

The Gap between Architecture and Model:
Strategies for Executive Control

Niels A. Taatgen
Institute of Artificial Intelligence, University of Groningen

Nijenborgh 9, 9747 AG Groningen, Netherlands
n.a.taatgen@rug.nl

Abstract
One major limitation of current cognitive architectures is
that models are typically constructed in an "empty"
architecture, and that the knowledge specifications
(typically production rules) are specific to the particular
task. This means that general executive control strategies
have to be implemented for each specific model, which
means a lack of consistency and constraint. Alternatively,
they are implemented as part of the architecture itself, which
is often implausible, because strategies are learned and
differ among individuals. The alternative is to assume
executive control consists of strategies that can transfer
from one task to another. The PRIMs theory (Taatgen 2013)
provides a modeling framework for this transfer. The
approach is discussed using the example of working
memory control.

 The Goals of Cognitive Architectures
The enterprise of cognitive architectures is connected to
grand ambitions. Both Newell (1990) and Anderson (1983)
proposed the cognitive architecture as the great unifier in
cognitive science and cognitive psychology. To underline
these ambitions, Newell proposed a list with 13 items in
his 1990 book that cognitive architectures should strife to
accomplish. I will not reiterate the list here, but it contains
items such as "Behave robustly in the face of error", "Use
vast amounts of knowledge", up to "Arise through
evolution".

By the end of the book Newell revisits the list, and
concludes 6 of the goals have been satisfied (at least in
some fashion). Anderson and Lebiere (2003) revisit the
list, calling it the Newell Test, and conclude their ACT-R
architecture satisfies 5 out of 12 criteria, pitting it against
connectionism, which they also rate at 5 out of 12

Copyright © 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(although on different items). Despite the seeming lack of
progress on the Newell test scale, cognitive architectures
have made great strides in providing explanations for a
wide variety of cognitive phenomena. Just looking at the
huge body of publications on the ACT-R website (act-
r.psy.cmu.edu) shows that almost any area of experimental
psychology has been covered. As a consequence, cognitive
architectures have been successful in being published in
mainstream cognitive science and psychology journals, and
play a role in the development of cognitive theory.
However, because of the alignment with standard practice
some of the original goals have been neglected, which may
be why progress on the Newell Test has been limited,
because it has more ambitious goals than cognitive
psychology generally pursues.

A typical modeling paper discusses a particular
phenomenon using experimental data and a model of these
data, and pushes a particular explanation or theoretical
position. Although this is much better when it is compared
to verbal explanations, the general research strategy is one
that at least Newell argued against strongly (Newell 1973).
According to him, psychology would never make progress
in understanding cognition if it would persist in studying
single phenomena using a research paradigm that he
mockingly called "The Twenty Questions Game". He
pointed out that pursuing this "Game" would be a fine
choice to advance your career as a scientist, but would, in
the end, not advance science. Unfortunately, it seems even
cognitive modelers have partially fallen into this trap. The
main problem is that models are constructed for particular
experimental tasks or paradigms, but that generalization
from one model to another is often very limited. Part of
this problem lies in the current cognitive architectures
themselves, because they promote thinking about cognition
in terms of separable tasks.

95

Integrated Cognition
AAAI Technical Report FS-13-03

Task-specific Models
The construction of a cognitive model for a particular task
starts with an "empty" cognitive architecture. The modeler
adds knowledge components that are specific to that task,
or, in the case of learning models, trains the model using
items specific to that task. The underlying assumption is
that a real cognitive system already has a large body of
knowledge about other tasks, but this knowledge has no or
limited influence on the new task, and can therefore safely
be omitted.

As a consequence, the common element between
different models within a particular cognitive architecture
is just the architecture itself: its representations, it
mechanisms to handle knowledge, and its modules to
interact with the outside world. The assumption of these
architectural elements is that they are the same, no matter
what the task is. Even stronger, there is the assumption that
all architectural components are innate, because they are
properties of the brain itself.

This leaves a gap for a third component: knowledge that
is not part of the architecture, but also not task-specific. In
particular I want to focus here on procedural knowledge,
because the importance of more factual general knowledge
has already been acknowledged and discussed elsewhere
(e.g., Salvucci 2012). A first question concerning general
procedural knowledge is one of transfer: if we already
know a particular text editor, is it easier to learn a new
one? The answer is yes (Singley & Anderson 1985). It is
also quite plausible that skills build upon each other. For
example, it is easier to learn multicolumn subtraction after
learning multicolumn addition first, even though the two
differ enough to require separate specific rules.

But is there reuse of procedural knowledge beyond tasks
that resemble each other? One domain to look at in more
detail is what is generally referred to as executive control.
This includes the handling of goals and tasks, organization
of working memory, activating relevant information and
suppressing irrelevant information, interleaving multiple
tasks, and handling interruptions, among others. There is
always a certain awkwardness in how cognitive archi-
tectures handle executive control. It is a challenge to make
control part of the architecture, because this implies it
operates in the same way in every possible situation, which
it often does not. On the other hand, if control is part of the
(task-specific) model, control feels ad-hoc, and
"programmed" by the modeler. Let me give two examples.

Organization of Goals
In production system models, the organization of goals

is often handled by a goal stack. Although it is a
convenient mechanism that works very well in many
models, it has several problems. One type of problem is

functional. Sometimes problems are not suitable for goals
stacks, in tasks where goals are created and abandoned
often, requiring great efforts in breaking down and
rebuilding the goal stack. A second problem is behavioral
plausibility: the human cognitive system does not have a
perfect goals stack. For example, both Altmann and
Trafton (2002) and Anderson and Douglass (2001) have
shown that errors people make in the iconic goal-stack
task, the Towers of Hanoi, are not consistent with an
architectural goal stack. Instead, the handling of goals in
their alternative models uses a strategy that partially
resembles the goal stack, but that is part of the task model.
Although this solution is more satisfactory in the sense that
it accounts much better for the empirical data, it is also
implausible that the handling of goals has to be reinvented
for every single new task.

Working Memory Control
A second example is working memory control. There is

an ongoing debate in cognitive psychology about the
nature of working memory, but researchers almost all take
an architectural stance. Nevertheless, many aspects of
working memory are not part of the architecture. For
example, the use of rehearsal to maintain elements in
memory is unlikely to be architectural, because young
children do not use rehearsal. Rehearsal is a strategy that
can be used in many different situations, so it is definitely
not specific to a particular model. There are several
theories that propose that the actual working memory
capacity is quite limited (Borst, Taatgen & van Rijn 2010;
Oberauer 2002). Such a limited capacity requires strategies
to have the right information available at the right time.
For example, Borst er al. (2010) assume information in
working memory is swapped out strategically with long
term (declarative) memory, a process that is not
architectural, but also not specific to the particular task,
even though current models treat it as such (see also
Altmann & Trafton 2002).

To summarize, many aspects of executive control
consists of strategies rather than mechanisms. Research
that further underlines this are studies of far transfer. For
example, in a study by Karbach and Kray (2009) subjects
are trained on task switching for several days. This not
only improves their skill at task switching, but also reduces
Stroop interference, increases working memory capacity,
and improves the score on the Raven progressive matrices
test. Apparently, something is trained that is not
architectural (otherwise it wouldn't change), but also not
particular to task switching.

To be able to model general task strategies, including
executive control strategies, I have developed the primitive
elements of information processing (PRIM) theory.

96

The PRIM theory
The PRIM (primitive information processing elements)
theory (Taatgen 2013) is an extension of the ACT-R
architecture (Anderson 2007). The key characteristic of the
theory is that production rules are broken down into
elementary processing elements, separating task-specific
constants from task-general mappings. There are three
types of elements (PRIMs), and they all operate on slots in
ACT-R's buffers. The first type of PRIM is a condition
consisting of a comparison between two slots (either
equality or inequality). Given the number of slots in all the
buffers this produces quite a few combinations, which
means there are 1188 condition PRIMs. The second type of
PRIM copies the contents of one slot to another slot. There
are 504 PRIMs of this type. Finally, there is one PRIM that
sets specific values (by retrieving them from declarative
memory).

Figure 1. Global workspace/ACT-R buffer model of

information processing. From Taatgen (2013).
Copyright the American Psychological Association.

Reprinted with permission

Figure 1 gives an impression of the role of PRIMs in an
ACT-R framework. All the ACT-R buffers together
produce a large vector of slots, and all production rules do
is compare values in these slots, and move or copy
information from one slot to another. The particular
modules that are connected to the slots then carry out
specific operations on the contents of particular subsets of
slots, for example declarative memory and perception and
motor slots. PRIMs are like the machine language of
cognitive processing: they move around information in a
certain way without incorporating any particular aspects of
the task involved.

For example, take the following ACT-R production rule:

(p simple-count-rule
 =goal>
 isa count-goal
 state retrieve
 =imaginal>
 isa counter
 count =count
==>
 +retrieval>
 isa count-fact
 num1 =count
 =goal>
 state waiting)

If the goal is a count-goal in

a state where we need to
retrieve the next count
fact

AND the counter has value
count

THEN
Start retrieving a count-fact

that specifies the number
after count

AND set the goal state to
waiting

This rule is part of a counting model, which initiates a
retrieval of a count-fact from memory.
This rule can be broken down into the following five
PRIMs:

Specific Value PRIM

• Set item1 to retrieve, item2 to count-fact, and
item3 to waiting, by retrieving these values from
declarative memory

Condition PRIM
• The first slot in the goal should be equal to item1

Action PRIMs
• Copy item2 to the first retrieval slot
• Copy the first slot in the imaginal to the second

retrieval slot
• Copy item3 to the first slot in the goal

In other words, even a simple count rule can already be
broken down into five primitive elements. Note that the
PRIMs do not refer to slot names, but to the position of a
slot in the buffer. This is important, because the general
knowledge should be applicable to many different types of
knowledge, and specific slot names would be a hindrance.
It also means that, contrary to ACT-R, the number of slots
in a buffer is fixed.

Before learning, PRIMs are carried out one at a time.
However, production compilation (Taatgen & Anderson
2002) combines PRIMs into larger units (production rules).
As long as these units do not incorporate any specifics (and
the implementation tries to postpone this for as long as
possible), the combined PRIMs are task-general, and can
therefore be reused by any other task that uses the same
patterns of information processing. Figure 2 illustrates both
the process of compilation and the process of transfer.
Arrows with a single circle in it represent PRIMs that only
carry out one elementary step, white circles are conditions,
grey circles are actions and colored circles are task-specific

Visu
al

Mod
ule

Declarative

Memory
Module

W
orking

M
em

ory
M

odule

Task Control
Module

M
an

ua
l

M
od

ul
e

Cortical
Modules

Workspace
(cortex or striatum)

Production rules
(Basal Ganglia
and Thalamus)

Comparisons
between two elements in

the workspace

Copying an element
from one place to

another in the workspace

The PRIM model

97

instantiations of constants. As these PRIMs are used to
carry out tasks, the production compilation process
combines them into larger units, resulting in rules that
carry out multiple PRIM steps in one combined step, as
illustrated by arrows with multiple circles. As long as there
is not task-specific (colored) component in a rule, it can be
used by other tasks. This is illustrated in the bottom part of
the Figure: the rule that has two white and one gray PRIM
that is learned in the context of the green task can be used
by the red task to shorten its learning trajectory.

In order to carry out all the PRIMs in the right order,
task knowledge is initially stored in declarative memory.
Initial novice behavior is characterized by retrieving
references to PRIMs from declarative memory, and
carrying them out one at a time. The production
compilation process gradually combines the PRIMs, and
eliminates the need to retrieve PRIMs from declarative
memory.

Details about the PRIM theory can be found in Taatgen
(2013).

Transfer in Working Memory Control
In Taatgen (2013), I discuss how anticipation of future
events (proactive control) can transfer from one task to
another. Here I will present an example of working
memory control.

If we assume that actual working memory is limited to
one chunk, maintaining multiple items has to involve a
strategy in which items are stored in long-term declarative
memory in such a way that they can be rehearsed and
recalled. In the case in which the material to be
remembered is a list of items in which the order is
important, it makes sense to also structure these items as a
list in the memory representation.

Figure 3 illustrates the process that builds such a list.
The strategy consists of three components, with an optional
fourth. The first is to initialize the list, the second is to add
an item to it, and the third is to recall the items in the list.

Figure 2. Impression of learning in the PRIM theory. Circles represent PRIMs, and arrows combine PRIMs into
larger units. White circles are condition PRIMs, grey circles action PRIMs, and colored circles PRIMs that set

specific values. The top figure illustrates how the initial rules with just one PRIM are combined into increasingly
larger combinations, eventually leading to task-specific rules (i.e., the rules with a colored circle in them). The
bottom figure illustrates transfer: if a number of PRIMs have already been combined in one particular task (the

"green" task), it becomes easier to learn a rules for a new task that uses the same PRIMs (the "red" task),
because only one compilation step is necessary instead of several.

98

The optional fourth is to rehearse the list, but this is more
or less the same as recalling it, so I will not discuss it here.

If we would implement models using this strategy in an
architecture like ACT-R, the result would be that each
model would have their own task-specific version of the
strategy above, and there would be no interaction among
these models. When the models would be implemented
using PRIMs, however, the parts of the model that involve
list memory would overlap. Therefore, learning one task
that uses list building and rehearsal would also benefit
other tasks that use it.

To illustrate this, I implemented three such tasks using
PRIMs. The first two tasks are both complex working
memory tasks from Kane et al. (2004), and were already
discussed in Taatgen (2013). In the Countspan task,
subjects have to count objects in several consecutive
screens, but then have to remember these counts because
they have to be reported as a list after the last screen. In the
Verbal-CWM task, subjects have to do a lexical decision
task (deciding whether a string of letters is a word or a
non-word), but sometimes a single letter appears. After a
number of these presentations, subjects have to recall the
sequence of presented single letters.

The third task is an Attentional Blink task (implemented
in a regular ACT-R model by Taatgen, Juvina, Schipper,
Borst & Martens 2009), in which a rapid stream of
characters is presented on the screen (at a pace of 100
ms/character). Characters can be either letters or digits, and
subjects are instructed to remember the letters.

Figure 4 illustrates the PRIMs involved in storing and
recalling items from memory for the three tasks. Each of
the nodes in the graph corresponds to a PRIM: colored

nodes to task-specific PRIMs, and white and grey nodes to
task-general PRIMs. Each colored node (with the
exception of the three nodes with the task names in them)
has an arrow to a list of conditions and to a list of actions,
which together correspond to operations that are normally
carried out by a traditional production rule. However,
contrary to production rules, there is substantial overlap
between the condition and action lists, in particular in the
action lists. The figure illustrates the overlap in the action
lists for the three components of list maintenance:
initialization, storage and recall. The consequence of this
setup is that the three tasks benefit from each other: once
one of the three tasks has been mastered, it becomes easier
to learn any of the other two.

Discussion
The list-learning example shows that a general skill can
emerge out of individual models that all use the same
strategy. The advantage is that it does not require any
explicit learning of strategies or even explicit
generalization. The implication is that once the list-
learning strategy is part of the set of strategies the model
has mastered, it becomes easier to use this particular
strategy than a different list-learning strategy. The
advantage over an architectural solution is that it doesn't
force particular strategies: using this particular list strategy
is just easier than using a different strategy. In other words:
existing strategies offer soft constraints for models in terms
of learnability.

To fully benefit from this intermediate level between
architecture and tasks-specific model, it would be desirable

Figure 3. How the list memory strategy builds a representation in memory

99

to train architectures with initial task strategies. This can be
accomplished by priming models with existing models of
tasks of which it is plausible that they are part of most
people's cognitive repertoire. Each additional model would

contribute to a better network of general cognitive skills,
and increase the plausibility of subsequent models.

Although the PRIM model is based on ACT-R, the
general approach is not limited to ACT-R. The core ideas,

Figure 4. Structure of PRIMs in declarative memory in three tasks that use a list representation for storing and
recalling items. Each of the colored nodes is a Specific Value PRIM that is specific for the task (Verbal-CWM,

Countspan and Attentional Blink). Only PRIMs that are part of the storing and recalling of items are in the
figure to reduce clutter. Specific Value PRIMs each have an associated list of condition PRIMs (white nodes),

and action PRIMs (grey nodes) that overlap if they are the same. In this case, there is a strong overlap in action
PRIMs in all three aspects of handling lists: initialization, storage and recall.

100

breaking down procedural knowledge into primitives and
separating task-general from task-specific elements, can be
implemented in different ways and different architectures.
The PRIM model in particular does require use a number
of ACT-R assumptions and mechanisms: production rules
that can only inspect information in a fixed set of buffers,
the production compilation process and both a declarative
and a procedural memory.

Acknowledgements
This research was supported by ERC
StG 283597 MULTITASK from the European Research
Council.

References
Altmann, E. M., and Trafton, J. G. 2002. Memory for goals: an
activation-based model. Cognitive Science 26:39-83.
Anderson, J. R. 1983. The architecture of cognition. Cambridge,
MA: Harvard university press.
Anderson, J. R. 2007. How can the human mind occur in the
physical universe? New York: Oxford university press.
Anderson, J. R., and Douglass, S. 2001. Tower of Hanoi:
evidence for the cost of goal retrieval. Journal of Experimental
Psychology: Learning, Memory, and Cognition 27:1331-1346.
Anderson, J. R., and Lebiere, C. 2003. The Newell Test for a
theory of cognition. Behavioral and Brain Sciences 26:587-637.

Borst, J. P., Taatgen, N. A., and van Rijn, H. 2010. The Problem
State: A Cognitive Bottleneck in Multitasking. Journal of
Experimental Psychology-Learning Memory and Cognition
36:363-382.
Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O.,
Payne, T. W., and Engle, R. W. 2004. The Generality of Working
Memory Capacity: A Latent-Variable Approach to Verbal and
Visuospatial Memory Span and Reasoning. Journal of
Experimental Psychology: General 133:189-217.
Karbach, J., and Kray, J. 2009. How useful is executive control
training? Age differences in near and far transfer of task-
switching training. Developmental Science 12:978-990.
Newell, A. 1973. You can't play 20 questions with nature and
win. In W. G. Chase, ed., Visual information processing. New
York: Academic Press.
Newell, A. 1990. Unified theories of cognition. Cambridge, MA:
Harvard university press.
Oberauer, K. 2002. Access to information in working memory:
exploring the focus of attention. Journal of Experimental
Psychology: Learning, Memory and Cognition 28:411-421.
Salvucci, D.D. 2012. A large-scale knowledge base for ACT-R.
Presentation at the nineteenth annual ACT-R workshop.
Singley, M. K., and Anderson, J. R. 1985. The transfer of text-
editing skill. Journal of Man-Machine Studies 22:403-423.
Taatgen, N. A. 2013. The nature and transfer of cognitive skills.
Psychological Review 120:439-471.
Taatgen, N. A., and Anderson, J. R. 2002. Why do children learn
to say "Broke"? A model of learning the past tense without
feedback. Cognition 86:123-155.
Taatgen, N. A., Juvina, I., Schipper, M., Borst, J., and Martens, S.
2009. Too much control can hurt: a threaded cognition model of
the attentional blink. Cognitive Psychology 59:1-29.

101

	FSS-13
	Symposia Contents
	FS-13-01
	FS-13-02
	FS-13-03
	FS-13-04
	FS-13-05

	Help
	Terms
	AAAI Website
	Symposium Series Website

