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Abstract

This paper introduces a new vision module, called PAAV, developed for the cognitive architecture ACT-R. Unlike ACT-R’s default
vision module that was originally developed for top-down perception only, PAAV was designed to model a wide range of tasks, such as
visual search and scene viewing, where pre-attentive bottom-up processes are essential for the validity of a model. PAAV builds on atten-
tive components of the default vision module and incorporates greater support for modeling pre-attentive components of human vision.
The module design incorporates the best practices from existing models of vision. The validity of the module was tested on four different
tasks.
� 2013 Elsevier B.V. All rights reserved.
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1. Introduction

This paper introduces a general purpose vision module
called PAAV, which stands for Pre-attentive And Attentive
Vision. As the name suggests, the new module incorporates
a greater support for bottom-up visual components that
are considered pre-attentive in nature, such as multiple fea-
ture dimensions to describe visual objects, peripheral vision
with differential acuity, iconic visual memory and a deci-
sion threshold. The module was developed as an integral
part of ACT-R1 cognitive architecture (Anderson, 2007)
that provides a necessary top-down, attentive layer. By
being part of ACT-R, PAAV should be able to model wide
range of tasks where both top-down and bottom-up visual
guidances are important. ACT-R already has a default
vision module and a few extensions for it. However they
have drawbacks that PAAV is aimed to solve.
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1 ACT-R stands for Adaptive Control of Thought-Rational.
ACT-R’s default vision module can be described in
terms of a visicon and two buffers: visual-location and
visual. Visual-location and visual buffers essentially repre-
sent WHERE and WHAT components of a visual system.
The visicon represents the visual scene containing visual
objects with which an ACT-R model can interact. The vis-

icon is considered to be a part of the environment (a mon-
itor screen) rather than part of the model. A model can
send a WHERE request to the visual-location buffer to find
the location in the visicon of a potential visual object to
encode. Within this request, the model can specify criteria
for visual object such as its kind, color, coordinates or size.
Given this request vision module randomly chooses one of
the visual objects from the visicon that exactly matches the
given criteria and puts its location information in the
visual-location buffer. This entire process is instantaneous
with no time cost. Next, model can send a WHAT request
to the visual buffer to encode the object at the chosen loca-
tion of visicon. A WHAT request assumes fixed execution
times for both saccade and encoding that in total require
85 ms. This value, although it can be changed by the mod-
eler through a dedicated parameter, is considered as a de
facto standard in ACT-R.

http://dx.doi.org/10.1016/j.cogsys.2012.12.010
mailto:e.nyamsuren@rug.nl
mailto:n.a.taatgen@rug.nl
mailto:n.a.taatgen@rug.nl
http://dx.doi.org/10.1016/j.cogsys.2012.12.010


E. Nyamsuren, N.A. Taatgen / Cognitive Systems Research 24 (2013) 62–71 63
EMMA (Salvucci, 2001) is arguably the most used
extension to ACT-R’s it default vision module. EMMA
explicitly models saccades including preparation and
execution times, path generation and variable landing
points. However, EMMA’s major contribution is in its
ability to model covert attention shifts through variable
encoding time dependent on visual object’s frequency and
eccentricity.

The disadvantage of the default vision module and
EMMA is their optimization toward reading tasks or tasks
with a relatively simple visual environment where bottom-
up perceptual processes can be ignored without sacrificing
the model’s plausibility and performance. However, ACT-
R’s vision module is not suitable for tasks where visual
stimuli are described with multiple feature dimensions.
Such tasks often require theories of scene perception and
visual search that are not part of current vision module.
The issue is more pressing if one considers the importance
of embodied cognition (e.g., Clark, 1997) in problem-solv-
ing tasks (Nyamsuren & Taatgen, 2013) and in everyday
human activities in general (Land, Mennie, & Rusted,
1999). Embodied cognition assumes that cognitive control
is not purely goal based, but it is also driven perceptually.
The simplest example of it is an interference of the salient
feature during the task (Theeuwes, 1992). When subjects
are asked to look at the scene they tend to look at the most
salient parts first. Those salient parts of the scene can inter-
fere with task even if subjects are explicitly asked to not to
look at them.

2. Architecture of PAAV module

2.1. Feature dimensions

In PAAV every visual object can be characterized by five
basic features: color, shape, shading, orientation and size.
The features are chosen because of their pop-out nature
and importance in guiding visual attention (Wolfe & Horo-
witz, 2004). Each of those features can have a wide range of
values, such as, red and green for color; and oval and rect-
angle for shape. Currently, PAAV does not support mod-
eler specified custom features. However, it is included as
a future implementation milestone.

2.2. Peripheral vision

The current implementation of ACT-R’s vision assumes
that everything in a visicon is visible to the vision module
and consecutively available for information processing.
However, human vision is limited in what it can see, espe-
cially in the extra-foveal region (Rayner, 1998). PAAV
introduces limitations on visibility by assuming that a
visual object is only visible if at least one of five features
of that object is visible. Visibility of a feature is calculated
with an acuity function. We have adopted a modified ver-
sion of the psychophysical acuity function proposed by
Kieras (2010). Kieras’ original acuity function states that
for an object’s feature to be visible the object’s angular size
s, with some Gaussian noise added to it, must exceed a
threshold calculated as a function of eccentricity e:

threshold ¼ ae2 þ beþ c

P ðavailableÞ ¼ P ðsþ X > thresholdÞ
X � Nð0; vsÞ
The free parameters a, b, c and v are to be adjusted for each
particular feature. The function works quite well for mod-
eling differential acuity of features. However, the quadratic
form in the function makes it less suitable when the object
size is particularly small. For example, in their feature
search experiment for color, Treisman and Gelade (1980)
used visual stimuli of 0.8� � 0.6� in size scattered over area
of 14� � 8�. This feature search experiment cannot be rep-
licated with the above acuity function for color unless
parameter a is assigned an extremely low value that is well
below the 0.035 used by Kieras (2010).

PAAV uses a modified version of the acuity function to
mitigate issue above:

threshold ¼ ae2 � be

P ðavailableÞ ¼ P ðs > thresholdÞ

The constant c has been removed since it has no significant
influence when object size is reasonably large and too much
influence when object size is quite small. Similarly, the
Gaussian noise has been removed because of its tendency
to introduce too much or too little acuity variation depend-
ing on the object size. Next, the coefficient b has an oppo-
site sign. It results in less steeper increase in threshold when
an eccentricity increases. It also removes the necessity of
giving unreasonably small value to coefficient a when ob-
ject size is small. The free parameter a has been refitted
again to 0.104, 0.147, 0.14 and 0.142 for color, shading, size
and shape respectively. The parameter b has been fitted to
0.85 for color and 0.96 for all other features. We are still in
process of fitting parameters for the orientation feature.

2.3. Iconic visual memory

Everything PAAV perceives from the visicon is stored in
iconic memory. Visual features of every object visible via
peripheral vision are stored in this memory. As such, the
content of iconic memory is not necessarily a complete or
even a consistent representation of the objects in the visicon.

Information in iconic memory is not treated as con-
sciously perceived visual properties. It is rather perceived
as bottom-up visual stimuli on which bottom-up processes
can operate. Iconic memory is trans-saccade persistent.
Items in iconic memory are persistent for a short duration
of time if they are not visible through peripheral vision any-
more. The parameter for persistence time is currently set to
4 s, as determined by Kieras (2009), to be a lower bound
for a visual memory.

Iconic memory is a model’s internal representation of
a visicon, otherwise visual scene. As such, all WHERE
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requests are handled with respect to the content of iconic
memory via a newly defined abstract-location buffer, a
replacement to now depreciated visual-location buffer. A
request may include desired criteria including any of the
five feature dimensions or location.

2.4. Visual activation

Each visual object in iconic memory is assigned an acti-
vation value. The location of the visual object with the
highest activation value is returned upon a WHERE
request. The activation value is calculated as a sum of bot-
tom-up and top-down activation values. It is adapted from
the concept of an activation map used by Wolfe (2007) in
his model of a visual search.

2.4.1. Bottom-up activation

The bottom-up activation for a visual object i is calcu-
lated based on its contrast to all other objects in iconic
memory with respect to each feature dimension k:

BAi ¼
Xvisual objects

j

Xfeatures

k

dissimðvik; vjkÞffiffiffiffiffi
dij

p

The dissim(vik, vjk) is the dissimilarity score of two feature
values of the same dimension. It is a simplification of a bot-
tom-up activation based on the difference in channel re-
sponses used in Guided Search 4.0 (Wolfe, 2007). If two
values are the same then dissim(vik, vjk) = 0, otherwise dis-
sim(vik, vjk) = 1. The dissimilarity is weighted by a square
root of a linear distance dij between two objects. Thus the
objects farther away contribute less to a contrast-based sal-
iency of the visual object i than the objects closest to it.
2.4.2. Top-down activation

In a WHERE request a model can provide feature val-
ues as desired criteria for the next visual object to be
located. Those feature criteria are used to calculate the
top-down activation value for each visual object in iconic
memory. Given k feature criteria the top-down activation
for visual object i is calculated as:

TAi ¼
Xfeature criteria

k

simðfik; fkÞ

sim(fik, fk) is a similarity score of the feature value fk in
WHERE request to a value fik with the same feature
dimension in visual object i. This similarity score is 1 for
an exact match and 0 for a mismatch. If the value fik is
not accessible from iconic memory then the similarity score
is 0.5. Thus uncertainty is preferred to certain dissimilarity.

2.4.3. Total visual activation

The total activation for visual object i is the sum of bot-
tom-up and top-down activations:

VAi ¼ W BA � BAi þ W TA � TAi þ N
WBA and WTA are the weight parameters for the bottom-up
and top-down activations respectively. They are set to 1.1
and 0.45. In correspondence with Wolfe (2007), those
weights control the unintentional and intentional atten-
tional captures. The bottom-up activation is given a higher
weight to compensate for the distance dij adjustment, which
results in the lower bottom-up activation value in compar-
ison to the top-down activation value. N is noise from a lo-
gistic distribution with variance r2 calculated as a function
of a parameter s: r2 = s2p2/3. s is set to 0.2 by default.

2.5. Saccade and encoding

After a visual object has been located with a WHERE
request, a model can send a WHAT request. This is essen-
tially the same encoding processes of a visual object from
the visicon as in ACT-R’s default vision module. However,
PAAV assumes that the saccade that precedes the encoding
has a variable execution time dependent on the saccade’s
amplitude. Prior to a saccade execution, PAAV calculates
its duration and landing point. Salvucci (2001) described
a set of formulas to calculate those variables. For calculat-
ing the execution duration, we used EMMA’s default
parameters: 20 ms as a base execution time plus additional
2 ms for an every degree of angular distance covered by a
saccade. Differently from Salvucci (2001), we have used
two Gaussian distributions around the center of the object
to calculate saccade’s landing position. The standard devi-
ation for distribution along X axis is calculated as sg times
of the object’s linear width, where sg is a gaze noise param-
eter set to 0.5. In a similar manner, the standard deviation
for Y axis is calculated using object’s linear height. Such
implementation is in accordance with theory that the
saccade’s landing position depends on the size of a visual
stimulus (Rayner, 1998).

Upon completion of a saccade, PAAV starts encoding.
The parameter for encoding time is 50 ms. It is in line with
findings that the sufficient information is encoded in the
first 45–75 ms of a fixation for an object identification to
occur (van Diepen, De Graef, & d’Ydewalle, 1995). Except
eccentricity, Salvucci (2001) used word frequency to calcu-
late variable encoding time. However, we believe this
approach is not applicable to PAAV where visual object
is defined along multiple dimensions. Hence, further study
is needed to investigate the object’s encoding process in
more details sufficient for proper computational modeling.

2.6. Visual decision threshold

One of the challenging problems in a visual perception is
how does the visual system recognize the absence of a
desired visual object. For example, humans can spot the
absence of a salient object as fast as its presence in a visual
field (Fig. 1). Similarly, given a WHERE request with spe-
cific criteria, how does PAAV know that the desired object
is not in iconic memory. One obvious solution is to attend
every object in visicon and stop when there are no more
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Fig. 1. Humans can spot an absence (a) of a red object in field of green
objects as fast as its presence (b). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2. Example usage of a visual decision threshold.

E. Nyamsuren, N.A. Taatgen / Cognitive Systems Research 24 (2013) 62–71 65
objects to attend. However, visual search paradigms, such
as feature search, show that it is not the case. The visual
system is much more efficient and does not require fixation
on every item to detect an absence of a target (Treisman &
Gelade, 1980; Wolfe, 2007).

PAAV incorporates the concept of a visual decision
threshold to decide whether any of the objects in iconic
memory will match a given WHERE request. A partial
solution is to ignore every object that has zero top-down
activation due to complete mismatch. However, results
from tasks, such as conjunction search, show that a visual
search can be efficient even when distracters partially
match the target. PAAV should also be able to filter out
objects that match only partially. This is done via simula-
tion of visual grouping based on top-down activation.
Given a WHERE request, PAAV returns some object i.
Let’s assume that, at the time of WHERE request, the dis-
tance between object i and the gaze position was dTh, and
object i’s top-down activation was TATh. When object i is
encoded these two values are stored and used as a thresh-
old for the consecutive WHERE requests. In the following
WHERE requests PAAV completely ignores every object j

in iconic memory that has TAj 6 TATh and dj 6 dTh where
dj is a distance between object j and gaze position. Top-
down activation serves as a natural threshold for object
selection. Every time a model encodes an incorrect object,
the acceptance threshold for the next WHERE request
increases up to the activation value of that object. The dis-
tance dTh provides a measure that PAAV uses to judge
whether it can reliably compare two top-down activation
values. It is a simulation of a visual grouping where a clus-
ter of similar objects is grouped together. The dTh can be
viewed as an approximate radius of the cluster.

2.6.1. Step by step example
Let us consider an example in which the model is look-

ing for a red square, but there are only three green squares
in the iconic memory. The example is depicted in Fig. 2. In
this example the model is able to notice the absence of a red
square after only one fixation.

When the model sends the first WHERE request, the
module calculates distance dj between each object j in ico-
nic memory and model’s current gaze position (depicted
as a black cross). It also calculates the top-down activation
TAj for every object (for the sake of simplicity the bottom-
up activation is ignored). All objects receive a top-down
activation of one for matching the requested shape feature.
Since all objects have the same activation values, let us
assume that the module randomly returns the location of
the second object as the next object to be fixated. The state
of iconic memory after the first WHERE request is
depicted as state A in Fig. 2.

The first WHERE request is followed by WHAT
request. Given this request, the module stores the value
of d2, the distance between the current gaze position and
the second object, as the distance threshold dTh. The mod-
ule also stores the second object’s top-down activation
value TA2 as an activation threshold TATh. After those
steps, the module triggers a saccade execution, changes
the gaze position to the location of the second object and
encodes the object. At this point iconic memory transitions
into state B.

Since the encoded object is not a red square, the model
sends a second WHERE request. However, this time the
model includes the distance and top-down activation
thresholds as request parameters along with the color and
shape values. The threshold parameters state that if the
object’s distance from current gaze location is less than dis-
tance threshold dTh then the object’s top-down activation
should be higher than the activation threshold TATh for
the object to be considered a next valid destination to be
attended. So, in the current example, there are two unat-
tended objects in iconic memory (state C in Fig. 2). The dis-
tances to both objects from the current gaze location, seven
and eight respectively, are less than threshold distance of
10. Therefore, both objects should have a top-down activa-
tion that is higher than activation threshold of one. This is
not the case since both objects again have a top-down acti-
vation of only one because of the color mismatch. Hence,
the PAAV module lets the model know that there are no
more locations to attend. In turn, the model knows that
there is no red squared object in iconic memory.

In the example, three green objects are treated as a clus-
ter of similar objects rather than three individual objects
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each needing separate attention. The distance threshold dTh

can be viewed as a maximum radius of the cluster, while
activation threshold TATh is a maximum dissimilarity
threshold within which objects can be considered members
of the cluster.

2.7. Spreading activation from iconic memory

Lastly, PAAV module introduces spreading activation
from visual iconic memory to declarative memory. It has
long been observed that visual stimuli can influence the
result of a memory retrieval (Wais, Rubens, Boccanfuso,
& Gazzaley, 2010). PAAV’s spreading activation mecha-
nism was developed to replicate this cognitive process.

ACT-R’s declarative memory is a long term memory
where knowledge is stored in the form of chunks with slots.
One chunk usually represents one concept, while concept
properties can be described through values assigned to
chunk slots. The model can retrieve only one chunk at the
time, and, when there are several chunks that match the
retrieval request, the one with the highest activation value
has the highest probability of retrieval. There are can be dif-
ferent sources of activation for a chunk, and chunk’s total
activation is a sum of activations from all available sources.

In the PAAV module, visual objects in iconic memory
also serve as sources of activation. Visual feature values
from all visual objects spread activation to all chunks in
declarative memory that have the same visual feature val-
ues as slot values. For example, each green object in iconic
memory spreads activation to all green objects in declara-
tive memory. Let us assume there is a chunk k in declara-
tive memory, and it receives a total spreading activation of
Sk from iconic memory. Then Sk is calculated as:z

Sk ¼ W �
X

i2V

ðSþ lnð1þ fanikÞÞ

V is a set of all slots from chunk k that have any visual fea-
ture value as a slot value. fanik is a normalized value indicat-
ing a number of visual objects in iconic memory that have
the same feature value as the chunk k in its slot i. In
ACT-R fanik has to be normalized because a chunk, techni-
cally, can have infinite number of slots and the same value
in two or more slots. We will not go into the details of nor-
malization since it is ACT-R specific. S, a parameter for the
minimum associative strength, indicates the minimum
amount of activation that should be spread. W, a parameter
for association weight, is a weight of total spreading activa-
tion from iconic memory. By default, S and W are set to 0
and 0.7 respectively. With the addition of Sk the default
activation equation for declarative memory changes to:

Ak ¼ Bk þ Sk þ P k þ ek þ Sk
Fig. 3. Examples of feature search (a) and conjunction search tasks (b). In
both tasks the red rectangle is a target. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)
3. Validation models

This section describes two models that do visual search
tasks and a more complex model of a player for a game of
SET that requires both top-down and bottom-up cogni-
tion. All models are based on ACT-R with the default
vision module replaced by the PAAV module. The tasks
are simple, yet demand complex cognitive and perceptual
processes, and require most of the components of the
PAAV module described in this paper. Hence, those tasks
serve as a good way to validate the PAAV module. All
models use the same default values for PAAV parameters
described in this paper with the only exception that top-
down activation weight WTA is increased to 3.0 in the
model of SET to account for a higher top-down cognitive
load.

3.1. A model of feature and conjunction searches

The first model was created to do feature and conjunc-
tion searches. Both of these visual search tasks involve find-
ing a target among a set of distracters. In a feature search
task the target differs from distracters by a single feature
such as color (Fig. 3a). In a conjunction search the target
can differ from distracters by either of two features
(Fig. 3b). A feature search is usually an efficient search with
reaction time being independent of a number of distracters.
On the other hand, reaction time in a conjunction search
increases with a number of distracters. Those results are
consistent among different studies (e.g., Treisman &
Gelade, 1980; Wolfe, 2007; Wolfe, Cave, & Franzel, 1989).

The goal in feature search was to find a red rectangle
among green rectangles. In a conjunction search, the model
had to find a red rectangle among green rectangles and red
ovals. In each trial values for both shape and color were
present in near equal amount.

The following experimental conditions were set for the
model. In both types of visual search tasks, the set size ran-
ged from 1 to 30. For each set size, there were 500 trials
where a target was present and another 500 trials where a
target was replaced with a distracter. In total, there were
6000 trials in each of feature and conjunction search tasks.
The screen size was 11.3� � 11.3�, and the size of each
object was 0.85� both in width and height. Within the
screen, objects were positioned in a random pattern with
the constraint that they should not overlap. The model
had to press either “P” or “A” for target being either pres-
ent or absent. The time of key press was considered as trial
end time. The model was reset after each trial.
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Fig. 4. (a) Mean reaction times of human subjects in conjunction search as reported by Treisman and Gelade (1980); (b) mean reaction times in feature
and conjunction search tasks produced by our model.

Table 1
Comparison of the results of the model’s linear regressions of RT on set
size to results of linear regression from similar experiments with human
subjects.

Trial type Slope
(ms/item)

Intercept
(ms)

Model data Positive 23.2 459
Negative 53.8 646

Treisman and Gelade (1980) Positive 28.7 398
Negative 67.1 397

Wolfe et al. (1989) Positive 7.5 451
Negative 12.6 531
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Fig. 4b shows the model’s mean reaction times in both
feature and conjunction search tasks each averaged over
trials of the same set size. The black solid line is for feature
search task where target was present, and black dashed line
is for feature search task where target was absent.

In feature search task the model was asked to find any
red object. The resulting RT is mostly independent of set
size and averages to 446 ms when a target is present and
641 ms when a target is absent. It is consistent with exper-
imental findings where RT for positive trials is also around
430 ms and for negative trials is 550 ms (Treisman &
Gelade, 1980; Wolfe, 2007). The model RT remains the
same in positive trials due to very high bottom-up activa-
tion the target receives due to its color contrast to homoge-
neous surrounding objects. Top-down activation from the
matching color also contributes to the overall saliency of
the target. However, bottom-up activation alone is enough
to make the target salient enough to attract almost imme-
diate attention. In negative feature search trials all objects
in iconic memory have zero top-down activation. It takes
the model few fixations to realize absence of a top-down
activation after which the model stops searching. As a
result, model also produces flat RT line independent of a
set size, although slightly higher than in positive trials.

In a conjunction search task the model was asked to find
any red rectangle. Fig. 4 compares the RT produced by the
model to the RT2 obtained by Treisman and Gelade (1980)
from their experiment with human subjects. The standard
errors for the model RT are too small, and thus are not
shown in Fig. 4b. As the blue3 lines in Fig. 4 indicate the
RT in both positive and negative trials rise as the set size
increases. The slopes, however, are different with negative
trials having a significantly higher slope. Linear regression
of model’s RT on set size gives intercept of 459 ms and
646 ms for positive and negative trials respectively. The
slopes are around 23.2 ms/item and 53.8 ms/item. The
2 Confidence intervals or standard errors are not available for human
data in feature, conjunction and comparative visual search tasks due to
lack of the data in original papers.

3 For interpretation of color in Figs. 4 and 9, the reader is referred to the
web version of this article.
model results can be compared to those obtained in previ-
ous studies (Table 1).

In this task the distracters are not homogenous. They
vary by both color and shape. As a result, there is no
guarantee in positive trials that a target will have a higher
bottom-up activation than distracters. However, the
target always receives higher top-down activation than
any other object in iconic memory since it has both match-
ing color and shape. When a set size is small the target’s
top-down activation is enough to compensate for smaller
bottom-up activation, and the target almost immediately
attracts attention as the most salient object. When the set
size is big, there is a higher chance that the target will get
significantly lower bottom-up activation than a distracter,
which then cannot be compensated by higher top-down
activation. Consecutively, those distracters with a higher
overall activation are attended first which results in RT
increasing with set size.

In negative conjunction trials the model should know
when to stop the search and report the absence of the target.
Since most of the distracters either match color or shape
with a target, there are few objects that have zero top-down
activation. Hence, the model had to rely on visual decision
threshold to filter out partially matching distracters. The
model requires on average 53.8 ms/item in negative trials
indicating that the model does not need to fixate on every
object to realize the absence of a target. Hence, top-down
activation serves quite well as a visual decision threshold.



Table 2
Comparison of model’s mean RTs to those reported by Pomplun et al.
(2001). All RTs are in ms.

Color Shape Total

Model 9051 9197 9124
Pomplun et al. (2001) 9903 11,997 10,950
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Considering the variations between different studies, the
model gives a good fit to experimental findings from previ-
ous studies with a slightly higher intercept for negative tri-
als than that found in experiments with human subjects.
This is probably due to the fact that the corresponding
RT line (Fig. 4b) is not strictly linear, and as a result has
an elevated intercept for an entire linear function. We are
still in process of investigating what causes the slightly
increased RT for those trials.

3.2. A model of comparative visual search

The second model does a comparative visual search, a
paradigm proposed by Pomplun et al. (2001). The task
involves detecting a mismatch between two, otherwise
equal, halves of a display referred to as hemifields
(Fig. 5). The task is a simplified version of the traditional
picture matching task (Humphrey & Lupker, 1993) with
a major difference that it does not require image
processing.

For the model of comparative visual search, we set the
screen size to 24� � 16�, and the size of each object was
0.6� both in width and height. Those are the same condi-
tions used in the original experiment (Pomplun et al.,
2001). The screen was divided vertically in two halves,
hemifields. Each hemifield contained 30 objects varying in
shape (rectangle, oval and triangle) and color (red, green
and blue). Each color and shape value was represented in
a trial in an equal quantity. Positions of the objects were
generated randomly with minimum margin of 10 pixels
from the boundaries of the screen. Two hemifields were
identical except one object, the target, which mismatched
in either color or shape. The target was chosen at random
among 30 objects as well as the type of mismatch.

In total, the model had to do 10,000 trials where half of
the trials had targets that mismatched color and the other
half that had targets with mismatched shape. The model
was not aware of the type of mismatch it had to find in a
trial. The model was reset after each trial.

The model used a very simple algorithm to do visual
search. The model starts from a top-left corner of a screen
and does following steps:
Fig. 5. An example comparative visual search task where targets are red
triangle and red oval in left and right hemifields respectively. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
1. Fixate on any unattended object (further referred to as
O1) in the current hemifield.

2. Fixate on any object (referred as O2) in the opposite
hemifield that has the same y coordinate as the O1.

3. If O1 and O2 are the same then go to step 1.
4. If O1 and O2 are different then:

a. Fixate on an object NO2 nearest to O2.
b. Fixate on O1.
c. Fixate on an object NO1 nearest to O1.
d. If NO1 and NO2 are the same then end the trial.
e. If NO1 and NO2 are not the same then go to step1.

The steps 4a to 4e are necessary to ensure that the mod-
ule is comparing a correct pair of objects. This uncertainty
comes from the fact that when locating a target’s twin in
the opposite hemifield the model knows only its y coordi-
nate and not the x coordinate. Therefore, it is possible
for the model to fixate on a wrong object that by chance
had the same y coordinate. To detect such mistakes model
also compares two objects from two hemifields that are
closest to respective target objects.

The model’s mean RT over all trials was 9124 ms
(Table 2). On average, the model needed 9051 ms
(SE = 79) and 9197 ms (SE = 80) to finish trials where
the difference was either in color or in shape respectively.
This is a reasonable fit to reaction times reported by Pom-
plun et al. (2001). The current model was unable to show
difference between trials where the mismatch was either
in color or in shape.

Fig. 6a shows a histogram of reaction times from ori-
ginal experiment done by Pomplun et al. (2001). This
histogram can be compared to a histogram of reaction
times produced by our model depicted in Fig. 6b. Both
graphs show a plateau of short RT between 3 and
10 s, indicating that the distribution of RT produced
by the model closely fits the distribution from the origi-
nal experiment. On average, the model made 37.4
(SE = 0.23) fixations during a trial. This is a close match
to 39.6 fixations reported by Pomplun et al. (2001). The
model produces nicely structured scanpath (Fig. 7) even
though there is no explicit control of which object should
be chosen as O1.

3.3. A model of a SET player

In our previous study (Nyamsuren & Taatgen, 2013) we
have described how human players play the card game of
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Fig. 6. (a) Histogram of reaction times in original comparative visual search experiment (Pomplun et al., 2001); (b) histogram of reactions times from
10,000 model trials in comparative visual search.

Fig. 7. Example scanpath produced by the model. Open circles indicate
fixations while arrows indicate saccade directions. Numbers are positions
of fixations in the fixation sequence. Targets are blue and green triangles at
36th and 37th fixations. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. An example array of 12 cards where cards with red borders make
up a set. Also shown is an enumerated fixation sequence produced by the
model. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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SET4 and how human behavior in that game can be repli-
cated and further explained by an ACT-R model. In that
study we have used ACT-R’s default vision module and
compensated for lacking functionalities with custom code
specifically written for that model. In this study we have
changed the original model to work with PAAV module.
We show how PAAV module helps to describe and explain
one of the interesting effects found in original study. See the
original article for a more detailed description of the study.

In each SET trial, 12 cards are dealt face up, as shown in
Fig. 8. Each card differs from other cards by a unique com-
bination of four features: color, shape, shading and the
number of shapes. Each feature can have one of three dis-
tinct values. From those 12 cards, the subject should find a
unique combination of three cards, further referred to as a
set, satisfying a rule stating that in the three cards the val-
ues for each particular feature should be all the same or all
different. We refer to the number of different features in a
set as the set level. The set level has a significant effect on
4 SET is a game by Set Enterprises (www.setgame.com).
the human player’s reaction times with higher level sets
requiring more time to find (Fig. 9b).

SET players have a tendency to use a dimension reduc-
tion strategy while playing a game (Jacob & Hochstein,
2008). That is, they prefer to look for a set among cards that
share a common feature value thus effectively reducing the
search space by one feature dimension. For example, sub-
jects might look for a set among the cards that have the
color green. The choice of a common value heavily depends
on an attribute type. For example, an analysis of fixations
(Nyamsuren & Taatgen, 2013) indicates that color, as
shown in Fig. 9a, is used for dimension reduction twice as
much as any other feature. The new model easily explains
this effect using PAAV’s spreading activation from iconic
memory and differential acuity. The model also serves well
in validating these two functionalities of PAAV module.

In the new model we used three different values for size
feature to mimic number of shapes on a card. The actual

http://www.setgame.com
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size of a stimulus representing a card in the visicon also
varied based on the number of shapes on the card. Sizes
were 9.67�, 23.43� and 37.04� for one, two and three shapes
respectively. The model chooses a feature value for dimen-
sion reduction by retrieving any of 12 possible values from
declarative memory. This retrieval is heavily influenced by
a spreading activation from iconic memory. For example,
if oval shape is a dominant feature value in iconic memory
then the model is more likely to retrieve oval. However,
availability of feature values in iconic memory is limited
by feature’s differential acuity. Therefore, even if the shape
value is the dominant value in the visicon, the color value
can become the dominant value in iconic memory because
it has lower visibility threshold. Therefore, overall color is
used more often by model for dimension reduction than
other features (Fig. 9a). The model is not only able to rep-
licate the effect of dimension reduction, but also provides a
nice overall fit to human players’ mean reaction times
(Fig. 9b).

As our model shows, the tendency of human players to
prefer color can be explained with embodied cognition,
influence of an external world on our decision making,
and the limitations of human peripheral vision.

4. Conclusion

There are many existing models of the human visual sys-
tem. We have greatly leveraged from those models by
adopting different concepts and integrating them into one
module that became PAAV. Our main goal is not to rein-
vent the wheel, but to create a tool that allows modelers to
create cognitively plausible models of tasks that require
comprehensive visual system. This is the major difference
between PAAV and existing models of a visual system.
Models, such as a three-level model of comparative visual
search (Pomplun & Ritter, 1999) or Guided Search 4.0
(Wolfe, 2007), were created to perform very specific set of
tasks. On the other hand, PAAV was developed to be gen-
eral enough to model a wide range of tasks. For example,
PAAV is highly customizable due to the possibility to
adjust any parameter mentioned in this paper. This is
why we prefer to call PAAV a module rather than a model.
Furthermore, PAAV is not a stand-alone tool, but rather a
part of a cognitive architecture. For example, Guided
Search 4.0 excels at modeling feature and conjunction
search tasks. However, an absence of a general cognitive
theory makes it hard to investigate top-down influence in
these tasks. On the other hand, ACT-R imposes limitations
on what PAAV is allowed to do, but it also gives additional
layer of plausibility. The source code for the PAAV module
and the models of the visual search tasks described in this
paper can be downloaded via http://www.ai.rug.nl/
~n_egii/models/.
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