
University of Groningen
Cognitive Science and Engineering
prepublications

author N.A. Taatgen
title A model of learning task-specific knowledge for a new task
status submitted to (conference) Cognitive Science 1999

February 1999
prepublication 1999-4

Abstract

In this paper I will present a detailed ACT-R model of how the
task-specific knowledge for a new, complex task is learned.
The model is capable of acquiring its knowledge through
experience, using a declarative representation that is gradually
compiled into a procedural representation. The model exhibits
several characteristics that concur with Fitt’s theory of skill
learning, and can be used to show that individual differences in
working memory capacity initially have a large impact on per-
formance, but that this impact diminished after sufficient expe-
rience. Some preliminary experimental data support these
findings.

Introduction

From the viewpoint of cognitive modeling it has always
been hard to explain why people can learn new skills as fast
as they usually do. In a typical psychological experiment, the
participant is told to do something he or she has never done
before. Nevertheless, only some verbal instructions and
maybe one or two practice trials are enough to get them
started. Initial performance is characterized by the fact that it
is slow, and that many errors are made. Once a participant
gains some practice, speed goes up, and the number of errors
decreases. Fitt (1964) has described this process in three
stages: a cognitive stage, in which processing is conscious,
deliberate, slow, and requires full attention, an associative
stage, in which processing gradually speeds up and less
attention is needed, and finally an autonomous stage, in
which a skill is performed very fast and requires very little
attention. The autonomous stage is also characterized by the
fact that deliberate control is gradually lost: it is hard for an
expert in some domain to explain exactly what he does.

Generally, there are two categories of models of skill
learning: production system models and neural network
models. Models in the first category start out with a set of
production rules that fully implement the skill. Several
explanations for the speed-up produced by learning are
offered. For example, in Soar (Newell, 1990) the speed-up is
explained by chunking: reasoning steps that previously
required multiple rules are carried out by a single rule after
learning. Another explanation is that the efficiency of a rule
itself is improved. For example, in ACT-R (Anderson & Leb-
iere, 1998) strength parameters are maintained for each rule.
As a rule is practiced, its strength value increases, and the
time it takes to use it decreases. Although these models often
predict the data very well, a conceptual problem remains:
where do these initial production rules come from? The gen-
eral critique is that these models are “preprogrammed”: they

already contain the information they are supposed to learn.
Also the more qualitative aspects of the stages in skill learn-
ing, like the requirement for attention at the start and the lack
of conscious access in the end, remain largely unexplained.

The models in the second category are characterized by
the fact that they acquire their knowledge only gradually.
Neural networks are the most prominent examples of these
models, although models based on genetic algorithms have
the same type of properties. The big advantage of these mod-
els is that they are not “pre-programmed”: they acquire the
necessary knowledge autonomously. The disadvantage is
that this process is slow. This means that the learning process
towards to the autonomous stage is explained very well, but
that learning within the cognitive stage is not captured.

One of the reasons why the initial stage of skill learning is
so hard to model, is the fact that the participant’s general
common sense knowledge comes into play. This knowledge
is necessary to interpret the instructions, and to fill in the
gaps in these instructions. For example, if the instruction is
“push the button when an X appears on the screen”, it is
assumed to participant knows what an X is, what the screen
is, and how to push a button. In other cases, for example in
the scheduling task I will discuss later on, participants have
to discover for themselves how to perform the task.

A theory that can explain the transition from the cognitive
to the autonomous stage is proposed by Anderson (1982).
This theory is based on the distinction between declarative
and procedural memory. Declarative memory contains fac-
tual knowledge, and is available to conscious access. Proce-
dural memory on the other hand contains production rules.
These rules can only act, and cannot be inspected them-
selves. The idea is that in the cognitive stage the task-specific
knowledge is represented declaratively. Declarative knowl-
edge cannot act by itself, so it has to be interpreted by pro-
duction rules. This explains why processing in the cognitive
stage is slow. It also explains the fact that it is a conscious
process, since declarative knowledge is available to con-
sciousness. Gradually, during the associative stage, this
declarative knowledge is compiled in production rules.
These rules can act much faster than declarative knowledge,
but are not available to consciousness. When all declarative
knowledge is compiled, the autonomous stage is reached.
Since the declarative knowledge is no longer needed, it is
gradually forgotten and conscious control of task perfor-
mance is lost.

Although this theory of skill learning is specified in terms
that can be implemented in a production system, this is
hardly ever done. In this paper I will discuss a model that
does acquire its skills in this fashion. The model is imple-
mented in ACT-R, and the task it models is scheduling.

A model of learning task-specific knowledge for a new task

Niels A. Taatgen

Cognitive Science and Engineering, University of Groningen
Grote Kruisstraat 2/1, 9712 TS Groningen, the Netherlands

niels@tcw2.ppsw.rug.nl

The general skill-learning model

ACT-R (Anderson & Lebiere, 1998) is a cognitive architec-
ture based on a production system. It has two long-term
memory stores: a declarative memory and a procedural
memory. Although knowledge is represented by symbols in
each of these memories (chunks and productions, respec-
tively), it has a rich underlying sub-symbolic layer of repre-
sentation that handles aspects like choice, errors, reaction
times and forgetting.
Figure 1 shows an outline of the general skill-learning
model. Each of the boxes in the diagram represents a type of
knowledge: rectangles represent procedural knowledge,
rounded boxes represent declarative knowledge. The dashed
boundary indicates which of these knowledge types are task
specific. The four types of knowledge that are part of the
task-specific knowledge each have a different representation.
Declarative rules are rules that are stored as a fact. An exam-
ple of such a rule is:

Example-Declarative-Rule
Isa Declarative-Rule
Goal Count
Retrieve Number-order
Test “

current count is equal to first number
in number-order

”
Action “

set the count to the second number
in the number-order

”

This rule is part of a counting procedure. It specifies that it is
applicable to a goal of type count. When it is applied, a num-
ber-order fact (e.g., “Two is followed by Three”) has to be
retrieved of which the first number matches the current
count. The second number in this fact should be stored in the
goal. The procedural counterpart of this rule is:

IF the goal is to count and the current count is

num1

AND

num1

 is followed by

num2

THEN set the current count to

num2

Each time a declarative rule is used, there is a small probabil-
ity that it will be compiled into a production rule. Although
both representations will lead to the same results, there are

differences. The declarative rule cannot act by itself. It needs
to be interpreted by production rules. Figure 2 shows the
process: given a certain goal, a suitable declarative rule is
retrieved first, than the fact specified in the rule is retrieved
while checking whether the test is satisfied at the same time.
Finally the action is carried out and the goal is cleaned up.
The procedural representation can do this in a single step, so
is much faster. A declarative rule has its own advantages,
however. Since it is declarative, it can be inspected by other
rules than the rules that are used to carry it out. The counting
rule, for example, can be modified slightly to count letters in
stead of digits. Production rules do not offer this flexibility,
since they cannot be inspected themselves. If a declarative
rule leads to an error, a modified version can be created to try
something else. A final aspect of using a declarative rule is
that it uses working memory capacity. There is no such thing
as a working memory in ACT-R. The function normally
attributed to working memory, keeping track of currently rel-
evant task knowledge, is related to the spread of activation
from the goal. Due to the interpretation process of the declar-
ative rule, the activation that originates from the goal has a
larger fan: it is spread out over more chunks and becomes
“thinner”. In terms of working memory capacity: the declar-
ative rule consumes some of the working memory capacity
that is available for normal processing.

In stead of using a rule to solve a problem, an example or
instance can be retrieved that immediately contains the
answer, in a fashion that is comparable to Logan’s (1988)
instance theory. In ACT-R, achieved goals are kept in declar-
ative memory automatically, an serve as instances that can be
retrieved later (provided they have not been forgotten).

Instructions,
biases, feedback

Production
rules

Instances

Figure 1: Overview of the proposed skill-learning model in ACT-R

Task specific knowledge

Declarative rules

Learning
strategies

Decl. rules from
other domains

B

B

B

A

A
If knowledge type A is used
to solve an instance of the
problem, knowledge type B
is learned automatically

Knowledge type A has the
goal to produce knowledge
type B

Knowledge of type B uses
type A as a (possible)
source of knowledge

A

procedural
knowledge

declarative
knowledge

goal retrieve goal

decl.ruledeclarative rule

goal decl. rule
retrieve a fact

satisfying test fact

perform action

(changes goal)

goalÕ decl. rule

fact

clean upgoalÕ

Figure 2: Interpreting declarative rules

Since there is no initial task-specific knowledge, except for
some uninterpreted instructions and possible biases, general
“common sense” knowledge is needed to make a start. This
knowledge is indicated in figure 1 by the term

learning strat-
egies

. Learning strategies interpret instructions or try to
modify declarative rules for other, similar tasks, or use other
strategies to come up with methods to do the new task. The
general idea is that this set of learning strategies is not fixed,
but may be a source of individual differences. Taatgen
(1997), for example, describes how different learning strate-
gies can explain the difference in behavior between adults
and children in the discrimination-shift task. In the example
model analogy will be used as a learning strategy.

At each stage in the reasoning process, there are multiple
possible strategies to try. According to ACT-R, the strategy
with the highest expected gain will win the competition.
Retrieving an instance or using a production rule is generally
the fastest strategy, followed by using a declarative rule.
Using a learning strategy is generally only a good idea if the
existing knowledge is insufficient or incorrect.

The scheduling task

An example of a complex task that is easy to explain but
which is new to most people is scheduling. Figure 3 shows
an example of a scheduling task used in our experiments.
The goal is to assign a number of tasks (6 in the example) to
a number of workers (2 in the example), satisfying a number
of order constraints. A solution to the example in figure 3 is
to assign DEA to the first worker, and FCB to the second.
The participants have to solve the problem entirely by heard:
the interface only allows them to type in the answer, which is
represented by asterisks on the screen. An example fragment
of verbal protocol is as follows:

Yes. There are two workers with each six hours. Two. Task A, task B,
task C. The schedule has to satisfy the following constraints... Task C
before A, C before A, E before B, F before B and D before C. [..unintel-
ligible..] First now D. D.. D..C..A..B.., D..C..A..B.., D.C.A.B., DCAB,
and then, DCAB, [keys in DCAB] and then E... E..F, E..F. [keys in EF]
[Receives feedback] Oh, task F is not before B. C.., D has to be before
C. D.. No, C..D.., D has to be before C. C.. D.., C.. D.., A...B [keys in
CDAB] that’s one worker. E..F..., [keys in EF]. [receives feedback]
Huh?! Task F is not before B and task D is not before C? Oh wait. D has
to be before C, so first D... D...C..AB..AB [keys in DCAB]. Next
worker, F.. yes, F..E.., ready. [keys in FE]. [receives feedback] Task E is
not before B? Isn’t it? Yes? [Emphasizing, keys in]
D..C..A..B..E..E..F...ready. [receives feedback]. Well! Ehmm.. Task D

takes two hours. [Silence] Task F is not before B, so F should be before
B. Task E before... E should be before B, so E and F shouldn’t be done
by.... by the same worker. So we will, let’s see. Task C before A, so we
will first.... E before B, so we will first E..E..E..B..C. E...E..B..C.., EBC,
no that’s not right. EBC..F..A..B.. Ah.. start again. The D should be
before C. [silence]. E... Ehm... The D should be before the C, so we put
the D with worker one, and C with worker two. So we start with E with
worker one... E..C..A.. E.C.A. ECA.. E.C.A. No, I don’t get it...
E..C..A..D..F.. Oh.. wrong again.

As can be seen is this small fragment of protocol, the partici-
pant has a hard time memorizing partial solutions and decid-
ing what to do next. This often leads to forgetting or mixing
up letters, signs of an overloaded working memory.

I will explore this task in two models, the second of which
is an extension of the first. The first will only model the pro-
ceduralization aspect of the general model from figure 1,
while the second model will use a learning strategy to pro-
duce new task-specific declarative rules. The second model
will also suffer from working memory limitations, as will be
evident when I discuss its performance.

The first model

A first approximation of a model of scheduling has the fol-
lowing components:
1. Production rules that interpret and proceduralize declara-

tive rules as outlined in the previous section
2. A top-goal that reads the task and pushes a task subgoal

and types out the answer of the subgoal has been reached
3. Productions that store elements in a list, and implement

rehearsal, both maintenance and elaborate.
4. A set of declarative rules that implements a simple strat-

egy for scheduling.
5. Productions that produce some sort of verbal protocol.

Results of the first model

The model was tested using a set of ten example problems,
all of which consisted of two workers and six or seven tasks.
Although the problems are not particularly hard, this is not
yet important since the answer given by the model is not
checked. The model uses only symbolic learning, and has all
subsymbolic learning turned off. New chunks in declarative
memory do not have a role in the problem solving process
yet. Improvements in performance can therefore be attrib-
uted to production compilation. Figure 4 shows the learning

Figure 3: Example of a scheduling experiment

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Problem number

So
lu

tio
n

tim
e

Figure 4: Learning curve of the first model

curve of the model. To get some idea of the rate of learning,
the growth in the number of productions is plotted in
figure 5. The more interesting part is the pseudo verbal pro-
tocol produced by the model. To see the impact of procedur-
alization, examples of the output of the first and the tenth
problem have been printed in below.

Protocol of the first problem

There are two workers. Each of the workers has seven hours. Task A
takes two hours. Task B takes two hours. Task C takes two hours. Task
D takes two hours. Task E takes three hours. Task F takes three hours.
Task B before F. Task F before A. First I will find a task to begin with.
Let's look at an order constraint. B before F. Let's see if there is no ear-
lier task. There is no earlier task. Begin with B. B Can we find a next
task just by looking at the order? B before F. B.. F.. Can we find a next
task just by looking at the order? F before A. B.. F.. A.. Can we find a
next task just by looking at the order? Is this a schedule for one worker
or for more? Now I am going to count how many hours we already have
B.. How long does this one take? Task B takes two hours. Add this to
what we have. nothing plus two equals two. F.. How long does this one
take? Task F takes three hours. Add this to what we have. Two plus
three equals five. A.. How long does this one take? Task A takes two
hours. Do we have enough for one worker? Each worker has seven
hours. We can move to the next worker.. B.. F.. A.. next.. Let's do the
rest Now we are going to look at all the tasks, and see which ones are
not yet in the schedule. Let's start with A. Task A takes two hours. Let's
try to put it in the schedule. A is already in the schedule. OK, what is
the next letter? B comes after A. Task B takes two hours. Let's try to put
it in the schedule. B comes after A. B is already in the schedule. OK,
what is the next letter? C comes after B. Task C takes two hours. Let's
try to put it in the schedule. C comes after B. B.. F.. A.. next.. C.. OK,
what is the next letter? D comes after C. Task D takes two hours. Let's
try to put it in the schedule. D comes after C. B.. F.. A.. next.. C.. D..
OK, what is the next letter? E comes after D. Task E takes three hours.
Let's try to put it in the schedule. E comes after D. B.. F.. A.. next.. C..
D.. E. Task F takes three hours. Let's try to put it in the schedule. F
comes after E. F is already in the schedule. OK, that was the last task,
we're done! The answer is B F A next C D E

Protocol of the tenth problem

There are two workers. Each of the workers has six hours. Task A takes
one hours. Task B takes one hours. Task C takes two hours. Task D
takes two hours. Task E takes three hours. Task F takes three hours.
Task D before E. Task E before A. First I will find a task to begin with.
Let's see if there is no earlier task. Begin with D. D.. D.. E.. D.. E.. A..
Can we find a next task just by looking at the order? Is this a schedule
for one worker or for more? Now I am going to count how many hours
we already have D..E..A.. D..E..A.. next Now we are going to look at all
the tasks, and see which ones are not yet in the schedule. Let's start with
A. A is already in the schedule. D..E..A.. next.. B D..E..A..next..B..C D
is already in the schedule. E is already in the schedule. D..E..A.. next..

B..C..F. OK, that was the last task, we're done! The answer is D E A
next B C F

Clearly, the protocol of the first problem is a protocol ana-
lyst’s dream, because participants are hardly ever that pre-
cise. But the tenth protocol looks more familiar: many steps
in the process are omitted, and we can only guess why some
decisions have been made. This concurs with the general
idea that proceduralized skills produce no verbal protocol
(Ericsson & Simon, 1984).

Although this first model shows some interesting proper-
ties similar to real problem-solving behavior, it is far from
complete. The current model just takes a single shot at the
solution, and does not retry if it is incorrect. Only ACT-R’s
production compilation had been turned on, so the model
will never forget any intermediate results it has found. And
finally, the model starts out with a set of task-specific declar-
ative rules. One of the desired properties of the model was to
start without any task-specific knowledge. These issues will
be addressed in the second version of the model.

Learning scheduling

People may not know anything about schedules, but they do
know something about lists, and how to construct them. Sup-
pose we need to make a schedule. We may use knowledge
about lists to start with. How do we make a list? First we
have to find a first item for the list, a begin. Once we have a
begin, we find a next task until we are done. But how do we
find something to begin with, and how do find a next task?
We may choose to handle these problems making them sub-
goals, or we may try to find mappings between ‘begin’ and
‘next’ and terms in the scheduling problem. For example, a
mapping can be made between ‘next’ and an order-constraint
in the scheduling problem. The result is a modified version
of the list-building declarative rules, with ‘list’ substituted by
‘schedule’ and ‘next’ substituted by ‘order’. Note that for
sake of the explanation, the terms ‘list’, ‘begin’, ‘before’ and
‘next’ will be used to refer to general terms, and ‘schedule’
and ‘order’ to refer to task-specific terms. Except for knowl-
edge on how to build a list, the analogy between a schedule
and a list may also offer knowledge on how to retain a list in
memory by rehearsal.

Although these new declarative rules may find a start, they
are insufficient to build a complete schedule, mainly because
the mapping between ‘next’ and ‘order’ is inadequate. When
this declarative rule fails to make a complete schedule,
another plan may take over and contribute to the schedule.

An idea that may take over if the list-building plan fails to
add any more tasks to the schedule is the plan that tries to
complete the first worker. A useful general plan may state
that whenever something has to be completed, the difference
between the desired size and the current size has to be calcu-
lated, after which an object had to found with a size equal to
this difference.

The central emerging idea is therefore that several strate-
gies from similar domains are adopted and patched together.
This method of adapting old strategies for new purposes is
similar to

script

 and

schema

 theories. Traditional script and
schema theories assume that a complete script is first adapted

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10

Problem number

Nu
m

be
r o

f p
ro

du
ct

io
ns

Figure 5: Growth in the number of production rules

to fit the current task, and then carried out. The ACT-R
model uses a more on-demand style of adaptation: a new
declarative rule is created at the moment it is needed.

The second model

The second model solves some of the shortcomings of the
first. It learns new declarative rules as outlined in the previ-
ous section. Furthermore, the following aspects have been
added to the model:
1. The model has to come up with a correct solution within

300 seconds. If no solution has been found in this period,
the attempt is counted as a failure.

2. ACT-R’s activation learning is turned on. As a conse-
quence, the model can forget all kinds of partial results it
derives, most notably the list that contains the partial
solution, but also read constraints (which have to be
reread in that case), newly derived declarative rules, etc.

3. Several extra declarative rules have been added to ensure
that correct solutions are eventually found by the model.
The model now tries to satisfy the order constraints for
the second worker as well, and uses the feedback it gets
when it makes an error as a starting constraint for the
next try.

Results of the second model

The following protocol fragment, produced by the model,
gives an impression of the additional aspects of the model:

There are two workers. Each of the workers has six hours. Task A takes
one hours. Task B takes one hours. Task C takes two hours. Task D
takes two hours. Task E takes three hours. Task F takes three hours.
Task B before C. Task F before A. I have to think of some new way to
find a schedule. Let's use what I know about lists. First I will find some-
thing to begin with. Let's look at a before constraint. I have to think of
some new way to find a before. Let's use what I know about order. Let's
use a order fact as a before fact. F before A. I have to think of some new
way to find a before following a failed declarative rule 12. F before A. I
have to think of some new way to find a before following declarative
rule 12. Let's look at a before constraint. Let's see if there is no earlier
element. Let's use a order fact as a before fact. There is no earlier ele-
ment.

[three failed episodes removed]

First I will find something to begin with. Begin with F. F.. Now I have to
find the next thing. F before A. A.. Now I have to find the next thing. No
more items for the list, let's check whether we're done. F.. A.. Is this a
schedule for one worker or for more? Now I am going to count how
many hours we already have F.. Add this to what we have. Nothing plus
three equals three. A.. Add this to what we have. Three plus one equals
four. Do we have enough for one worker? No, the schedule is not full,
yet. F.. A.. Now find the task that fits in. Task C takes two hours. C.. We
can move to the next worker.. NEXT-WORKER Let's do the rest F.. A..
C.. NEXT-WORKER.. I now try to find any unused order constraints. B
before C. B before C. This one hasn't been used, so the constraint has
been found. B before C. B before C. B.. Now we are going to look at all
the tasks, and see which ones are not yet in the schedule. Let's start with
A. Task A takes one hours. A is already in the schedule. OK, what is the
next task? Task B takes one hours. B is already in the schedule. Let's
move on to the next task. OK, what is the next task? Task C takes two
hours. C is already in the schedule. Let's move on to the next task. OK,

what is the next task? Task D takes two hours. D.. Let's move on to the
next task. OK, what is the next task? Task E takes three hours. E.. Let's
move on to the next task. OK, what is the next task? Task F takes three
hours. F is already in the schedule. Let's move on to the next task. OK,
what is the next task? OK, that was the last task, we're done! F.. A.. C..
NEXT-WORKER.. B.. D.. E.. The answer is F A C NEXT-WORKER
B D E

This particular problem required five attempts, only two of
which are shown: the first and the final, successful episode.
In the first two fragments, the model is busy figuring out how
aspects of the problem can be mapped onto things it knows
something about. Unfortunately, the primitive protocol gen-
erating part of the model produces some awkward sentences
with references to internal symbols. Somewhere along the
line the model gets stuck, because it cannot keep track of all
the constraints in the task and all the newly derived declara-
tive rules. The third search episode is slightly more success-
ful: it can use the declarative rules derived in the first two
episodes. Unfortunately, it fails just when it is done, because
it cannot retrieve the start of the list anymore for typing in
the answer. In the fifth, successful episode some of the ear-
lier derived results can be retrieved, which is evidence that
the model uses the instance strategy. For example, the model
immediately starts with “Begin with F” instead of deriving
this fact.

Individual differences

The basic performance results of the second model have
roughly the same shape as the results from the first model.
The second model is, however, sensitive to working memory
limitations. According to Lovett, Reder and Lebiere (1997),
individual differences in working memory capacity can be
modeled by variations in the spread of activation in ACT-R,
as mediated by the source activation (W) parameter. When
this parameter is varied between 0.8 and 1.4, it produces the
accuracy rations depicted in figure 6. Accuracy means in this
case: the proportion of problems solved correctly within 300
seconds. The interesting aspect of different working memory
capacities is that at the start of the experiment the differences
are very high: the low capacity model hardly gets any prob-
lem done, and the high capacity model is successful almost
all the time. At the tenth problem however, these differences
have diminished: the low capacity model has proceduralized

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10

Problem number

Pr
op

or
tio

n
co

rre
ct

0.8
1
1.4

Figure 6: Accuracies of the second model for a low (0.8),
average (1) and high working memory (1.4) capacity

enough knowledge to be able to reach a correct solution most
of the time.

Preliminary empirical evidence for the model

As part of a study of mental fatigue (Jongman & Taatgen,
submitted), we have used the scheduling task and the digit
working memory task that has been modeled in ACT-R by
Lovett, Reder and Lebiere (1997). The digit working mem-
ory task was used to make an estimate of the working mem-
ory capacity of a participant, expressed in the ACT-R source
activation parameter. This working memory capacity was
related to the performance on the scheduling task. Unfortu-
nately, the scheduling task as it was used in this particular
experiment was a mixture of problems with two and three
workers with varying difficulty and varying time limitations.
It is therefore hard to directly compare the results to the
model predictions. Nevertheless some of the more qualitative
predictions of the model can be tested with respect to indi-
vidual differences. The model predicts a strong correlation
between working memory capacity and the performance on
the scheduling task. This proved to be the case in the experi-
ment: the correlation between the estimated source activation
and the number of successfully solved schedules is 0.56
(with n=16). This correlation increases to 0.66 if the analysis
is restricted to the three-worker schedules, the schedules that
require most working memory capacity. A more specific pre-
diction of the model is that the effect of working memory
capacity on performance will diminish due to proceduraliza-
tion. To investigate this prediction, the group of participants
is split into eight low source-activation participants
(W<0.95) and eight high source-activation participants
(W>0.95). The proportions of correct solutions for each of
the groups is plotted in figure 7. In this graph only three-
workers problems are shown, and to average out part of the

noise each data point is averaged with its predecessor and its
successor. There is a clear convergence between the two
curves, as can be seen in the bottom graph that depicts the
difference.

Discussion

The skill-learning model discussed above exhibits many of
the characteristics normally attributed to different stages in
problem solving. In the cognitive stage, declarative rules are
used. While these rules are interpreted, they are part of the
current goal context and are available to consciousness. The
interpretation process is slow, and susceptible to errors, espe-
cially if the task-demands with respect to working memory
are high. On the other hand declarative rules may be manipu-
lated by learning strategies, offering flexibility. In the auton-
omous stage, all processing is handled by production rules,
which are fast and less demanding for working memory.
Moreover, once the declarative rule itself is forgotten, con-
scious access to the skill is lost.

Although the model discussed above implements the skill-
learning process for the scheduling task, the basic framework
can be used for learning other tasks as well. The prior knowl-
edge of the model can to be changed, and maybe also the
learning strategies, in order to enable it to learn a different
task.

Availability of models

Both models can be retrieved from: http://tcw2.ppsw.rug.nl/
~niels/thesis. They are listed under the “chapter 7” caption.

References

Anderson, J. R. & Lebiere, C. (1998).

The atomic components
of thought

. Mahwah, NJ: Erlbaum.
Anderson, J. R. (1982). Acquisition of cognitive skill.

Psy-
chological Review

,

89

, 369-406.
Ericsson, K. A. & Simon, H. A. (1984).

Protocol analysis.
Verbal reports as data.

 Cambridge, MA: The MIT Press.
Fitts, P. M. (1964). Perceptual-motor skill learning. In A. W.

Melton (Eds.),

Categories of human learning

. New York:
Academic Press.

Jongman, L. & Taatgen, N.A. (submitted). An ACT-R model
of individual differences in changes in adaptivity due to
mental fatigue. Submitted to the 21th cognitive science
conference.

Logan, G. D. (1988). Toward an instance theory of automiza-
tion.

Psychological Review

,

22

, 1-35.
Lovett, M. C., Reder, L. M., & Lebiere, C. (1997). Modeling

individual differences in a digit working memory task.

Pro-
ceedings of the Nineteenth Annual Conference of the Cog-
nitive Science Society

 (pp. 460-465). Hillsdale, NJ:
Erlbaum.

Newell, A. (1990).

Unified theories of cognition

. Cambridge,
MA: Harvard university press.

Taatgen, N.A. (1997). A rational analysis of alternating
search and reflection in problem solving.

Proceedings of
the 19th Annual Conference of the Cognitive Science Soci-
ety

 (pp.727-732). Hillsdale, NJ: Erlbaum

0

0.2

0.4

0.6

0.8

1

5 10 15 20

Trial number

Ac
cu

ra
cy

Low W
High W

0

0.1

0.2

0.3

0.4

5 10 15 20

Trial number

Ac
cu

ra
cy

 h
ig

h
- l

ow

Figure 7: Proportion of correctly solved schedules for the 8
highest source activations and the 8 lowest source activations.
The top graph shows the accuracy curves for both groups, the

bottom graph shows the difference between the two.

University of Groningen
Cognitive Science and Engineering
prepublications

TCW-1999-4 N.A. Taatgen
A model of learning task-specific knowledge for a new task

TCW-1999-3 L. Jongman & N.A. Taatgen
An ACT-R model of individual differences in changes in adaptivity due to mental fatigue

TCW-1999-2 N.A. Taatgen
Implicit versus explicit: an ACT-R learning perspective Commentary on Dienes & Perner:

TCW-1999-1 N.A. Taatgen
Cognitief Modelleren: Een nieuwe kijk op individuele verschillen

TCW-1998-5 P. Hendriks
Waarom Plato’s probleem niet van toepassing is op de verwerving van taal

TCW-1998-4 N.A. Taatgen
Review of ‘The Atomic Components of Thought’

TCW-1998-3 P. Hendriks & H. de Hoop
On the interpretation of semantic relations in the absence of syntactic structure

TCW-1998-2 H.P. van Ditmarsch
User interfaces in natural deduction programs

TCW-1998-1 C. Lebiere, D. Wallach & N.A. Taatgen
Implicit and explicit learning in ACT-R

TCW-1997-2 N.A. Taatgen
Explicit learning in ACT-R

TCW-1997-1 L.C. Verbrugge & B. Dunin-Keplicz
A reconfiguration algorithm for the maintenance of collective commitments

University of Groningen
Cognitive Science and Engineering (TCW)
Grote Kruisstraat 2/1
9712 TS Groningen
The Netherlands
+31 50 3635877 fax 3636784
http://tcw2.ppsw.rug.nl/prepublications/

