do not find strong enough evidence for conviction (such as when
Ewallet = F,EredHanded = F). Hence, low values of n and N of the opportunity prior
do not necessarily result in false convictions, but might result in false convictions when
the evidence set found is convincing towards the side of the prosecution, such as in the
case of the innocent bystander who both has the wallet and was seen on camera near the
crime scene. In the real world, where we are estimating n and N, under-estimating N and
n will have a higher risk of false convictions than over-estimating them.

What should the threshold be? A choice of threshold implies a choice in trade-
offs. If the threshold is set too high, then both innocent suspects and guilty suspects will
be classified by the BN as innocent. If the threshold is too low, then both innocent and
guilty suspects will be classified as guilty. There is always a trade-off between the num-
ber of true and false positives, however, what the balance between true and false posi-
tives should be is an open question. The ROC curves (Figure 6) show that, in case of this
particular simulation, we can increase the number of true positives while not increas-
ing the number of false positives equivalently. However, this point occurs at a threshold
t < 0.85, which would be too low to represent ‘beyond reasonable doubt’. The ques-
tion remains: Should the threshold of reasonable doubt be set to represent some optimal
balance between convictions and acquittals, or because it represents some standard of
evidence?
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6. Conclusion

We created a statistical ground truth in an ABM to model a simulated theft. This ground
truth is modelled in three types of Bayesian Networks, each using a different prior prob-
ability of guilt. We look at the posterior probability of guilt Pr(guilty|e) for innocent and
guilty agents for every run. At a threshold t > 0.95, the opportunity-BN has a higher true
positive rate than the legal- and population-BNs, however, it also has a non-zero false
positive rate, in contrast to the other two types. How the rates of true positives and false
positives should trade off is an open question. Additionally, the opportunity-BN requires
more assumptions than the other two: We need to know that a crime has been committed,
as well as requiring a known crime scene, time and suspect.
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