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Abstract

A popular distinction in the learning literature is the distinction between implicit and

plicit learning. Although many studies elaborate on the nature of implicit learning, little a

tion is left for explicit learning. The unintentional aspect of implicit learning corresponds 

to the mechanistic view of learning employed in architectures of cognition. But how to ac

for deliberate, intentional, explicit learning? This chapter argues that explicit learning can 

plained by strategies that exploit implicit learning mechanisms. This idea is explored and

elled using the ACT-R theory (Anderson, 1993). An explicit strategy for learning facts in A

R’s declarative memory is rehearsal, a strategy that uses ACT-R’s activation learning m

nisms to gain deliberate control over what is learned. In the same sense, strategies for 

procedural learning are proposed. Procedural learning in ACT-R involves generalisation

amples. Explicit learning rules can create and manipulate these examples. An example o

explicit rules will be discussed. These rules are general enough to be able to model the l

of three different tasks. Furthermore, the last of these models can explain the difference b

adults and children in the discrimination-shift task.

Introduction

One of the basic assumptions all architectures of cognition share is that all learnin

be described with a fixed set of mechanisms. The term ‘mechanism’ refers to the fact tha

ing is unintentional and is always at work. The term ‘fixed’ refers to the fact that learning n

changes, and is the same for each person, regardless of age or intelligence. This view o

gence seems to be at odds with the general view of learning in psychology. The hallm

learning is adaptation, the capacity of the organism to change its behaviour to suit a pa

environment. This does not necessarily imply that learning itself is susceptible to adap

But work from developmental psychology clearly suggests that learning changes with ag

classical experiment that shows the way children learn differs from adults is discrimination

learning (Kendler & Kendler, 1959). We will discuss this experiment in more detail later o

second counter-intuitive aspect of learning mechanisms is the fact that learning is uninten
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Although we have no complete control over learning, the idea that we have no control

seems to be too strong. 

The distinction between implicit and explicit learning is centred around this issue. Im

it learning is unconscious and unintentional, so is consistent with the mechanistic and

view of learning in architectures of cognition. In explicit learning, on the other hand, goal

intentions determine what is learned. Moreover, many studies suggest that explicit lear

much more powerful than implicit learning (see for an overview Shanks & John, 1994). 

things can’t be learned by implicit learning, but can be learned by explicit learning. Fin

things that can be learned implicitly can often be learned faster explicitly. 

Another aspect of learning that seems to be at odds with mechanistic learning is le

through insight, as discussed in section 4 of this book. Many learning mechanisms mode

ual learning. Learning in the PDP neural network tradition is gradual (Rumelhart & McClel

1986), and chunking in Soar is inspired by, and can explain the power law of practice (N

& Rosenbloom, 1981). A property of insight learning is a sudden qualitative shift. Take fo

ample match stick algebra (MSA), as discussed in Knoblich and Ohlsson (1997). In MS

insights subjects gain concern a number of constraints that are part of normal algebra. T

jects have to discover that these constraints may be violated in MSA. Knoblich and O

conclude that once a subject has relaxed a certain constraint, it stays relaxed. In other wo

subject has learned something about a certain constraint in the context of MSA. This t

learning is not gradual, but step wise.

So the central question of this chapter is how learning mechanisms in architectures 

nition can be made consistent with an adaptive view of learning that allows for flashes

sight. Or, stated in another way, we need a theory of explicit learning. We will concentra

discussion on the ACT-R architecture (Anderson, 1993), but some aspects may apply t

architectures as well.

Since mechanisms in architectures are fixed, we have to seek for other ways to e

adaptation in learning. The only thing that changes over time in an architecture is the know

in its memory. An explanation of changes in learning has to be an explanation in terms of 

es in the content of memory. As a consequence, the learning capabilities of an individual

divided into two classes, the implicit learning mechanisms of the architecture and explicit 

ing strategies in its memory. What is the nature of these explicit learning strategies? Th

two possibilities. The first possibility is, that an explicit strategy can directly effect memor

that case, we might have a rule in procedural memory that can directly change other ru
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adding conditions, changing weights, etc. This, however, doesn’t seems to be a good 

One of the essential properties of procedural memory is, that it cannot access its contents

ly. To be able to intentionally change a rule we need such a direct access. Moreover, it

violate one of the basic assumptions of an architecture of cognition, that the learning m

nisms in the architecture are sufficient. So we have to focus on a second, more likely poss

that explicit learning is built on top of implicit learning in the sense that it learns by using

plicit learning mechanisms.

A relatively simple example might explain this point. It is a well-known fact that peo

aren’t very good at remembering facts that cannot easily be related to other knowledg

have. The whole tradition of theories about short-term memory that started with Miller’s 

ical number seven is based on this fact (Miller, 1956). Atkinson and Shiffrin (1968) introd

the mechanism of rehearsal, to account for the fact that some facts in short-term memory

stored in long-term memory, and others do not. Closer scrutiny however shows, that reh

isn’t really a mechanism in the sense discussed earlier. Rehearsal isn’t always at work, 

the time it isn’t. People only rehearse if they have consciously decided to do so. So reh

isn’t mechanistic, it is tied to intentions. Neither is rehearsal fixed. It turns out small childre

not use rehearsal at all, so it must either be a dormant strategy that surfaces at some po

strategy that children acquire at some point during development. So rehearsal is a typica

ple of learning that is not part of the architecture, but rather a strategy represented in m

We will return to this issue after a brief introduction of learning in the ACT-R architecture

Learning in ACT-R

The ACT-R architecture has two memory systems, a declarative memory and a proc

memory. Associated to each of these memory systems is a number of learning mechanis

add and maintain the knowledge in them. ACT-R is based on the theory of rational analys

derson, 1990), and the learning mechanisms of ACT-R are no exception to this. Accord

rational analysis, the cognitive system is optimised to its environment. So a careful exam

of the environment can shed as much light on the cognitive system as studying the co

system itself.

Implicit learning in declarative memory

A first example of the role of rational analysis in ACT-R is declarative memory. Elem

in declarative memory, called chunks, closely resemble nodes in a semantic network
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chunk has an activation value. This value represents the odds that the chunk will be ne

the current context. To be able to estimate this value, the learning mechanisms have to

close track of the environment. The activation value of a chunk has two parts, the base-le

tivation and activation through associations with other chunks. The latter is context-depe

once a certain chunk is part of ACT-R’s current context, all chunks with an association 

chunk gain activation temporarily, since the presence of an associated chunk increas

chance of being needed. The base-level activation of a chunk is based on its past use. T

tors play a role: how many times a chunk was needed in the past, and how long ago th

The learning rule used in ACT-R is derived from Bayesian statistics. Anderson shows th

rule both reflects regularities in the environment and empirical data from memory experim

Association strengths are learned using similar rules. ACT-R uses activation values of c

to order the chunks in the matching process, because the activation value determines th

takes to retrieve the chunk. 

Implicit learning in procedural memory

As the name implies, knowledge in production memory is represented by produ

rules. Associated with each rule are a number of parameters. The strength parameter is

reflect past use of a rule, and is governed by the same laws as the base-level activa

chunks. The a, b, q and r parameters of a rule reflects its past cost-benefit characteristic

and b parameter represent the current and future cost of a rule, and the q and r param

chance of succeeding and reaching the goal. Bayesian statistics are again used to estim

parameters. The cost-benefit parameters are used in conflict resolution. For each rule th

lowed to match, an expected outcome is calculated using the equation:

expected outcome = PG-C

In this equation, P is the estimated chance of success, calculated from q and r, G the es

value of the goal and C the estimated cost of reaching the goal, calculated from a and b

New rules are learned by the analogy mechanism. This involves generalisation of 

ples in declarative memory whenever a goal turns up that resembles the example. The ex

are stored in specialised chunks, dependency chunks, that contain all the information n

an example goal, an example solution, chunks (called constraints) that must be retrieve

declarative memory in order to create a solution, and sometimes additional subgoals th

be satisfied before the main goal can be reached.



 

Explicit Learning in ACT-R

 

5

 

hunk

ed. In

 to de-

e rule

at all

 in de-

e to

 pro-

ough to

ved in

e base-

al can

arning

nds on

nts
Figure 1 shows and example of deriving a rule for doing a simple addition. The c

dependency2+3 points to example-goal1 in which the addition 2+3 must still be calculat

example-solution1 the answer is supplied in the answer slot. The additional fact needed

rive the rule is the fact that 2+3 equals 5. Whenever a new addition problem turns up, th

production-problem-production1 will be derived and added to production memory. Note th

identifiers starting with an =-sign are variables, and can be matched with arbitrary chunks

clarative memory.

How can ACT-R’s learning mechanisms, which are clearly implicit in nature, give ris

explicit, intentional learning? The next section will explore this question.

Explicit learning in ACT-R

Explicit learning in declarative memory

The implicit mechanisms to calculate the activation of a chunk in declarative memory

vide a good estimate of the chance the chunk will be needed. But sometimes it is not en

rely on the environment to cue the right facts the right number of times. As already obser

the introduction, rehearsal can provide a strategy that can help us memorise facts. Sinc

level activation is calculated from the number of times a certain fact is retrieved, rehears

emulate extra uses of a certain fact. In other words, rehearsal tricks the base-level-le

mechanism into increasing the activation of a certain chunk.

Craik and Lockhart (1972) have observed that the effectiveness of rehearsal depe

dependency2+3
isa dependency
goal example-goal1
modified example-solution1
constraints fact2+3

example-goal1
isa addition-problem
arg1 two
arg2 three
answer nil

example-solution1
isa addition-problem
arg1 two
arg2 three
answer five

fact2+3
isa addition-fact
addend1 two
addend2 three
sum five

(p addition-problem-production1
=example-goal-variable>

isa addition-problem
arg1 =two-variable
arg2 =three-variable
answer nil

=fact2+3-variable>
isa addition-fact
addend1 =two-variable
addend2 =three-variable
sum =five-variable

==>
=example-goal-variable>

answer =five-variable)

Figure 1. Example of ACT-R’s analogy process. The left column shows the conte

of declarative memory, the right column shows the analogised production rule.
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the level of processing. Simple maintenance rehearsal turns out to be much less effecti

elaborate rehearsal, in which subjects try to associate the new fact with existing facts. Th

tinction can be easily explained in ACT-R, since elaborate rehearsal not only increases th

level activation, but also increases associations with other chunks.

In a previous study I have showed how rehearsal can be modelled in ACT-R (Ta

1996). Rehearsal is implemented by a set of production rules that create subgoals to do

hearsal. The basic rehearsal productions can be enhanced by task-specific rules that can

orate rehearsal. The model was able to reproduce the data from classical free

experiments, and provide explanations for the primacy and recency effect. Rehearsal is

intentional in this model: it only occurs if ACT-R decides to push a rehearsal goal. 

Explicit learning in procedural memory

The analogy mechanism creates rules from dependency chunks in declarative m

The architecture, however, does not specify how dependencies are created. This is no

sary, since dependencies are just chunks in declarative memory. Dependencies may be

up from the environment, or may be supplied by a parent or teacher. On the other hand, 

may be created and manipulated by production rules. So an explicit theory of learning 

dural rules involves dependency-manipulating rules in production memory. These rules 

dependencies that are compiled into new rules by the analogy mechanism (figure 2). 

strategies in procedural memory manipulate the implicit mechanisms: in stead of slowly

ering and generalising regularities from the environment, intentionally created rules are le

The process described here is closely related to the concept of mental models (Jo

Laird, 1983). A mental model is a mental construct that helps us predicting propertie

events in the outside world. A dependency created by explicit learning strategies is a k

mental model.

procedural memory

declarative memory

Explicit learning 
strategies

Dependencies

Explicitly 
learned rules

Figure 2. The process of explicit learning for procedural memory
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How to decide whether to do explicit learning?

Since explicit learning is intentional, a decision has to be made at some point to 

learning attempt. We’ll concentrate the discussion on explicit strategies for procedural k

edge, but similar points may be made on the decision to do rehearsal. 

The easiest case that indicates an explicit strategy is needed, is when we get a cert

come which turns out to be different from our expectations. An expectation-failure, in ter

Schank (1986). Often, however, indications aren’t as clear. At some point we have to m

decision that our current approach isn’t working, and something else is needed.

Decisions in ACT-R are based on a cost-benefit analysis of the available options. S

pose we present a new task to a subject. We have supplied some information to the subje

the task. The subject has several options. Should he just start an attempt in accomplish

task using the information he has? Should he ask for advise, or go to the library to find

information? Or should he first reflect on the task, to come up with some new strategies

pose we restrict our analysis to two possible strategies: search and reflection. If the 

chooses search, he attempts to accomplish the task given his current knowledge about 

If he chooses reflection on the other hand, he will try explicit learning strategies to come u

new rules.

In Taatgen (1997) I describe a model that calculates the expected outcome of eithe

egy over time. I will briefly summarise the results here. The expected outcome has thre

ponents, as mentioned before, P, the chance of reaching the goal using the strategy

estimated value of the goal, and C, the estimated cost of a strategy. Since G is not rela

strategy, we will concentrate on P and C. For search, the cost is relatively constant, and ty

low. The chance of success of search, however, decreases over time if the goal is not r

reflecting the fact that repeated failure is a strong indication that the current knowledge i

or insufficient. An assumption of reflection is, that it needs existing knowledge to work 

You can’t get something out of nothing. This knowledge can have several sources, as w

see later on. For now, we will assume that the only source of knowledge is implicit know

gained through search. So if we have little implicit knowledge to work with, the cost of re

tion is high, since it is difficult to come up with something useful. As our explicit knowle

increases, the cost to come up with something new increases as well. 

A final assumption of the model is, that search increases implicit knowledge, refle

increases explicit knowledge, and explicit knowledge is more powerful. This enables us 

scribe the increase of knowledge over time, related to the conflict resolution mechanis
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selects the strategy with the highest expected outcome. Figure 3 shows an example of th

of the model. Figure 3a shows the growth of knowledge about a specific problem, and fig

shows the expected outcome of search and reflection. The discontinuities in both graph

cate a change of strategy.

A nice aspect of this model is, that it can give a rational account of the explore-imp

insight-execute stages often identified in problem solving that requires insight. In the ex

stage, the subject still thinks his existing knowledge is the best way to reach the goal, in 

passe stage he decides that the existing knowledge is insufficient, and in the insight stage

tion starts in an attempt to gain new explicit knowledge. Finally, in the execute stage the 

process continues using the newly gained knowledge.

An ACT-R model of a simple explicit strategy

The model discussed above is just a mathematical model, and only represents the a

of several types of knowledge with their cost-benefit characteristics. To see if the approa

cussed here really works, we have to make a detailed ACT-R model in which actual le

occurs. The main parts of interest in such a model are the dependency-creating rules, sin

rules form the explicit learning part of the model. These rules have to be quite general

they must be applicable to a wide range of problems. So general rules are in principle c

independent. To be able to work though, they operate on context-dependent knowledge

clarative memory. Possible sources of knowledge are:

- Task instructions and examples

- Relevant facts and biases in declarative memory

- Feedback

0

10

0 100 200 300 400

time (sec)

am
ou

nt
 o

f k
no

w
le

dg
e

Knowledge gained by implicit learning

Knowledge gained by explicit learning

"Insight"

-10

20

0 100 200 300 400

time (sec)

ex
pe

ct
ed

 o
ut

co
m

e

search

reflection

"Insight"

Figure 3. Results of the model. (a) shows growth of knowledge over time, and (b) sh

the conflict resolution process.

(a) (b)
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The beam task

The task we will start with is a beam task. The assumption is, that the model initiall

no task-specific rules about beam-problems. So the only procedural knowledge the mo

is a number of general rules. Later on, we will use the same general rules for other tas

problem is relatively easy: a beam is given, with weights on the left and the right arm. Att

to the arms of the beam are labels, each with a number on it. The task is to predict whe

beam will go left, right, or remains in balance. The number on the labels have no influen

the outcome. Figure 4 shows an example of a beam. Although the task is easy if we know

thing about weights and beams, it is much more difficult if we know nothing at all.

The general rules used to learn this task are the following:

Property-retrieval  

If there is a task that has a number of objects, create a dependency that contains a

ple of retrieving a certain property of each of the objects. In the case of the beam task, the

are the arms of the beam, and weight and label are possible properties. So this rule creat

that directs attention to a certain aspect of the task.

Find-fact-on-feedback 

If feedback indicates that the answer is incorrect, and also contains the correct answ

up a dependency that uses the goal and the answer as examples. Also, retrieve some

serves as a constraint in the dependency. To be able to generate correct rules for the be

we need to retrieve the fact that a certain number is greater than another number, in orde

dict correctly whether the beam will go left or right.

Both general rules involve retrieving an arbitrary chunk from declarative memory, e

a property or a fact. Normally the retrieval of arbitrary chunks will not produce the right r

2 3

1 4weight

label

Figure 4. Example of the beam task
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The chunks retrieved are however not arbitrary, since ACT-R’s activation mechanism e

the chunk with the highest activation is retrieved. Since activation represents the odds

chunks is needed, the chunk with the highest odds of being needed is retrieved. This ac

can itself again be manipulated by explicit declarative memory strategies like rehearsal.

In the model this is reflected by the fact that both property-retrieval and find-fact-on-

back can be influenced by prior knowledge. If there is an association strength between

and weight, indicating knowledge that a beam has something to do with weight, prope

trieval will choose weight in favour of label. If there is an association strength between 

and greater-than, a greater-than fact will be retrieved by find-fact-on-feedback. 

Since the general rules are just production rules, they can be in direct competition w

task-specific rules they generate. So if property-retrieval generates a rule X to retrieve the

X will compete with property-retrieval. So if X is doing a bad job, which it will if it retriev

the label that has no relevance at all to solving the problem, its evaluation will decrease

will eventually lose the competition, in which case property-retrieval will create an examp

retrieving weight. Although find-fact-on-feedback is only activated if feedback indicates a

correct answer, so when an expectation-failure occurs, the rules it produces are in com

with each other. The rule with the highest success rate will eventually win.

Figure 5 summarises the property-retrieval rules, and figure 6 summarises the find

on-feedback rules. Figure 6 shows the case in which a “Don’t know” rule fires. If in stea

incorrect answer is predicted, a dependency is created in the same manner. Apart from t

eral rules, the model contains lisp functions to generate random beams, and production 

give feedback. When the model produces an incorrect answer, it will try the same beam

Property-retrieval

Select a property 
type

Create a depend-
ency

Dependency
contains an 
example of 

retrieving the 
property

Task-specific rule 
Retrieve a certain 

property

Competition
If the task-specific rule 

behaves too poor, a new 
property will be tried

Possible bias:
association 

between weight 
and beam

Figure 5. How property-retrieval works
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until it can predict the right outcome.

Simulation results

The general rules turn out to be sufficient to learn the task. The following rules are e

ples of (correct) rules learned by the model. The rule generated by property-retrieval is

that retrieves the weight property for both arms of the beam, and stores them in the goa

(P GEN-GOAL-PRODUCTION10
     =OLDGOAL10-VARIABLE>
        ISA GEN-GOAL
        TYPE SOLVE-BEAM
        OB1 =O6-VARIABLE
        OB2 =O7-VARIABLE
        PROP1 NONE
        PROP2 NONE
     =P7-VARIABLE>
        ISA PROPERTY
        OF =O6-VARIABLE
        TYPE WEIGHT
        VALUE =ONE-VARIABLE
     =P8-VARIABLE>
        ISA PROPERTY
        OF =O7-VARIABLE
        TYPE WEIGHT
        VALUE =SIX-VARIABLE
  ==>
     =OLDGOAL10-VARIABLE>
        PROP1 =ONE-VARIABLE
        PROP2 =SIX-VARIABLE
        PROPTYPE WEIGHT)

Again note that all identifiers starting with an =-sign are variables. One of the rules gene

by find-fact-on-feedback is a rule that predicts when the right arm of the beam will go do

 (P GEN-GOAL-PRODUCTION12
     =OGOAL11-VARIABLE>
        ISA GEN-GOAL
        TYPE SOLVE-BEAM
        OB1 =O6-VARIABLE
        OB2 =O7-VARIABLE

Find-fact-on-feedback

3 2
3

2

“left”

“Don’t know”
rule fires

Find-fact-type:
greater-than

Find-fact:
3 greater-than 2

Possible bias
association 

between beam and 
greater-than

Dependency
Example of answering left if left 
arm has a greater weight than 

the right arm

Task specific rule
Answer left if left arm has a 
greater weight than the right 

arm

Figure 6. How find-fact-on-feedback works

feedback
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        PROP1 =ONE-VARIABLE
        PROP2 =SIX-VARIABLE
        ANSWER NONE
        PROPTYPE WEIGHT
     =F61-VARIABLE>
        ISA GEN-FACT
        TYPE GT-FACT
        SLOT1 =SIX-VARIABLE
        SLOT2 =ONE-VARIABLE
  ==>
     =OGOAL11-VARIABLE>
        ANSWER RIGHT)

The model was tested in several conditions, differing in the bias given for the prop

and the fact-type. The following table summarises the conditions:

P+ Association between beam and weight

P- Association between beam and label, so a bias for the wrong property

F+ Association between beam and greater-than

F- Association between both beam and greater-than, and beam and number, so tw

sible fact-types were favoured.

F-- No associations between beam and fact-types, four fact-types are possible.

Each experiment has a P- and an F-condition. Each experiment has been run 30 ti

50 trials. Figure 7 shows the results. As can be seen in the graph, in the P+F+ condition

R learns to solve the task quite rapidly, and the fact that the model doesn’t reach a 100%

within a few trials is only due to the fact that beams are generated randomly, only occas

producing a beam in which balance is the correct answer. Performance decreases if the

has less initial information. In the case of the P-F-- condition, the model often fails to fin

correct rules for the task.

Trial number

Pe
rc

en
ta

ge
 c

or
re

ct

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45
P-F+

P-F-

P+F+

P-F--

P+F--

Figure 7. Results of the beam model
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The results in the figure above suggest a gradual increase of performance. This is h

not the case, but a result of averaging 30 runs. If individual runs are examined, each has a

point where performance increases dramatically. To make this clear the following graph d

the average number of incorrect tries for each trial in the P-F+ condition, averaged with r

to the point where the model switches from examining the label property to examinin

weight property. So at x=0 the model creates a dependency that contains an example of

ing weight. 

The dependency is created at the moment that the model has failed several times to

the right answer. As a result, the evaluation of the rule that retrieves the labels drops a

general rule can propose a new dependency. In a sense, this process resembles the im

sight state of insight problem solving.

The card task

General rules are of course only general if they can be used for several different tas

the same rules were used for a new task, a card-classification task. In this task, cards w

tures must be sorted into two categories. The pictures are either one or two squares or

which are either red or green and either large or small. The criterion to sort on is the 

(red=yes; green=no), which the subject has to discover. The same general rules can be

learn this task. First, a property must be selected, so either colour, shape, size or numbe

that, the relevant aspect is tied to the answer. The following rules are examples of rules 

by the model:

(P GEN-GOAL-PRODUCTION167
     =OLDGOAL1167-VARIABLE>
        ISA GEN-GOAL

trial relative to property switch
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Figure 8. Average number of failures for trials relative to a property switch
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        TYPE SOLVE-CAT
        OB1 =O164-VARIABLE
        PROP1 NONE
     =P165-VARIABLE>
        ISA PROPERTY
        OF =O164-VARIABLE
        TYPE COLOUR
        VALUE =GREEN-VARIABLE
  ==>
     =OLDGOAL1167-VARIABLE>
        PROP1 =GREEN-VARIABLE
        PROPTYPE COLOUR)

 (P GEN-GOAL-PRODUCTION169
     =OGOAL167-VARIABLE>
        ISA GEN-GOAL
        TYPE SOLVE-CAT
        OB1 =O164-VARIABLE
        PROP1 =GREEN-VARIABLE
        ANSWER NONE
        PROPTYPE COLOUR
     =GREEN-VARIABLE>
        ISA GEN-FACT
        TYPE COLOUR
        SLOT1 GREEN
  ==>
     =OGOAL167-VARIABLE>
        ANSWER NO)

Discrimination-shift learning

On of the advantages of explicit learning strategies compared to implicit learning is

they can handle change more easily. If something in the environment is no longer valid,

plicit strategy may react by proposing new knowledge to replace the old. An example of 

in which the rules change is discrimination-shift learning (Kendler & Kendler, 1959). Figu

shows an example of this task. Subjects have to learn to discriminate the four stimuli in t

inforcement categories, for example white is positive and black is negative. In this se

closely resembles the card task discussed previously. After the subject has made 10 con

correct predictions, the reinforcement scheme is changed: either a reversal-shift, in wh

+
+

-
-

-
-

+
+

+
-

+
-

Reversal

Extra-dimensional

Figure 9. Example of a discrimination-shift task
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stimuli that received previous positive reinforcement get negative reinforcement and vice-

or an extra-dimensional shift, in which the dimension is changed on which the reinforcem

given, in the example from white to large. It turns out that adults and older children are fa

learning the reversal-shift condition, while young children and animals are faster at the 

dimensional shift. Figure 10a shows the results of an experiment by Kendler and Ke

(1959). The ACT-R model of adult behaviour uses the same 8 production rules as used

beam-task, implementing the property-retrieval and find-fact-on-feedback strategies. It 

rules that are quite similar to the rules for the card task. The small-child/animal model use

2 of the 8 production rules, implementing only limited find-fact-on-feedback strategy. S

latter model hardly uses any explicit reasoning at all, but rather stores regularities in the

ronment in dependency chunks. The results of these models are shown in figure 10b. Al

the models do not mimic the empirical data precisely, the general effects are in the same

tion. 

Despite the fact that the discrimination-shift task is generally not considered to be 

sight problem, it nevertheless requires the subject to notice that something has changed

discover the new relations. So it can be seen, in a sense, as an elementary insight prob

Conclusions

The goal of cognitive modelling is to create computer simulations of cognitive proce

A criterion for a good model is of course whether the results of the simulation match the e

ical data. A second criterion, that becomes increasingly more important, is the question w

the model can learn the knowledge it needs. A model that uses a large set of specialised

tion rules is less convincing than a model that gathers its own knowledge. The learning m

nisms that are part of the architecture are often not capable of doing this job by themsel

T
ria
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 n

ee
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d

reversal extra-dimensional

10

25

Fast learning children

Slow learning children

Figure 10. Trials needed to learn the discrimination-shift task, (a) from the Kendle

Kendler experiment, (b) by the ACT-R model
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they need augmentation. In this chapter, it is argued that the mechanisms of the architect

respond to implicit learning. These mechanisms can be augmented by explicit learning,

implemented by knowledge in memory that directs the implicit learning mechanisms. Th

lowing table summarises the memory systems and learning mechanisms and strategies 

R.

Implicit mechanisms Explicit strategy

Declarative memory Base-level learning Maintenance rehearsal

Association learning Elaborate rehearsal

Procedural memory Parameter learning ?

Analogy Dependency-manipulating rule

Although implicit mechanisms are fixed, explicit strategies have to be learned. So

viduals probably differ in their explicit strategies, although they may well have lots of the

common. Rehearsal, for example, is a strategy used by almost all adults, though it is clea

something we were born with. An interesting question is, whether the same property is al

for the dependency-manipulating rules. Is there a sequence of rules that unfolds during

opment? The model of discrimination-shift task at least hints in this direction. On the othe

we may well expect large individual differences. Experiments in which subjects have to

difficult problems often show that every subject solves a problem in a different way. 

An interesting question is how the issues discussed here can be related to other a

tures. The emphasis on learning models is often attributed to the ascent of neural networ

els. A neural network model typically starts out with an untrained network, that g

knowledge by experience. Neural networks are powerful in the sense that a three-layer n

can learn any function if properly configured. This power is also a weakness, especially 

take the time to learn something into account. Neural networks usually do not have any

structures, so lack the mechanisms to be able to focus learning. To summarise: neural n

do a very good job at implicit learning, but the step towards explicit learning is difficult to m

because of the absence of any goals or intentional structures.

In the Soar architecture on the other hand, goals and deliberate reasoning are eve

important than in ACT-R (Newell, 1990; see for an extensive comparison of ACT-R and

Johnson, 1997). The ACT-R models presented in this chapter only deliberate if existing 

rules prove to be insufficient and, more importantly, if there is any knowledge present on
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to deliberate. So if ACT-R has to choose between actions A and B, a cost benefit analy

tween the rule “do A” and the rule “do B” will decide. Only if both rules prove to perform ba

explicit learning strategies will try to find a more sophisticated rule. A Soar model on the 

hand will always try to make a deliberate and rational choice between A and B, a proce

may require a lot of processing and specific task knowledge. A Soar model that has to 

between A and B, and has no particular additional knowledge, will get into a infinite seq

of impasses. Soar’s single learning mechanism is chunking, which summarises the pro

done between an impasse and its resolution into a new production rule. Although chunki

mechanism, it is only activated after an impasse has been resolved, so after a deliberate 

solving attempt. Since chunking is Soars only learning mechanism, this may cause troub

example, to learn simple facts, for which ACT-R has a separate declarative memory, Soa

the elaborate scheme of data-chunking. Data-chunking eventually produces rules like “I

THEN note is has wings”. To be able to learn this, however, a lot of deliberating has to be

by production rules that or not part of the architecture. So in a sense Soar walks the rever

way: in stead of building explicit learning on top of implicit learning, it accomplishes typ

implicit learning tasks by elaborate explicit schemes. The critical reader will be able to

more examples of Soars problems with simple satisficing behaviour in Johnson (1997).

Since many other architectures like EPIC (Kieras & Meyer, in press) currently suppo

learning at all, ACT-R presently seems to be the best platform to support explicit learning

egies on a basis of implicit learning. To be able to fully sustain explicit learning though, 

technical issues in ACT-R must be resolved. Most notably a mechanism must be inclu

create new chunk-types. The models discussed in this chapter circumvented this problem

ing a generic goal type (GEN-GOAL) for all goals.

This chapter may be a starting point for several strands of further research. A more

ough inventory of possible general rules has to be made. This leads to a further question

do the general rules themselves originate? This question is best studied in a developme

ting. Is it possible to specify a sequence of general rules that are learned during develo

that can account for the fact that older children can handle more abstract concepts? A goo

ing point would be to make a model of the complete balanced-beam task (Siegler, 197

can explain the stage-wise learning aspects of this task. 

Norman (1993) distinguishes experiential and reflective cognition in a human-com

interaction setting. Experiential cognition corresponds to the search-process discussed

chapter, and reflective cognition to reflection and explicit strategies. According to Norma
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signers have to ask themselves the question whether their design is supposed to suppor

ential or reflective processes, and create it accordingly. Current methods for task analys

in human-computer interaction typically do not support any learning. In this sense our re

apparatus for human-computer interaction can only model experiential cognition. To be a

model the user as an active learner, however, a modelling environment is needed that s

explicit leaning. The Soar architecture provides a deliberate learning environment, and i

as such already. The ACT-R architecture may well be a good alternative, since it prov

more flexible model of explicit learning that can account for individual differences, and can

model implicit learning phenomena. 
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