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Abstract 
One major limitation of current cognitive architectures is 
that models are typically constructed in an "empty" 
architecture, and that the knowledge specifications 
(typically production rules) are specific to the particular 
task. This means that general executive control strategies 
have to be implemented for each specific model, which 
means a lack of consistency and constraint. Alternatively, 
they are implemented as part of the architecture itself, which 
is often implausible, because strategies are learned and 
differ among individuals. The alternative is to assume 
executive control consists of strategies that can transfer 
from one task to another. The PRIMs theory (Taatgen 2013) 
provides a modeling framework for this transfer. The 
approach is discussed using the example of working 
memory control.  

 The Goals of Cognitive Architectures   
The enterprise of cognitive architectures is connected to 
grand ambitions. Both Newell (1990) and Anderson (1983) 
proposed the cognitive architecture as the great unifier in 
cognitive science and cognitive psychology. To underline 
these ambitions, Newell proposed a list with 13 items in 
his 1990 book that cognitive architectures should strife to 
accomplish. I will not reiterate the list here, but it contains 
items such as "Behave robustly in the face of error", "Use 
vast amounts of knowledge", up to "Arise through 
evolution". 

By the end of the book Newell revisits the list, and 
concludes 6 of the goals have been satisfied (at least in 
some fashion). Anderson and Lebiere (2003) revisit the 
list, calling it the Newell Test, and conclude their ACT-R 
architecture satisfies 5 out of 12 criteria, pitting it against 
connectionism, which they also rate at 5 out of 12 
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(although on different items). Despite the seeming lack of 
progress on the Newell test scale, cognitive architectures 
have made great strides in providing explanations for a 
wide variety of cognitive phenomena. Just looking at the 
huge body of publications on the ACT-R website (act-
r.psy.cmu.edu) shows that almost any area of experimental 
psychology has been covered. As a consequence, cognitive 
architectures have been successful in being published in 
mainstream cognitive science and psychology journals, and 
play a role in the development of cognitive theory. 
However, because of the alignment with standard practice 
some of the original goals have been neglected, which may 
be why progress on the Newell Test has been limited, 
because it has more ambitious goals than cognitive 
psychology generally pursues. 

A typical modeling paper discusses a particular 
phenomenon using experimental data and a model of these 
data, and pushes a particular explanation or theoretical 
position. Although this is much better when it is compared 
to verbal explanations, the general research strategy is one 
that at least Newell argued against strongly (Newell 1973). 
According to him, psychology would never make progress 
in understanding cognition if it would persist in studying 
single phenomena using a research paradigm that he 
mockingly called "The Twenty Questions Game". He 
pointed out that pursuing this "Game" would be a fine 
choice to advance your career as a scientist, but would, in 
the end, not advance science. Unfortunately, it seems even 
cognitive modelers have partially fallen into this trap. The 
main problem is that models are constructed for particular 
experimental tasks or paradigms, but that generalization 
from one model to another is often very limited. Part of 
this problem lies in the current cognitive architectures 
themselves, because they promote thinking about cognition 
in terms of separable tasks. 
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Task-specific Models 
The construction of a cognitive model for a particular task 
starts with an "empty" cognitive architecture. The modeler 
adds knowledge components that are specific to that task, 
or, in the case of learning models, trains the model using 
items specific to that task. The underlying assumption is 
that a real cognitive system already has a large body of 
knowledge about other tasks, but this knowledge has no or 
limited influence on the new task, and can therefore safely 
be omitted.  

As a consequence, the common element between 
different models within a particular cognitive architecture 
is just the architecture itself: its representations, it 
mechanisms to handle knowledge, and its modules to 
interact with the outside world. The assumption of these 
architectural elements is that they are the same, no matter 
what the task is. Even stronger, there is the assumption that 
all architectural components are innate, because they are 
properties of the brain itself.  

This leaves a gap for a third component: knowledge that 
is not part of the architecture, but also not task-specific. In 
particular I want to focus here on procedural knowledge, 
because the importance of more factual general knowledge 
has already been acknowledged and discussed elsewhere 
(e.g., Salvucci 2012). A first question concerning general 
procedural knowledge is one of transfer: if we already 
know a particular text editor, is it easier to learn a new 
one? The answer is yes (Singley & Anderson 1985). It is 
also quite plausible that skills build upon each other. For 
example, it is easier to learn multicolumn subtraction after 
learning multicolumn addition first, even though the two 
differ enough to require separate specific rules.  

But is there reuse of procedural knowledge beyond tasks 
that resemble each other? One domain to look at in more 
detail is what is generally referred to as executive control. 
This includes the handling of goals and tasks, organization 
of working memory, activating relevant information and 
suppressing irrelevant information, interleaving multiple 
tasks, and handling interruptions, among others. There is 
always a certain awkwardness in how cognitive archi-
tectures handle executive control. It is a challenge to make 
control part of the architecture, because this implies it 
operates in the same way in every possible situation, which 
it often does not. On the other hand, if control is part of the 
(task-specific) model, control feels ad-hoc, and 
"programmed" by the modeler. Let me give two examples. 

Organization of Goals 
In production system models, the organization of goals 

is often handled by a goal stack. Although it is a 
convenient mechanism that works very well in many 
models, it has several problems. One type of problem is 

functional. Sometimes problems are not suitable for goals 
stacks, in tasks where goals are created and abandoned 
often, requiring great efforts in breaking down and 
rebuilding the goal stack. A second problem is behavioral 
plausibility: the human cognitive system does not have a 
perfect goals stack. For example, both Altmann and 
Trafton (2002) and Anderson and Douglass (2001) have 
shown that errors people make in the iconic goal-stack 
task, the Towers of Hanoi, are not consistent with an 
architectural goal stack. Instead, the handling of goals in 
their alternative models uses a strategy that partially 
resembles the goal stack, but that is part of the task model. 
Although this solution is more satisfactory in the sense that 
it accounts much better for the empirical data, it is also 
implausible that the handling of goals has to be reinvented 
for every single new task.  

Working Memory Control 
A second example is working memory control. There is 

an ongoing debate in cognitive psychology about the 
nature of working memory, but researchers almost all take 
an architectural stance. Nevertheless, many aspects of 
working memory are not part of the architecture. For 
example, the use of rehearsal to maintain elements in 
memory is unlikely to be architectural, because young 
children do not use rehearsal. Rehearsal is a strategy that 
can be used in many different situations, so it is definitely 
not specific to a particular model. There are several 
theories that propose that the actual working memory 
capacity is quite limited (Borst, Taatgen & van Rijn 2010; 
Oberauer 2002). Such a limited capacity requires strategies 
to have the right information available at the right time. 
For example, Borst er al. (2010) assume information in 
working memory is swapped out strategically with long 
term (declarative) memory, a process that is not 
architectural, but also not specific to the particular task, 
even though current models treat it as such (see also 
Altmann & Trafton 2002).   

To summarize, many aspects of executive control 
consists of strategies rather than mechanisms. Research 
that further underlines this are studies of far transfer. For 
example, in a study by Karbach and Kray (2009) subjects 
are trained on task switching for several days. This not 
only improves their skill at task switching, but also reduces 
Stroop interference, increases working memory capacity, 
and improves the score on the Raven progressive matrices 
test. Apparently, something is trained that is not 
architectural (otherwise it wouldn't change), but also not 
particular to task switching. 

To be able to model general task strategies, including 
executive control strategies, I have developed the primitive 
elements of information processing (PRIM) theory.  
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The PRIM theory 
The PRIM (primitive information processing elements) 
theory (Taatgen 2013) is an extension of the ACT-R 
architecture (Anderson 2007). The key characteristic of the 
theory is that production rules are broken down into 
elementary processing elements, separating task-specific 
constants from task-general mappings. There are three 
types of elements (PRIMs), and they all operate on slots in 
ACT-R's buffers. The first type of PRIM is a condition 
consisting of a comparison between two slots (either 
equality or inequality). Given the number of slots in all the 
buffers this produces quite a few combinations, which 
means there are 1188 condition PRIMs. The second type of 
PRIM copies the contents of one slot to another slot. There 
are 504 PRIMs of this type. Finally, there is one PRIM that 
sets specific values (by retrieving them from declarative 
memory).  

 

 
Figure 1. Global workspace/ACT-R buffer model of 

information processing. From Taatgen (2013). 
Copyright the American Psychological Association. 

Reprinted with permission 

Figure 1 gives an impression of the role of PRIMs in an 
ACT-R framework. All the ACT-R buffers together 
produce a large vector of slots, and all production rules do 
is compare values in these slots, and move or copy 
information from one slot to another. The particular 
modules that are connected to the slots then carry out 
specific operations on the contents of particular subsets of 
slots, for example declarative memory and perception and 
motor slots. PRIMs are like the machine language of 
cognitive processing: they move around information in a 
certain way without incorporating any particular aspects of 
the task involved. 

For example, take the following ACT-R production rule: 

 

 
(p simple-count-rule 
   =goal> 
      isa count-goal 
      state retrieve 
   =imaginal> 
      isa counter 
      count =count 
==> 
   +retrieval> 
      isa count-fact 
      num1 =count 
   =goal> 
      state waiting) 
 

 
If the goal is a count-goal in 

a state where we need to 
retrieve the next count 
fact 

AND the counter has value 
count 

THEN 
Start retrieving a count-fact 

that specifies the number 
after count 

AND set the goal state to 
waiting 

 
 
This rule is part of a counting model, which initiates a 
retrieval of a count-fact from memory. 
This rule can be broken down into the following five 
PRIMs: 
 
Specific Value PRIM 

• Set item1 to retrieve, item2 to count-fact, and 
item3 to waiting, by retrieving these values from 
declarative memory 

Condition PRIM 
• The first slot in the goal should be equal to item1 

Action PRIMs 
• Copy item2 to the first retrieval slot  
• Copy the first slot in the imaginal to the second 

retrieval slot 
• Copy item3 to the first slot in the goal 

 
In other words, even a simple count rule can already be 
broken down into five primitive elements. Note that the 
PRIMs do not refer to slot names, but to the position of a 
slot in the buffer. This is important, because the general 
knowledge should be applicable to many different types of 
knowledge, and specific slot names would be a hindrance. 
It also means that, contrary to ACT-R, the number of slots 
in a buffer is fixed. 

Before learning, PRIMs are carried out one at a time. 
However, production compilation (Taatgen & Anderson 
2002) combines PRIMs into larger units (production rules). 
As long as these units do not incorporate any specifics (and 
the implementation tries to postpone this for as long as 
possible), the combined PRIMs are task-general, and can 
therefore be reused by any other task that uses the same 
patterns of information processing. Figure 2 illustrates both 
the process of compilation and the process of transfer. 
Arrows with a single circle in it represent PRIMs that only 
carry out one elementary step, white circles are conditions, 
grey circles are actions and colored circles are task-specific 
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instantiations of constants. As these PRIMs are used to 
carry out tasks, the production compilation process 
combines them into larger units, resulting in rules that 
carry out multiple PRIM steps in one combined step, as 
illustrated by arrows with multiple circles. As long as there 
is not task-specific (colored) component in a rule, it can be 
used by other tasks. This is illustrated in the bottom part of 
the Figure: the rule that has two white and one gray PRIM 
that is learned in the context of the green task can be used 
by the red task to shorten its learning trajectory. 

In order to carry out all the PRIMs in the right order, 
task knowledge is initially stored in declarative memory. 
Initial novice behavior is characterized by retrieving 
references to PRIMs from declarative memory, and 
carrying them out one at a time. The production 
compilation process gradually combines the PRIMs, and 
eliminates the need to retrieve PRIMs from declarative 
memory. 

Details about the PRIM theory can be found in Taatgen 
(2013).  

Transfer in Working Memory Control 
In Taatgen (2013), I discuss how anticipation of future 
events (proactive control) can transfer from one task to 
another. Here I will present an example of working 
memory control.  

If we assume that actual working memory is limited to 
one chunk, maintaining multiple items has to involve a 
strategy in which items are stored in long-term declarative 
memory in such a way that they can be rehearsed and 
recalled. In the case in which the material to be 
remembered is a list of items in which the order is 
important, it makes sense to also structure these items as a 
list in the memory representation.  

Figure 3 illustrates the process that builds such a list. 
The strategy consists of three components, with an optional 
fourth. The first is to initialize the list, the second is to add 
an item to it, and the third is to recall the items in the list. 

 
 
Figure 2. Impression of learning in the PRIM theory. Circles represent PRIMs, and arrows combine PRIMs into 
larger units. White circles are condition PRIMs, grey circles action PRIMs, and colored circles PRIMs that set 

specific values. The top figure illustrates how the initial rules with just one PRIM are combined into increasingly 
larger combinations, eventually leading to task-specific rules (i.e., the rules with a colored circle in them). The 
bottom figure illustrates transfer: if a number of PRIMs have already been combined in one particular task (the 

"green" task), it becomes easier to learn a rules for a new task that uses the same PRIMs (the "red" task), 
because only one compilation step is necessary instead of several. 
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The optional fourth is to rehearse the list, but this is more 
or less the same as recalling it, so I will not discuss it here.  

If we would implement models using this strategy in an 
architecture like ACT-R, the result would be that each 
model would have their own task-specific version of the 
strategy above, and there would be no interaction among 
these models. When the models would be implemented 
using PRIMs, however, the parts of the model that involve 
list memory would overlap. Therefore, learning one task 
that uses list building and rehearsal would also benefit 
other tasks that use it. 

To illustrate this, I implemented three such tasks using 
PRIMs. The first two tasks are both complex working 
memory tasks from Kane et al. (2004), and were already 
discussed in Taatgen (2013). In the Countspan task, 
subjects have to count objects in several consecutive 
screens, but then have to remember these counts because 
they have to be reported as a list after the last screen. In the 
Verbal-CWM task, subjects have to do a lexical decision 
task (deciding whether a string of letters is a word or a 
non-word), but sometimes a single letter appears. After a 
number of these presentations, subjects have to recall the 
sequence of presented single letters. 

The third task is an Attentional Blink task (implemented 
in a regular ACT-R model by Taatgen, Juvina, Schipper, 
Borst & Martens 2009), in which a rapid stream of 
characters is presented on the screen (at a pace of 100 
ms/character). Characters can be either letters or digits, and 
subjects are instructed to remember the letters. 

Figure 4 illustrates the PRIMs involved in storing and 
recalling items from memory for the three tasks. Each of 
the nodes in the graph corresponds to a PRIM: colored 

nodes to task-specific PRIMs, and white and grey nodes to 
task-general PRIMs. Each colored node (with the 
exception of the three nodes with the task names in them) 
has an arrow to a list of conditions and to a list of actions, 
which together correspond to operations that are normally 
carried out by a traditional production rule. However, 
contrary to production rules, there is substantial overlap 
between the condition and action lists, in particular in the 
action lists. The figure illustrates the overlap in the action 
lists for the three components of list maintenance: 
initialization, storage and recall. The consequence of this 
setup is that the three tasks benefit from each other: once 
one of the three tasks has been mastered, it becomes easier 
to learn any of the other two.  

Discussion 
The list-learning example shows that a general skill can 
emerge out of individual models that all use the same 
strategy. The advantage is that it does not require any 
explicit learning of strategies or even explicit 
generalization. The implication is that once the list-
learning strategy is part of the set of strategies the model 
has mastered, it becomes easier to use this particular 
strategy than a different list-learning strategy. The 
advantage over an architectural solution is that it doesn't 
force particular strategies: using this particular list strategy 
is just easier than using a different strategy. In other words: 
existing strategies offer soft constraints for models in terms 
of learnability.  

To fully benefit from this intermediate level between 
architecture and tasks-specific model, it would be desirable 

 
Figure 3. How the list memory strategy builds a representation in memory  
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to train architectures with initial task strategies. This can be 
accomplished by priming models with existing models of 
tasks of which it is plausible that they are part of most 
people's cognitive repertoire. Each additional model would 

contribute to a better network of general cognitive skills, 
and increase the plausibility of subsequent models. 

Although the PRIM model is based on ACT-R, the 
general approach is not limited to ACT-R. The core ideas, 

 
Figure 4. Structure of PRIMs in declarative memory in three tasks that use a list representation for storing and 
recalling items. Each of the colored nodes is a Specific Value PRIM that is specific for the task (Verbal-CWM, 

Countspan and Attentional Blink). Only PRIMs that are part of the storing and recalling of items are in the 
figure to reduce clutter. Specific Value PRIMs each have an associated list of condition PRIMs (white nodes), 

and action PRIMs (grey nodes) that overlap if they are the same. In this case, there is a strong overlap in action 
PRIMs in all three aspects of handling lists: initialization, storage and recall.  
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breaking down procedural knowledge into primitives and 
separating task-general from task-specific elements, can be 
implemented in different ways and different architectures. 
The PRIM model in particular does require use a number 
of ACT-R assumptions and mechanisms: production rules 
that can only inspect information in a fixed set of buffers, 
the production compilation process and both a declarative 
and a procedural memory.  
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