
Lightweight Management - taming the RoboCup
development process

Tijn van der Zant and Paul G. Plöger

FhG Institute of Autonomous Intelligent Systems,
Schloss Birlinghoven,

53754 St. Augustin, Germany
tijn@aisland.org

paul-gerhard.ploeger@ais.fraunhofer.de

Abstract. RoboCup projects can face a lack of progress and continuity.
The teams change continuously and knowledge gets lost. The approach
used in previous years is no longer valid due to rule changes and special-
ists leaving the team leave black boxes that no-one understands. This
article presents the application of a recent software development tech-
nique called eXtreme Programming to the realm of RoboCup. Many
common problems typical for teams of students seem to be solvable with
this technique. It also gradually spreads out in professional software pro-
duction companies. Students mastering it are of high use for their further
career after having left the university. The strategy is being tested on a
real RoboCup Mid-Size and an Aibo league project and produces very
promising results. The approach makes it possible to modularize scientific
knowledge into software that can be re-used. Both the scientist/expert,
who has the knowledge, and the software development team benefit from
this approach without much overhead on the project.

1 Introduction

1.1 RoboCup

RoboCup is an extremely difficult to approach problem and the complexity
makes it impossible for single individual researchers to tackle it. It seems manda-
tory to attempt a solution in a team. In many teams members change frequently
and the interest in RoboCup may vary substantially. Devotion of all work power
to a single well defined topic exclusively is a rare exception. These discrepancies
pose some of the following questions which are quite typical for many RoboCup
teams:

– How can one avoid starting anew each tournament, i.e. how to support sys-
tematically the enhancement of a existing behavior system? Every new team
member needs to get acquainted to the source code. The documentation is
hard to maintain and can lack the clarity needed to start programming.



– How can one address the problems caused by permanent changes of the rules?
Active and regular participation in tournaments requires a never-ending and
constant improvement. This is very much akin to try to meet the demands of
an external customer, who is not only never satisfied, but constantly changes
the requirements.

– How can one cope with frequent team turn-overs, i.e how to avoid a sig-
nificant drop in performance or the resign of the team if some key system
designer graduates, leaving the team behind. How to either fill or avoid a
knowledge gap?

– How can one foster cooperation in the team, i.e. how to lower the danger of
a complete dependence on the expertise of a single member?

1.2 Correlations with the industry

If we compare this to the software producing industry these questions sound
familiar and they can easily be paraphrased. The first might read as: how to
distribute knowledge about huge bodies of existing code to all members of project
teams in order to raise the overall productivity? Secondly, changing of rules can
be interpreted as a permanent change of customer specifications resulting in
an endless number of engineering change requests. Inherent to this lingers the
demand for ”faster, better and cheaper”, which is known as well from other
robotics customers like NASA[11] as from other big SW producing companies.
Thirdly the life cycle of the project usually lasts longer than the individual career
of a single project engineer. The goal of the whole project will be endangered if
the team of programmers lack cooperation. Solving a large problem in common
constitutes also a problem amongst humans.

1.3 Experience matters

Both authors have a long experience of more than six years in different RoboCup
teams. They have extracted the problems described in this article from experi-
ence and conversations with many other teams. The authors thank the openness
of members of other teams. It made them realize that many teams face very
similar problems. No teams are mentioned specifically because the nature of the
problems is a general one. It suggests to investigate all viable solutions and espe-
cially to look for successful techniques from software engineering. It is important
to write down these experiences for the next generations.

This article is structured as follows: in the next section a problem description
is given. It suggests a mapping to some solution. Section 3 constitutes the core
of this paper, it defines the favored SW engineering method and reasons why it
is very well suited for this problem domain. It also indicates some open problems
that are partially addressed but need a more complete solution in near future.
Then follows the results on actually applying the suggested methods in running
RoboCup projects and closes with some outlook on future extensions.



2 Problem Description

2.1 The development process

In late 2003 it was decided to take a move from the RoboCup team formerly
known as GMD-Musashi, being rooted at Fraunhofer research institute AIS[6],
to become an internship project only operated by students in a masters program
at the University of Applied Sciences of Bonn-Rhein-Sieg. During this migration
process we faced a number of problems.

Facing the blend of some very elaborate and difficult to program problems
students easily get overwhelmed. To keep them motivated one can use early
successes in spite of the complexity of the underlying task. Traditional SW pro-
duction models, such as the waterfall or spiral model, have a too slow turn-
around for this, so we chose eXtreme Programming [7] (XP) as an underlying
programming paradigm. It allows a jump start to code production and has a
high promise of early success. Secondly we introduced a visual programming
suite called ’Iconnect’[10]. It contains many different kinds of either standard or
user defined modules dedicated to signal processing tasks in real-time systems.
The programming paradigm is a synchronous data-flow architecture which eases
the programming tasks for a robot very much. Although the first steps are sim-
ple, the library reaches all the way up to vision algorithms like scaling, clipping
skeleton building, smoothing kernel filters and Lens calibration.

To foster collaboration, trust in the whole code has to be generated. This
is established through extended automated testing, so called test case driven
design or unit testing [7]. Every student is allowed or even encouraged to change
the code of other group members, but to generate the necessary trust to dare so
the changed code has to be accompanied by many test cases. The positive com-
pletion of all tests ensures that the functionality of the code remained invariant.
Collective code ownership is essential and tightly bounded teams becomes pos-
sible. These procedures allow for micro architectural code transformation also
known as refactoring [9].

2.2 RoboCup

The use of standard platforms, such as the VolksBot[1] and the Aibo[2], eases the
development process in RoboCup. There can be a substantial waste of time in the
maintenance of shaky robots being constructed from far too many parts, which
can be tamed by using these basic robots. This change yields an encapsulation
of all micro-controller related issues, so the SW team can concentrate on other
issues, sometimes called high level SW. The knowledge of an expert is in the
micro-controller, ready to be used.

A good choice is to drastically cut down on the vast many number of choices
in the design space. Sacrificing here pays off in a much higher productivity,
see section 4. By prescribing a VolksBot as HW and Iconnect as the low level
SW exchange of modules becomes possible. Prescribing the SW development
methodology of XP adds many advantages which RoboCup seems to demand.



It supports small teams optimally with a range of techniques, without giving
too much overhead. One integral part of XP, the overall testing of the complete
behavior system, is difficult to automate completely for the given case of behavior
based robot control programs. But generally it is believed that regular unit
testing leaves less than 20% of the whole SW system uncovered (our experience).

The expectations of the management may be met by a fast proof of capa-
bilities achieved by a purchase of some robot, instead of the time-consuming
process of building one. The start-up of new teams can focus on its organization
and actively building up its structure. The growth and decrease of a team is no
problem. Lazy students may get motivated by doing XP since it is fun to do and
early running tests are tempting. Finally pair programming makes all people in
the team cooperate and distributes the knowledge. This reduces what is known
as the ’truck’ factor in XP [7], which is the number of people that can be run
over by a truck without endangering the project. If this is 1, for any part of the
project, the project might be in trouble.

3 Approach

3.1 Top-down approach to bottom-up robotics

Some of the methods of XP have to be adapted to the RoboCup environment
and some do not really seem to work at all. The authors have been on a few
(non-robotic) XP projects and there the technique works quite well, although it
is only a starting point and not the holy grail which solves all the problems. A
list of practices used or aimed for is given with some explanations why we do it
and whether it works as expected or not.

Borrowed techniques from XP

Short releases: This prevents software-drift. There is always a fully working
version in CVS (or SVN). If there might be an integration problem between
modules, it is detected in an early stage and easy to solve. A release happens
every 4 to 6 weeks, and contains a fully working system, though it does
not have all the functionality of the end-product. This works very well and
motivates the team and assures the boss (professor or team-leader) that the
project is on track. If it is not on track appropriate steps are undertaken
without having too much damage.

Simple design: A complex design is hard to change. It is also impossible to
explain to new people coming into the project. It slows the speed of devel-
opment and discourages the exploration of alternative solutions. Worst case
scenario is a project that has virtually come to a full stop, nobody dares to
change much in the code and programming on the robot means, in practice,
that the person is mostly debugging.

Testing: An essential feature to get more certainty that the complex system
will actually work. If a test fails because something has changed the mistake



is easily found and fixed. The software grows and if it is uncertain if the basic
systems work as expected or not, there is no way to predict the behavior of
the software in the future.

Pair programming: Pair programming contains immediate code refereeing
and learning from each other without too much explicit training. One of
the problems is that in a too small group there are several specialists work-
ing and a pair can quickly turn into one code-warrior and one viewer without
learning.

Collective code ownership: Everybody is allowed to change everything. Wait-
ing (hours, days) for someone to change a piece of code which could be fixed
in minutes by oneself is frustrating, slows down progress and gives rise to
friction in the team.

Continuous integration: To be certain that errors or incompatible modules
do not occur, continuous integration is an essential part of a professional
agile way of working. Persons can work for long periods of time on their own
island only to find out that during integration something very important was
very different than expected.

On-site expert: In XP an on-site customer is preferred as the expert on what
the end-product should look like. In scientific projects as RoboCup this is
more difficult and usually there is no customer. An on-site expert is recom-
mended to keep the group on track. Questions about algorithms, architec-
tures and planning issues are quickly resolved.

Steering: A complicated project has to be steered. In XP it is compared to
driving a car: one cannot point the nose into a certain direction and pay
no more attention to the driving. Steering is done continuously with small
adjustments all the time. This might result in uncertainty because there is
no grand/final plan while working. On the other side, such a plan is usu-
ally adjusted many times and only gives superficial certainty and a lot of
overhead.

Coding Standards: To be able to read all the code as if it was your own,
coding standards are needed. Today this is often an automated procedure in
the programming environment.

Coaching: The coach aids persons with the adopted way of working. Frictions
will arise due to different working habits, and the coach eases the transfer
from a naive approach to a structured one. The coach is not the bogyman, but
usually talks in general terms. The coach does not punish a team member
if something goes wrong but is instead looking how to solve the problem.
Nobody is to blame, instead everybody works on the solutions.

Strategic vs. implementation decisions: A big difference exists between these
sort of decisions. They can be made by the same persons but it is good to
separate them and explain explicitly what sort of decision is being made.
Inexperienced persons can make (some) implementation decisions, but only
the experts in the team can make the strategic decisions regarding overall
architecture, the algorithms to be used and hardware changes for example.

Practices from experience in robot projects



Self-monitoring of the robots: Together with reliable software one should
pay attention to reliable hardware. If one is programming a behavior and
the robot starts to shake after running the code, the first thing to do is
check the new code. This reasoning is not always valid and can be plainly
wrong. There are many possible problems with the hardware and software.
Fully automated checks of the important systems should give the user a hint
whether it is the new code causing the problems or something else. The
monitoring can be automated and on-line, which decreases debugging time.
It also helps with the control of a robot, if it can diagnose by itself what is
wrong.

Round-trip engineering: Build modules and behaviors according to the spec-
ifications, test them in simulation, transfer them to the real robot and test
them again. If the result is not close enough to what was expected the simula-
tion has to be adapted or the implementation rechecked. A research question
is how to automate the simulator tuning.

Active project management: Most of the people working on RoboCup are
students. They join the team for a certain amount of time and leave the
project. This is the ideal recipe for a failing project. Most of the knowledge
leaves with the students and the new students have to learn everything anew.
This causes a lack of progress on the long run.

3.2 Tools

Standardized hard- and software Preferably all the hard- and software
should be of-the-shelf. The robot used is a commercial product, unless the robot
itself is the research topic. The setup of the robot is standardized. One of the
tools we build is an installer for the robot and development software, an auto-
matic update procedure (one(!) button) for the drivers and the fully automated
control software update procedures. Every time one of these buttons is pressed
somewhere between five minutes (driver update) and a few hours (complete in-
stallation) is saved. Because it is easy to update the software it is more likely
that during the games all the robots have the same version running.

Just a few years ago a standardized, of-the-shelf, component based system
was lacking[14] and one of the aims of the robotic community. The standardiza-
tion of the hardware is progressing appropriately, though on the software side
it is still lacking. The approach used in modern software engineering is a visual
based, modularized and agile[4] one. The visual approach forces to build modules
and to standardize all the components. It becomes easier to test the software.
To cite Manuela Veloso, who talked in Padova about RoboCup, she was ”getting
bored by the lack of progress”, it was ”time to do something new”, the RoboCup
community should ”surprise her” and ”be less conservative”. The authors think
it is due to the approach used in the different RoboCup teams that the RoboCup
community is showing a slow-down, and not due to technological incompetence
or another reason. The lack of progress is a social problem, not a technological
one!



4 Results

The results of the proposed management approach are convincing but hard to
convey. The development speed is very high while the work pressure remains
constant. There was a steep learning curve due to the new robot, a new and
unknown software tool and a new way of working (visual based and XP). To some
of the problems we encountered we have some solutions. For the simple design
the solution we use is extreme modularity. Everything we do is programmed in
modules (in C++). The interfaces are rigidly defined and strong typing is used.
In case of the visual programming environment, the graph built in this way is the
architecture. It supports hierarchy in cases where it is necessary. This ensures
flexibility and design overview. No design documents are used as the design is
the real-time system itself, in case of the visual tool.

The problems with pair-programming is solved by getting more persons on
the project. To be certain that modules are not messed up by unexperienced
programmers we work on the problem together with the expert if the change
is rather large. The on-site expert works really well. The rapid feedback of the
expert ensures that if a mistake is made or a problem has to be solved it is
done very swiftly. The steering done by the expert helps to keep the project
on track. The coaching eases communication in the team. Nobody has a special
place and everybody is treated as equal, which aids in the cohesion of the team
and speeds up the development process. The approach of dividing the strategic
and implementation decision is used to the maximum and it is a good working
practice. Students get certainty about the project and leaders are assured no big
mistakes are being made.

The estimated speed-up is hard to measure. In the mid-size league, a period
of just a few months, with a handful of people working a couple of days a week
resulted in our case in a working team that got through the first rounds. We
lost to the European Champion and the second on the world ranking list of
that year (2004), which is not a bad result for such a short period of working.
In comparison, other projects of us, without the methodologies written down
in this article, took one-and-a-half year (three times as long) to get the same
quality.

5 Future Developments

In the Netherlands a research project is ongoing which tests these methodologies
between research groups. Questions arise about how it works when dozens of
people are working on a robotic project, in half a dozen different research groups.
One group is researching how to make a ’virtual laboratory’. How can we work
in different physical places and still have a decent project. One extra practice
is a gate keeper on the versioning system (CVS/SVN). There can be many
unstable branches, where groups or individuals can work, but there is only one
stable branch. This branch has a gatekeeper who checks whether the code is
according to the standards. If not then it does not go into the stable branch.



Another method is nightly updates and builds. All the unstable branches are
updated with the stable branch code. If merger problems arise it is reported in
the daily morning mail. Also all the branches are compiled from scratch, to check
for problems. Everything is automated and the system emails one email in the
morning to everybody on the email list with all the details.

6 Summary

In this article we presented the application of a recent SW development technique
called eXtreme Programming to the realm of RoboCup. Some of the techniques
do not seem applicable to working with robots, but other one are working out
very fine. The result is a team that is expandable and has a high development
speed. We advise other groups also to pay attention to the social aspects of com-
plex high-tech projects such as RoboCup. This might be the first steps toward
the maturation of the robot-industry.

References

1. http://www.volksbot.de.
2. http://www.us.aibo.com.
3. http://www-2.cs.cmu.edu/tekkotsu/.
4. Special report: Software goes extreme.
5. A. Bredenfeld, Th. Christaller, H.Jaeger, H-U. Kobialka, P. Schöll. Robot behavior

design using dual dynamics. Technical report, GMD Report, 2000.
6. A. Bredenfeld, V. Becanovic, Th. Christaller, I. Godler,G. Indiveri, K. Ishii, J. Ji,

H-U. Kobialka, N. Mayer, H. Miyamoto, A.F.F. Nassiraei, P-G. Plöger, P. Schöll,
M. Shimizu . Ais-musashi team description paper.

7. Kent Beck. Extreme Programming Explained. Addision Wessley, 2000.
8. Silvia Coradeschi and Jacek Malec. How to make a challenging ai course enjoyable

using the robocup soccer simulation system. In RoboCup-98: Robot Soccer World
Cup II.

9. Martin Fowler. Refactoring: Improving the Design of Existing Code. Addision
Wessley, 1999.

10. Roland Mandl and Bernhard Sick. Messen, Steuern und Regeln mit ICONNECT.
Vieweg, 2003.

11. Howard E. McCurdy. Faster, Better, Cheaper: Low-Cost Innovation in the U.S.
Space Program. Johns Hopkins Univ Press, 2001.

12. Peter Stone. Robocup as an introduction to cs research.
13. Peter Stone. Multiagent competitions and research: Lessons from robocup and tac.

2002.
14. B. Werger. Ayllu: Distributed port-arbitrated behavior-based control, 2000.


