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Verification games

Games that automata play:

◮ Two-player zero-sum game of perfect information played
on (a typically infinite) graph arena.
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Verification games

Games that automata play:

◮ Two-player zero-sum game of perfect information played
on (a typically infinite) graph arena.

◮ Existence of winning strategies used to analyze possibility
of automaton offering suitable response for all possible
provocations from an uncertain environment.
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Verification games

Games that automata play:

◮ Two-player zero-sum game of perfect information played
on (a typically infinite) graph arena.

◮ Existence of winning strategies used to analyze possibility
of automaton offering suitable response for all possible
provocations from an uncertain environment.

◮ Important applications in control synthesis and thus in
the design and verification of systems.
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Verification games

Games that automata play:

◮ Two-player zero-sum game of perfect information played
on (a typically infinite) graph arena.

◮ Existence of winning strategies used to analyze possibility
of automaton offering suitable response for all possible
provocations from an uncertain environment.

◮ Important applications in control synthesis and thus in
the design and verification of systems.

◮ An emphasis on the size of memory needed.
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Logic games

Games that logicians play:

◮ Associate a two-player zero-sum game of perfect
information with the semantics of the logic.
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Logic games

Games that logicians play:

◮ Associate a two-player zero-sum game of perfect
information with the semantics of the logic.

◮ Logical notions like satisfiability are reduced to existence
of winning strategies for one of the players.
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Logic games

Games that logicians play:

◮ Associate a two-player zero-sum game of perfect
information with the semantics of the logic.

◮ Logical notions like satisfiability are reduced to existence
of winning strategies for one of the players.

◮ A tradition of use in model theory, for model
construction, comparing models etc.
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Economists’ games

Games that economists play:

◮ Model a market or economic situation as a game, usually
with a small number of players, with a small set of
options.
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Economists’ games

Games that economists play:

◮ Model a market or economic situation as a game, usually
with a small number of players, with a small set of
options.

◮ Study equilibria to predict rational play; an emphasis on
quantitative solutions.
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Economists’ games

Games that economists play:

◮ Model a market or economic situation as a game, usually
with a small number of players, with a small set of
options.

◮ Study equilibria to predict rational play; an emphasis on
quantitative solutions.

◮ A tradition of use in market design, information
economics and some political analysis.
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Structure of strategies

◮ Strategies are the unsung heroes of game theory.

– Johan van Benthem
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Structure of strategies

◮ Strategies are the unsung heroes of game theory.

– Johan van Benthem

◮ Perhaps combinatorial game theory is the only exception.
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Structure of strategies

◮ Strategies are the unsung heroes of game theory.

– Johan van Benthem

◮ Perhaps combinatorial game theory is the only exception.

◮ Certainly, this is true of the studies above.
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Structure in games

We argued in Lecture 1 that strategizing by computationally
limited agents is local and heuristic.

◮ This suggests compositional structure in strategies.
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Structure in games

We argued in Lecture 1 that strategizing by computationally
limited agents is local and heuristic.

◮ This suggests compositional structure in strategies.

◮ Something that logic is particularly good at.
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Structure in games

We argued in Lecture 1 that strategizing by computationally
limited agents is local and heuristic.

◮ This suggests compositional structure in strategies.

◮ Something that logic is particularly good at.

◮ And this is best done by looking for compositional
structure in games. For this viewing games as programs is
useful.
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Structured programs

Let Σ be a set of atomic programs. More complex programs
are built from these using program composition.

Pr ::= a ∈ Σ | π1 + π2 | π1; π2 | π∗

◮ This is the class of regular or finite-state programs.
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Regular operations

Kleene (1953) showed that these operations suffice to capture
all finite-state behaviours.

◮ π1 + π2 stands for choice; do either of the two.
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Regular operations

Kleene (1953) showed that these operations suffice to capture
all finite-state behaviours.

◮ π1 + π2 stands for choice; do either of the two.

◮ π1; π2 stands for sequential composition; do π1 first and
then do π2.
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Regular operations

Kleene (1953) showed that these operations suffice to capture
all finite-state behaviours.

◮ π1 + π2 stands for choice; do either of the two.

◮ π1; π2 stands for sequential composition; do π1 first and
then do π2.

◮ π∗ stands for iteration; do π repeatedly, arbitrarily many
times.
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Regular operations

Kleene (1953) showed that these operations suffice to capture
all finite-state behaviours.

◮ π1 + π2 stands for choice; do either of the two.

◮ π1; π2 stands for sequential composition; do π1 first and
then do π2.

◮ π∗ stands for iteration; do π repeatedly, arbitrarily many
times.

◮ Assignment statements, input / output are all among
atomic programs in Σ.
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State transformers

Let S be a set of states. We can think of a program π as a
map from S to 2S : π(s) denotes the set of states that the
program may reach, when started operation from s.
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State transformers

Let S be a set of states. We can think of a program π as a
map from S to 2S : π(s) denotes the set of states that the
program may reach, when started operation from s.

◮ Alternatively, if we were given a set of states X , we can
consider the program to be a mechanism that “achieves”
X when started from s.
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State transformers

Let S be a set of states. We can think of a program π as a
map from S to 2S : π(s) denotes the set of states that the
program may reach, when started operation from s.

◮ Alternatively, if we were given a set of states X , we can
consider the program to be a mechanism that “achieves”
X when started from s.

◮ If we were to see X as a ‘goal’, a program then sounds
very much like a strategy to achieve the goal.
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Predicate transformers

If α is a property (defined on states), we can think of a
program π as a set of pairs (α, β); if π is started in a state
where α holds, when π terminates, the resulting state is one in
which β holds.
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Predicate transformers

If α is a property (defined on states), we can think of a
program π as a set of pairs (α, β); if π is started in a state
where α holds, when π terminates, the resulting state is one in
which β holds.

◮ The properties are stated in a logical language. Let P be
a set of atomic propositions.
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Predicate transformers

If α is a property (defined on states), we can think of a
program π as a set of pairs (α, β); if π is started in a state
where α holds, when π terminates, the resulting state is one in
which β holds.

◮ The properties are stated in a logical language. Let P be
a set of atomic propositions.

◮ Formulas of the logic are built from P by closing under ¬
(negation), and ∨ (‘or’), and the condition: if α is a
formula, then < π > α is a formula as well.
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Predicate transformers

If α is a property (defined on states), we can think of a
program π as a set of pairs (α, β); if π is started in a state
where α holds, when π terminates, the resulting state is one in
which β holds.

◮ The properties are stated in a logical language. Let P be
a set of atomic propositions.

◮ Formulas of the logic are built from P by closing under ¬
(negation), and ∨ (‘or’), and the condition: if α is a
formula, then < π > α is a formula as well.

◮ This is Propositional dynamic logic.
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Nondeterministic programs

Consider the following (non-deterministic) program: let x , y be
natural numbers.
(if x ≥ y then y := y + 1) or (if x ≤ y then x := x + 1)

Sujata Ghosh and R. Ramanujam Strategies: A logic - automata study Lecture 3: Game logic and its descendants



Nondeterministic programs

Consider the following (non-deterministic) program: let x , y be
natural numbers.
(if x ≥ y then y := y + 1) or (if x ≤ y then x := x + 1)

◮ When x = y , the program behaves non-deterministically:
either x or y is incremented.
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Nondeterministic programs

Consider the following (non-deterministic) program: let x , y be
natural numbers.
(if x ≥ y then y := y + 1) or (if x ≤ y then x := x + 1)

◮ When x = y , the program behaves non-deterministically:
either x or y is incremented.

◮ Such programs can be thought as 1-player games: when
x = y , the player (Nature) has a choice of which
transition to do.
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Programs as games

We can now give a program π a game theoretic interpretation:
π : 2S → 2S such that, for X ⊆ S ,
π(X ) = Y denotes the following:
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Programs as games

We can now give a program π a game theoretic interpretation:
π : 2S → 2S such that, for X ⊆ S ,
π(X ) = Y denotes the following:

Y is the set of states starting from which Nature has

a strategy to reach the set X of states.

Sujata Ghosh and R. Ramanujam Strategies: A logic - automata study Lecture 3: Game logic and its descendants



Two player games

Does the addition of a second player make any essential
difference ?

◮ Consider a game π = (a + b); (e + f ) where player I
chooses to do either an a or b, and then player II chooses
to do e or f .
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Two player games

Does the addition of a second player make any essential
difference ?

◮ Consider a game π = (a + b); (e + f ) where player I
chooses to do either an a or b, and then player II chooses
to do e or f .

◮ We can think of it as a sequential composition of two one
player games (a + b) and (e + f ) with rôles of player and
opponent “switched” in the two games.
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Two player games

Does the addition of a second player make any essential
difference ?

◮ Consider a game π = (a + b); (e + f ) where player I
chooses to do either an a or b, and then player II chooses
to do e or f .

◮ We can think of it as a sequential composition of two one
player games (a + b) and (e + f ) with rôles of player and
opponent “switched” in the two games.

◮ This idea leads us to Propositional game logic, which is
similar to program logic, but admitting a player and an
opponent.
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Game logic

Parikh 1983: Propositional game logic, studies how a player’s
“power” evolves in a two-player game.
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Game logic

Parikh 1983: Propositional game logic, studies how a player’s
“power” evolves in a two-player game.
Let G0 be a set of atomic games. More complex games are
built from these using game composition.
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Game logic

Parikh 1983: Propositional game logic, studies how a player’s
“power” evolves in a two-player game.
Let G0 be a set of atomic games. More complex games are
built from these using game composition.

G ::= g ∈ G0 | π1 + π2 | π1; π2 | π∗ | πd
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Game logic

Parikh 1983: Propositional game logic, studies how a player’s
“power” evolves in a two-player game.
Let G0 be a set of atomic games. More complex games are
built from these using game composition.

G ::= g ∈ G0 | π1 + π2 | π1; π2 | π∗ | πd

πd stands for the game obtained when the game π is played
with the players switching rôles.
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Game logic

πd stands for the game obtained when the game π is played
with the players switching rôles.

◮ (a + b); (e + f )d stands for the game where one player
chooses between a and b and then the other player
chooses between e and f .
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Game logic

πd stands for the game obtained when the game π is played
with the players switching rôles.

◮ (a + b); (e + f )d stands for the game where one player
chooses between a and b and then the other player
chooses between e and f .

◮ The formulas of the logic are as defined before: < π > α

now denotes that Player I has a strategy for playing game
π and achieving α.
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Formalizing logic games

Game logic formalizes evaluation games in logics.

◮ Two player zero-sum game associated with any classical
logic.
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Formalizing logic games

Game logic formalizes evaluation games in logics.

◮ Two player zero-sum game associated with any classical
logic.

◮ A formula and a structure are given. Player I wants the
formula to be true in the structure, II wants it to be false.
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Formalizing logic games

Game logic formalizes evaluation games in logics.

◮ Two player zero-sum game associated with any classical
logic.

◮ A formula and a structure are given. Player I wants the
formula to be true in the structure, II wants it to be false.

◮ They go down recursively into the formula: I gets a turn
when the connective is ∨ or ∃. Similarly, II moves for ∧
and ∀. Negation is role reversal.

Sujata Ghosh and R. Ramanujam Strategies: A logic - automata study Lecture 3: Game logic and its descendants



Formalizing logic games

Game logic formalizes evaluation games in logics.

◮ Two player zero-sum game associated with any classical
logic.

◮ A formula and a structure are given. Player I wants the
formula to be true in the structure, II wants it to be false.

◮ They go down recursively into the formula: I gets a turn
when the connective is ∨ or ∃. Similarly, II moves for ∧
and ∀. Negation is role reversal.

◮ These are the game logic operators. Fixed point
constructors in the logic are associated with game
iteration.
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Game logic [Parikh 83]

A logic to reason about determined two person zero sum
games.

Syntax

◮ Φ := p | ¬α | α1 ∨ α2 | 〈γ〉α.

Sujata Ghosh and R. Ramanujam Strategies: A logic - automata study Lecture 3: Game logic and its descendants



Game logic [Parikh 83]

A logic to reason about determined two person zero sum
games.

Syntax

◮ Φ := p | ¬α | α1 ∨ α2 | 〈γ〉α.

◮ Γ := g ∈ Γ0 | γ1; γ2 | γ1 ∪ γ2 | γ
∗ | γd .

◮ Sequential composition - γ1; γ2.

◮ Choice - γ1 ∪ γ2.

◮ Iteration - γ∗.

◮ Dual - γd .
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Game logic

Syntax

◮ Φ := p | ¬α | α1 ∨ α2 | 〈γ〉α.

◮ Γ := g ∈ Γ0 | γ1; γ2 | γ1 ∪ γ2 | γ
∗ | γd .

Interpretation for games

◮ Final outcomes which players can enforce.
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Game logic

Syntax

◮ Φ := p | ¬α | α1 ∨ α2 | 〈γ〉α.

◮ Γ := g ∈ Γ0 | γ1; γ2 | γ1 ∪ γ2 | γ
∗ | γd .

Interpretation for games

◮ Final outcomes which players can enforce.

◮ Set of states S .
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Game logic

Syntax

◮ Φ := p | ¬α | α1 ∨ α2 | 〈γ〉α.

◮ Γ := g ∈ Γ0 | γ1; γ2 | γ1 ∪ γ2 | γ
∗ | γd .

Interpretation for games

◮ Final outcomes which players can enforce.

◮ Set of states S .

◮ Effectivity relation - Eg ⊆ S × 2S

◮ (s,X ) ∈ Eg iff starting at s, in game g , player 1 can
enforce the outcome to be in X .
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Game logic

◮ Φ := p | ¬α | α1 ∨ α2 | 〈γ〉α.

◮ Γ := g ∈ Γ0 | γ1; γ2 | γ1 ∪ γ2 | γ
d | γ∗.

Model M = (S , {Eg | g ∈ Γ0},V ).

Neighbourhood semantics

◮ M , s |= 〈γ〉α iff ∃(s,X ) ∈ Eγ such that
X ⊆ {s ′ | M , s ′ |= α}.
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Game logic

◮ Φ := p | ¬α | α1 ∨ α2 | 〈γ〉α.

◮ Γ := g ∈ Γ0 | γ1; γ2 | γ1 ∪ γ2 | γ
d | γ∗.

Model M = (S , {Eg | g ∈ Γ0},V ).

Neighbourhood semantics

◮ M , s |= 〈γ〉α iff ∃(s,X ) ∈ Eγ such that
X ⊆ {s ′ | M , s ′ |= α}.

◮ There exists a strategy in game γ to ensure α.
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Determined games

We talk about two person zero sum games of perfect
information in this logic.

◮ The two players cannot have winning strategies for
complementary winning positions, thus
¬(< π > α∧ < πd > ¬α) is a valid formula, for every
game π.
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Determined games

We talk about two person zero sum games of perfect
information in this logic.

◮ The two players cannot have winning strategies for
complementary winning positions, thus
¬(< π > α∧ < πd > ¬α) is a valid formula, for every
game π.

◮ All games are determined, and hence
(< π > α∨ < πd > ¬α) is valid.
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Axiom system

◮ All the substitutional instances of tautologies of PC.

◮ 〈g1 ∪ g2〉α ≡ 〈g1〉α ∨ 〈g2〉α.

◮ 〈g1; g2〉α ≡ 〈g1〉〈g2〉α.

◮ 〈g ∗〉α ≡ α ∨ 〈g〉〈g ∗〉α.

◮ 〈g d〉α ≡ ¬〈g〉¬α.
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Inference rules

(MP) α, α ⊃ β (NG ) α ⊃ β

β 〈g〉α ⊃ 〈g〉β

(IND) 〈g〉α ⊃ α

〈g ∗〉α ⊃ α
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Complete ?

The axiom system is easily seen to be sound.

◮ The system without the duality axiom is easily seen to be
complete for the dual-free fragment of the logic.
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Complete ?

The axiom system is easily seen to be sound.

◮ The system without the duality axiom is easily seen to be
complete for the dual-free fragment of the logic.

◮ In 1983, Parikh conjectured that the system presented is
indeed complete for game logic.
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Complete ?

The axiom system is easily seen to be sound.

◮ The system without the duality axiom is easily seen to be
complete for the dual-free fragment of the logic.

◮ In 1983, Parikh conjectured that the system presented is
indeed complete for game logic.

◮ This remains an interesting open problem.
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Technical results

◮ The satisfiability problem for the logic above is
EXPTIME -complete.

◮ This is the same as that for propositional dynamic logic.
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Technical results

◮ The satisfiability problem for the logic above is
EXPTIME -complete.

◮ This is the same as that for propositional dynamic logic.

◮ Model checking game logic is equivalent to the same
problem for the modal µ-calculus.
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Technical results

◮ The satisfiability problem for the logic above is
EXPTIME -complete.

◮ This is the same as that for propositional dynamic logic.

◮ Model checking game logic is equivalent to the same
problem for the modal µ-calculus.

◮ Complexity of model checking is in NP ∩ co − NP: a
major open problem asks if it is in P.
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Remarks on game logic

Game transitions are effectivity functions, or player’s powers;
hence naturally satisfy monotonicity.

◮ So intended models for GL are higher order transition
systems, or neighbourhood models.
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Remarks on game logic

Game transitions are effectivity functions, or player’s powers;
hence naturally satisfy monotonicity.

◮ So intended models for GL are higher order transition
systems, or neighbourhood models.

◮ In classical game theory, notion of utility and action sets
are primitive. GL is detatched from these notions.
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Remarks on game logic

Game transitions are effectivity functions, or player’s powers;
hence naturally satisfy monotonicity.

◮ So intended models for GL are higher order transition
systems, or neighbourhood models.

◮ In classical game theory, notion of utility and action sets
are primitive. GL is detatched from these notions.

◮ Game expressions define rules for constructing extensive
game forms over internal positions, while atomic game
forms and utilities are provided in terms of world states.
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Remarks on game logic

Game transitions are effectivity functions, or player’s powers;
hence naturally satisfy monotonicity.

◮ So intended models for GL are higher order transition
systems, or neighbourhood models.

◮ In classical game theory, notion of utility and action sets
are primitive. GL is detatched from these notions.

◮ Game expressions define rules for constructing extensive
game forms over internal positions, while atomic game
forms and utilities are provided in terms of world states.

◮ This mix of game theoretical concepts and computer
science leads to a non-classical notion of great potential.
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Relation to program logics

GL is not only more expressive than PDL but also ∆-PDL.

◮ We can define a notion of bisimulation over game models
and show that formulas of game logic are invariant under
bisimulation.
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Relation to program logics

GL is not only more expressive than PDL but also ∆-PDL.

◮ We can define a notion of bisimulation over game models
and show that formulas of game logic are invariant under
bisimulation.

◮ When we consider the natural notion of modal alternation

depth of a formula, we find that the alternation hierarchy
for game logic formulas does not collapse.
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Relation to program logics

GL is not only more expressive than PDL but also ∆-PDL.

◮ We can define a notion of bisimulation over game models
and show that formulas of game logic are invariant under
bisimulation.

◮ When we consider the natural notion of modal alternation

depth of a formula, we find that the alternation hierarchy
for game logic formulas does not collapse.

◮ There is a translation of game logic into propositional
µ-calculus with 2 variables (and 1 variable does not
suffice).
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Translation

Every GL formula can be translated into an equivalent one in
the propositional µ-calculus with two fixed point variables.

◮ Three mappings X , Y and F are defined.
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Translation

Every GL formula can be translated into an equivalent one in
the propositional µ-calculus with two fixed point variables.

◮ Three mappings X , Y and F are defined.

◮
X , Y translate game expressions into formulas with one
variable X and Y respectively.
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Translation

Every GL formula can be translated into an equivalent one in
the propositional µ-calculus with two fixed point variables.

◮ Three mappings X , Y and F are defined.

◮
X , Y translate game expressions into formulas with one
variable X and Y respectively.

◮
F is the propositional translation.
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The map X

◮ gX = ♦X .

◮ (g1 + g2)
X = gX

1 ∨ gX
2 .

◮ (g1; g2)
X = gX

1 [X := gX
2 ].

◮ (g d)X = ¬gX [X := ¬X ].

◮ (g ∗)X = µY .(X ∨ gY ).
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The map Y

◮ gY = ♦Y .

◮ (g1 + g2)
Y = gY

1 ∨ gY
2 .

◮ (g1; g2)
Y = gY

1 [Y := gY
2 ].

◮ (g d)Y = ¬gY [Y := ¬Y ].

◮ (g ∗)Y = µX .(Y ∨ gX ).
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The map F

◮ pF = p.

◮ (¬φ)F = ¬φF .

◮ (φ1 ∨ φ2)
F = φF

1 ∨ φF
2 .

◮ (< g > φ)F = gX [X := φF ].
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The map F

◮ pF = p.

◮ (¬φ)F = ¬φF .

◮ (φ1 ∨ φ2)
F = φF

1 ∨ φF
2 .

◮ (< g > φ)F = gX [X := φF ].

We can then show that φ and φF are equivalent.
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Departures

Game logic provides a point of departure for the study of logic
and games.

◮ Non-determined games.
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Departures

Game logic provides a point of departure for the study of logic
and games.

◮ Non-determined games.

◮ Multi-player games.
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Departures

Game logic provides a point of departure for the study of logic
and games.

◮ Non-determined games.

◮ Multi-player games.

◮ Overlapping objectives.
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Departures

Game logic provides a point of departure for the study of logic
and games.

◮ Non-determined games.

◮ Multi-player games.

◮ Overlapping objectives.

◮ More interesting game operators.
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Explicit strategies

Players’ strategic response need to take into account:

◮ Observable behaviour of the other players.
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Explicit strategies

Players’ strategic response need to take into account:

◮ Observable behaviour of the other players.

◮ Compositional structure of the game.

At the logical level:

◮ Game composition and structured strategies are not

independent entities.

Sujata Ghosh and R. Ramanujam Strategies: A logic - automata study Lecture 3: Game logic and its descendants



Explicit strategies

Players’ strategic response need to take into account:

◮ Observable behaviour of the other players.

◮ Compositional structure of the game.

At the logical level:

◮ Game composition and structured strategies are not

independent entities.

◮ Games and strategies need to be composed together.

Sujata Ghosh and R. Ramanujam Strategies: A logic - automata study Lecture 3: Game logic and its descendants



N-person game logic

Game logic: 〈γ〉α
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N-person game logic

Game logic: 〈γ〉α

N-person game logic: 〈γ, i〉α

Syntax

◮ Φ := p | ¬α | α1 ∨ α2 | 〈γ, i〉α.

◮ Γ := g ∈ Γ0 | γ1; γ2 | γ1 ∪ γ2 | γ
∗
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N-person game logic

Game logic: 〈γ〉α

N-person game logic: 〈γ, i〉α

Syntax

◮ Φ := p | ¬α | α1 ∨ α2 | 〈γ, i〉α.

◮ Γ := g ∈ Γ0 | γ1; γ2 | γ1 ∪ γ2 | γ
∗

Semantics

M = (S , {ρi
g | g ∈ Γ0},V ), where ρi

g ⊆ S × P(S) is
monotonic.
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What are the properties?
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What are the properties?

◮ How do we define the semantics?
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What are the properties?

◮ How do we define the semantics?

◮ What is the truth definition of 〈γ1 ∪ γ2, i〉ϕ?
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What are the properties?

◮ How do we define the semantics?

◮ What is the truth definition of 〈γ1 ∪ γ2, i〉ϕ?

◮ What kind of validities does this logic have?
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What are the properties?

◮ How do we define the semantics?

◮ What is the truth definition of 〈γ1 ∪ γ2, i〉ϕ?

◮ What kind of validities does this logic have?

◮ Is ¬(〈γ, i〉ϕ ∧ 〈γ, j〉¬ϕ) valid?
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Any other reasonable operator for combining

games?

◮ Choice, Sequential composition, Iteration
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Any other reasonable operator for combining

games?

◮ Choice, Sequential composition, Iteration

◮ We would now have a look at parallel composition of
games.
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Any other reasonable operator for combining

games?

◮ Choice, Sequential composition, Iteration

◮ We would now have a look at parallel composition of
games.

◮ We consider two ways of looking at it : Intersection and
interleaving

◮ Intersection: neighbourhood models

◮ Interleaving: tree models
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Simultaneous games

◮ Game models: M = (S , {ρi
g | g ∈ Γ},V ), where

ρi
g ⊆ S ×P(S) is monotonic.

◮ Simultaneous game models: M = (S , {ρi
g | g ∈ Γ},V ),

where ρi
g ⊆ S ×P(P(S)) is monotonic.

The set lifting is considered to differentiate between
union, intersection and parallel composition of games.
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A toy example

1

��


��
22

22

a G b

2

����
��

��
22

22

c H d
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A toy example

1

��


��
22

22

a G b

2

����
��

��
22

22

c H d

1’s ability : {{a}}, {{b}}. 1’s ability : {{c}, {d}}.
2’ rability : {{a}, {b}}. 2’s ability : {{c}}, {{d}}.
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A toy example

1

��


��
22

22

a G b

2

����
��

��
22

22

c H d

1’s ability : {{a, c}, {a, d}}, {{b, c}, {b, d}}.
2’s ability : {{a, c}, {b, c}}, {{a, d}, {b, d}}.

Each outcome state is a set read ‘conjunctively’, but players have
choices leading to sets of these read ‘disjunctively’ as in case of
game logic.
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Simultaneous two-player game logic

Language:
γ := g | γ; γ | γ ∪ γ | γd | γ × γ

φ := ⊥ | p | ¬φ | φ ∨ φ | 〈γ, i〉φ

Simultaneous game model: M = (S , {ρi
g | g ∈ Γ},V )

M, s |= 〈γ, i〉φ iff there exists X : sρi
γ
X and ∀x ∈ ∪X : M, x |= ϕ
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Composite games

sρ1
G∪G ′X iff sρ1

GX or sρ1
G ′X .

sρ2
G∪G ′X iff sρ2

GX and sρ2
G ′X .

sρ1
Gd X iff sρ2

GX .

sρ2
Gd X iff sρ1

GX .

sρi
G ;G ′X iff ∃U : sρi

GU and for each u ∈
⋃

U,
uρi

G ′X .

sρi
G×G ′X iff ∃T , ∃W : sρi

GT and sρi
G ′W and

X = {t ∪ w : t ∈ T and w ∈ W }.
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Complete axiomatization

a) all propositional tautologies and inference rules

b) if ⊢ φ→ ψ then ⊢ 〈γ, i〉φ→ 〈γ, i〉ψ

c) reduction axioms:

〈α ∪ β, 1〉φ ↔ 〈α, 1〉φ ∨ 〈β, 1〉φ

〈α ∪ β, 2〉φ ↔ 〈α, 2〉φ ∧ 〈β, 2〉φ

〈γd , 1〉φ↔ 〈γ, 2〉φ

〈γd , 2〉φ↔ 〈γ, 1〉φ

〈α;β, i〉φ ↔ 〈α, i〉〈β, i〉φ

〈α× β, i〉φ↔ 〈α, i〉φ ∧ 〈β, i〉φ
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Complete axiomatization

a) all propositional tautologies and inference rules

b) if ⊢ φ→ ψ then ⊢ 〈γ, i〉φ→ 〈γ, i〉ψ

c) reduction axioms:

〈α ∪ β, 1〉φ ↔ 〈α, 1〉φ ∨ 〈β, 1〉φ

〈α ∪ β, 2〉φ ↔ 〈α, 2〉φ ∧ 〈β, 2〉φ

〈γd , 1〉φ↔ 〈γ, 2〉φ

〈γd , 2〉φ↔ 〈γ, 1〉φ

〈α;β, i〉φ ↔ 〈α, i〉〈β, i〉φ

〈α× β, i〉φ↔ 〈α, i〉φ ∧ 〈β, i〉φ

Consider 〈α× α, i〉φ !
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Complete axiomatization
a) all propositional tautologies and inference rules

b) if ⊢ φ→ ψ then ⊢ 〈γ, i〉φ→ 〈γ, i〉ψ

c) reduction axioms:

〈α ∪ β, 1〉φ ↔ 〈α, 1〉φ ∨ 〈β, 1〉φ

〈α ∪ β, 2〉φ ↔ 〈α, 2〉φ ∧ 〈β, 2〉φ

〈γd , 1〉φ↔ 〈γ, 2〉φ

〈γd , 2〉φ↔ 〈γ, 1〉φ

〈α;β, i〉φ ↔ 〈α, i〉〈β, i〉φ

〈α× β, i〉φ↔ 〈α, i〉φ ∧ 〈β, i〉φ

Consider 〈α× α, i〉φ ! Composing the same games will give us
back a single game, which do not agree with the spirit of what we
were talking about earlier: Having games played in parallel, and
copying strategies from one to the other.
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Interleaving games

The general focus is on:

◮ an interleaving operator in the context of extensive form
game trees looking into the structure of the games;

◮ information transfer from one game to another made
possible by some common player enacting in all the
games concerned;

◮ strategizing based on such information transfer.
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This attempt

A formal study on the algebra of game composition: choice,
iteration, sequential and parallel composition.

◮ A dynamic logic for game expressions extended with
parallel composition.

◮ Extensive form games embedded in Kripke structures.

◮ Focus on interleavings of moves of players in the tree
structure.
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Composing game trees

Atomic games: Extensive form games

◮ Finite tree - nodes represent game positions labelled with
players.

◮ Edge relation - specifies the moves which are enabled at a
particular position.

Composite games:

◮ choice (g1 ∪ g2);

◮ sequential composition (g1; g2);

◮ iteration (g ∗);

◮ parallel composition (g1||g2).
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Sequential composition

p1
a

����
��
� b

��
99

99
9

p2 p3

q1
c

����
��
� d

��
99

99
9

q2 q3

T1 T2
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Sequential composition

p1
a

����
��
� b

��
99

99
9

p2 p3

q1
c

����
��
� d

��
99

99
9

q2 q3

T1 T2

p1
a

yysssssss
s

b

%%K
KKKKKKK

q1
c

����
��
� d

��
99

99
9

q1
c

����
��
� d

��
99

99
9

q2 q3 q2 q3

T1; T2
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Sequential composition

p1
a

����
��
� b

��
99

99
9

p2 p3

q1
c

����
��
� d

��
99

99
9

q2 q3

r1
c

����
��
� d

��
77

77
7

r2 r3

T1 T2 T3
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Sequential composition

p1
a

����
��
� b

��
99

99
9

p2 p3

q1
c

����
��
� d

��
99

99
9

q2 q3

r1
c

����
��
� d

��
77

77
7

r2 r3

T1 T2 T3

p1
a

yyssssssss b

$$J
JJJJJJ

q1
c

����
��
� d

��
99

99
9

r1
c

����
��
� d

��
66

66
6

q2 q3 r2 r3

T ∈ T1; {T2,T3}
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Parallel composition

Same game; different players.

p1
a

xxqqqqqq b

&&MMMMMM

p2
c
����

� d
��

;;
;

p3
c
����

� d
��

;;
;

p4 p5 p6 p7

T4

q1
a

xxppp
ppp

p b

&&NNN
NNN

N

q2
c
����

� d
��

<<
<

q3
c
����

� d
��

<<
<

q4 q5 q6 q7

T5
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Parallel composition

(p1,q1)
a

uujjjjjjjjjjjjj b

))TTTTTTTTTTTTT
1

2
a

{{xx
xx

xx b

##
FF

FF
FF

(p2,q1) 2
a
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xx
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b ##
FF

FF
FF(p3,q1)

3
c

~~}}
}}

} d
��

44
44

(p2,q2) 3
c
��
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2

c
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d
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c
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(p4,q4) (p5,q7) (p6,q4) (p7,q7)

T ∈ T4||T5
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Parallel composition

Different games; different players.

p1
a
����

�� b
��

::
::

p2

c
��

p3

d
��

p4 p5

q1

x
��

q2
y

����
�� z

��
::

::

q3 q4

T6 T7
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Parallel composition

(p1,q1)
a

ttiiiiiiiiiiii
b

**UUUUUUUUUUUU

(p2,q1)

x
��

(p3,q1)

x
��

(p2,q2)

c
��

(p3,q2)

d
��

(p4,q2)
y

{{ww
ww

w z

##
GG

GG
G

(p5,q2)
y

{{ww
ww

w z

##
GG

GG
G

(p4,q3) (p4,q4) (p5,q3) (p5,q4)

T ∈ T6||T7
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The logic

Syntax

◮ Φ := p ∈ P | ¬α | α1 ∨ α2 | 〈g , i〉α.

◮ Γ := h ∈ H | g1; g2 | g1 ∪ g2 | g1||g2.
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The logic

Syntax

◮ Φ := p ∈ P | ¬α | α1 ∨ α2 | 〈g , i〉α.

◮ Γ := h ∈ H | g1; g2 | g1 ∪ g2 | g1||g2.

Tree semantics

◮ M ,w |= 〈g , i〉α iff there exists X ∈ R i
g such that X

constitutes a valid tree, root(X ) = w and for all
v ∈ frontier (X ), M , v |= α. .

At a state w , a tree X in the “tree language” associated with g is
enabled at w , and player i has a strategy (subtree) in it to ensure α.

Sujata Ghosh and R. Ramanujam Strategies: A logic - automata study Lecture 3: Game logic and its descendants



Tree semantics

To define the semantic relation, we need to fix:

◮ Tree language associated with the game g .
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Tree semantics

To define the semantic relation, we need to fix:

◮ Tree language associated with the game g .

Atomic games: Extensive form games

◮ Finite tree - nodes represent game positions labelled with
players.

◮ Edge relation - specifies the moves which are enabled at a
particular position.

Sujata Ghosh and R. Ramanujam Strategies: A logic - automata study Lecture 3: Game logic and its descendants



Model

◮ Model - Kripke structure.

◮ A finite set of states W .

◮ Labelled edge relation −→⊆ W × Σ × W .

◮ Valuation function V : W → 2P .

◮ Player labelling function λ : W → N.
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Model

◮ Model - Kripke structure.

◮ A finite set of states W .

◮ Labelled edge relation −→⊆ W × Σ × W .

◮ Valuation function V : W → 2P .

◮ Player labelling function λ : W → N.

◮ Tree language for atomic games h.

◮ if h is enabled at w , R i
h(w) ⊆ 2(W×W )∗ encodes the set

of all available strategies for player i in the game h

enabled at w .

◮ R i
h =

⋃
w∈W R i

h(w).
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Game enabled

Model - M

u

w1 w2

w3 w4 w5

a b

z

z

x1

y1 x2

y2

z Game - h

1

2 2

1 1 1 1

a b

x1 y1 x2 y2
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Game enabled

Model - M

u

w1 w2

w3 w4 w5

a b

z

z

x1

y1 x2

y2

z Game - h

1

2 2

1 1 1 1

a b

x1 y1 x2 y2

u

w1 w2

a b

w3 w4 w4 w5

x1 y1 x2 y2
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Game enabled

Model - M

u

w1 w2

w3 w4 w5

a b

z

z

x1

y1 x2

y2

z Game - h

1

2 2

1 1 1 1

a b

x1 y1 x2 y2

u

w1

a

w3 w4

x1 y1
{(u,w1)(w1,w3), (u,w1)(w1,w4)},

{(u,w2)(w2,w4), (u,w2)(w2,w5)} ∈ R1
h

u

w2

w4 w5

b

x2 y2
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Valid tree

Legal sequence ̺: (u,w)(v , x) in ̺ implies w = v .

X ∈ 2(W×W )∗ is a valid tree if:

◮ for all sequence ̺ ∈ X , ̺ is legal;

◮ X is prefix closed.
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Valid tree

Legal sequence ̺: (u,w)(v , x) in ̺ implies w = v .

X ∈ 2(W×W )∗ is a valid tree if:

◮ for all sequence ̺ ∈ X , ̺ is legal;

◮ X is prefix closed.

Root and frontier

In a valid tree X ,

◮ for all ̺, ̺′ ∈ X , first(̺)[1] = first(̺′)[1] = root(X );

◮ frontier (X ) = {last(̺)[2] | ̺ ∈ X}.
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Composite game relations

◮ X ∈ R i
h =⇒ tree structure T(X )

◮ finite game tree T =⇒ f(T) ∈ 2(W×W )∗

Interpretation
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Composite game relations

◮ X ∈ R i
h =⇒ tree structure T(X )

◮ finite game tree T =⇒ f(T) ∈ 2(W×W )∗

Interpretation

◮ R i
g1∪g2

= R i
g1
∪ R i

g2
;
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Composite game relations

◮ X ∈ R i
h =⇒ tree structure T(X )

◮ finite game tree T =⇒ f(T) ∈ 2(W×W )∗

Interpretation

◮ R i
g1∪g2

= R i
g1
∪ R i

g2
;

◮ R i
g1;g2

= {f(T(X ); T ) | X ∈ R i
g1

and
T = {T(X1), . . . ,T(Xk)} where {X1, . . . ,Xk} ⊆ R i

g2
};
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Composite game relations

◮ X ∈ R i
h =⇒ tree structure T(X )

◮ finite game tree T =⇒ f(T) ∈ 2(W×W )∗

Interpretation

◮ R i
g1∪g2

= R i
g1
∪ R i

g2
;

◮ R i
g1;g2

= {f(T(X ); T ) | X ∈ R i
g1

and
T = {T(X1), . . . ,T(Xk)} where {X1, . . . ,Xk} ⊆ R i

g2
};

◮ R i
g1||g2

= {f(T(X1)||T(X2)) | X1 ∈ R i
g1

and X2 ∈ R i
g2
}.
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A satisfiable formula

Consider the game trees T4 and T5.
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A satisfiable formula

Consider the game trees T4 and T5.

Suppose M ,w |=
∧

aj∈{a,b}(〈aj 〉True ∧

[aj ](∧aj∈{a,b}〈aj〉(
∧

aj∈{c,d}(〈aj〉True ∧ [aj ](∧aj∈{c,d}〈aj〉True));

and, M ,w |= T
√

4 .
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A satisfiable formula

Consider the game trees T4 and T5.

Suppose M ,w |=
∧

aj∈{a,b}(〈aj 〉True ∧

[aj ](∧aj∈{a,b}〈aj〉(
∧

aj∈{c,d}(〈aj〉True ∧ [aj ](∧aj∈{c,d}〈aj〉True));

and, M ,w |= T
√

4 .

Then it follows that,

M ,w |= 〈T4, 1〉α → 〈T4||T5, 2〉α.
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Axiom system

◮ 〈h, i〉α ≡ ?

(Informally): Game h is enabled and player i has a strategy
given by a sub-tree X of the enabled game such that
frontier(X ) satisfies α.
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Axiom system

◮ 〈h, i〉α ≡ h
√

∧ ↓(h,i ,α) (push)

(Informally): Game h is enabled and player i has a strategy
given by a sub-tree X of the enabled game such that
frontier(X ) satisfies α.

◮ 〈a〉α - can be encoded in the logic.

◮ h
√

can be defined.

Definition of push

h is a single node:

◮ ↓( h, i , α) = α.
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Axiom system

h : i

i · · · ı · · · i

a1 aj
ak

• • • • • •
ha1

haj hak

↓( h, i , α) holds at state u:

◮ if u is a player i node
◮ then ∃w such that u

a
−→ w and 〈ha, i〉α holds at w .
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Axiom system

h : i

i · · · ı · · · i

a1 aj
ak

• • • • • •
ha1

haj hak

↓( h, i , α) holds at state u:

◮ if u is a player i node
◮ then ∃w such that u

a
−→ w and 〈ha, i〉α holds at w .

◮ if u is node taken by a player in ı

◮ ∀aj such that u
aj
−→ w , 〈haj

, i〉α holds at w .
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Axiom system

General idea behind push

◮ If the root is a player i -node then
◮ an edge is chosen and the requirement is “pushed” to

the relevant subtree.

◮ If the root is a node taken by a player in ı then
◮ all outgoing edges need to be taken into account and

the requirement is “pushed” to all the resulting subtrees.
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Axiom system

◮ Propositional axioms:
◮ All the substitutional instances of tautologies of PC.
◮ turni ≡

∧
j∈ı

¬turnj .

◮ Axiom for single edge games:
◮ 〈a〉(α1 ∨ α2) ≡ 〈a〉α1 ∨ 〈a〉α2.
◮ 〈a〉turni ⊃ [a]turni .

◮ Reduction axioms:
◮ 〈g1 ∪ g2, i〉α ≡ 〈g1, i〉α ∨ 〈g2, i〉α.

◮ 〈g1; g2, i〉α ≡ 〈g1, i〉〈g2, i〉α.

◮ 〈g1||g2, i〉α ≡
∨

h∈init(g1||g2)

head
√

h ∧ compi (h, g1, g2, α)
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Inference rules

(MP) α, α ⊃ β (NG ) α

β [a]α
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Parallel reduction axiom

Modelling interleaving of players.

Init and Residue

◮ Init: init(g) = the initial (atomic) game of g .

◮ Residue: g\h = the game expression generated after
playing the initial atomic game h in init(g).
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Parallel reduction axiom
Modelling interleaving of players.

Init and Residue

◮ Init: init(g) = the initial (atomic) game of g .

◮ Residue: g\h = the game expression generated after
playing the initial atomic game h in init(g).

Parallel reduction axiom: intuitive idea

◮ There exists an atomic tree h ∈ init(g1||g2) such that
head(h) is enabled.

◮ Player i has a strategy in head(h) which when composed
with a strategy in the residue ensures α. We use
compi(h, g1, g2, α) to denote this property.
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Expressing compi(h, g1, g2, α)

Suppose h = (S ,⇒, s0, λ̂), A = moves(s0) = {a1, . . . , ak}.

If h ∈ init(g1), h ∈ init(g2) and,

◮ λ̂(s0) = i then compi(h, g1, g2, α) =∨
aj∈A(〈aj〉〈(haj

; (g1\h))||g2〉α ∨ 〈aj〉〈g1||(haj
; (g2\h))〉α).

◮ λ̂(s0) ∈ ı then compi(h, g1, g2, α) =∧
aj∈A([aj ]〈(haj

; (g1\h))||g2〉α ∨ [aj ]〈g1||(haj
; (g2\h))〉α).
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Decidability

A formula is satisfiable iff it is satisfiable in an exponential
sized model.

Given α to decide if α is satisfiable:

◮ Guess an exponential sized model M .

◮ Explicitly build the relation R i
g ⊆ 2(W×W )∗ .

◮ Time: exponential in the size of the model.

◮ Check whether M satisfies α.

Sujata Ghosh and R. Ramanujam Strategies: A logic - automata study Lecture 3: Game logic and its descendants



Coalition logic

Language:
φ := ⊥ | p | ¬φ | φ ∨ φ | [C ]φ

Sujata Ghosh and R. Ramanujam Strategies: A logic - automata study Lecture 3: Game logic and its descendants



Coalition logic

Language:
φ := ⊥ | p | ¬φ | φ ∨ φ | [C ]φ

Coalitional model: M = (S , {EC | C ⊆ N},V ), where
EC : S −→ P(P(S)) is monotonic.
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Coalition logic

Language:
φ := ⊥ | p | ¬φ | φ ∨ φ | [C ]φ

Coalitional model: M = (S , {EC | C ⊆ N},V ), where
EC : S −→ P(P(S)) is monotonic.

M, s |= [C ]φ iff sECX , where X = {x ∈ S : M, x |= ϕ}

[C ]φ holds at a state s iff coalition C is effective for the truth-set
of φ.
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Which book to read?

◮ A father of 3 daughters would like to read a book on the
relationship between sexes.

◮ He wants his daughters’ opinion regarding which book to
read.

◮ Simon de Beauvoir’s “Le deuxième sexe” or Susan
Faludi’s “Backlash”.

◮ The majority opinion will decide.
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Which book to read?

ϕ = [{1, 2}]b ∧ [{2, 3}]b
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Which book to read?

ϕ = [{1, 2}]b ∧ [{2, 3}]b

S = {s, b, f }

E (s)

B F

B b b
F b f

B F

B b f
F f f

Daughter 1 is the row player, 2 is the column player and 3
decides between the tables.
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Model checking

Given M and φ, find φM

φM can be calculated in time O(|M| × |φ|)
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Axiomatics

Mon

◮ propositional tautologies,

◮ ϕ, ϕ→ ψ

ψ

◮ ϕ→ ψ

[C ]ϕ → [C ]ψ
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Satisfiability

Given a formula φ, does there exist a model M and a state s,
such that M, s |= φ

Result : Mon is NP-complete.
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