
Diminishing Return in Transfer:
A PRIM Model of the Frensch (1991) Arithmetic Experiment

Niels A. Taatgen (n.a.taatgen@rug.nl)

Institute of Artificial Intelligence, University of Groningen,
 Nijenborgh 9, 9747 AG Groningen, Netherlands

Abstract

It is generally believed that transfer decreases with expertise.
Several existing models explain this by different forms of
chunking, but each is specific to a particular task. The new
PRIM theory of cognitive skill transfer allows a more
generalized approach to study this phenomenon. To
demonstrate this, I present a model of the Frensch (1991)
experiment of transfer that explains why a short training
period does not differentiate between three types of training in
terms of the amount of transfer, but a longer training period
does.

Keywords: Learning, Skill acquisition, Transfer, Production
compilation.

Introduction
There is a general, but tentative, consensus that certain skills
like language, mathematics and algebra have cognitive
benefits beyond their own domain. For example,
bilingualism has benefits far beyond direct language skills,
and is associated with improvements in cognitive control
and working memory. There is also evidence that as
knowledge becomes more specialized it becomes less useful
for transfer. There are several models of these phenomena,
but they do not yet paint a consistent image.

To account for transfer among cognitive skills, Thorndike
(Thorndike & Woodworth, 1901) introduced the theory of
identical elements: skills only benefit from each other
insofar the elements that represent the knowledge for the
skills are the same. Thorndike used this theory to argue that
transfer is fairly limited, and that only when knowledge
elements are truly identical, transfer is possible. A modern
version of identical elements is the identical productions
theory by Singley and Anderson (1985). In their model,
transfer between two tasks is defined as proportion of
production rules that are identical among models of those
tasks.

Both in Thorndike's and Singley and Anderson's account
the identical elements are fairly task-specific. As a
consequence, both predict no transfer between tasks that
share no surface characteristics. More recent studies, for
example Jaeggi et al. (2008), show evidence for such
transfer (far transfer). To account for far transfer, and also to
give more detailed accounts of earlier transfer studies,
Taatgen (in press) introduced the PRIM theory of skill
acquisition and transfer. The PRIM theory is also an
identical elements theory, but the elements of knowledge are
smaller than the typical task-specific rules, and are not
specific to a task. Instead, they specify how information
between different cognitive modules is matched and

transported. Any specifics of the task are part of the
information that is transported, and are therefore not part of
the representation itself. I will explain de PRIM theory in
some more detail later on, but one of its advantages over
earlier theories is that it models the learning process in
detail. This means that transfer aspects of the learning
process can also be explained. More in particular, we will
examine whether we can explain the diminishing return of
increased expertise.

Diminishing return in transfer
There are a few modeling studies that have produced
evidence for the diminishing return of expertise. Transfer in
most of these studies is relatively limited in the sense the
main task does not change.

Newell and Rosenbloom (1981) describe a model of the
1023-choice reaction task. In this task, subjects are
presented with ten lights corresponding to their ten fingers.
When a particular combination of lights comes on, they
have to press the corresponding fingers. Training on this
task produces the classical power law of practice. Newell
and Rosenbloom explain this phenomenon through
chunking. They assume that initially each light has an
individual rule, so that the number of rules necessary for a
response is equal to the number of lights. Learning produces
combinations of these rules. The initial combinations are
very useful (e.g., a combination of two rules is useful once
every four trials), but as the new rules themselves are
combined, the utility of the more specialized rules
decreases, until specialization produces rules that are only
useful 1 out of 1023 trials.

In series of analogical reasoning experiments by
Anderson and Fincham (1994) subjects were first able to
use examples in the analogy in two directions even if they
were only trained in one direction. Later in training, though,
the trained direction became more efficient than the
untrained one. Taatgen and Wallach (2002) explain this with
a model of proceduralization: initially examples are
retrieved from declarative memory in which there is no
directional preference, but later production rules are learned
that only operate in the direction that they are trained in.

In a study by Frensch (1991), subjects had to solve a
series of six equations (see Figure 1 for an example display).
Training consisted of three possible regiments: fixed order,
in which subject solved the equations from top to bottom,
random order, in which the arrow indicated the next
equation to solve, and blocked, in which subjects had to
solve the same equation multiple times with different

numbers before moving on to the next. After training, all
conditions were tested on series of fixed order trials in
which one of the equations was changed. The main result
was that if training was short (25 blocks), performance in
the test phase was identical. However, after long training
(75 blocks), there was a clear differentiation: fixed order
training produced superior performance over random order
training, which was better than blocked training.

Frensch (1991) modeled the experimental results with a
production system model that used production composition.
Equations were first solved in small, individual steps that
were later combined into larger production that could carry
out multiple steps in one cycle.

The three models discussed above are similar in the sense
that they all use some form of composition or compilation.
They are nevertheless all different in the details, and all start
with an initial production system model of the task that just
becomes more efficient through training. It is therefore not
easy to generalize from these three models, and they are also
not capable of explaining transfer beyond the task that they
model. I will therefore present a new model of the Frensch
(1991) experiment using the PRIM model. I will first
explain the Frensch experiment in more detail, and then
explain the PRIM approach to modeling the data.

Experiment
In the experiment, which I already informally described in
the introduction, Frensch used a task developed by Elio
(1986). Figure 1 shows an example of the screen that
subjects worked on.

Figure 1. Example screen in the Frensch (1991) task.

Copyright 1991 the American Psychological Association.
Reprinted with permission.

The task was to solve the six equations (Index 1 through 5

and Overall quality) by substituting the variables with the
numbers on the top part of the screen, calculate the

outcome, and enter it using the keyboard. The arrows
indicated which step had to be executed next.

The study had a 3x2 design with three training conditions
and two training durations. In the fixed-order training
condition, the arrow always moved from step 1 to 6 in
order. In the random-order training condition, the arrow
would go through the six steps in random order. In the
blocked training condition, subjects would do each step
multiple times before moving to the next step. In the short-
duration condition, subjects received 25 trials of training in
one of the three training conditions, followed by 50 trials of
trials in the fixed-order condition in which one of the six
equations was changed. The long-training condition was the
same, except that subject received 75 trials of training.

Figure 2. Results of the Frensch (1991) experiment. The top

graph shows the short training condition and the bottom
graph the long training condition. The left part of each
figure is the training phase, with three different training
types, and the right side is the transfer phase, where all
subjects performed the fixed-order version of the task.

The results (Figure 2) clearly show that in the short

training condition performance on the transfer task is the
same, with a possible slight advantage for fixed-condition
training. However, after long-training condition there is a
clear difference: the fixed order has the best performance,
followed by random order and the blocked condition. This
difference persists until the end of the experiment.

0 20 40 60 80 100

0
10

20
30

40
50

60

Data

Block

To
ta

l t
im

e
(s

)

Random
Fixed
Blocked

0 20 40 60 80 100 120

0
10

20
30

40
50

60

Data

Block

To
ta

l t
im

e
(s

)

Random
Fixed
Blocked

Figure 3. Global workspace/ACT-R buffer model of

information processing. From Taatgen (in press). Copyright
the American Psychological Association. Reprinted with

permission

The PRIM theory
The PRIM (primitive information processing elements)
theory (Taatgen, in press) is an extension of the ACT-R

architecture (Anderson, 2007). The key characteristic of the
theory is that production rules are broken down in
elementary processing elements. There are three types of
elements (PRIMs), and they all operate on slots in ACT-R's
buffers. The first type of PRIM is a condition consisting of a
comparison between two slots (either equality or
inequality). Given the number of slots in all the buffers this
produces quite a few combinations, which means there are
1188 condition PRIMs. The second type of PRIM copies the
contents of one slot to another slot. There are 504 PRIMs of
this type. Finally, there is one PRIM that sets specific values
(by retrieving them from declarative memory).

Figure 3 gives an impression of the role of PRIMs in an
ACT-R framework. All the ACT-R buffers together produce
a large vector of slots, and all production rules do is
compare values in these slots, and move or copy
information from one slot to another. The particular
modules that are connected to the slots then carry out
specific operations on the contents of particular subsets of
slots, for example declarative memory and perception and
motor slots. PRIMs are like the machine language of
cognitive processing: they move around information in a
certain way without incorporating any particular aspects of
the task involved.

For example, take the following standard production rule:

Visu
al

Mod
ule

Declarative

Memory
Module

W
orking

M
em

ory
M

odule

Task Control
Module

M
an

ua
l

M
od

ul
e

Cortical
Modules

Workspace
(cortex or striatum)

Production rules
(Basal Ganglia
and Thalamus)

Comparisons
between two elements in

the workspace

Copying an element
from one place to

another in the workspace

The PRIM model

Figure 4. Impression of learning in the PRIMs theory. Circles represent PRIMs, and arrows show combinations of PRIMs.
White circles are condition PRIMs, grey circles action PRIMs, and colored circles PRIMs that set specific values. The top
figure illustrates how the initial rules with just one PRIM are combined into increasingly larger combinations, eventually

leading to task-specific rules (i.e., the rules with a colored circle in them). The bottom figure illustrates transfer: if a number
of PRIMs have already been combined in one particular task (the "green" task), it becomes easier to learn a rules for a new

task that uses the same PRIMs (the "red" task), because only one compilation step is necessary instead of several.

(p simple-count-rule
 =goal>
 isa count-goal
 state retrieve
 =imaginal>
 isa counter
 count =count
==>
 +retrieval>
 isa count-fact
 num1 =count
 =goal>
 state waiting)

This rule would be broken down into the following

PRIMs:

Specific Value PRIM
• Set item1 to retrieve, item2 to count-fact, and

item3 to waiting by retrieving these values from
declarative memory

Condition PRIM
• The first slot in the goal should be equal to item1

Action PRIMs
• Copy item2 to the first retrieval slot
• Copy the first slot in the imaginal to the second

retrieval slot
• Copy item3 to the first slot in the goal

In other words, even a simple count rule can already be
broken down into five primitive elements. Note that the
PRIMs do no refer to slot names, but to the position of a slot
in the buffer. This is important for the ability to model

Figure 5. Representation in terms of PRIMs of the Frensch experiment. The same convention is used as in Figure 3: the

small colored nodes represent the PRIM that sets tasks-specific items, white nodes are conditions and grey nodes are
actions. The large colored and labeled nodes are used to group the PRIMs for specific tasks together, and have no

meaning in themselves. Whenever there is a possibility for overlap, tasks share the same (white and grey) nodes. All the
task representations that calculate the equations, Step 1-6 and Step 3 alt have many overlapping PRIMs. The Fixed Order

and Fixed Order Transfer have identical PRIMs, while the Random Order PRIMs have only small amounts of overlap
with other tasks. As an example, a single task-specific PRIM (for the step 2 task) with its condition and action lists is

highlighted, comprising what traditionally would be a production rule. The condition and action lists of the example is
shared by many other task-specific PRIMs.

transfer. It also means that, contrary to ACT-R, the number
of slots in a buffer is fixed.

Before learning, PRIMs are carried out one at a time.
However, production compilation (Taatgen & Anderson,
2002) combines PRIMs into larger units (production rules).
As long as these units do not incorporate any specifics (and
the implementation tries to postpone this for as long as
possible), the combined PRIMs are task-general, and can
therefore be reused by any other task that uses the same
patterns of information processing. Figure 4 illustrates both
the process of compilation and the process of transfer. In
order to carry out all the PRIMs in the right order, task
knowledge is initially stored in declarative memory. Initial
novice behavior is characterized by retrieving references to
PRIMs from declarative memory, and carrying them out one
at a time. The production compilation process gradually
combines the PRIMs, and eliminates the need to retrieve
PRIMs from declarative memory.

Details about the PRIM theory can be found in Taatgen
(in press).

Model of the Frensch Experiment
The model is an adaptation of the model of the Elio (1986)
task reported in Taatgen (in press). Each of the seven
equations on the display (six during training plus one extra
in the transfer phase) is modeled as a separate task. In the
blocked condition they are treated as separate independent
tasks, but in the fixed-order and random-order conditions
they are subtasks of either a fixed-order or a random-order
goal.

Each of the equation tasks is relatively straightforward:
the appropriate numbers are looked up on the screen, and
arithmetic facts are retrieved from memory to calculate the
answer, which is then typed in. The overlap between these
seven tasks is fairly large, because the pattern of alternating
looking up information and arithmetic facts is slightly
different for each equation, but similar enough for positive
transfer among them.

The mappings between the step number and the goal to
calculate its equation are stored in declarative memory. Both
the fixed-order and the random-order task use these
mappings. The fixed-order task starts with retrieving step 1,
and setting this as a subtask. Once the task is completed the
next step is retrieved, until all steps are done. The random-
order task first looks at the screen to see what step needs to
be done next, then retrieves the appropriate step, sets this as
a subtask, and reiterates this until all steps are done. In the
blocked condition, no main task is set but the equation
subtasks themselves are used as main task.

Figure 5 shows the overall structure of the PRIMs
necessary to do the experiment. The best way to think about
it is to consider each of the small colored circles as a
production rule. Each of the colored circles points to a
linked list of white circles, the condition PRIMs, and a
linked list of grey circles, the action PRIMs. Together they
represent the knowledge for a single traditional production
rule.

When the model is run, the learning process gradually
compiles larger and larger rules according to Figure 3,
eventually learning rules specific to the particular tasks. The
amount of overlap among the PRIM structures determines
how much mutual benefit there is from learning. What we
can already see in Figure 5 is that the tasks that solve the
equations (step 1-6) have a large mutual benefit, but the
random-order and the fixed-order tasks largely have their
own knowledge structures (the two fixed-order tasks, before
and after transfer, have of course a perfect overlap, because
they are identical in structure).

To test the model, it was run through the same procedure
as the subjects in the experiment, leading to six different
completion time predictions.

Model results

Figure 6. Model results: top figure is the short-training

condition, and bottom figure the long-training condition

Figure 6 shows the results of the model. It matches

several patterns in the data. The most important is the effect
of transfer: in the short-training condition, the only
difference between the training conditions is a slight initial
edge for fixed-order training, but this difference does not
persist. In the long-training condition, there is a clear
differentiation in the three training conditions, just as in the
data. The explanation for this fit is the fact that initial
learning mainly focuses on the six arithmetic procedures.
These procedures have a very strong overlap in the PRIMs
(as can be seen in Figure 4), so each of these receives ample
initial training. The components of the random-order and

0 20 40 60 80 100

0
10

20
30

40
50

60

Model

Block

To
ta

l t
im

e
(s

)

Random
Fixed
Blocked

0 20 40 60 80 100 120

0
10

20
30

40
50

60

Model

Block

To
ta

l t
im

e
(s

)

Random
Fixed
Blocked

fixed-order tasks receive much less training because they
have hardly any overlap with anything else. As a
consequence, in the short-training condition the model has
become faster at calculating the equations, but not so much
at overall control, and this shows in the transfer phase. In
the long-training condition, on the other hand, the control
procedures have had enough training to produce transfer.
Fixed-order training produces the best transfer, because the
procedure remains the same. Random-order training still
edges out the blocked training because of the small amount
of overlap between fixed-order and random-order training.
Like in the data, these differences persist until the end of the
experiment.

The model also fits some of the more mundane aspects of
the data: in the training phase, blocked training is by far the
fastest, and random-order training the slowest. Also, the
speed-up due to training follows the power law of practice.

Discussion
What we have seen in the experiment and the model is that
initially different types of training led to the same amount of
transfer. But after more training transfer became more
specific, and elements that were learned in the random-order
and in the blocked training no longer fully transfer to the
fixed-order condition.

So, what are the advantages of the PRIM model over the
earlier models? Like its three predecessor models (the
Newell & Rosenbloom Soar chunking model, the Frensch
production composition model and the Taatgen and Wallach
production compilation model), it uses the principle of
combining two existing knowledge components to build a
larger, more specialized component. The main difference is
that the three existing models all start with task-specific
production rules that become more specialized and therefore
more efficient. Although this is sufficient to model
individual tasks, it also means that every particular task
needs its own particular model. The PRIM model on the
other hand starts with a fixed set of production rules, and a
representation of how to do the task in declarative memory,
so it starts at a much lower level. As a consequence, even
the final task-specific rules are still relatively simple, while
the older production models allowed the size of rules to get
out of hand, potentially solving a whole problem in one
huge production.

The PRIM theory still has a number of open issues. The
current model starts with a "blank slate", in the sense that it
only has the PRIMs to start with and yet no rules that are
combinations of PRIMs at all. This probably explains why
the model is initially slower than the subjects. As already
discussed in Taatgen (in press), it is probably worthwhile to
explore what general patterns of reasoning are common in
human reasoning, and prime the model with that. Note,
however, that few current cognitive models take prior skills
into account.

Unlike its predecessors, the PRIM model also allows to
study far transfer, and the limits of specialized training for
far transfer. Is there an explanation for the effect of
bilingualism on cognitive control in general, and what kind
of alternative training could be effective? What aspects of
learning mathematics transfer best to non-mathematical
domains? Hopefully the new theory can provide some
answers to these questions.

Acknowledgements
This research was supported by ERC
StG 283597 MULTITASK from the European Research
Council.

References
Anderson, J. R. (2007). How can the human mind occur in

the physical universe? New York: Oxford university
press.

Anderson, J. R., & Fincham, J. M. (1994). Acquisition of
procedural skills from examples. Journal of experimental
psychology: learning, memory, and cognition, 20(6),
1322-1340.

Elio, R. (1986). Representation of similar well-learned
cognitive procedures. Cognitive Science, 10, 41-73.

Frensch, P. A. (1991). Transfer of composed knowledge in a
multistep serial task. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 17(5),
997-1016.

Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J.
(2008). Improving fluid intelligence with training on
working memory. Proceedings of the National Academy
of Sciences, 105(19), 6829-6833. doi:
10.1073/pnas.0801268105

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of
skill acquisition and the law of practice. In J. R. Anderson
(Ed.), Cognitive skills and their acquisition (pp. 1-56).
Hillsdale, NJ: Erlbaum.

Singley, M. K., & Anderson, J. R. (1985). The transfer of
text-editing skill. Journal of Man-Machine Studies, 22,
403-423.

Taatgen, N. A. (in press). The nature and transfer of
cognitive skills. Psychological Review. Preview available
at http://www.ai.rug.nl/~niels/actransfer.html

Taatgen, N. A., & Anderson, J. R. (2002). Why do children
learn to say "Broke"? A model of learning the past tense
without feedback. Cognition, 86(2), 123-155.

Taatgen, N. A., & Wallach, D. (2002). Whether skill
acquisition is rule or instance based is determined by the
structure of the task. Cognitive Science Quaterly, 2(2),
163-204.

Thorndike, E. L., & Woodworth, R. S. (1901). The
influence of improvement in one mental function upon the
efficiency of other functions. Psychological Review, 8,
247-261.

