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Infinite games

We spoke of temporally large games, as games of unbounded
duration.
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Infinite games

We spoke of temporally large games, as games of unbounded
duration.

◮ Why not consider games of infinite duration ?

◮ How do we define outcomes in such games ?

◮ This is not only possible, but this is how game theory
began.
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Games set theorists play

The classic two-person zero-sum infinite game of perfect
information.

◮ The game is given by A ⊆ N
ω.

◮ Player I picks a natural number x1, II responds with
x2 > x1, I now picks x3 > x2 and thus goes the game.

◮ If the resulting play is in A, player I wins, else she loses.
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Games set theorists play

The classic two-person zero-sum infinite game of perfect
information.

◮ The game is given by A ⊆ N
ω.

◮ Player I picks a natural number x1, II responds with
x2 > x1, I now picks x3 > x2 and thus goes the game.

◮ If the resulting play is in A, player I wins, else she loses.

◮ Does it make sense (unless you are a set theorist) to wait
until ω to wait to see if you win ? Would you play such a
game ?
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Strategies for ever

Strategizing in such games depends on the structure of the
outcome set A.

◮ Case: A is finite.
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◮ Case: A is finite.

◮ Case: A is of the form Xω where X ⊆ N
∗.

Sujata Ghosh and R. Ramanujam Automata theory for strategies in games



Strategies for ever

Strategizing in such games depends on the structure of the
outcome set A.

◮ Case: A is finite.

◮ Case: A is of the form Xω where X ⊆ N
∗.

◮ Is every game determined ? (That is, one of the two
players has a winning strategy ?)
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Undetermined game

Theorem: There exists a game that is not determined.
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Undetermined game

Theorem: There exists a game that is not determined.

◮ We need to construct a set A ⊆ N
ω such that neither of

the players has a winning strategy.

◮ Fix a set A with properties to be defined soon.
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Undetermined game

Theorem: There exists a game that is not determined.

◮ We need to construct a set A ⊆ N
ω such that neither of

the players has a winning strategy.

◮ Fix a set A with properties to be defined soon.

◮ Assume player I has a winning strategy.

◮ We will show that player II can use copycat and have a
winning strategy as well.

◮ But that’s a contradiction.
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The set A

A famous set A ⊆ N
ω exists, with the following properties.

◮ It contains every co-finite subset of N. ‘

◮ It is closed under intersections and supersets.

◮ ∅ 6∈ A.

◮ For every X ⊆ N, either X ∈ A or (N − X ) ∈ A.

A rejoices under the name: the principal ultrafilter extending
the Frechèt filter.
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The set A

A famous set A ⊆ N
ω exists, with the following properties.

◮ It contains every co-finite subset of N. ‘

◮ It is closed under intersections and supersets.

◮ ∅ 6∈ A.

◮ For every X ⊆ N, either X ∈ A or (N − X ) ∈ A.

A rejoices under the name: the principal ultrafilter extending
the Frechèt filter.
Crucially, no finite set is in A.
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Plays and outcomes

Let ρ = x1x2x3 . . . be a play.

◮ Note that player I’s choices are x1x3x5 . . ..

◮ Define Gρ = (0, x1] ∪ (x2, x3] ∪ (x4, x5] ∪ . . ..

◮ I wins iff Gρ ∈ A.
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Copycat

Player II plays a parallel game with Player I, the latter plays
the winning strategy in both.

◮ In both games, I plays x1 first. In the first game, II
responds with arbitrary x2, I responds with x3.
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◮ In both games, I plays x1 first. In the first game, II
responds with arbitrary x2, I responds with x3.

◮ II copies x3 as his response to x1 in the second game, gets
x4 as I’s response, copies it in the first game, and so on.
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Copycat
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responds with arbitrary x2, I responds with x3.

◮ II copies x3 as his response to x1 in the second game, gets
x4 as I’s response, copies it in the first game, and so on.

◮ I wins both games, so we get two winning sets in A:
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Copycat

Player II plays a parallel game with Player I, the latter plays
the winning strategy in both.

◮ In both games, I plays x1 first. In the first game, II
responds with arbitrary x2, I responds with x3.

◮ II copies x3 as his response to x1 in the second game, gets
x4 as I’s response, copies it in the first game, and so on.

◮ I wins both games, so we get two winning sets in A:
G1 = (0, x1] ∪ (x2, x3] ∪ (x4, x5] ∪ . . ..
G2 = (0, x2] ∪ (x3, x4] ∪ (x5, x6] ∪ . . ..

◮ But then G1 ∩ G2 = (0, x1], a finite set is in A, a
contradiction.
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Regular infinite games

We will be presented in finitely presented infinite games.
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Regular infinite games

We will be presented in finitely presented infinite games.

◮ How do we present such games ?

◮ The game arena is a finite graph.

◮ It can have cycles since finite state players can forget
history of play.
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Regular infinite games

We will be presented in finitely presented infinite games.

◮ How do we present such games ?

◮ The game arena is a finite graph.

◮ It can have cycles since finite state players can forget
history of play.

◮ Outcomes can be given on the graph themselves.
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Why bother ?

Are such infinite games only of mathematical interest ?

◮ Reactive systems: browsers, operating systems, routers,
. . .
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◮ Objectives are long range, eventually stable behaviour.
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Why bother ?

Are such infinite games only of mathematical interest ?

◮ Reactive systems: browsers, operating systems, routers,
. . .

◮ Objectives are long range, eventually stable behaviour.

◮ Once again game theoretic considerations are relevant.
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Infinite plays

Arenas and winning conditions

◮ Game G = (G,Win), where
◮ Arena G = (V ,E ) such that V = V0 ∪ V1 where

◮ V0 are player 0 vertices, denoted by © and
◮ V1 are player 1 vertices, denoted by �

◮ E ⊆ V × V is the edge relation

◮ Win ⊆ V ω is the winning condition
◮ vE = {u | (v , u) ∈ E} are the neighbours of v

◮ (G, v0) is an initialised game where v0 ∈ V is a designated
vertex

◮ We assume vE 6= ∅ for every v ∈ V
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Infinite plays[2]

Plays

v0

v1

v2

v3

v4

v5

v6

v7v0

ρ = v0

v0

v1

v1

v1 v4

v4

v4
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v6

v6

v6

v5

v5

v5

v3

v3

v3

· · · ∈ V ω
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Strategies

Strategies

◮ A history ρ is any finite prefix of a play ρ

◮ A strategy Strat for player p, p ∈ {0, 1} is a function
Strat : V ∗Vp → V from the set of histories to vertices
such that Strat(ρv) ∈ vE for all ρ

◮ A strategy Strat is called finite memory or bounded
memory or forgetful if it can be represented by a finite
state machine

◮ A strategy Strat for player p is memoryless or positional if
it does not depend on the history. That is Strat : Vp → V
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Memoryless strategies

Memoryless strategy as a subgraph

v0

v1

v2

v3

v4

v5

v6

v7
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Determinacy

Zero-sum or win-lose games and determinacy

◮ A play ρ is winning for player 0 and losing for player 1 if
ρ ∈ Win. Otherwise it is winning for player 1 and losing
for player 0

◮ A strategy Strat of player 0 is winning if and only if all
plays played according to Strat are winning for her

◮ The winning region of player p, Wp is a subset of V such
that for every vertex v ∈ Wp, player p has a winning
strategy for the game (G, v)

◮ A game G is determined if W0 ∪ W1 = V and
W0 ∩ W1 = ∅

Theorem (Martin ’75)
Every game where Win is a Borel set is determined.
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Specifying outcomes and preferences

Even the set of finite plays can be infinite.
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Specifying outcomes and preferences

Even the set of finite plays can be infinite.

◮ For each play, we need to specify outcomes.

◮ For each player, we need to give an ordering over plays.
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Specifying outcomes and preferences

Even the set of finite plays can be infinite.

◮ For each play, we need to specify outcomes.

◮ For each player, we need to give an ordering over plays.

◮ For finite plays, simple reachability objectives suffice.
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Specifying outcomes and preferences

Even the set of finite plays can be infinite.

◮ For each play, we need to specify outcomes.

◮ For each player, we need to give an ordering over plays.

◮ For finite plays, simple reachability objectives suffice.

◮ Simply given by a subset of positions.
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A logical syntax

An elegant solution to this is to use propositions to label game
positions.
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A logical syntax

An elegant solution to this is to use propositions to label game
positions.

◮ Then “winning” a reachability condition is simply given
by a boolean formula.
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A logical syntax

An elegant solution to this is to use propositions to label game
positions.

◮ Then “winning” a reachability condition is simply given
by a boolean formula.

◮ Ordering over outcomes can be given by implication.

◮ This also paves the way for strategy specifications.
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Local strategies

How do resource limited players strategize ?
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Local strategies

How do resource limited players strategize ?

◮ Test a (local) condition; if it holds, play a specific move.
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Local strategies

How do resource limited players strategize ?

◮ Test a (local) condition; if it holds, play a specific move.

◮ Record some observables during course of play; depending
on what the record shows, play some move.
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Local strategies

How do resource limited players strategize ?

◮ Test a (local) condition; if it holds, play a specific move.

◮ Record some observables during course of play; depending
on what the record shows, play some move.

◮ Watch another player’s moves: when he plays a, respond
with b.
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Local strategies

How do resource limited players strategize ?

◮ Test a (local) condition; if it holds, play a specific move.

◮ Record some observables during course of play; depending
on what the record shows, play some move.

◮ Watch another player’s moves: when he plays a, respond
with b.

◮ Tit for tat; copycat; co-operate until defection, then
punish, etc.
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Game Arena
Nodes represents player positions. Edges represent player
moves.
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Game Arena
→: (Positions × Actions) → Positions.
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2 2
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1 1

1

2

a a

a

b a

b

x

y y

c d
c

d

y
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Play
A play is simply a path in the graph where at each node the
players choose an action.
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Strategy

Strategy for player 1 is a subgraph of the arena where:

◮ For each player 1 node, there is a unique outgoing edge.

◮ For each player 2 node, every move is included.
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Strategy
Player 1 strategy
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Strategy
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Strategy
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Strategy
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Strategy
Red strategy for player 1.
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Strategy
Green strategy for player 1.
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Objectives
Players have preferences over paths in the arena.
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Objectives (player 2)
Path 1: Match a “c” move of player 1 with “c”.
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Objectives (player 2)
Path 2: Match a “d” move of player 1 with “d”.
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Objectives
Matching a “d” move of player 1 with “c” - least prefered by
player 2.
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Response
Red strategy of player 1.
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Response
Response of player 2 to the Red strategy achieves “path 1”.
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Response
Green strategy of player 1.
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Response
Response of player 2 to the Green strategy achieves “path 2”.

1

2

1

1

1

2

a

a

d

d

y

y
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Game Arena with Valuation

1 r

2t 2 t
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1 u
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a b
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Properties of strategies

1 r

2t

1p

1 u 1u

1 u

2 q

a

a

b

y y

c d
c

y

Player 1 strategy:

if r holds play a,

if p holds play c

[r 7→ a]1 · [p 7→ c]1
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Properties of strategies

1 r

2t

1p

1 u

2 q

a

a
y

cc

Player 1 strategy:

if r holds play a,

if p holds play c

[r 7→ a]1 · [p 7→ c]1

Response of player 2:

if q holds play c .

[q 7→ c]2
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Properties of strategies

1

2

1

1 1

1

2

r

t

p

u u

u

q

a

a

b

x

y

d

c d

y

y

Player 1 strategy:

if r holds play a,

if p holds play d

[r 7→ a]1 · [p 7→ d ]1
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Properties of strategies

1

2

1

1

1

2

r

t

p

u

u

q

a

a

d

d

y

y

Player 1 strategy:

if r holds play a,

if p holds play d

[r 7→ a]1 · [p 7→ d ]1

Response of player 2:

if q holds play d .

[q 7→ d ]2
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Properties of Strategies

◮ ([p 7→ c]1 ⇒ [q 7→ c]2) · ([p 7→ d ]1 ⇒ [q 7→ d ]2)

◮ If 1 plays [p 7→ c] then play [q 7→ c] and if 1 plays
[p 7→ d ] then play [q 7→ d ].
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Structured strategy specification

◮ Syntax: [p 7→ a]1 | σ1 + σ2 | σ1 · σ2 | π ⇒ σ.

◮ Strategy conforming to a specification σ.
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Game

We will consider finite and infinite plays.

◮ Players have an exit action.

Sujata Ghosh and R. Ramanujam Automata theory for strategies in games



Game

We will consider finite and infinite plays.

◮ Players have an exit action.

◮ Game arena consists of a unique “terminal” node.
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Game

We will consider finite and infinite plays.

◮ Players have an exit action.

◮ Game arena consists of a unique “terminal” node.

A game G = (G, {�i}i∈{1,2})

◮ G is the game arena.
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Game

We will consider finite and infinite plays.

◮ Players have an exit action.

◮ Game arena consists of a unique “terminal” node.

A game G = (G, {�i}i∈{1,2})

◮ G is the game arena.

◮ �i is the preference relation of player i over finite plays.
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Strategy conforming to a specification
Player 1 strategy.

1
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1p 1

2 2

1 1 1 1 1 p

2 2 2 2 2

a

x y

b a

y
x z y z

a b a a b
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Strategy conforming to a specification
Player 1 strategy.

1
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2 2
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2 2 2 2 2

[p 7→ b]1
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y
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Strategy conforming to a specification
Player 1 strategy.

1

2

1p 1

2 2

1 1 1 p 1 1 p

2 2 2 2 2

[p 7→ b]1

a

x y

b a

y
x z y z

a b a a b
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Strategy conforming to a specification
Player 1 strategy.

1

2

1p 1

2 2

1 1 1 q 1 1 p

2 2 2 2 2

σ1 · σ2

[p 7→ b]1 · [q 7→ a]1a

x y

b a

y
x z y z

a b a a b
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Strategy conforming to a specification
Player 1 strategy.

1

2

1p 1

2 2

1 1 1 q 1 1 p

2 2 2 2 2

σ1 + σ2

a

x y

b a

y
x z y z

a b a a b
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Strategy conforming to a specification

1

2q

1p 1

2q 2

1p 1 1 1 1 p

2 2 2 2 2

π ⇒σ

player 2 player 1a

x y

b a

y
x z y z

a b a a a
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Strategy conforming to a specification

1

2q

1p 1

2q 2

1p 1 1 1 1 p

2 2 2 2 2

π ⇒σ

[q 7→ x ]2 ⇒ [p 7→ b]1

a

x y

b a

y
x z y z

a b a a a
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Strategy specification (revisited)

◮ Syntax: [ψ 7→ a]i |σ1 + σ2|σ1 · σ2|π ⇒ σ.

◮ ψ- Past time formula of a simple tense logic.
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Strategy comparison

Given σ, π and a condition C ,

◮ Does 1 have a strategy conforming to σ which ensures C ,
as long as 2 plays a strategy conforming to π?
∃σ, ∀π : C

◮ If 2’s strategy conforms to π is it the case that every
strategy of 1 which conforms to σ ensures C .
∀σ, ∀π : C
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Strategy comparison

Given σ, π and a condition C ,

◮ Does 1 have a strategy conforming to σ which ensures C ,
as long as 2 plays a strategy conforming to π?
∃σ, ∀π : C

◮ If 2’s strategy conforms to π is it the case that every
strategy of 1 which conforms to σ ensures C .
∀σ, ∀π : C

σ is better than σ′ against π:

1. ∃σ′, ∀π : C ⇒ ∃σ, ∀π : C

2. ∀σ′, ∀π : C ⇒ ∀σ, ∀π : C

3. ∃σ′, ∀π : C ⇒ ∀σ, ∀π : C
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Advice Automaton

Advice Automaton A = (Q, δ, o.I )

◮ Q - set of states.

◮ δ : Q × positions × actions → 2Q .

◮ I - set of initial states.

◮ o : Q × positions → actions .
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Example

s1 s2

c

d

c

d

q0 q1

(s1, c)/(s2, c)

(s2, d)

∗

o(q0, s1) = c

o(q1, s1) = d
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Evaluation Automaton

The preference relation on finite plays for each player is
presented as an evaluation automaton:

E = (U,∆, I , F , {�i}i∈{1,2}).

◮ U - set of states.

◮ ∆ : Q × positions × actions → 2Q .
◮ ∀q, s, a,∆(q, s, a) ∈ F iff a = exit.

◮ I - set of initial states.

◮ F - set of final states.

◮ �i⊆ (F × F ) is the preference relation for player i over F .
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Evaluation Automaton

Win-loss objectives for player i can be modelled easily.

E = (U,∆, I , F , {�i}i∈{1,2})

◮ F = {f0, f1}.

◮ f0 �
i f1.

◮ All plays ending in state f1, are taken to be winning for i .
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Verification question

Given an arena G and a deterministic “win-loss” evaluation
automaton E ,

◮ Check if ∃σ, ∀π : E holds.

◮ Check if ∀σ, ∀π : E holds.

Advice automaton lemma: Given a strategy specification σ, we
can construct an advice automaton Aσ such that Lang(Aσ) is
the set of all strategies that conform to σ.
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Verification question

Given an arena G and a deterministic “win-loss” evaluation
automaton E , check if ∃σ, ∀π : E holds.

◮ σ → Aσ, π → Aπ.

◮ Construct G |\ Aπ.

◮ Construct a nondeterministic tree automaton T
◮ States - states of Aσ.
◮ Guesses a state for each player 1 game position.
◮ Branches out on all player 2 game positions.
◮ T runs E in parallel and checks if all paths are

“winning” for player 1.
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Verification question

Given an arena G and a deterministic “win-loss” evaluation
automaton E , check if ∀σ, ∀π : E holds.

◮ σ → Aσ, π → Aπ.

◮ Construct (G |\ Aπ) |\ Aσ.

◮ Check if all paths are “winning” for player 1 according to
E .
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Best response verification

Given G, a deterministic evaluation automaton E , σ and π,
check if σ is the best response to π.

◮ Enumerate final states of E according to 1’s preference
ordering.

◮ Use T to find the “best” final state fj which 1 can ensure.

◮ Construct Ej with fj being the most preferred final state
for player 1.

◮ Check if ∃σ, ∀π : Ej holds.
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Synthesis question

Synthesis question: Given G, π and E , synthesize a
deterministic advice automaton A such that A, ∀π : E holds.
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Synthesis

Proposition
Given a deterministic advice automaton A2 for player 2, we
can synthesise a deterministic advice automaton A such that
A, ∀π : E holds.

Proof Idea

◮ Consult A2 to pick player 2 moves.

◮ Guess player 1 moves.

◮ Check if the resulting path is winning for player 1
according to E .
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Synthesis

Synthesis question: Given G, π and E , synthesize a
deterministic advice automaton A such that A, ∀π : E holds.

◮ Aπ is nondeterministic.

◮ States of A will be subsets of the states of Aπ.
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Infinite plays

Arenas and winning conditions

◮ Game G = (G,Win), where
◮ Arena G = (V ,E ) such that V = V0 ∪ V1 where

◮ V0 are player 0 vertices, denoted by © and
◮ V1 are player 1 vertices, denoted by �

◮ E ⊆ V × V is the edge relation

◮ Win ⊆ V ω is the winning condition
◮ vE = {u | (v , u) ∈ E} are the neighbours of v

◮ (G, v0) is an initialised game where v0 ∈ V is a designated
vertex

◮ We assume vE 6= ∅ for every v ∈ V
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Plays
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Strategies

Strategies

◮ A history ρ is any finite prefix of a play ρ

◮ A strategy Strat for player p, p ∈ {0, 1} is a function
Strat : V ∗Vp → V from the set of histories to vertices
such that Strat(ρv) ∈ vE for all ρ

◮ A strategy Strat is called finite memory or bounded
memory or forgetful if it can be represented by a finite
state machine

◮ A strategy Strat for player p is memoryless or positional if
it does not depend on the history. That is Strat : Vp → V

Sujata Ghosh and R. Ramanujam Automata theory for strategies in games



Memoryless strategies

Memoryless strategy as a subgraph

v0

v1

v2

v3

v4

v5

v6

v7
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Determinacy

Zero-sum or win-lose games and determinacy

◮ A play ρ is winning for player 0 and losing for player 1 if
ρ ∈ Win. Otherwise it is winning for player 1 and losing
for player 0

◮ A strategy Strat of player 0 is winning if and only if all
plays played according to Strat are winning for her

◮ The winning region of player p, Wp is a subset of V such
that for every vertex v ∈ Wp, player p has a winning
strategy for the game (G, v)

◮ A game G is determined if W0 ∪ W1 = V and
W0 ∩ W1 = ∅

Theorem (Martin ’75)
Every game where Win is a Borel set is determined

Sujata Ghosh and R. Ramanujam Automata theory for strategies in games



Muller condition

Muller games

◮ For a play ρ, inf(ρ) denotes the set of vertices occuring
infinitely often in ρ

◮ The winning condition of a Muller game is specified by a
family of subsets of vertices F ⊆ 2V

◮ A play ρ ∈ Win if and only if inf(ρ) ∈ F

Theorem (Büchi and Landweber ’69)
Muller games are bounded memory determined
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Multiplayer Games

Binary or win-lose objectives

◮ V = V0 ∪ V1 . . .Vn and Win = (Win1,Win2, . . . ,Winn)

◮ Player i wins a play ρ if and only if ρ ∈ Wini . Otherwise
she loses

◮ Wini ∩ Winj may be non-empty for i 6= j
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Nash equilibrium

Best-response and Nash equilibrium

◮ For a strategy tuple σ̄ = (Strat1, Strat2, . . . , Stratn), ρσ̄

denotes a play consistent with σ̄. σ̄−i denotes the tuple
(Strat1, . . . , Strat i−1, Strat i+1, . . . , Stratn) and for a
player i strategy Strat ′i , (σ̄−i , Strat ′i) denotes the tuple
(Strat1, . . . , Strat i−1, Strat ′i , Strat i+1, . . . , Stratn)

◮ A strategy Strat i of player i is said to be a best response
to σ̄−i if for all player i strategies Strat ′i ,
ρ(σ̄−i ,Strat ′i )

∈ Wini implies ρσ̄ ∈ Wini

◮ A strategy tuple σ̄ is a Nash equilibrium if for all i , Strat i

is the best response to σ̄−i .
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Sequentiality

Subgame perfection

◮ Let ρ be a finite path in the arena. Given a strategy
Strat i of player i , the strategy Strat i [ρ] is defined to be a
function: Strat i [ρ] : ρV ∗Vi →
V such that Strat i [ρ](ρ

′) = Strat i(ρρ
′). Let σ̄[ρ] denote

the tuple (Strat1[ρ], . . . , Stratn[ρ]). A strategy tuple σ̄ in
the game (G, v0) is said to be a subgame perfect
equilibrium if for every vertex v in G and for every path ρ
from v0 to v in G, σ̄[ρ] is a Nash equilibrium for the game
(G, v).
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Results

Existence of Nash and subgame perfect equilibria

Theorem (Chatterjee, Jurdzinski, Mazumdar ’04)
Every multiplayer win-lose game with Borel winning conditions

has a Nash equilibrium

Theorem (Ummels ’05)
Every multiplayer win-lose Muller game has a subgame perfect

equilibrium

Proof.
Use threat strategies
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Threat and punishment

Threat strategies

◮ Let (G, v0) be a multiplayer game where the winning sets
Wini are Borel

◮ For each player i define the game (Gi , v0) in which player
i plays against the coalition of all the other players and
her winning set is Wini whereas that of the coalition is
V ω \ Wini

◮ By Martin’s theorem Gi is determined and player i and
the coalition have optimal strategies Strat i and Strat−i

respectively

◮ At Nash equilibrium:
◮ Every player i plays strategy Strat i till no one deviates
◮ As soon as player j deviates all the other players switch

to their respective strategies induced by Strat−j
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Overlapping objectives

Generalised objectives

◮ Not win-lose

◮ Each player has a preference over the various plays

◮ Generalised Muller games: each player i has a (total)
preference over the various Muller sets which can be
described by a utility function ui : F → N. For a play ρ
player i ’s utility is ui(inf(ρ))

Does a Nash equilibrium always exist in a generalised Muller
game? If so, is it subgame perfect?
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Generalised Muller Games

Existence of Nash equilibrium

◮ Threat strategies can be used to show that a Nash
equilibrium always exists in a generalised Muller game

◮ Is threat a viable strategy?

◮ Problems arise in the finite case itself

◮ In the infinite case, players have to play punishing moves
forever

L R

U (2,2) (0,3)
D (2,0) (0,-1000)
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Generalised Muller Games[2]

We show

◮ Existence of Nash equilibrium in generalised Muller games
by using a backward induction procedure

◮ Subgame perfect equilibrim may not exist for such games
in general

◮ Our procedure finds a subgame perfect equilibrium when
it exists
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Generalised Muller Games[3]

The Latest Appearance Record (LAR) data structure
(Gurevich, Harrington’82)

◮ The set of LARs
L = {x ∈ (V ∪{♯})|V |+1 | |x |♯ = 1 and |x |v = 1, ∀v ∈ V }

◮ 〈N〉 : L × V → L as

〈N〉(x♯y , v) =







x ′♯x ′′yv iff x♯y = x ′vx ′′♯y

xy ′♯y ′′v iff x♯y = x♯y ′vy ′′

x♯y iff x♯y = x♯y ′v

◮ Let ≺ be a total order on V . For a finite play
ρ = v0v1 . . . vk define LAR(ρ) inductively as:

◮ LAR(v0)=x♯v0 where x is ordered according to ≺
◮ LAR(v0 . . . vi )=〈N〉(LAR(v0 . . . vi−1),vi ), i ≥ 1

Sujata Ghosh and R. Ramanujam Automata theory for strategies in games



Generalised Muller Games[4]

Example

v0

v1

v2

v3

v4

v5

v6

v7v0

ρ = v0

v1v2v3v4v5v6v7♯v0



Generalised Muller Games[4]

Example

v0

v1

v2

v3

v4

v5

v6

v7v0

ρ = v0

v1v2v3v4v5v6v7♯v0

v0

v1

v1

♯v2v3v4v5v6v7v0v1



Generalised Muller Games[4]

Example

v0

v1

v2

v3

v4

v5

v6

v7v0

ρ = v0

v1v2v3v4v5v6v7♯v0

v0

v1

v1

♯v2v3v4v5v6v7v0v1
v1

v5

v5

v2v3v4♯v6v7v0v1v5



Generalised Muller Games[4]

Example

v0

v1

v2

v3

v4

v5

v6

v7v0

ρ = v0

v1v2v3v4v5v6v7♯v0

v0

v1

v1

♯v2v3v4v5v6v7v0v1
v1

v5

v5

v2v3v4♯v6v7v0v1v5

v5

v3

v3

v2♯v4v6v7v0v1v5v3



Generalised Muller Games[4]

Example

v0

v1

v2

v3

v4

v5

v6

v7v0

ρ = v0

v1v2v3v4v5v6v7♯v0

v0

v1

v1

♯v2v3v4v5v6v7v0v1
v1

v5

v5

v2v3v4♯v6v7v0v1v5

v5

v3

v3

v2♯v4v6v7v0v1v5v3

v3

v0

v0

v2v4v6v7♯v1v5v3v0



Generalised Muller Games[4]

Example

v0

v1

v2

v3

v4

v5

v6

v7v0

ρ = v0

v1v2v3v4v5v6v7♯v0

v0

v1

v1

♯v2v3v4v5v6v7v0v1
v1

v5

v5

v2v3v4♯v6v7v0v1v5

v5

v3

v3

v2♯v4v6v7v0v1v5v3

v3

v0

v0

v2v4v6v7♯v1v5v3v0

v0 v2

v2

♯v4v6v7v1v5v3v0v2



Generalised Muller Games[4]

Example

v0

v1

v2

v3

v4

v5

v6

v7v0

ρ = v0

v1v2v3v4v5v6v7♯v0

v0

v1

v1

♯v2v3v4v5v6v7v0v1
v1

v5

v5

v2v3v4♯v6v7v0v1v5

v5

v3

v3

v2♯v4v6v7v0v1v5v3

v3

v0

v0

v2v4v6v7♯v1v5v3v0

v0 v2

v2

♯v4v6v7v1v5v3v0v2
v2

v3

v3

v4v6v7v1v5♯v0v2v3



Generalised Muller Games[4]

Example

v0

v1

v2

v3

v4

v5

v6

v7v0

ρ = v0

v1v2v3v4v5v6v7♯v0

v0

v1

v1

♯v2v3v4v5v6v7v0v1
v1

v5

v5

v2v3v4♯v6v7v0v1v5

v5

v3

v3

v2♯v4v6v7v0v1v5v3

v3

v0

v0

v2v4v6v7♯v1v5v3v0

v0 v2

v2

♯v4v6v7v1v5v3v0v2
v2

v3

v3

v4v6v7v1v5♯v0v2v3

v3

· · · ∈ V ω

...

Sujata Ghosh and R. Ramanujam Automata theory for strategies in games



Generalised Muller Games[5]
The LAR tree

1

3

2



Generalised Muller Games[5]
The LAR tree

1

3

2 u({1, 2, 3}) = (1, 3)
u({2, 1}) = (2, 1)
u({1, 3}) = (2, 2)



Generalised Muller Games[5]
The LAR tree

1

3

2 u({1, 2, 3}) = (1, 3)
u({2, 1}) = (2, 1)
u({1, 3}) = (2, 2)

23♯1

♯312 2♯13

♯1233♯21 2♯31

♯2133♯12 ♯231 2♯13 ♯312

♯1233♯21 2♯31 ♯312 2♯13 3♯21 ♯123

♯231 2♯13 ♯312 2♯31 ♯2133♯12 ♯231

2♯13♯312 2♯31 2♯13♯312 ♯1233♯21 2♯31 ♯312 2♯13

2♯31 ♯231

2♯13♯312 ♯312 2♯13



Generalised Muller Games[5]
The LAR tree

1

3

2 u({1, 2, 3}) = (1, 3)
u({2, 1}) = (2, 1)
u({1, 3}) = (2, 2)

23♯1

♯312 2♯13

♯1233♯21 2♯31

♯2133♯12 ♯231 2♯13 ♯312

♯1233♯21 2♯31 ♯312 2♯13 3♯21 ♯123

♯231 2♯13 ♯312 2♯31 ♯2133♯12 ♯231

2♯13♯312 2♯31 2♯13♯312 ♯1233♯21 2♯31 ♯312 2♯13

2♯31 ♯231

2♯13♯312 ♯312 2♯13

3♯21

3♯21



Generalised Muller Games[5]
The LAR tree

1

3

2 u({1, 2, 3}) = (1, 3)
u({2, 1}) = (2, 1)
u({1, 3}) = (2, 2)

23♯1

♯312 2♯13

♯1233♯21 2♯31

♯2133♯12 ♯231 2♯13 ♯312

♯1233♯21 2♯31 ♯312 2♯13 3♯21 ♯123

♯231 2♯13 ♯312 2♯31 ♯2133♯12 ♯231

2♯13♯312 2♯31 2♯13♯312 ♯1233♯21 2♯31 ♯312 2♯13

2♯31 ♯231

2♯13♯312 ♯312 2♯13

3♯21

3♯21

♯312

♯312



Generalised Muller Games[5]
The LAR tree

1

3

2 u({1, 2, 3}) = (1, 3)
u({2, 1}) = (2, 1)
u({1, 3}) = (2, 2)

23♯1

♯312 2♯13

♯1233♯21 2♯31

♯2133♯12 ♯231 2♯13 ♯312

♯1233♯21 2♯31 ♯312 2♯13 3♯21 ♯123

♯231 2♯13 ♯312 2♯31 ♯2133♯12 ♯231

2♯13♯312 2♯31 2♯13♯312 ♯1233♯21 2♯31 ♯312 2♯13

2♯31 ♯231

2♯13♯312 ♯312 2♯13

3♯21

3♯21

♯312

♯312

♯312

♯312



Generalised Muller Games[5]
The LAR tree

1

3

2 u({1, 2, 3}) = (1, 3)
u({2, 1}) = (2, 1)
u({1, 3}) = (2, 2)

23♯1

♯312 2♯13

♯1233♯21 2♯31

♯2133♯12 ♯231 2♯13 ♯312

♯1233♯21 2♯31 ♯312 2♯13 3♯21 ♯123

♯231 2♯13 ♯312 2♯31 ♯2133♯12 ♯231

2♯13♯312 2♯31 2♯13♯312 ♯1233♯21 2♯31 ♯312 2♯13

2♯31 ♯231

2♯13♯312 ♯312 2♯13

3♯21

3♯21

♯312

♯312

♯312

♯312

♯312

♯312

♯312

3♯21

2,1



Generalised Muller Games[5]
The LAR tree

1

3

2 u({1, 2, 3}) = (1, 3)
u({2, 1}) = (2, 1)
u({1, 3}) = (2, 2)

23♯1

♯312 2♯13

♯1233♯21 2♯31

♯2133♯12 ♯231 2♯13 ♯312

♯1233♯21 2♯31 ♯312 2♯13 3♯21 ♯123

♯231 2♯13 ♯312 2♯31 ♯2133♯12 ♯231

2♯13♯312 2♯31 2♯13♯312 ♯1233♯21 2♯31 ♯312 2♯13

2♯31 ♯231

2♯13♯312 ♯312 2♯13

3♯21

3♯21

♯312

♯312

♯312

♯312

♯312

♯312

♯312

3♯21

2,1

3♯21

♯312

1,3

♯3121,3 2♯13 2,2

2♯31

2,2

♯312

1,3

♯312

1,3

♯312

1,3

2♯13

2,2

2♯13

2,2

3♯21

2,1

♯3121,3 2♯13 1,3

2♯31

1,3

♯312

1,3

2♯13

1,3



Generalised Muller Games[5]
The LAR tree

1

3

2 u({1, 2, 3}) = (1, 3)
u({2, 1}) = (2, 1)
u({1, 3}) = (2, 2)

23♯1

♯312 2♯13

♯1233♯21 2♯31

♯2133♯12 ♯231 2♯13 ♯312

♯1233♯21 2♯31 ♯312 2♯13 3♯21 ♯123

♯231 2♯13 ♯312 2♯31 ♯2133♯12 ♯231

2♯13♯312 2♯31 2♯13♯312 ♯1233♯21 2♯31 ♯312 2♯13

2♯31 ♯231

2♯13♯312 ♯312 2♯13

3♯21

3♯21

♯312

♯312

♯312

♯312

♯312

♯312

♯312

3♯21

2,1

3♯21

♯312

1,3

♯3121,3 2♯13 2,2

2♯31

2,2

♯312

1,3

♯312

1,3

♯312

1,3

2♯13

2,2

2♯13

2,2

3♯21

2,1

♯3121,3 2♯13 1,3

2♯31

1,3

♯312

1,3

2♯13

1,3

♯3121,3 2♯13 2,2

2♯31 2,2

2♯31

2,2

2♯13

2,2
♯312

1,3

2♯13

2,2

♯312

1,3

2♯31 2,2

♯312

1,3

♯3121,3 2♯13 1,3

♯231 1,3

2♯31

1,3

♯213

1,3
♯312

1,3

2♯13

1,3

♯231 1,3



Generalised Muller Games[5]
The LAR tree

1

3

2 u({1, 2, 3}) = (1, 3)
u({2, 1}) = (2, 1)
u({1, 3}) = (2, 2)

23♯1

♯312 2♯13

♯1233♯21 2♯31

♯2133♯12 ♯231 2♯13 ♯312

♯1233♯21 2♯31 ♯312 2♯13 3♯21 ♯123

♯231 2♯13 ♯312 2♯31 ♯2133♯12 ♯231

2♯13♯312 2♯31 2♯13♯312 ♯1233♯21 2♯31 ♯312 2♯13

2♯31 ♯231

2♯13♯312 ♯312 2♯13

3♯21

3♯21

♯312

♯312

♯312

♯312

♯312

♯312

♯312

3♯21

2,1

3♯21

♯312

1,3

♯3121,3 2♯13 2,2

2♯31

2,2

♯312

1,3

♯312

1,3

♯312

1,3

2♯13

2,2

2♯13

2,2

3♯21

2,1

♯3121,3 2♯13 1,3

2♯31

1,3

♯312

1,3

2♯13

1,3

♯3121,3 2♯13 2,2

2♯31 2,2

2♯31

2,2

2♯13

2,2
♯312

1,3

2♯13

2,2

♯312

1,3

2♯31 2,2

♯312

1,3

♯3121,3 2♯13 1,3

♯231 1,3

2♯31

1,3

♯213

1,3
♯312

1,3

2♯13

1,3

♯231 1,3

2♯31 2,2

2♯13

2,2

2♯13

2,2

♯312

1,3

♯312

1,3

2♯31

2,2
2♯31 2,2

2♯13 2,2

♯231 1,3

♯123

1,3

♯231 1,3

♯123 1,3

2♯13

2,2

♯213

1,3



Generalised Muller Games[5]
The LAR tree

1

3

2 u({1, 2, 3}) = (1, 3)
u({2, 1}) = (2, 1)
u({1, 3}) = (2, 2)

23♯1

♯312 2♯13

♯1233♯21 2♯31

♯2133♯12 ♯231 2♯13 ♯312

♯1233♯21 2♯31 ♯312 2♯13 3♯21 ♯123

♯231 2♯13 ♯312 2♯31 ♯2133♯12 ♯231

2♯13♯312 2♯31 2♯13♯312 ♯1233♯21 2♯31 ♯312 2♯13

2♯31 ♯231

2♯13♯312 ♯312 2♯13

3♯21

3♯21

♯312

♯312

♯312

♯312

♯312

♯312

♯312

3♯21

2,1

3♯21

♯312

1,3

♯3121,3 2♯13 2,2

2♯31

2,2

♯312

1,3

♯312

1,3

♯312

1,3

2♯13

2,2

2♯13

2,2

3♯21

2,1

♯3121,3 2♯13 1,3

2♯31

1,3

♯312

1,3

2♯13

1,3

♯3121,3 2♯13 2,2

2♯31 2,2

2♯31

2,2

2♯13

2,2
♯312

1,3

2♯13

2,2

♯312

1,3

2♯31 2,2

♯312

1,3

♯3121,3 2♯13 1,3

♯231 1,3

2♯31

1,3

♯213

1,3
♯312

1,3

2♯13

1,3

♯231 1,3

2♯31 2,2

2♯13

2,2

2♯13

2,2

♯312

1,3

♯312

1,3

2♯31

2,2
2♯31 2,2

2♯13 2,2

♯231 1,3

♯123

1,3

♯231 1,3

♯123 1,3

2♯13

2,2

♯213

1,3
2♯13

2,2

♯312

1,3

2♯31

2,2

2♯13 2,2

♯123

1,3

♯123 1,3

♯213

1,3

3♯21

2,1

♯312

1,3

2♯13

2,2

3♯21

2,1

23♯12,2

Sujata Ghosh and R. Ramanujam Automata theory for strategies in games



Generalised Muller Games[6]

Memoryless strategy µ of player to bounded memory strategy
Strat of player i

◮ The memory M of Strat is the set L and the initial
memory mI is the root of the LAR tree

◮ The memory update function g : V × M → M is
g(v , x♯y) = 〈N〉(x♯y , v)

◮ The output function h : Vi × M → V is
h(v , x♯y) = µ(x♯y)
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Generalised Muller Games[7]

Lemma
The bounded memory strategy tuple σ̄ corresponding to the

memoryless strategy tuple µ̄ derived from backward induction

on the LAR tree is a Nash equilibrium

Proof.
A player i has an incentive to deviate from µi on the LAR tree
if and only if she has an incentive to deviate from Strat i in the
arena

Theorem
Every finite generalised Muller game has a Nash equilibrium in

bounded memory strategies
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Subgame Perfection

Theorem
In a finite multiplayer win-lose Muller game, the bounded

memory strategy tuple σ̄ corresponding to the memoryless

strategy tuple µ̄ derived from backward induction on the LAR

tree is subgame perfect

Proof.
After every finite path ρ, a player i has an incentive to deviate
from Strat i [ρ] in the arena if and only if she has an incentive
to deviate from µi [LAR(ρ)] on the LAR tree

Corollary (Ummels ’05)
Every finite multiplayer win-lose Muller game has a subgame

perfect equilibrium

Sujata Ghosh and R. Ramanujam Automata theory for strategies in games



Subgame Perfection[2]

What about generalised Muller games?

3 1 2 4

in

in

out out

u({3}) = (1, 0)
u({1, 2}) = (0, 2)
u1({4}) = (2, 1)
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Subgame Perfection[3]
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0,2
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Subgame Perfection[4]

Explore the LAR tree further
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Theorem
It can be effectively decided whether a generalised Muller

game has a subgame perfect equilibrium.
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