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Abstract. In this paper, we investigate constructing and explaining on
case models, which have been proposed as formal models for presumptive
reasoning and evaluating arguments from cases. Recent research shows
applications of case models and relationships between case models and
other computational reasoning models. However, formal methods for con-
structing and explaining case models have not been investigated yet.
Therefore, in this paper, we present methods for constructing and ex-
plaining case models based on the formalism of abstract argumentation
for case-based reasoning (AA-CBR). The methods are illustrated in this
paper with a legal example of paying penalties for a delivery company. We
found that we can constructed case models can provide model-theoretic
semantics equivalent to AA-CBR, and that explanations in case models
can be made by dispute trees as in AA-CBR.

Keywords: case-based reasoning · argumentation frameworks · case
models

1 Introduction

Artificial Intelligence and Law researchers are interested in explanations of rea-
sons using cases. In order to explain reasons, early case-based legal reasoning
systems, such as HYPO, use analogical reasoning [3]. Connections have been
made to argumentation models, such as ASPIC+ [15], building on formal devel-
opments in argumentation theory [7, 12, 21]. Argumentation has been shown to
be useful for explanation [2], and case-based argumentation has been shown to
be useful not only for explaining from precedent cases [6], but also explaining
the development of case law [10] as well as explaining legal theories based on
hypothetical cases in statute law [16].

On the other hand, Artificial Intelligence and Law researchers are also in-
terested in evaluations of arguments using cases. Case models [19] have been
recently developed in order to formally evaluate arguments. Each case model
consists of a set of consistent, mutually incompatible, and different logic formu-
las representing cases, and a total and transitive preference ordering over the



cases. Case models evaluate arguments as incoherent, coherent, presumptively
valid, and conclusive. Several applications of case models have been investigated,
including evidential reasoning [11, 20] and ethical system design [18]. Formalizing
case models for case-based reasoning has also been investigated [18, 19]. How-
ever, the questions of how to formally construct case models from a case-base
and how to explain argument moves in case models have not been studied.

In order to address these questions, we investigate case models from a case-
based argumentation perspective. As a representative of case-based argumenta-
tion, we consider abstract argumentation for case-based reasoning (AA-CBR)
[5], which inspires explanations in precedential constraint [14, 22]. A case base
in AA-CBR is a finite set of cases with outcome – including a default case with
outcome, which is a pair of a default situation represented as the empty set
and a predefined default outcome. Given a new situation, AA-CBR infers an
outcome by forming a corresponding argumentation framework [7] with respect
to the case base, and determining whether or not the default case with out-
come is included in the grounded extension of the corresponding argumentation
framework. AA-CBR explains the inference using dispute trees with respect to
the default case with outcome. By exploring the relation between AA-CBR and
case models, we present a method of constructing case models from an AA-CBR
case base. Furthermore, we extend several concepts in case models to explain
argument moves in case models using dispute trees as in AA-CBR. We show
that dispute trees used in case models are homomorphic to dispute trees used in
AA-CBR.

This paper is structured as follows. Section 2 describes abstract argumenta-
tion for case-based reasoning (AA-CBR), which is a representative of case-based
argumentation formalism used in this paper. Section 3 describes case models.
Section 4 presents the first contribution of formalizing a method for construct-
ing case models from AA-CBR case bases. Then, Section 5 presents the second
contribution of developing dispute trees for explanations in case models. Section
6 discusses connections with related research, and provides suggestions for future
work. Finally, Section 7 provides the conclusion of this paper.

2 Abstract Argumentation for Case-based Reasoning

In this section, we focus on abstract argumentation for case-based reasoning
(AA-CBR) [5], which is used as a representative of case-based argumentation
in this paper. AA-CBR aims to formalize reasoning from consistent cases with
outcome and a predefined default outcome using Dung’s abstract argumentation
frameworks [7]. Recently, AA-CBR has been developed for general representa-
tions of situations and preferences [4], but in this paper, we follow the original
one [5] and represent the situation of a case as a finite set of attributes. The
original paper calls those attributes factors but we use in this paper fact propo-
sitions in order to distinguish them from those in CATO. We define the set F
of all possible fact propositions called the fact-domain. A case base in AA-CBR
is then defined as follows [5].



Definition 1 (Case-base in AA-CBR). Let F be the fact-domain. A case
with outcome in AA-CBR is a pair pX, oq where X Ď F representing the fact
situation of the case and o P t`,´u representing the outcome of the case. We
denote the opposite of o by ō, namely ō “ ` if o “ ´; and ō “ ´ if o “ `. A
case-base, denoted with CB, is a finite set of cases with outcome that assumes
consistency, i.e. for pX, oxq, pY, oyq P CB, if X “ Y , then ox “ oy, and contains
a default case (with outcome) pH, dq where d P t`,´u is a default outcome. We
denote a set of all propositions occurring in CB by FCB, i.e. FCB “

Ť

pX,oqPCB

X.

Example 1. To illustrate case-based argumentation, we adapt an example of
penalties from a delivery company [1] with the following rules.

1. If there is no special situation, the delivery company does not have to pay a
penalty.

2. If the items were delayed, the delivery company has to pay a penalty.
3. If the items were damaged, the delivery company has to pay a penalty.
4. If the items were damaged but they are fungible and the items were replaced,

then the delivery company does not have to pay a penalty.

We represent facts with the following propositions.

– delayed: the items were delayed.
– damaged: the items were damaged.
– fungible: the items are fungible
– replaced: the items were replaced.
– penalty; the delivery company has to pay a penalty

Considering a conclusion of whether the delivery company has to pay a penalty
(` means the company has to pay a penalty; ´ otherwise), the working example
can be represented as a case base CB, consisting of cases with outcome as follows.

1. co0 “ pH,´q
2. co1 “ ptdelayedu,`q
3. co2 “ ptdamagedu,`q
4. co3 “ ptdamaged, fungible, replacedu,´q

To infer an outcome for a new fact situation N , AA-CBR forms an abstract ar-
gumentation framework [7] corresponding to N and considers whether or not the
default case pH, dq is in the grounded extension of the argumentation framework.

Definition 2 (Abstract argumentation in AA-CBR). The AA framework
corresponding to a case base CB with a default case pH, dq and a new fact
situation N is pAR, attacksq satisfying the following conditions:

– AR “ tpX, oq P CB|X Ď Nu 3

3 The original AA-CBR [5] uses pN, ?q that attacks all cases with outcome of which
situations are not subsets of N , but, to simplify definitions in the rest of the present
paper, we adapt this part of the definition following [1] instead.



– pX, oxq attacks pY, oyq for all pairs pX, oxq, pY, oyq P AR such that
‚ ox ‰ oy , and (different outcomes)
‚ Y Ĺ X, and (specificity)
‚ EpZ, oxq P AR with Y Ĺ Z Ĺ X (concision)

The AA outcome of the new fact situation N is d if pH, dq is in the grounded
extension of the argumentation framework, otherwise the AA outcome of the
new fact situation N is d̄. We denote the AA framework in which arguments are
all cases with outcome in CB as pCB, attacksq.

co0 “ pH,´q

co1 “ ptdelayedu,`q co2 “ ptdamagedu,`q

co3 “ ptdamaged, fungible, replacedu,´q

Fig. 1. Argumentation framework corresponding to the working example

Suppose N1 “ tdelayed, damaged, fungible, replacedu, representing a case
where items were damaged, the damaged items are fungible, the items were
replaced, but they were delayed. We have that AA-CBR uses all cases in the
case base to form an argumentation framework, as illustrated in Figure 1. We
can see that the default case co0 “ pH,´q is not in the grounded extension of the
argumentation framework. Thus, the AA outcome of N1 is `, i.e. the delivery
company has to pay a penalty.

AA-CBR provides explanations using admissible and maximal dispute trees,
which are extended from dispute trees used in dialectic proof procedures [8, 9].
The definition of dispute trees used in AA-CBR [5] is as follows.

Definition 3 (Dispute Tree). Let pAR, attacksq be an argumentation frame-
work. A dispute tree for a P AR is a (possibly infinite) tree T such that:

1. every node of T is of the form rL : xs, with L P tP,Ou and x P AR where L
indicates the status of proponent (P ) or opponent (O);

2. the root of T is a P node labelled by a;
3. for every P node n, labelled by some b P AR, and for every c P AR such that

c attacks b, there exists a child of n, which is an O node labelled by c;
4. for every O node n, labelled by some b P AR, there exists at most one child

of n, which is a P node labelled by c P AR such that c attacks b;
5. there are no other nodes in T except those given by 1-4.

A dispute tree T is an admissible dispute tree if and only if (i) every O node in
T has a child, and (ii) no argument in T labels both P and O nodes. A dispute
tree T is a maximal dispute tree if and only if for all opponent nodes rO : xs
which are leaves in T there is no y P AR such that y attacks x.



Admissible dispute trees are maximal dispute trees but not vice versa [5] because
admissible dispute trees are those maximal dispute trees without opponent leaves
while maximal dispute trees with opponent leaves also exist. In other words,
admissible dispute trees demonstrate argumentations where the proponent can
attack all of the opponent’s arguments but maximal dispute trees demonstrate
argumentations where the proponent’s burden is complete, i.e. either the propo-
nent cannot attack some opponent’s arguments or the proponent already attacks
all of the opponent’s arguments. Hence, AA-CBR uses dispute trees for expla-
nations as follows.

Definition 4 (AA-CBR explanation). Let N be a fact situation and d be
a default outcome. An explanation for why the AA outcome of N is d is any
admissible dispute tree for pH, dq. An explanation for why the AA outcome of
N is d̄ is any maximal dispute tree for pH, dq.

We refer to a case with outcome that can occur in any maximal dispute tree
for pH, dq as a critical case with outcome [16]. In other words, pH, dq is thus
a critical case with outcome and any case with outcome that attacks a critical
case with outcome is also a critical case with outcome.

From the working example, two maximal dispute trees can be extracted from
the argumentation framework, as shown in Figure 2. The left tree in the figure
is a non-admissible dispute tree which explains why the company has to pay
a penalty. The dispute tree on the right in the figure is an admissible dispute
tree which explains why the company does not have to pay a penalty, but it is
overridden by the dispute tree on the left in the figure since it is non-admissible.

rP : pH,´qs

rO : ptdelayedu,`qs

rP : pH,´qs

rO : ptdamagedu,`qs

rP : ptdamaged, fungible, replacedu,´qs

Fig. 2. Two Maximal Dispute Trees for pH,´q with respect to the argumentation
framework corresponding to the example

3 Case Models

Case models [19] aim to formally evaluate arguments from cases. A case in
case models is a logical formula, usually a conjunction of literals. A case model
consists of a set of cases C, and their preference ordering ě. The cases in a



case model must be logically consistent, mutually incompatible and different.
The preference ordering ě in case models must be total and transitive (hence
is what is called a total preorder, corresponding to a numerically representable
ordering).

Definition 5 (Case Model [19]). Let L be a classical logical language gen-
erated from a set of propositional constants in a standard way. We write ␣ for
negation, ^ for conjunction, _ for disjunction, Ø for equivalence, J for a tau-
tology, and K for a contradiction. The associated classical, deductive, monotonic
consequence relation is denoted |ù. A case model is a pair pC,ěq with finite
C Ď L, such that the following hold, for all φ , ψ and χ P C:

1. |ù ␣φ (logically consistent);
2. If |ù φØ ψ, then |ù ␣pφ^ ψq (mutually incompatible);
3. If |ù φØ ψ, then φ “ ψ (different);
4. φ ě ψ or ψ ě φ (total);
5. If φ ě ψ and ψ ě χ, then φ ě χ (transitive).

The strict weak order ą standardly associated with a total preorder ě is defined
as φ ą ψ if and only if it is not the case that ψ ě φ (for φ and ψ P C). When
φ ą ψ , we say that φ is (strictly) preferred to ψ. The associated equivalence
relation „ is defined as φ „ ψ if and only if φ ě ψ and ψ ě φ. Case models
evaluate arguments from cases as follows.

Definition 6 (Argument Evaluation in Case Models [19]). An argument
is a pair pφ,ψq with φ and ψ P L where φ expresses the argument’s premise and
ψ expresses the argument’s conclusion. We say an argument pφ,ψq has grounding
in case ω if and only if ω |ù φ^ψ and an argument pφ,ψq is relevant to case ω
if ω |ù φ. Let pC,ěq be a case model. Then we define, for all φ and ψ P L:

– pφ,ψq is coherent with respect to pC,ěq if and only if pφ,ψq has grounding
in some cases, i.e. Dω P C : ω |ù φ^ ψ.

– pφ,ψq is presumptively valid with respect to pC,ěq if and only if pφ,ψq has
grounding in a case that is maximal within the relevant cases, i.e. Dω P C :
ω |ù φ^ ψ; and @ω1 P C : if ω1 |ù φ, then ω ě ω1.

– pφ,ψq is conclusive with respect to pC,ěq if and only if pφ,ψq has grounding
in every relevant case, i.e. Dω P C : ω |ù φ^ψ; and @ω P C : if ω |ù φ, then
ω |ù φ^ ψ.

Attacks between arguments are defined in case models as follows [19].

Definition 7 (Attack in Case Models). Let L be a classical logical language,
pC,ěq be a case model, and pφ,ψq be a presumptively valid argument. Then
χ P L is defeating or successfully attacking the argument when pφ^χ, ψq is not
presumptively valid. A case ω P C provides grounding for the attack if ω |ù φ^χ.
Furthermore, if pφ^ χ,␣ψq is presumptively valid, χ is rebutting; otherwise, χ
is undercutting. If φ “ J then, χ is undermining.



4 Constructing Case Models

In this section, we present our contribution of formalizing a method for construct-
ing a case model from an AA-CBR case base. We found that the construction is
related to a concept of nearest case with outcome in AA-CBR, which is defined
as follows [6].

Definition 8 (Nearest Case with Outcome). Let N be a fact situation, and
CB be a case-base. pX, oxq P CB is nearest to N (not always unique) if and only
if X Ď N , and EpY, oyq P CB with Y Ď N and X Ĺ Y . In other words, X is
Ď-maximal in the case base.

If there is a unique nearest case with outcome pX, oq to a fact situation N , then
the AA outcome of N is o [6], as illustrated in Example 2.

Example 2. Continuing from Example 1, let the fact-domain be F “ tdelayed,
damaged, fungible, replacedu, fact situations can be classified with their unique
nearest case with outcome as follows.

– co0 “ pH,´q is unique nearest to:
H, tfungibleu,treplacedu,tfungible, replacedu

– co1 “ ptdelayedu,`q is unique nearest to:
tdelayedu, tdelayed, fungibleu, tdelayed, replacedu,
tdelayed, fungible, replacedu

– co2 “ ptdamagedu,`q is unique nearest to:
tdamagedu, tdamaged, fungibleu, tdamaged, replacedu

– co3 “ ptdamaged, , fungible, replacedu,´q is unique nearest to:
tdamaged, , fungible, replacedu

– No unique nearest case with outcome:
tdelayed, damagedu, tdelayed, damaged, fungibleu,
tdelayed, damaged, replacedu, tdelayed, damaged, fungible, replacedu

The unique nearest case with outcome is defeasible. A fact situation can be
monotonically grown without changing its unique nearest case with outcome
until it reaches exceptional conditions. Extending from the concept of nearest
case with outcome, we define the boundary of case with outcome as follows.

Definition 9 (Boundary). Let F be the fact-domain, CB be a case-base with
pX, oxq, and pCB, attacksq be an argumentation framework formed by AA-CBR.
Let CBÑpX,oxq be a set of all cases with outcome in CB that attack pX, oxq, i.e.
CBÑpX,oxq “ tpY, oyq P CB|pY, oyq attacks pX, oxqu.

– A boundary of pX, oxq, denoted by FÑpX,oxq, is a set of all propositions
occurring in CBÑpX,oxq, i.e. FÑpX,oxq “ FCBÑpX,oxq

.
– An internal sub-boundary of pX, oxq is a subset of boundary that cover X but

does not cover a fact situation of a case with outcome that attacks pX, oxq.
We denote a set of all internal sub-boundary by IÑpX,oxq, i.e.
IÑpX,oxq “ tB Ď FÑpX,oxq|X Ď B ^ EpY, oyq P CBÑpX,oxqY Ď Bu.



In following definitions, we express a ternary conditional operator as pa ? b : cq,
interpreted as if a then b otherwise c, and we define a naming function name
that maps from every case with outcome to a set of name propositions N distinct
from F , i.e. n : Fˆt`,´u ÞÑ N . For ease of exposition, we use the same symbol
for referring to the case with outcome and its name proposition.

Firstly, we define a function case based on an informal construction described
in [19] for constructing a logical sentence from a critical case with outcome and
one of its internal sub-boundary. The literals used for constructing the sentence
are from five sources: (1) the outcome (2) the name propositions (3) the consid-
ering sub-boundary (4) propositions inside the boundary but outside the con-
sidering internal sub-boundary (5) propositions inside the casebase but outside
the boundary of the default case. The function is formally defined as follows.

Definition 10 (Case construction). Let CB be a case base with a default
case pH, dq and a critical case with outcome pX, oxq, Bx P IÑpX,oxq, and δ be a
proposition. casepX, ox, Bx, δq is a function defined as

casepX, ox, Bx, δq “ pox “ d ? δ : ␣δq ^
ľ

nPN
pn “ namepX, oxq ? n : ␣nq ^

ľ

piPBx

pi ^ pIÑpX,oxq “ tXu ? J :
ľ

pkPFÑpX,oxqzBx

␣pkq^

pX “ H ?
ľ

plPFCBzFÑpH,dq

pl : Jq

Since an internal sub-boundary of pX, oxq has a unique nearest case, that
is pX, oxq, case is a one-to-one function, namely given the sentence constructed
from case, we can trace back which case with outcome and which internal sub-
boundary that the sentence is constructed from.

Secondly, we define a function depth, which is a mapping function from any
case with outcome to an integer, expressing the depth of attacks from the de-
fault case to the considering case with outcome. This function is then used to
determine the preference between cases. The function is defined as follows.

Definition 11 (Attack depth). Let CB be a case base with a default case
pH, dq and a critical case with outcome pX, oxq, and pCB, attacksq be an ar-
gumentation framework formed by AA-CBR. depthpX, oxq is a function defined
as

depthpX, oxq “

$

&

%

0 if X “ H

1` max
pX,oxq attacks pY,oyq

depthpY, oyq otherwise

Using these two function, we present the following formal method for con-
structing case models as follows.



Definition 12. Let CB be a case base with a default case pH, dq and δ be a
proposition. We say a case model pC,ěq is constructed from CB with respect to
δ if and only if the following conditions hold.

1. for every critical pX, oxq P CB and Bx P IÑpX,oxq, there exists
casepX, ox, Bx, δq P C; and

2. for every critical pX, oxq, pY, oyq P CB, Bx P IÑpX,oxq, and By P IÑpY,oyq

such that c1 “ casepX, ox, Bx, δq, c2 “ casepY, oy, By, δq P C, c1 ě c2 if and
only if depthpX, oxq ď depthpY, oyq; and

3. there are no other cases in C except those given by 1.

Since case is a one-to-one function, the result of case are different from each
other. With the layout of negations in the construction, cases in constructed
case models are mutually incompatible. The preference ordering is total and
transitive since it is derived from numeric comparisons.

Table 1. Constructing cases in case model from the working example

Cases with outcome
and boundaries

Internal
sub-boundary

Cases in case model

co0 “ pH,´q
Boundary =
tdelayed, damagedu

H
c0 : δ ^ co0 ^␣co1 ^␣co2 ^␣co3

^ fungible^ replaced

co1 “ ptdelayedu,`q
Boundary = tdelayedu

tdelayedu
c1a : ␣δ ^␣co0 ^ co1 ^␣co2 ^␣co3

^ delayed

co2 “
ptdamagedu,`q
Boundary =
tdamaged, fungible,
replacedu

{damaged}
{damaged,
fungible}
{damaged,
replaced}

c1b : ␣δ ^␣co0 ^␣co1 ^ co2 ^␣co3
^ damaged^␣fungible^␣replaced

c1c : ␣δ ^␣co0 ^␣co1 ^ co2 ^␣co3
^ damaged^ fungible^␣replaced

c1d : ␣δ ^␣co0 ^␣co1 ^ co2 ^␣co3
^ damaged^␣fungible^ replaced

co3 “ ptdamaged,
fungible, replacedu,´q
Boundary ={damaged,
fungible, replaced}

{damaged,
fungible,
replaced}

c2 : δ ^␣co0 ^␣co1 ^␣co2 ^ co3
^ damaged^ fungible^ replaced

The preference ordering: c0 ą c1a „ c1b „ c1c „ c1d ą c2

From Example 1, a case model pC,ěq is constructed as in Table 1. Case
c0, which is a most preferred case in C, is constructed from the default case
co0. fungible and replaced are attached to the case since they are not in the
boundary of the default case. c1a is constructed from co1 since it has only one in-
ternal sub-boundary. In contrast, c1b, c1c, c1d are constructed from the same case
with outcome co2 since it has three internal sub-boundaries. c1a, c1b, c1c, c1d are
immediately less preferred than c0 because they are constructed from the cases
with outcome that directly attack the default one. Meanwhile, c2 is constructed
from co3 and c2 is the least preferred in C.



5 Explaining Case Models

In this section, we present another contribution of developing dispute trees for
explaining case models. To develop the explanation, we first look into the concept
of analogy, which is defined as follows [19].

Definition 13 (Analogy). Let L be a classical logical language, pC,ěq be a
case model, and σ P L be a situation. We say α P L expresses an analogy of a
case ω P C and σ if ω |ù α and σ |ù α.

For any case ω and any situation σ, we have that J is the most general
analogy of ω and σ, and ω _ σ is the most specific analogy of ω and σ [23]. By
extending the concept of specificity from AA-CBR, we introduce a literal analogy
as an analogy in the form of J or a conjunction of literals. This makes J still
the most general literal analogy of ω and σ, but ω _ σ is not always the most
specific literal analogy due to the logical or. The exception is that sometimes
there is a conjunction of literals that is equivalent to ω_ σ, in that case, such a
conjunction is the most specific literal analogy.

Definition 14 (Literal Analogy). We say an analogy α is a literal analogy
of ω and σ if and only if α is J or a conjunction of literals. and we say a literal
analogy α is the most specific literal analogy of ω and σ if and only if for every
literal analogy α1 of ω and σ, α |ù α1.

By the concept of literal analogy, we introduce a new type of rebuttals called
specificity rebuttal, based on the attack relations in AA-CBR, also inspired by
[13, 17]. It intuitively means the rebuttal consists in finding a more specific literal
analogy from a most preferred case with the opposite outcome.

Definition 15 (Specificity Rebuttal). Let L be a classical logical language,
pC,ěq be a case model, pφ,ψq be a presumptively valid argument, and σ P L be a
situation. We say a non-tautologous χ P L (i.e. χ ‰ J) is specificity rebutting
the argument with respect to σ if and only if

– Dω P C : ω |ù φ^␣ψ; @ω1 P C: if ω1 |ù φ^␣ψ, then ω ě ω1

(ω is a most preferred case in the set of such ω1 with respect to ě); and
– φ^ χ is a most specific literal analogy of ω and σ.

Now, we present dispute trees in case models based on those in AA-CBR as
follows.

Definition 16 (Dispute Tree in Case Models). Let σ P L be a situation,
pC,ěq be a case model, and ψ0 be a logic formula such that pJ, ψ0q is presump-
tively valid with respect to pC,ěq. A dispute tree for ψ0 with respect to pC,ěq
and σ is a tree T such that:

1. every node of T is of the form rL : pφ,ψqs where L P tP,Ou and φ,ψ P L.
2. the root of T is rP : pJ, ψ0qs



3. for every rP : pφ,ψqs and for every χ P L that is specificity rebutting pφ,ψq
with respect to σ, there exists rO : pφ^ χ,␣ψqs as a child of rP : pφ,ψqs;

4. for every rO : pφ,ψqs, there exists at most one child rO : pφ ^ χ,␣ψqs such
that χ is specificity rebutting pφ,ψq with respect to σ;

5. there are no other nodes in T except those given by 1-4.

A dispute tree T is a maximal dispute tree if and only if for every rO : pφ,ψqs
which is a leave in T , no χ P L that is specificity rebutting pφ,ψq with respect to
σ.

We prove a theorem that a maximal dispute tree in the constructed case
models is homomorphic to some maximal dispute tree in AA-CBR, i.e. there is
a mapping (not always bijective) from nodes in a maximal dispute tree in the
constructed case models to nodes in the corresponding maximal dispute tree
in AA-CBR such that the parent-child adjacencies are still preserved. Roughly
speaking, a maximal dispute tree in the constructed case models can be reduced
into a maximal dispute tree in AA-CBR.

Theorem 1. Given a fact situation N , a case base CB with a default case
pH, dq; the corresponding AA framework pAR, attacksq; and the case model pC,ě
q constructed from CB with respect to a proposition δ. A maximal dispute tree
T for δ with respect to pC,ěq and

Ź

piPN pi is homomorphic to some maximal
dispute tree T 1 for pH, dq with respect to pCB, attacksq, with a homomorphic
mapping from a node rL : pφ,ψqs in T to a node rL : pX, oqs in T 1 such that a
most preferred case in tω|ω |ù φ^ ψu is constructed from pX, oq.

Proof. We prove by induction that T is homomorphic to some maximal dispute
tree T 1 for pH, dq with respect to pAR, attacksq .

– base case: The root rP : pJ, δqs of T corresponds to the root rP : pH, dqs of
T 1 pJ, δq has grounding in a most preferred case in tω|ω |ù δu with respect
to ě, which is always constructed from pH, dq.

– inductive step: If rO : pφ1,␣ψqs is a child of rP : pφ,ψqs in T and rP :
pφ,ψqs corresponds to rP : pY, oyqs in T 1, then there exists a most preferred
case ωx in the set tω|ω |ù φ^␣ψu with respect to ě. Since ωx is constructed
from some pX, oxq P CB, we have that pX, oxq attacks pY, oyq because ox ‰
oy (as ωx |ù ␣ψ); Y Ĺ X (as there exists a non-tautologous χ such that
ωx |ù φ^χ); and EpZ, oxq P AR with Y Ĺ Z Ĺ X (as ωx is a most preferred
case in the set, hence pX, oxq is far from pY, oyq by a distance of attacks
1). Therefore, rO : pX, oxqs is a child of rP : pY, oyqs (This can be applied
analogously for a case that rP : pφ1,␣ψqs is a child of rO : pφ,ψqs).

– If T is maximal, then for all opponent node rO : pφ,ψqs which are leaves
in T , no χ is specificity rebutting pφ,ψq with respect to

Ź

piPN pi. Hence,
there is no pX, oxq P AR that attacks pY, oyq if rO : pY, oyqs corresponds to
rO : pφ,ψqs, otherwise there is χ “

Ź

pjPXzY pj that is specificity rebutting

pφ,ψq with respect to
Ź

piPN pi, which leads to the contradiction. Hence, T 1

is maximal.



Figure 3 shows examples of maximal dispute trees for δ with respect to the case
model in Table 1 and the situation delayed^ damaged^ fungible^ replaced.
We have that the dispute trees on the left and the right of the Figure 3 are ho-
momorphic to the dispute trees on the left and the right of Figure 2 respectively.

rP : pJ, δqs

rO : ptdelayedu,␣δqs

rP : pJ, δqs

rO : pdamaged,␣δqs

rP : pdamaged ^ fungible

^replaced, δqs

rO : pdamaged
^fungibleu,␣δqs

rP : pdamaged ^ fungible

^replaced, δqs

rO : pdamaged
^replaced,␣δqs

rP : pdamaged ^ fungible

^replaced, δqs

Fig. 3. Examples of maximal dispute trees for δ with respect to the case model con-
structed from the example

6 Discussion

In this paper, we present a method for constructing case models and dispute
trees for explaining case models based on AA-CBR. However, unlike dispute
trees in AA-CBR [5, 6] that start with a default case, dispute trees in case mod-
els can start with any arbitrary formula ψ such that pJ, ψq is presumptively
valid. Although the formula is originally derived from a proposition representing
a default outcome, it is not necessary to be such a proposition. Since previous
studies [1, 16] show that AA-CBR case bases can be translated into stratified
logic programs, it follows immediately from this paper that case models con-
structed from AA-CBR case bases can also be translated into stratified logic
programs. Unfortunately, not every case models can be translated into stratified
logic programs because case models can express inconsistencies, which stratified
logic programs cannot express. Future research could investigate whether there
is a programming paradigm or a logical framework that every case model can be
translated into. Interesting candidates are answer set programming or defeasible
logic since they can express inconsistencies.

Besides AA-CBR, it is interesting to investigate constructing and explain-
ing case models from other perspectives, such as from precedential constraint.
Some differences between dispute trees in case models and dialogue games in
precedential constraint [14, 22] are, for example, dispute trees in case models
play on hypothetical arguments, i.e. arguments that might not have grounding
in real precedent cases, while dialogue games in precedential constraint play on
real precedent cases. Another difference is that the dispute trees in case models
studied here consider only specificity rebuttals. They do not consider the idea



in precedential constraint that a precedent case can defend a decision for a new
case with stronger support without using specificity. Therefore, new types of
explanations and attack relations in case models might be found if we construct
and explain case models from precedential constraint or other perspectives.

7 Conclusion

This paper presents a method of constructing case models based on abstract ar-
gumentation for case-based reasoning (AA-CBR). The constructed case models
consists of cases, each of which is constructed from each internal sub-boundary
of each critical case with outcome in the case base, and preferences over cases,
which are determined by the distance of attacks between the default case with
outcome and the considering case with outcome in the corresponding argumen-
tation framework in AA-CBR. By connecting AA-CBR to case models, we can
derive dispute trees with respect to a case model constructed and a situation. It
has been shown that the maximal dispute trees in case models can be reduced
into maximal dispute trees in AA-CBR. In future work, it would be interesting
to study constructing and explaining case models from other perspectives and
to study relations between case models and other programming paradigms or
logical frameworks.
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