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CHAPTER 25: User Modeling

The worldwide web had an estimated 655 million users in 2002

(http://cyberatlas.internet.com/big_picture/geographics) and was accessed by people of

essentially all possible backgrounds. Each of these users had a goal in mind, whether it be

trying to book a flight, search for information on a research topic, or just while away a few

hours. Different users also have different knowledge, interests, abilities, learning styles, and

preferences regarding information presentation. An increasingly important research area is

how interfaces can be designed to recognize the goals and characteristics of the user, and

adapt accordingly.

Companies, universities, and other organizations are becoming increasingly aware of

the need to personalize web pages for individual users or user groups. In order to offer

personalized information, it is necessary to monitor a user’s behavior and to make

generalizations and predictions based on these observations. Information about the user that

can be drawn on in this way is called a user model (see Fischer, 2001, for a review).

Modeling the user may be as simple as fitting a user profile (e.g., single, young,

female) or as complicated as discovering expert knowledge (e.g., how a chemist would

classify a data set). The modeling system may acquire information explicitly by means of a

user-completed questionnaire or implicitly, by observing user actions and making inferences

based on stored knowledge. The goal of user modeling may be to predict user behavior, to

gain knowledge of a particular user in order to tailor interactions to that user, or to create a

database of users that can be accessed by others. The goal of user modeling may even be the

creation of the model itself, when that model is used to create an autonomous agent to fill a

role within a system.

We begin this chapter by describing the major modeling systems commonly used to

create predictive models of the user, that is, models that can be used to predict human
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behavior in a human-machine system. All of the models we discuss in this section are

characterized by constraints that limit the computational power of the model. The purpose of

the constraints is to enable the modeler to build models that operate like humans—that is,

within the same constraints. The models produced within these systems can be used to test

theories about how people learn and perform cognitive tasks. They can also be used for

practical purposes such as testing the usability of different human-computer interfaces or

inferring the knowledge structure of the user so that appropriate remedial help can be

supplied.

The models discussed in the first section of the chapter have as their goal the

description of how people, in general, perform a task. In the second section of the chapter, we

focus on the individual user. Our goal in this section is to describe techniques for gathering

information about individual users and to describe how the computer interface can be adapted

on the basis of that information. We end the chapter with a discussion of various applications,

ranging from tutoring programs to autonomous intelligent agents.

Predictive Models

The usual method of testing a new interface design is to perform a user-evaluation

study. Potential users are asked to carry out a number of tasks with the new interface and their

performance is evaluated. Such user studies are typically time-consuming and costly. An

alternative approach is to develop cognitive models of user performance and to use those

models to predict behavior. Such models, or “synthetic users,” have several advantages over

human participants. First, once the model has been constructed, it can be used repeatedly to

evaluate incremental changes in design. Second, a cognitive model may offer insight into the

nature of the task. In a cognitive model, unlike in a human participant, each reasoning step

can be traced, the contents of the model’s memory can be inspected to see what the model has

learned, and the errors made can be traced back to their source.
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The generic user model that can be used to test any user interface is a holy grail of

human factors. The current state-of-the-art is that models are developed for specific tasks, or

aspects of tasks (e.g., menu search, icon identification, deployment of attention, or

automatization), and then validated on a case-by-case basis using human data. Although no

single generic model exists to test the complete range of applications, several attempts have

been made to create models that can predict the outcomes of experiments rather than merely

explaining outcomes after the experiments have been conducted (e.g., Salvucci & Macuga,

2001).

The first step in developing a predictive user model is to perform a task analysis (see

Chapter 24 for a more detailed overview of methods of task analysis). A task analysis gives a

specification of the knowledge that is needed to perform the task and the sequence of

operations required. Although a task analysis gives an indication of the complexity of the

task, it does not generally take into account the details of human information processing.

More accurate user models can be created by augmenting the task analysis with a

specification of the constraints on human information processing that should be satisfied

within the model (see Table 25-1 for a summary of how the major predictive models do this).

For example, the Model Human Processor (MHP; Card, Moran, & Newell, 1983), described

below, provides a means of specifying the time to perform specific operations, the probability

of errors, and speed-up due to learning for the sequence of operations specified in the task

analysis.

A more advanced method of incorporating human information processing constraints

in task models is to embed the models in an architecture of cognition, a simulation

environment that can, given the necessary knowledge to do the task, mimic human behavior

on that task. The knowledge specified in a task analysis within an architecture of cognition

can be used to make predictions about various aspects of human performance, including
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reaction times, errors, choices made, and eye movements. Note that an architecture of

cognition is a simulation environment, but also a theory, and will sometimes be referred to as

such. For example, architectures typically incorporate a theory about memory that specifies

how knowledge is represented and how memory processes such as storage, retrieval, and

forgetting function. This theory is embodied in the simulation environment and governs how

the memory system will behave. The term “model” is used for simulations of specific tasks. It

should be noted that only models can make specific predictions. Therefore, although the

architecture may incorporate a theory of memory, a specific model of, for example, a digit

span task, is needed to make predictions regarding the performance of such a task.

A problem of cognitive models is that it is not easy to assess their validity. In general,

it is assumed that a model that produces the same behavior as people do is a valid model.

However, several different models might produce the same behavior, in which case a different

criterion is needed to determine which model is best. Unfortunately, there is no quantitative

measure for model validity, but most cognitive modelers agree that the following qualitative

factors determine the validity of a model:

- A good model should have as few free parameters as possible. Many cognitive

architectures have free parameters that can be given arbitrary values by the

modeler. Because free parameters enable the modeler to manipulate the outcome

of the model, increasing the number of free parameters diminishes the model’s

predictive power

- A model should not only describe behavior, but should also predict it . Cognitive

models are often made after the experimental data have been gathered and

analyzed. A model with high validity should be able to predict performance.

A model should learn its own task-specific knowledge. Building knowledge into a

model increases its specificity, and may decrease its validity.
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Most of the current approaches to predictive modeling use task analysis to specify the

knowledge that an expert would need to do the task. This violates the validity criterion stated

above, that a model should acquire task specific knowledge on its own. Moreover, basing a

model on a task analysis of expert performance means that the model is of an expert user

whereas the typical user may not have mastered the task being modeled. Useful predictions

and a complete understanding of the task requires that models be built that start at the level of

a novice and gradually proceed to become experts in the same way people do. In other words,

many applications require building models that not only perform as humans do, but that learn.

Accordingly, after focusing on  models in which expert task performance is central, we then

move on to models of learning and models that learn on the basis of instructions.  Most,

although not all (e.g.,  LICAI; Kitajima & Polson, 1997), performance-based models are

based on production rules (condition-action pairs). Because production-rule models are by far

the most commonly used models in the field, we restrict our discussion to this sort of model.

Models of Task Performance

The starting point of a task-performance model is to investigate the knowledge needed

to perform the task at an expert level. The GOMS (Card, Moran & Newell, 1983) technique,

in which the task is analyzed in terms of goals, operators, methods, and selection rules, can be

used for this end. Goals form a hierarchy starting from the top goal that represents achieving

the end result and proceeding to the so-called unit tasks, which are sub-goals that cannot be

further decomposed. For example, the top goal could be to edit a text, while a goal at the unit-

task level might be to move the cursor to a certain line in the text. A general assumption is

that unit tasks can be completed in the order of 10 seconds. In order to achieve a goal at the

unit-task level, methods are needed to specify what actions have to be carried out in terms of

the operators that perform the actions. A method for moving to a certain line in a text might

specify applying the operator “press arrow key” until the desired line is reached. A different
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method might specify the operator “key in <control-x> followed by the line number.” When a

choice must be made between alternative methods, selection rules are needed that specify

when a certain method should be used (e.g., if the cursor is more than five lines away, use

Method 2).

A GOMS analysis enables us to perform a cognitive walk-through of the task of

interest. Given the main goal, we can specify the order in which sub-goals are posed and

attained, which operators are used, and which choices are made to eventually achieve the

main goal. At this level of analysis it is possible to describe the order in which the expert user

will execute actions. This will, in general, not be of much interest given that the GOMS

analysis itself is based on the behavior of the expert. In order to make more interesting

predictions it is necessary to augment the GOMS analysis with a psychological model. The

first psychological model to be used in conjunction with GOMS was the Model Human

Processor (MHP; Card, Moran, & Newell, 1983). Figure 25-1 shows a simplified version of

the MHP, comprising a memory system (working memory and long-term memory) and three

processors (perceptual, cognitive, and motor). Each of the processors is assigned an

approximate cycle time. For example, the motor processor needs on the order of 100 ms to

prepare a motor response. Working memory has a limited capacity (about 7 elements) and a

limited retention time (about 7 seconds). The combination of the MHP and GOMS can be

used to make simple predictions about quantitative aspects of human performance. The MHP

can be used to annotate the analysis that is made with GOMS by supplying approximate

execution times. It can also trace working-memory usage and signal potential capacity

problems.

Processing Architectures that Interact with the Outside World

The MHP approach is useful, but also severely limited. It can only approximately

predict task execution times, and is vague regarding what can be done in one processing
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cycle. More precise and constrained predictions can be made with the more elaborate

theoretical framework of the EPIC (Executive Process-Interactive Control) architecture

(Kieras & Meyer, 1997). Contrary to GOMS/MHP, EPIC allows the implementation of

processing models, simulations of the user that can be run on a computer and that can be used

to prove the soundness of the analysis and to provide a concrete prediction of task

performance. The main theoretical goal in a theory such as EPIC is to constrain all possible

simulations of behavior to only the behavior exhibited by users. As can been seen in Table

25-1, EPIC’s main source of constraints is in the perceptual-motor aspects of the task,

whereas central cognition is relatively unconstrained. The perceptual-motor modules in EPIC

can handle only a single action at a time, and each of these actions take a certain amount of

time. Although a module can do only one thing at a time, expert behavior on a task is

exemplified by skillful interleaving of perceptual, cognitive, and motor actions. EPIC’s

modules incorporate mathematical models of the time it takes to complete operations that are

based on empirical data.  The knowledge of the model is represented using production rules.

A production rule consists of a set of conditions that is tested against the current internal state

and state of the modules, and a set of actions that is carried out once all conditions are

satisfied.  Production rules are a fairly universal way of representing knowledge: Although the

exact details of the syntax differ, almost all cognitive architectures use production rules.

EPIC has been applied in a number of contexts. For example, Hornof and Kieras

(1997; described in Kieras & Meyer, 1997) applied EPIC to menu search. The task modeled

was to find a label in a pull-down menu as quickly as possible. Perhaps the simplest model of

such a task is the serial-search model in which the user first attends to the top item on the list

and compares it to the label being searched for. If the item does not match the target, the next

item on the list is checked; otherwise, the search is terminated. EPIC’s predictions of search

time using this method can be obtained by describing the strategy in EPIC production rules
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and performing a simulation in a test environment in which menus have to be searched. As

shown in Figure 25-2, such a model overestimates actual search time (obtained with human

subjects), except when the target is in the first position to be searched.

In an alternative model, the overlapping search model, the parallelism of the cognitive

system is exploited. Instead of waiting for the cognitive system to finish deciding whether or

not the requested label is found, the eye moves on to the next item in the list while the first

item is still being evaluated. Such a strategy results in the situation that the eye has to move

back to a previous item in the list once it has been decided that the item has been found, but

this is a small price to pay for the speed-up this parallelism produces (see Figure 25-2).

Parallelism is allowed in EPIC as long as no two perceptual-motor modules are used at the

same time. In practice, the most influential constraint is posed by the duration of actions. For

example, in the serial-search model, the parameter that influences the slope could, in theory,

be changed to make this (incorrect) model match the data. EPIC precludes this from occurring

because an eye-movement takes a certain amount of time, as does a decision as to whether the

label is correct or not, such that the data can only be explained if these actions occur in

parallel.

Architectures that Incorporate Learning

As a cognitive architecture, EPIC states that the main sources of constraints on human

performance are the perceptual and motor aspects of the task. However, the theory is too

flexible to be able to predict task performance before any data has been gathered. For

example, although the theory allows a certain degree of parallelism, it cannot predict a priori

whether this possibility will be exploited in a given task. One approach to developing a

stronger theory capable of specifying the most plausible model of task performance is to

incorporate learning mechanisms that make it possible for task models to emerge from the

cognitive architecture, rather than relying on knowledge supplied by the modeler.



Chapter 25: User Modeling   10

An example of a learning architecture is Soar (States, Operators, and Results; Newell,

1990). In Soar, new knowledge is learned when impasses are encountered during problem

solving. These impasses often take the form of a choice in which there are several possible

actions available and no clear decision rule for selecting the appropriate one. Faced with such

a choice problem, Soar will evaluate each of the possible actions, and will select the best one.

The by-product of this evaluation process is a new rule that will, when Soar is faced with a

similar situation, enable the correct choice to be made without invoking evaluation processes.

An example of a Soar model in the domain of menu search is Ayn (Howes, 1994).

Ayn models the task of finding an item in a typical drop-down menu bar containing several

labeled menus each of which contains several items. The model makes predictions regarding

how many items will have to be searched before the correct item is found. Initially, the model

searches all menus exhaustively. However, during search it generates new rules that are

subsequently used to decrease search times. Eventually, the model learns exactly where to

look for each menu item. In one example, the model has to search for a menu option that

formats a document as two columns. The model starts out with no knowledge of where to find

the information, and thus is faced with an impasse: There are a number of potentially

applicable menus, but the model cannot choose between them. As a consequence, the model

simply tries out the options, successively, exploring all options until the correct one is found.

For example, the “file” menu might be unsuccessfully explored before the correct choice

(“section”) is found under the “format” menu. After successfully achieving the goal, Soar

learns two new production rules: A rule that specifies the incorrectly chosen menu as the

wrong one for the goal of formatting the document as two columns, and one that specifies the

correct sub-menu. These two rules are insufficient for a direct solution of the two-column

format problem because there is no rule that says that the format menu is the right menu, only
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that the file menu is the wrong one. Only after more practice will the model learn to find the

two-column option without first exploring irrelevant options.

Soar’s learning is purely symbolic and not subject to forgetting. A Soar model would

therefore predict (probably incorrectly) that finding the two-column option would occur

flawlessly after it has been mastered, even if a year passes by in the meantime. Another

limitation of the Soar approach is that its learning is tied to impasses. This seems at odds with

the phenomenon of implicit learning (Reber, 1989), in which new knowledge may be

acquired without the problem solver being conscious of it. Forgetting is accounted for in

modeling approaches that attach numeric quantities (e.g., “activation”) to the knowledge

elements in the architecture, an approach that is sometimes referred to as sub-symbolic

representation. Architectures that use both symbolic and sub-symbolic representations are

referred to as hybrid architectures.

Hybrid Architectures

ACT-R (Adaptive Control of Thought-Rational; Anderson, 1993; Anderson &

Lebiere, 1998) is an example of a hybrid architecture that supports learning and sub-symbolic

computations. The core of the ACT-R architecture is a production system similar to that of

EPIC and Soar. This production system core is surrounded by a set of modules that are similar

to the perceptual and motor modules used by EPIC1. ACT-R also has a declarative memory

that is used to store facts. Facts in declarative memory have activation values that reflect how

often a fact has been used in the past, and its association with the current context. Activation

determines how much time it takes to retrieve a fact from memory and whether it can be

retrieved at all. All the modules communicate with the production system through buffers: a

visual buffer, a manual buffer, and a retrieval buffer (declarative memory). In addition to the

                                                  
1 The current version of ACT-R incorporates ACT-R/PM (Byrne & Anderson, 2001) an
extension to ACT-R that implements the same perceptual/motor modules EPIC has.
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buffers that correspond to modules, there is a goal buffer that has no corresponding modules,

but that is used to hold the current goal. Production rules have a utility value associated with

them that reflects the success of the rule in the past in terms of time cost, and success and

failure. On each cycle of the production system, the rule with the highest utility is chosen

from the rules that match the current contents of the buffers.

Byrne (2001) developed an ACT-R model of menu search on the basis of eye-

movement data collected during menu search tasks. These data suggest that people do not use

a single strategy to search menus, as predicted by previous models. Byrne modeled this by

incorporating several competing strategies in the model, and by using ACT-R’s utility

learning mechanism to determine which strategy should be used. Byrne’s model is a good

example of a case where both learning and subsymbolic computation are needed to explain

the full breath of behavior. Another example of the importance of sub-symbolic computation

is SNIF-ACT by Pirolli and Fu (2003). SNIF-ACT is a model of searching for information on

the worldwide web. Given a certain starting page, the model attempts to select the best link to

reach its goal. It does this by picking the link with the strongest “information-scent,” that is,

the link that receives the highest activation through spreading activation from the goal

information. If the information-scent is not strong enough, the model will abandon the current

page, and backtrack to earlier pages. The model can be used to evaluate the quality of

websites:  If SNIF-ACT is not able to find the desired information, users probably will not

find it, either.

A more elaborate illustration of the type of modeling possible with ACT-R is based on

a simplified air traffic control task (KA-ATC; Ackerman, 1988). The model of the task is

explained in detail in Taatgen (2002) and Taatgen and Lee (2003). In this task, participants

land planes by choosing a plane that is waiting to be landed and designating the runway on

which the plane should land.  There are four runways, the use of which is restricted by rules



Chapter 25: User Modeling   13

that relate to the length of the runway, the current weather, and the type of plane that is to be

landed. For example, a DC10 can only be landed on a short runway if the runway is not icy

and the wind is below 40 knots. Although participants receive an extended instruction period,

they tend to forget some rules—especially the more complicated ones regarding weather,

plane type, and runway length. The goal of Taatgen’s ACT-R model is to capture the learning

in this task by predicting the improvement in performance of the participants at both a global

level and at the level of individual keystrokes.

An example of a production rule from the air traffic control task is:

IF The goal is to land a plane and a plane has been selected that can be landed

on the short runway (match of goal buffer)

AND you are currently looking at the short runway and it is not occupied

(match of visual buffer)

AND the right hand is not used at this moment (match of manual buffer)

THEN note that we are moving to the short runway (change to goal buffer)

AND push the arrow-down key (change to manual-buffer)

AND move attention to the weather information (change to visual buffer)

This rule reflects the knowledge of an expert on the task at the stage in which a plane has

been selected that has to be directed to the short runway. After checking whether the short

runway is available, it issues the first motor command, and also initiates an attentional shift to

check the weather, information regarding which might be needed for landing the next plane.

Although this example rule is very efficient, it is also highly task-specific; rules like

this have to be learned in the process of acquiring the skill. For novices, the model assumes

that all the task-specific knowledge needed about air traffic control is present in declarative

memory, having been put there by the instructions given to participants. This knowledge has a

low activation because it is new, and might have gaps in it in places where the participant did
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not properly memorize or understand the instructions. The production rules interpret these

instructions and carry them out. Two examples of interpretive rules are:

Get-next-instruction-rule

IF the goal is to do a certain task and you have just done a certain step

(goal buffer)

THEN request the instruction for the next step for this task (retrieval buffer)

Carry-out-a-push-key-rule

IF the goal is to do a certain task (goal buffer)

AND the instruction is to push a certain key (retrieval buffer)

AND the right hand is available (manual buffer)

THEN note that the instruction is carried out (goal buffer)

AND push the key (manual buffer)

A characteristic of interpreting instructions is that it results in behavior that is much

slower than that of experts: Retrieving the instructions takes time, and during this time not

much else happens. Also, parts of the instructions might be forgotten or misinterpreted,

leading to even more time loss. In such cases, the model reverts to even more general

strategies, such as retrieving past experiences from memory:

Decide-retrieve-memory-rule

IF you have to make a certain decision in the current goal (goal buffer)

THEN try to recall an experience that is similar to your current goal (retrieval buffer)

Decide-on-experience-rule

IF you have to make a certain decision in the current goal (goal buffer)

AND you have retrieved a similar experience that went well (retrieval buffer)

THEN make the same decision for the current goal (goal buffer)
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This experience-based retrieval strategy retrieves the experience with the highest activation

from declarative memory and is based on the assumption that experiences with a high

activation are potentially the most relevant in the current situation.

The transition from novice to expert is modeled by ACT-R’s mechanism for learning

new rules, production compilation (Taatgen & Anderson, 2002). This mechanism takes two

existing rules that have been used in sequence and combines them into one rule, given that

there are no buffer conflicts (for example, as would be the case when both rules specify using

the right hand). An exception is requests to declarative memory: If the first rule requests a fact

from declarative memory, and the second rule uses it, the retrieved fact is instead substituted

into the new rule. This substitution procedure is the key to learning task-specific rules. For

example, the two rules that retrieve an instruction and push a key, together with the

instruction to press “enter” when the arrow points to the right plane during landing, would

produce the following rule:

IF the goal is to land a plane and your arrow points to the right plane

(goal buffer)

AND the right hand is available (manual buffer)

THEN note that the instruction is carried out (goal buffer)

AND push enter (manual buffer)

A rule that retrieves and uses old experiences can also be the source for production

compilation. For example, in a situation in which the plane to be landed is a DC10 and the

runway is dry, and a previous example in which such a landing was successful on the short

runway is retrieved, the following rule would be produced:

IF you have to decide on a runway and the plane is a DC10 and the runway is dry

(goal buffer)

THEN decide to take the short runway (goal buffer)
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New rules have to “prove themselves” by competing with the parent rule, but once

they are established they can be the source for even faster rules. Eventually the model will

acquire a rule set that performs like an expert. Comparisons with data from experiments by

Ackerman (1988; see Taatgen & Lee, 2003) show that the model predicts the overall

performance increase (in terms of number of planes landed) and the individual sub-tasks (e.g.,

how much time is taken to land a single plane) very well. The model also does reasonably

well at the level of individual keystrokes. As an illustration, Figure 25-3 shows the actual and

predicted time to land a plane for trials 1 to 10.

An advantage of a model like that of the air traffic control task is that it can serve as a

basis for a more general test bed for interface testing. Task-specific knowledge is entered into

the system as declarative knowledge, which is very close in form to the instructions provided

to the learner. The model can consequently be used to study initial performance and the

learning process. Accurate models of human performance also serve as a basis for more

advanced forms of individualized user models, which we will discuss in the next section.

Personalized Models

Predictive models can provide helpful indications of how most people will approach

and perform tasks. However, both the efficiency with which information can be accessed

from the worldwide web and the satisfaction of the user in doing so can be enhanced by

adapting websites to individual users, taking into account their different preferences,

knowledge, and goals (see Chapter 17 in this volume for more discussion of adaptive and

intelligent interfaces). In this section, we describe techniques for determining user

characteristics and the need for adaptation, the types of modifications that might be made to

adapt websites to individual users, and methods for carrying out the adaptations.

A distinction can be made between adaptable and adaptive systems. Adaptable systems

(Scerbo, 1996) allow the user to configure the system to suit individual needs. For example,
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the user may turn the task of checking spelling during typing over to the software. Once a user

allocates a task to the computer in such a system, the computer continues to perform the task

until the user modifies the allocation. In adaptive systems, the system is designed such that it

can modify its behavior itself. Such a system can detect the need to take over or relinquish

control of certain tasks and can automatically reallocate them. An example would be a system

that detects that many spelling errors are made, and automatically invokes on-line spell

checking (see Chapter 15 for more discussion of task automation).

Two things are crucial for an adaptive system to work: The existence of a means to

adapt the task, and the ability to detect the need for adaptation. Although it is, in principle,

possible to adapt tasks to the observer’s state (e.g., by detecting that the observer is under

stress and needs to be relieved of some tasks), most adaptive systems react on the basis of a

user model that gives an indication of the user’s current knowledge, interests, or activity.

Determining User Characteristics

The starting point for any user-based adaptation is the user model (Fischer, 2001).

Many websites solicit information about the user directly, by means of a questionnaire (e.g.,

Fink & Kobsa, 2002). Questions are posed about demographic and personal characteristics

and this information is used to create a user profile. The profile of a given user can then be

matched to user types stored in a database using a number of techniques. Generally, the

determination of how or when to adapt to the user is based on grouping users on some set of

features, assuming a degree of homogeneity within the group, and then performing the

adaptations that should benefit the average user.

Many user-modeling systems use the technique of predicting unknown characteristics

of the user by comparing him or her to similar users.  This “collaborative” or “clique-based”

filtering may operate according to a clustering algorithm, a correlation-based approach,

vector-based similarity technique, or according to a Bayesian network (Fink & Kobsa, 2002;
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Webb, Pazzani, & Billsus, 2001). For example, in a correlation-based approach, known

characteristics of the current user are used to match (as indicated by a correlation coefficient)

the user to other users in the system. Predictions of unknown user characteristics are then

computed based on a weighted aggregate of the stored users. One problem in using this

technique is determining the number of matches to include in the computations of the

predictions.  Prediction accuracy tends to be a non-linear function of increasing the number of

matches (or, “mentors”), with increments in accuracy decreasing or even reversing as the

number of matches becomes large (e.g. Shardanand & Maes, 1995). The optimal number of

matches will depend on the strengths of the individual correlations.

Although user characteristics are most commonly determined on the basis of answers

to a questionnaire and the use of a statistical clustering algorithm to assign users to groups,

information or tasks may also be adapted on the basis of what the user is trying to do, or may

even be contingent on the current state of the observer. For example, the system may

recognize that the user is experiencing difficulty performing a task and that help needs to be

given. Research on adaptive systems in general (e.g., in aviation and process control) has

focused on gathering information about the user on the basis of physiological measures such

as EEG (electro-encephalogram) and cardiovascular measures.  However, because these

measures are not readily applied in web settings, they will not be discussed here. Instead, we

focus on the behavioral measures of user performance, including actions taken by the operator

and the manner in which they are made. Actions may range from mouse button clicks to eye

movements, and the measures may range from simply registering that an action has occurred

to measuring reaction time or more complex patterns of action. The most practical way to

gather information about the user in most web usage situations is by examining the actions

performed by the user using the keyboard, touch screen, or mouse. Common measurements
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are links accessed and time spent viewing a page. On the basis of these measurements, the

website attempts to infer the knowledge and interests of the user.

The knowledge the user possesses can be divided into what was known before visiting

a website and what was learned from the website itself. For example, if the user has visited a

particular page, it can be assumed afterwards that he is familiar with the information

presented there. Information about which sites have been visited can thus be used to modify

the presentation of links on subsequent pages. Patterns of actions allow other inferences. For

instance, if a user repeatedly chooses a certain category of information, it can be inferred that

she knows little about that category. Alternatively, rapid scanning through presentations of

information can be assumed to reflect previous acquaintance with (or lack of interest in) the

presented information.

A number of systems that use various sources of user information, including eye gaze

direction, to determine user interests and information needs have been developed. These

systems are “attentive” both in attending to what users do and in presenting information that

users will want to attend to. The goal of such systems is to track user behavior, model user

interests, and anticipate the actions and desires of the user. For example, the Simple User

Interest Tracker (Suitor; Maglio, Campbell, Barret, & Selker, 2001) analyzes gaze direction

and browsing behavior to determine the interests of a user (e.g., which headlines in a news

window receive the most interest) and then provides information that should be of interest to

the user in a timely manner. The new information is displayed in a peripheral display so that

the user can decide whether or not to use the information without being distracted by sudden

adaptations.

Updating the User Model on the Basis of Interactions

Many websites can be described as hypermedia environments (settings in which

networks of multimedia nodes are connected by links that control information presentation
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and image retrieval). Such systems have been in use for a number of years, both on the

Internet and off-line. Much of the research on hypermedia environments has focused on

educational settings. Proponents of these systems emphasize that such environments enable

learner control, thus increasing learner involvement and teaching learners to “learn how to

learn” (i.e., to develop metacognitive skills; Large, 1996). However, the randomness with

which some learners move through hypermedia environments may limit the effectiveness of

the learning (Federico, 1999). User modeling can be an effective tool to increase the

efficiency of hypermedia use. A simple example of this related to web use is the tracking of

choices in the search for information. Records of the navigational paths followed (so-called

“audit trails”) may be maintained as users search for information in hypermedia

environments. For example, the browser or an independent application might keep track of all

pages visited and of the sequences of mouse clicks or menu choices made. It has been argued

that audit trails can provide insight into the cognitive and metacognitive processes of the

learner that can be used to implement adaptive instructional strategies (Federico, 1999;

Milheim & Martin, 1991).

Once an audit trail has been collected, the problem remains of what to do with it. One

approach to using this information is to make comparisons across users to determine the

search preferences of groups of users. One way of comparing paths is to compute a linearity

function. This can be done by finding the ratio of (a) the number of visits to each node in the

knowledge network from a parent node to (b) all node visits (Horney, 1993). A hypermedia

system that computes linearity functions on-line can then structure information to be

compatible with the user’s search preferences. Various classifications of users have been

made on the basis of navigational paths. On the basis of frequency counts of the number of

screens visited, buttons clicked, time spent on each screen, and the depth of search it is

possible to distinguish between users who are driven by performance goals (knowledge
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seekers), who like to find and explore features such as movies (feature explorers), who are

interested in determining the layout of the site (cartographers), and those who are not

motivated to learn to use the site (apathetic users; Barab, Bowdish, & Lawless, 1997; Lawless

& Kulikowich, 1996). Knowledge of the group to which the user belongs can be used to adapt

the interface to the user’s interests or to give users feedback to enhance their productivity.

Patterns of information acquisition can be used in different ways to infer and adapt to

user strategies. For example, a given user may wish to quickly get an overview of a site, and

then return to objects that were found especially interesting.  Such a user should be provided

with a bookmark or annotation tool that facilitates the return to visited objects. Deviations in

search type might also signal a need for intervention. For example, a user who begins a

session by searching for a target (as indicated by increasing depth in a hierarchy), and who

then starts making erratic jumps outside of the hierarchy, could be assumed to be lost and in

need of guidance. Much time can be wasted on fruitless searches or in trying to find one’s

way back to a previous point. A web application that can detect that a user is lost and offer a

way back (e.g., by presenting a list of recently visited sites or the front-end of a search engine)

might increase search efficiency. Given that many users underutilize history lists and other

navigation functions in web browsers, such a facility might be needed (Cockburn & Jones,

1996).

Adaptive Elements

The design of an adaptive system depends on the existence of aspects of the task that

can be adapted or automated. Table 25-2 presents a summary of the kinds of tasks and

information that might be adapted in a website. Choices regarding what to adapt will depend

on the sort of information available on a website and the way in which it is to be used. As an

illustration, consider a museum website. In addition to a gift shop and information about

opening times and exhibition schedules, the website might contain pictures of, and detailed
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and specialized information about, the exhibited objects. Such a website could be used for

different purposes. It might be used as a knowledge base, giving access to specific

information for research purposes. It might also be used to provide a virtual tour, allowing

users who are unable to physically visit the museum to view the objects. Users who have

visited the museum, and who want to look up background information about objects they

found interesting might also visit it. Although the same database may contain all of the

information needed to accommodate these different groups of users, it will have to be

accessed and presented in different ways. Thus, the success of the website will depend on the

extent to which the wishes of the visitor can be detected and the information can be adapted.

The most obvious adaptation is to tailor the presentation of information. In our

museum example, presenting all of the information pertaining to a certain object could be

overwhelming and impractical. Casual visitors are not likely to be interested in detailed

technical information or references to scientific publications, but probably would want to

view a reproduction and might be interested in buying one. On the other hand, a researcher is

likely to be more interested in detailed information and references and less interested in the

souvenir shop. An adaptive interface might note the initial choices made by the user, and

adapt subsequent displays to highlight the most likely to be sought after information.

One might also adapt the format of the information presented to the user. Some users

will prefer to view pictures of the objects, whereas others will only want to read background

information. More generally, the type of question asked by the user may give the website

information about how to best present the requested information. For example, “Who was

Monet?” is obviously a bibliographic question, and should be answered with bibliographic

information. However, the query system may also be able to detect the generality of the

question, and could safely assume that the viewer is not familiar with the painting style of the
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artist and thus also present representative works (Smeulders, Hardman, Schreiber, &

Geusebroek, 2002).

Another aspect of adaptive automation is task support. This might involve the

scheduling of tasks or automating the execution of tasks. This type of adaptivity is not yet

common in web applications because most websites are used for performing just one task at a

time. However, on the basis of user search preferences, some tasks might automatically be

executed and the results presented to the user. For example, if a website detects that a visitor

at the museum site repeatedly returns to a particular object, it might make a quick search of

the gift shop and present any object-related products that are available.

The sequence and manner in which information is entered can also be adapted to the

task or user. Fill-in forms are ubiquitous on the web. By adapting the forms to the user, the

filling in of these forms can become less tedious. A simple example is remembering details

for specific users so that they need not be repeatedly entered.

The final element that might be adapted is the choices available to the user. Nearly

every website uses a standard technique to direct the user’s attention to specific choices—that

of changing the color of recently used links. As discussed in the applications section, below,

choices may be informed or modified in a number of additional ways, such as by restricting

the availability of links or by offering new links (e.g., informing a user who chooses to view a

particular work of art which other works were chosen by people who enjoyed that one).

Another simple adaptation, “smart menus,” has been incorporated into many

programs. Smart menus reduce search times for finding a desired item and reduce movement

time to select the item (Jameson, 2002) by displaying only those menu commands that have

been used most often and most recently. Because only the few options that the user is likely to

consider are displayed, the need to search the full menu and move the cursor a long distance is

eliminated. If the user wants to see the remaining commands, he must indicate that he wants
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them to appear by positioning the cursor on an “expand” cue to cause the full menu to appear

so that the command can be searched for in the usual manner. Of course, the use of smart

menus is to some degree limited by the inconsistency of the mapping of menu items to

locations.

Applications

In this section we describe a range of applications that incorporate user models. The

applications vary in their degree of adaptability and in the dynamism of the model.   

Intelligent Tutors

The basic tenet of intelligent tutors is that information about the user can be used to

modify the presentation of information so that learning proceeds more efficiently. Intelligent

tutors guide learning and adapt navigational paths to facilitate learner control of knowledge

acquisition. A good human tutor could be considered intelligent in this sense if he or she

adapted instructional material to the needs of the pupil. For example, a pupil asked to explain

a concept might reveal deficiencies of knowledge that the tutor can remediate by means of

new examples or repeated explanation. The better the tutor understands the pupil, the better

the remediation. In the realm of human-computer interaction, the intelligent tutor needs to

possess a user model. Having knowledge of the user is, of course, not enough. The tutor must

also have at hand an arsenal of strategies for tailoring the information to the student.

Early attempts to adapt user interfaces to the user’s level of expertise were fairly

simple in concept, but nonetheless showed the effectiveness of adapting the interface. An

example is Carroll and Carrithers’s (1984) “training wheels” word processor interface. Carroll

and Carrithers found that novice users of a word processor made many mistakes in trying to

learn to perform simple tasks, and that most of the mistakes were the result of attempting to

carry out unneeded, more advanced commands. They created the training wheels interface by

disabling unneeded menu choices, commands, and function keys in order to block errors.
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Participants who used the training wheels interface learned to complete simple tasks more

quickly than those using the unmodified word processor, and performed better on a

comprehension post-test. The major advantage of the simplified interface seemed to be that

users spent more time performing criterion tasks and less time recovering from errors.  This

early research demonstrated that the “learning by discovery” that people tend to engage in can

be relatively inefficient because many of the options that are tried out are inappropriate and

result in time being devoted to correcting mistakes rather than to learning basic functions.

In the training wheels application, the user model is very simple and not adaptive.

Novice users were simply provided with a restricted interface. Thus, training wheels was not

“intelligent” in that it did not infer anything about the user and did not adapt itself to user

needs. In general, modern word processors are not any smarter, although they do sometimes

include proactive help functions. For example, the office assistant in Microsoft Word™ pops

up from time to time to offer help in completing tasks begun by the user. Unfortunately, it

only detects the task the user is attempting to perform, and not whether the user is likely to

need help in performing it.

Rather than simply providing hints or eliminating certain options, many tutors attempt

to ascertain what the user knows, what they are trying to accomplish, and what specific help

the user might need. These intelligent tutors seek to ascertain a student model and adapt the

presentation of information to the student based on the current student model. Student

modeling refers to the techniques and reasoning strategies incorporated in an instructional

system to allow it to maintain a current understanding of the student and her activity on the

system. The student model can then be used to adapt the learning system to the user by, for

example, creating problem sets that reflect the interests and weaknesses (or strengths) of the

student, or phasing out assistance in finding solutions to problems at the appropriate time

(Federico, 1999).
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A distinction can be made between local modeling, which refers to system capabilities

for carrying out on-line performance monitoring and error recognition (creating a “trace” of

student performance), and global modeling, in which trace data serves as input to an inference

engine that maintains a “permanent,” evolving view of the student’s domain knowledge

(Hawkes & Derry, 1996). In most intelligent tutoring systems, local modeling forms the

foundation for both assessment of the student and of the tutoring strategy because both of

these depend on inferences from the primitive elements detected by the local modeler. The

key to effective systems is, then, to develop appropriate local modeling techniques.

Probably the most successful and influential approach to student modeling is the

model-tracing method (e.g., Anderson, Boyle, & Reiser, 1985). In this technique, knowledge

is represented in terms of productions. A “generic” student model contains all the productions

an expert problem solver would execute within the problem domain and may also contain a

library of “buggy” productions that embody common student mistakes. The expert model and

buggy productions form the knowledge base used by the tutor to diagnose student

performance. Each step taken by the student is compared to the output of the productions that

the generic model would fire under the same circumstances in order to distinguish between

valid procedures and actions based on errors or misconceptions. Other student-modeling

techniques include using imprecise pattern-matching algorithms that operate on separate

semantic and structural knowledge representations (e.g., Hawkes & Derry, 1996) and

Bayesian models, which will be discussed next.

Bayesian models are user models based on the Bayesian methods widely used in

classifier systems and speech and image recognition. Bayes’s theorem states that the

probability that hypothesis A is true given that evidence B is observed, is equal to the product

of the probability of B being observed given that A is true and the probability of A being true,

divided by the sum of the products of the probabilities that B is observed given that
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alternative hypotheses are true and the probabilities of these alternative hypotheses. An

example of a system that incorporates a Bayesian model is ANDES (Conati, Gertner, &

VanLehn, 2002), a tutoring system for helping students learn Newtonian physics. ANDES

models the process of mastering the laws of physics and learning how to apply these laws to

various problems.

Students start to learn by applying a law (e.g., Newton’s second law that mass times

acceleration equals net force) in a specific problem context (e.g., the acceleration of a car

given that its engine generates a certain amount of force). ANDES observes that the student

chooses a specific formula and computes the probability of that action being performed given

that various knowledge has been mastered. Using Bayes’s theorem, the probabilities in the

model, and the observed student actions, the probability that the user has mastered a certain

piece of knowledge given his observed action can be calculated. That is, the observed user

actions are taken as the evidence, whereas mastery of each piece of knowledge is taken as the

various hypotheses.

In most cases, students will need to work examples from different contexts before they

are able to apply a law in a consistently correct manner. ANDES captures this with a

mechanism that enables the distinction between context-specific and general rules. Within

Bayesian modeling, mastery of the general rule is taken as the hypothesis, while mastery of

the context-specific rule is used as the evidence. As students solve problems, they gain

experience with general laws, increasing their knowledge. The probability that a law has been

mastered can be used to deliver specific help. For example, if a student is unable to select a

correct formula, but has a high probability of mastering the context-specific rule, he might be

given a hint (e.g., that a block resting on a table for which force must be calculated does not

move, and therefore has an acceleration of zero). However, if this probability is low, he might

be given a more direct hint, such as which formula to apply.
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Facilitating Interaction Among Users

User models are increasingly used to facilitate interpersonal information acquisition

and retrieval. For example, Harvey, Smith, and Lund’s (1998), InfoVine uses user models to

facilitate information retrieval by relating people to areas of interest or expertise. Bull and

McCalla (2002) have developed an agent-based system, I-Help, to directly facilitate

communication among learners. Using I-Help, learners can participate in private (one-on-one

interaction with a partner) and public (entire group) discussions. Each user has their own

agent that acts on their behalf. The agent constructs a model of its user’s knowledge,

eagerness to participate, helpfulness, cognitive style, learning goals, and preferences in a

learning partner. This model is based on preferences expressed by the user, peer assessment,

and user actions. The agent also constructs partial models of all other users with whom it

comes in contact, resulting in just-in-time, distributed, and fragmented user models. When I-

Help is invoked to find a partner for discussion, it surveys the characteristics of users who

have knowledge about the topic, and presents the user with a ranked list of possible discussion

partners. Other functions served by the user models are: protecting users from interruptions,

retrieving relevant information for a user, and providing information about a user’s current

state of knowledge.

Electronic Books

Whether one is writing a handbook chapter or a hypermedia textbook, the aim is

usually to structure the instructional material so that a sequence of educational objectives is

achieved. The writer uses his expert knowledge to structure the material in order to define an

optimal learning path for the average learner. In addition to providing structure by means of

sections and section headings, the author may provide navigational or learning tools such as

tables of contents, indexes, and glossaries to help the reader in their quest for knowledge. In

most books, users can move around freely within the pages but can do little to adapt the book
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itself to their own prior knowledge, goals, or learning rates. Hypermedia allows more

flexibility in the presentation of material and can potentially be adapted to the user. With the

addition of navigation support to adapt hypermedia to the user’s learning needs without

limiting the free-browsing, learner-controlled nature of the media, the Internet can become an

increasingly powerful tool.

One approach to dealing with the enormous amount of text available on the web is to

simply print out the documents of interest and to read them the old-fashioned way, on paper.

Many authors provide pdf files for just this purpose. However, electronic texts maintain

several advantages over printed texts, including search functionality and adaptability. In order

to use the web effectively, authors must adapt their text to the medium. One such authoring

and delivery tool for adaptive electronic texts is Interbook (Brusilovsky, Schwarz, & Weber,

1996). This authoring environment uses history-based (annotation based on search patterns),

knowledge-based (annotation based on the relations among concepts), and prerequisite-based

(annotation which reflects prerequisite knowledge) adaptive annotation of links to guide

individual users along an appropriate path through the text. As a reader moves through the

hypermedia environment, the content or appearance of the information will depend on the

current state of the user model embedded in the hypermedia environment. Dynamic user-

model-driven annotation can provide navigation support by, for example, outlining the links

to previously visited nodes. For example, Interbook annotates “recommended” topics with a

green bullet, “not ready to be learned” topics with a red bullet, and “nothing new” with a

white bullet.

As with intelligent tutors, adaptive navigational support depends on a knowledge-

based domain model and a user model. In its simplest form, the domain model is a set of

concepts (topics, attributes, knowledge elements, objects, learning outcomes, etc.). The

domain model may also take the form of a network with nodes corresponding to domain
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concepts and links reflecting relationships between concepts. Hypermedia systems generally

have a network structure created by indexing hypermedia nodes containing various units of

learning material (e.g., presentations, tests, examples, or problems) with domain model

concepts. Indexing may be either content based or prerequisite based. With content-based

indexing, all concepts related to knowledge contained on a given page are included in the

page index (e.g., Schwarz, Brusilovsky, & Weber, 1996) and with prerequisite-based

indexing, all concepts that are prerequisite to understanding the content of the page are

indexed. For each domain-model concept, an individual user knowledge model stores some

value, which is an estimation of the user knowledge level of this concept. This so-called

“overlay model” (Brusilosky, 1994) is used to measure independently the user’s knowledge of

different topics. In Interbook, the user model itself is initialized from a stereotype model, and

is modified as the user moves through the information space. Future versions of Interbook

should feature an “interview” to further specify the user model and embedded testing for

knowledge-based navigation support.

Interbook is currently a focus of research at Carnegie-Mellon University. Basic

questions remain to be answered about how and why people use annotations. As the authors

put it, “Just as the evaluation of the tool cannot be separated from its development, measuring

the effectiveness of its components cannot be successfully achieved in isolation from broader

human factors” (Eklund, Brusilovsky, & Schwarz, 1999).

Agents

One purpose of ascertaining user models is to use the models to build agents that then

operate independently in computing environments. In general, agents are actors in specific

environments (such as a network, operating system, or database) that may act in the place of

another. Intelligent agents, by definition, act independently in interpreting and affecting the

environment (Franklin & Graesser, 1996). They may interact with the user and can assist him
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by (a) performing tasks on the user’s behalf, (b) advising the user on how to perform a task,

(c) training or teaching the user, (d) monitoring events or procedures for the user, or (e)

helping different users collaborate (see Table 25-4; Tecuci & Hieb, 1996). Information agent

technology offers much promise as a key technology for the Internet and worldwide web. A

complete inventory of the architectures and implementation of information agents is,

however, beyond the scope of this chapter (see Chapter 15 for a more complete discussion of

agents). We limit our discussion to several applications and domains in which intelligent

agents are being developed.

Information agents are computational software entities that have access to one or more

heterogeneous, distributed information sources. They pro-actively search for and maintain

relevant information on behalf of their human users or other agents in a dynamic, preferably

just-in-time, manner. They are hailed as the solution to managing and overcoming the

difficulties associated with information overload in the exponentially growing worldwide

web. Advanced information systems increasingly need to balance the autonomy of networked

data and knowledge sources with the appropriate use of intelligent information agents

(Hendler, 1999).

With the proliferation of information on the worldwide web, interest is focusing on the

use of intelligent agents to gather information. Hendler (1999) describes his vision of

intelligent information agents. Such agents would accept a commission (e.g., find journal

articles describing experiments in a particular field), and determine the relevant constraints

(e.g., that a certain paradigm was used) and any preferences (e.g., that the articles were

written by research groups at major universities). The internet agent would then find the

possibilities and present them for approval. Upon approval, the agent would arrange for

delivery of the articles, making any necessary arrangements for payment or registration. As

essentially every encounter with a search engine makes clear, even the first function of an
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Internet agent—locating relevant information—awaits fulfillment. One problem is that

communication between the user and the agent is less than optimal. A good agent must be

able to understand the user’s goals, preferences, and constraints, and this understanding

requires shared knowledge. The agent must therefore be familiar with the vocabulary of the

problem area; it must have some domain knowledge to be able to weed out irrelevant

information.

Hendler (1999) argues that the key limiting factor in agent technology is the difficulty

of building and maintaining ontologies for web use. An ontology is a body of knowledge used

in building agents (ontologies are discussed in more detail in Chapter 10). It is often structural

in that it consists of a taxonomy of class and subclass relations coupled with definitions of the

relationships between them. Ontologies also contain inference rules for classify or linking

items, providing the basis for manipulating the terms used in the ontology to allow for a form

of communication between user and computer. On this basis, software products that can

represent the needs, preferences, and constraints of the user can be created. To be truly useful,

an agent (like a graduate student) must have much knowledge of the problem being solved.

Building ontologies requires extremely detailed knowledge in a machine-readable form (using

artificial intelligence knowledge representation techniques). Market forces are beginning to

drive online journals and other scientific content providers to enable greater use of agent-

based systems. Current keyword-based search engines are being supplemented by advanced

web languages that can organize scientific material, making it accessible to web agents in

order to increase agent capability.

In order to act on behalf of the user, an agent must have a good understanding of the

needs, wants, and desires of the user. Basically, the agent must know what the user knows or

must know even more than the user. As in all knowledge-based systems, knowledge

acquisition often forms a bottleneck in the development of agents. One approach to the
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problem of building knowledge into agents is the Disciple approach of Tecuci and colleagues

(e.g., Tecuci, 1992; Tecuci & Hieb, 1996). In the Disciple approach, the user “teaches” the

agent by providing specific examples of problems and solutions, explaining these solutions, or

supervising the agent as it solves new problems. During these interactions, the agent learns

general rules and concepts and expands its knowledge base. The first stage of building a

disciple-based agent is knowledge elicitation, possibly aided by a knowledge engineer. In this

stage the task is thoroughly described in terms of concepts and correlations between them. In

the second phase, apprenticeship learning, the agent interactively learns from the user on the

basis of examples (and solutions) presented by the user, and then experiments by presenting

its solutions to the user for verification. It may also request (or require) additional information

during this phase. In the third, autonomous learning phase, the agent can solve problems

without assistance and continues to accumulate experience and exceptions (situations in

which correct solutions cannot be found). Finally, periodic retraining is required to eliminate

exceptions. The Disciple approach has been applied in a variety of domains including

manufacturing, instruction, and military command. Its authors argue that the technique is

relatively efficient because of the way in which it employs user interpretation.

Agents as Team Members

 Simulations are commonly used for training skills that are needed in dangerous or

complex environments and for training emergency skills. Recent work (e.g., Dobson et al.,

2001) has explored the possibility of using agents to take the role of humans in teams. Team

training can be especially challenging because of the need to assemble a number of

individuals in order to administer the training. When the training involves experienced or

expert individuals, it can be even more difficult to bring the relevant team members together

because they cannot be missed in their regular functions. Another challenge of team training
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is finding the space to conduct the training. For example, training of emergency procedures in

control rooms is made more difficult because the control rooms are always in use for regular

monitoring activities. Such considerations can justify the costs of building a simulator for

training purposes. The use of virtual reality to build the simulators can enhance their

efficiency because the same basic set-up can be adapted to different scenarios. Substituting

intelligent agents for some team members can solve the problem of assembling a complete

team.

An intelligent agent has the advantage that the level of expertise of this “virtual” team

member can be manipulated to meet the training requirements. Specific competencies (or

deficiencies) can simply be programmed into its performance. The development of an

intelligent agent for team performance requires a working model of the team member being

simulated and an understanding of how team members interact with each other.  Dobson et al.

(2001) found that the introduction of an agent in a training simulation was well accepted by

team members. The training was reported as beneficial for illustrating the complex

coordination skills required by the team leader and led to increased continuity and confidence

within the team.

Social aspects of interaction with agents are of interest both to those building

applications, such as team trainers, and to social interaction theorists. Systems with multiple

agents can be used to test theories of social interaction or to increase the efficiency of an

application (see Brent & Thompson, 1999, for a review). Like people in a social situation,

agents in a multi-agent system each have (1) incomplete information or capabilities for

solving the problem at hand, (2) no system of global control, (3) decentralized data, and (4)

asynchronous computation. As such, multi-agent systems are natural venues for testing

theories of social interaction and bounded rationality.
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The desirability of incorporating different characteristics of people in an agent

depends on the application. Some agents are created with the goal of simulating people, as in

the case of the simulated team player or in agents created to act as mentors in a training

process (e.g., www.extempo.com), and these agents should obey basic rules of social

interaction. Some of the most convincing agents are found in games and advertising contexts.

For example, Extempo created a special pet dog “Virtual Jack” to answer questions, share pet

facts, explain services, and provide navigation assistance at a commercial pet store site.

Customers apparently found the virtual dog entertaining enough to spend time giving it user

profile information.

Even when agents are not specifically created to have human-like interaction

capabilities, people tend to conceive of computers as if they were people

(http://www.Leland.Stanford.edu/group/comdept/). This suggests that frustration could arise

when the interactions do not follow established patterns. Agents may also be given emotions,

whether to increase the realism of interactions with agents or to model emotional processes

(see Picard, 1997, for a review). Other programs use emotion sensing (e.g., sensing of the

user’s affective state via digitized images of facial expressions or vocal intonation) to adapt

interaction to the state of the user (e.g., Essa & Pentland, 1997; Murray & Arnott, 1993).

User Modeling Servers

When developing a user model, a choice has to be made between centralized versus

decentralized modeling (Fink & Kobsa, 2000). In decentralized modeling, the user model is a

part of the application that is being adapted, and in centralized modeling it is a separate

application that interacts with other applications via a client-server framework. Centralized

models, sometimes called user-modeling servers, offer a number of advantages. First, because

information about the user is stored in a central repository, it can be used by many

applications, and information gathered during the use of one application can be made
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available to different applications. This results in more consistent and complete user models

because the adaptations to each application are based on the same models and information.

Centralized models are also efficient in that they reduce the need for redundant storage.

Furthermore, a centralized user-modeling server makes it much easier to improve and extend

user models since any changes will automatically be available to all applications. Finally, a

single user-modeling server has advantages in security. Since all information is in one

location, it is much easier to guarantee security and privacy. Of course, centralized modeling

has the disadvantage that it introduces a single point of failure: If the user-modeling server

goes down, all user modeling goes with it. Good network connections and powerful hardware

resources are necessary for these systems to work. Despite this potential problem, Fink and

Kobsa argue that user-modeling servers are especially suitable for websites that deal with a

large number of visitors having a wide range of interests that can only be answered by

combining different sources of information.

An overview of commercial user-modeling servers can be found in Fink and Kobsa

(2000). Most systems are intended for company-wide use, combining information from

various departments to create user models that are as complete as possible. User-modeling

servers gather their information by communication with various applications. In addition to

passively receiving information, some systems can actively request certain information from

the applications. User-modeling servers contain reasoning mechanisms that allow them to

make classifications of users, recommendations for users, or predictions of user behavior that

can be communicated back to the applications. For example, information about past purchases

and pages requested, as well as financial information about the customer, can be combined for

use throughout a company.
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Adapting to Physical Limitations

Although the focus of this chapter is on acquiring knowledge and making inferences

about cognitive strategies and adaptations based on them, other aspects of human-machine

interaction may be also be improved by user modeling. For example, Trewin and Pain (1999)

have demonstrated how personalized user modeling of keyboard operation can be used to

dynamically adapt keyboard operation to people with various motor disabilities. Their model

follows the keystrokes made by the user and detects difficulties caused by (1) holding keys

depressed for too long, (2) accidentally hitting keys other than the intended one, (3)

unintentionally pressing a key more than once, or (4) problems in using the “shift” or other

modifier keys. For example, if the model observes that a typist uses the “caps lock” key to

type just one capital letter, or presses and releases the “shift” key without modifying a key, or

presses and releases the shift key more than once without typing any letter, it will invoke the

“sticky keys” facility which causes the shift key to stay active after having been pressed until

the next alphanumeric character is pressed. Trewin and Pain showed that the model performed

well in differentiating between people who needed interventions to improve their typing and

those who did not. Because it was able to make recommendations after just 20 keypresses, the

model may be of practical use in situations (such as libraries or internet cafes) where users use

public terminals.

Summary

Essentially every application of user modeling represents an effort to move beyond

direct manipulation of computer software via commands entered using a keyboard, mouse, or

touch screen to adaptive or even autonomous behavior on the part of the software. In other

words, they contribute to a situation in which the process of using a computer is cooperative,

and both human and computer agents can initiate communication, monitor events and perform

tasks to meet a user’s goals (Shneiderman & Maes, 1997). Not all researchers are convinced
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that such a trend is desirable. For example, Shneiderman (Shneiderman & Maes, 1997)

questions whether the computer will ever be able to automatically ascertain the users’

intentions or to take action based on vague statements of goals. He also suggests that users

will be reluctant to relinquish the control over the system afforded by direct manipulation, and

warns that systems that adapt to the user or carry out actions on their behalf may be hard to

understand. Despite such concerns, many people have argued that further increases in the

usability of software require that the software itself infer some of the actions to be taken.
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Table 25-1. Overview of Constraints that the Model Human Processor (MHP), Soar, EPIC

and ACT-R Impose on Cognitive Processing

Process Model Constraint Reference

Working

Memory

MHP Working memory has a limited capacity of

5-9 chunks and decays in 900-3500 ms.

Card, Moran, &

Newell (1983)

Soar Limitations of working memory arise on

functional grounds, usually due to lack of

reasoning procedures to properly process

information.

Young & Lewis

(1999)

ACT-R Limitations of working memory arise from

decay and interference in declarative

memory. Individual differences are

explained by differences in spreading

activation.

Daily, Lovett, &

Reder (2001)

Cognitive

performance

MHP The cognitive processor performs one

recognize-act cycle every 25-170 ms, in

which the contents of working memory

initiate actions that are linked to them in

long-term memory.

Card, Moran, &

Newell (1983)

Soar A decision cycle in Soar takes 50 ms,

multiple productions may fire but only when

leading to a single choice.

Newell (1990)
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multiple productions may fire but only when

leading to a single choice.

ACT-R A production rule takes 50 ms to fire, no

parallel firing is allowed. A rule is limited to

inspecting the current contents of the

perceptual and memory-retrieval systems

and initiating motor action and memory-

retrieval requests.

Anderson, Bothell,

Byrne, & Lebiere

(2002)

EPIC Production rules take 50 ms to fire, but

parallel firing of rules is allowed.

Kieras & Meyer

(1997)

Perceptual and

Motor systems

MHP Perceptual processor takes 50-200 ms to

process information, motor processor 30-

100 ms. Duration of motor actions is

determined by Fitts’s Law.

Card, Moran, &

Newell (1983)

EPIC Perceptual and motor modules are based on

timing from the MHP. Modules operate

asynchronously alongside central cognition.

Kieras & Meyer

(1997)

ACT-R;

Soar

Both use modules adapted from EPIC. Byrne & Anderson

(2001), Chong (1999)

Learning

MHP Speed up in performance is according to the

power law of practice.

Card, Moran, &

Newell (1983)
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Soar Learning is keyed to so-called impasses,

where a sub-goal is needed to resolve a

choice problem in the main goal.

Newell (1990)

ACT-R Learning is based on rational analysis in

which knowledge is added and maintained

in memory on the basis of expected use and

utility.

Anderson, Bothell,

Byrne, & Lebiere

(2002)
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 Table 25-2. Adaptable Aspects of Web Use.

Information Presentation Selecting the right information

Presenting information in the best format

Task support Scheduling of tasks

Automating tasks

Guiding information inputInformation Input

Checking information input

Adapting choices Presenting appropriate links

Coding links
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Table 25-3. Functions of a User-modeling System

1. Timely identification of user interests and preferences based on observable behavior.

2. Assignment of users to groups so that subgroup stereotypes can be used to predict interests

and preferences.

3. Use of domain knowledge to infer additional interests and preferences.

4. Storage and updating of explicitly provided information and implicitly acquired

knowledge.

5. Guarding the consistency and privacy of user models.

6. Provision of user model information to authorized applications.



Chapter 25: User Modeling   50

Figure Captions

Figure 25-1. A simplified version of the MHP comprising a memory system (working

memory and long-term memory) and three processors (perceptual, cognitive, and motor).

Figure 25-2.  Actual search times (obtained with human subjects) and predictions of

the serial search model and the overlapping search model.

Figure 25-3. The actual and predicted time to perform the landing unit task for trials 1

to 10 in the task of Taatgen & Anderson, 2002.
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Figure 25-1.
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Figure 25-2
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Figure 25-3
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