
PRIMS TUTORIAL

Niels Taatgen
July 2015 

PRIMs Tutorial � 1

Funded by ERC StG
283597 MULTITASK

UNIT 1
Introduction to PRIMs

This document discusses a new implementation of the ACTRansfer/PRIMs cognitive
architecture, which is implemented in Swift.

The structure of a PRIMs model
A PRIMs model consists of several components. It contains the name of the task with some
parameters, the specification of a set of operators to perform the task, possibly additional
facts necessary to carry out the task, and a specification of the task itself.

The example we will use consists of two models from the standard unit 1 of the ACT-R
tutorial, count and semantic, but now translated into PRIMs. The operators in PRIMs
model correspond one-to-one with productions in the unit 1 models.

Let us look at the file count.prims. It starts by specifying what task we are going to carry
out:

define task count {

 initial-goals: (count) // In this example the task and the goal are the same

 start-screen: start

 imaginal-autoclear: nil

 default-activation: 1.0

 ol: t

 rt: -2.0

 lf: 0.2

 default-operator-self-assoc: 0.0

}

In PRIMs, a task can be implemented by several goals, but the count task is only
implemented by one goal, also named count. The initial-goals: (count) line
specifies this. The input of the model, which we will look at in more detail later, is given in
terms of screens, and the screen that we will use here is called start (initial-screen:
start). We will see a specification of “start” further down the file.

The remaining lines in the task definition are model parameters, some of them are straight
from ACT-R (ol: optimized learning, rt: retrieval threshold, lf: latency factor).

The next part of the model defines operators to carry out the task. Operators are organized
within goals. We have only one goal, the count goal, so we define it as:

PRIMs Tutorial � 2

define goal count {

… Operator definitions …

}

The result of this organization is that all the operators within a goal definition will be
associated with that goal, that is, whenever a goal is in one of the goal buffer slots, the
associated operators receive spreading activation and are therefore more likely to be
retrieved.

We then see definitions of the three operators that are needed to count. The first is:

 operator start-count {

 "Start counting"

 V1 <> nil // There has to be a visual input with the starting number

 WM1 = nil // Imaginal should be empty

 ==>

 V1 -> WM1 // Copy the start number to working memory

 count-fact -> RT1 // Start retrieving the next number

 V1 -> RT2

 say -> AC1 // Say the current number

 V1 -> AC2

 }

As the name implies, this operator initiates counting. Each operator consists of one or more
condition PRIMs, and one or more action PRIMs, each on a separate line. PRIMs always
refer to two particular slots in two particular buffers (or one slot in one buffer and nil). In
between is either a comparison (= or <>), or a copy operation (->). An arrow ==> separates
the conditions and actions, and anything after // is ignored.

The letters indicate the buffer, and the number the slot number within that buffer. In this
example, we will use the following buffers:

• V: Visual, or input buffer. This buffer contains the visual input. In this particular model, V1
has the starting number for counting, and V2 the ending number

• WM: Working memory or imaginal buffer. This buffer is used to store intermediate
results. Here we only use one slot to represent the current count.

• RT: Retrieval. Used to retrieve items from declarative memory. In this model it is used to
retrieve count-facts from memory.

• AC: Action. Used specify actions the model takes. This model will use it to “say” numbers.

• G: Goal. Goal slots are used to activate operators that are relevant for the current goal.
Because of our initial-goals declaration, count will be put into G1.

PRIMs Tutorial � 3

• C: Constant. This is not actually a buffer, and it also doesn’t show in the operator
definition. However, each time a PRIM in an operator has a constant in it, that is, a
specification that is not a buffer/slotnumber combination (and not nil), that constant is
put in one of the slots of the operator chunk. In our example, count-fact and say are
both constants that will be put into C1 and C2, respectively.

If an operator is selected, its conditions are checked first. In this case, a check is made
whether V1 does not contain nil, or, in other words, we need a value in V1. The second
check is to see whether WM1 is still nil, indicating we haven’t started counting yet.

If these conditions are satisfied, the model will start carrying out its actions. Typically,
actions involve updating WM slots and specifying actions that are carried out by the
modules. In this example, we first store the input into working memory in order to maintain
a counter: V1 -> WM1. We then specify a retrieval request, which consists of two PRIMs:
count-fact -> RT1 specifies slot1 of the retrieval, and V1 -> RT2 slot2 of the
retrieval. In other words, we want a count-fact about the starting number. Furthermore, we
want to say that number, which is specified by say -> AC1 and V1 -> AC2.

The PRIMs parser translates an operator specification into a real ACT-R chunk, which will
look like:

start-count

 isa operator

 slot1 count-fact

 slot2 say

 condition V1<>nil;WM1=nil

 action V1->WM1;C1->RT1;V1->RT2;C2->AC1;V1->AC2

The chunks in the condition and action slots represent the first in a list of PRIMs. V1-
>WM1;C1->RT1;V1->RT2;C2->AC1;V1->AC2 is a PRIM that carries out V1->WM1
and points to C1->RT1;V1->RT2;C2->AC1;V1->AC2, which in turn carries out C1-
>RT1, and points to V1->RT2;C2->AC1;V1->AC2, etcetera.

The second and third operator are as follows:

 operator iterate {

 "Iterate as long as count isn't done"

 RT2 = WM1

 V2 <> WM1

 ==>

 RT3 -> WM1

 count-fact -> RT1

 RT3 -> RT2

 say -> AC1

PRIMs Tutorial � 4

 RT3 ->AC2

 }

 operator final {

 "Stop when reaching final number"

 V2 = WM1

 ==>

 say -> AC1

 stop -> AC2

 stop -> G1

 }

They do the rest of the counting: the iterate operator iterates as long as the final number
has not been reached (V2 <> WM1), and the third operator terminates the count. By putting
stop in G1 we signal the simulation that we have reached the end.

The next definition in the file defines facts that will be put into declarative memory. A fact
definition consists of lists of values enclosed in parentheses. Each of these lists is translated
into a chunk

define facts {

(cf1 count-fact one two)

(cf2 count-fact two three)

(cf3 count-fact three four)

(cf4 count-fact four five)

(cf5 count-fact five six)

}

The first item in the list will become the name of the new chunk, while the remaining items
will be put into slots. For example, (cf1 count-fact one two) will be translated into
the following chunk:

cf1

 isa fact

 slot1 count-fact

 slot2 one

 slot3 two

The remainder of the file contains the task specification. This is not really part of the model
itself, but specifies the environment that it has to interact with. In the case of counting, this
is pretty simple: we need a starting and an ending number. The following definition gives a
framework for that input:

define screen start {

(?0 ?1)

}

PRIMs Tutorial � 5

It specifies a screen with two items on it, ?0 and ?1. We have already specified that “start”
will be the start-screen (in the task definition). ?0 and ?1 are placeholders for the real
items:

define inputs {

(two four)

(one three)

(three five)

}

Whenever you run the model, the simulation will pick one of the three inputs. The final
declaration in the model is the ending action if the model performed correctly:

define goal-action {

(say stop)

}

Although in this example there isn’t really a check whether the model has counted correctly,
we will use this later when we are providing the model feedback about its performance.

Running a model
To run the count model, start the PRIMs application, and use the “Load Model” button or
“Open…” menu option to load the file. Select count.prims, after which the top-middle
panel will show some information about what is loaded. If there is an error in the model,
you will find it in that panel (unless the program crashed first…. Not everything is fool-proof
yet).

Once the model has loaded, you can run it with the three buttons in the menu bar (Step,
Run and Run 10). Various other parts of the window can help you make sense of what is
going on in the model. Let us have a look after the model has run a couple of times (Figure
1).

This model window has the following panels:

• The top-left panel shows a list of tasks that the system currently knows, and are
proceeded by a colored triangle if the associated models is actually loaded. The color of
the triangle also identifies the task in some of the other panels. The task with ** is the
currently active task, clicking a different task activates it.

• The bottom-left panel shows the contents of the different buffers when the model is
running. Shown are the currently selected operator, the contents of several buffers before
the operator is executed (left column), how buffers are changed by the operator (middle
column), and how buffers are changed by module actions (right column).

PRIMs Tutorial � 6

• The top-center panel typically shows the model trace. We will discuss this in a little more
detail in a moment.

• The bottom-center panel shows a graph of the PRIMs. If multiple tasks are loaded,
operators will show different colors, and PRIMs that are used by multiple tasks will
receive a yellow halo. The popup menu can be used to make graphs of different aspects of
the models.

• The top-right panel shows learned production rules with their utilities. Production rules
are always combinations of PRIMs.

• The middle-right panel shows all the chunks in declarative memory with their activation.
If you click on one, it will show in more detail on the right.

• Finally, the bottom-right panel shows a graph of model results. In the example, the model
has run about 50 times, and has improved its speed considerably. Multiple graphs can show
after running multiple models.

PRIMs Tutorial � 7

• The buttons on the top-right of the window do the following: Clear Graph clears the
graph on the bottom-right. Reset removes all models from memory and reloads the one
that is selected on the top-left (Note: it doesn’t actually reload it from the file, just from a
stored representation). Clear All, finally, removes everything.

Once you have loaded the model, you can step through it with the Step button, run it all the
way with the Run button, or run it 10 times with the Run 10 button (no trace will show).
The trace will detail what is going on. Let the Count run model once, after which the trace
will show something like:

0.00 *** Retrieved operator start-count with spread 3.0
0.00 Firing V1<>nil
0.05 Firing WM1=nil
0.35 Firing V1->WM1
0.65 Firing C1->RT1
0.95 Firing V1->RT2
1.25 Firing C2->AC1
1.55 Firing V1->AC2
1.85 Retrieving cf1 (latency = 0.0605669022304275)
1.85 New imaginal chunk imaginalN5 (latency = 0.2)
1.85 Saying one (latency = 0.3)
 2.16 *** Retrieved operator start-count with spread 1.5
 2.16 Firing V1<>nil
 2.21 Firing WM1=nil
 2.51 Operator start-count9 failed
2.52 *** Retrieved operator iterate with spread 2.0
2.52 Firing RT2=WM1
2.57 Firing V2<>WM1
2.87 Firing RT3->WM1
3.17 Firing C1->RT1
3.47 Firing RT3->RT2
3.77 Firing C2->AC1
4.07 Firing RT3->AC2
4.37 Retrieving cf2 (latency = 0.0592830290521636)
4.37 Saying two (latency = 0.3)
 4.67 *** Retrieved operator start-count with spread 2.0
 4.67 Firing V1<>nil
 4.72 Firing WM1=nil
 5.02 Operator start-count17 failed
5.03 *** Retrieved operator iterate with spread 2.0
5.03 Firing RT2=WM1
5.08 Firing V2<>WM1
5.38 Firing RT3->WM1
5.68 Firing C1->RT1
5.98 Firing RT3->RT2
6.28 Firing C2->AC1
6.58 Firing RT3->AC2
6.88 Retrieving cf3 (latency = 0.0570473510241556)
6.88 Saying three (latency = 0.3)
7.19 *** Retrieved operator final with spread 2.0
7.19 Firing V2=WM1
7.24 Firing C1->AC1
7.54 Firing C2->AC2
7.84 Firing C2->G1
8.14 Saying stop (latency = 0.3)

PRIMs Tutorial � 8

The number in the left column represents time. We can see that at time 0, the model
retrieves the start-count operator. It will then start carrying out that operator by firing a
production rule for each individual PRIM. After the last PRIM has been carried out,
modules do their actions in parallel. In this case, three modules become active: the retrieval
module retrieves cf2, the action module says two, and the imaginal (working memory)
module makes a new chunk to store the count. They each have their own latency, but the
longest counts (in this case 0.3 seconds for saying one). Note that anything in the trace that
is indented belongs to an operator that failed, so it has no impact on executing, except for
taking up time.

If you go through the model one step at a time, the trace will show some more detail:

0.00 Conflict Set
0.00 start-count A = 5.98194492136532
0.00 final A = 5.42805591304186
0.00 iterate A = 4.8559583289925
0.00 *** Retrieved operator start-count with spread 3.0
0.00 Firing V1<>nil
0.05 Firing WM1=nil
0.05 Compiling V1<>nil;WM1=nil
0.35 Firing V1->WM1
0.35 Compiling WM1=nil;V1->WM1
0.65 Firing C1->RT1
0.65 Compiling V1->WM1;C1->RT1
0.95 Firing V1->RT2
0.95 Compiling C1->RT1;V1->RT2
1.25 Firing C2->AC1
1.25 Compiling V1->RT2;C2->AC1
1.55 Firing V1->AC2
1.55 Compiling C2->AC1;V1->AC2
1.85 Retrieving cf3 (latency = 0.0411039719523428)
1.85 New imaginal chunk imaginalN5 (latency = 0.2)
1.85 Saying three (latency = 0.3)

For each retrieved operator it will show all the competing operators with their activations.
The trace also shows production compilation in action. After V1<>nil and WM1=nil have
been checked, a rule is learned that makes both comparisons in one step. This rule will need
to be reinforced a couple of times before it can compete (this also shows up in the trace if
you step it). The compilation process follows the standard rules of ACT-R: you can set the
learning speed with the alpha parameter.

Modeling Transfer
One of the goals of PRIMs is to model transfer. We therefore need to specify at least one
additional model. The example is the Semantic model from unit 1. The goal of the semantic

PRIMs Tutorial � 9

model is to judge relationships between animals and animal categories, and answer questions
like “Is a canary an animal”? The facts the model uses are:

define facts {

 (sem1 property lion mammal)

 (sem2 property mammal animal)

 (sem3 property animal living-thing)

 (sem4 property plant living-thing)

 (sem5 property tulip plant)

 (sem6 property bird animal)

 (sem7 property tweety bird)

 (sem8 property robin bird)

}

Answering the question involves two steps: first to retrieve that a canary is a bird, and then
that a bird is an animal. Even though this model is semantically different from count, it
shares the same type of iteration. The operators in the model are therefore similar:

define goal semantic {
 operator start-semantic {
 "Start semantic reasoning"
 V1 <> nil
 WM1 = nil
 ==>
 V1 -> WM1
 property -> RT1
 V1 -> RT2
 subvocalize -> AC1
 V1 -> AC2
 }

 operator move-up-tree {
 "Move up the tree"
 RT2 = WM1
 V2 <> WM1
 ==>
 RT3 -> WM1
 property -> RT1
 RT3 -> RT2
 subvocalize -> AC1
 RT3 -> AC2
 }

 operator say-yes {
 "Say yes when found"
 V2 = WM1
 ==>
 say -> AC1
 yes -> AC2
 stop -> G1
 }

 operator say-no {
 "Say no on retrieval failure"

PRIMs Tutorial � 10

 V2 <> WM1
 RT1 = error
 ==>
 say -> AC1
 no -> AC2
 stop -> G1
 }
}

The first two operators in this model are the same as in the counting model, with the
exception that the slot labels are different. But once the operators are translated into
declarative memory, the conditions and actions are identical. The last two operators are
different. If a match between the target category and the retrieved category is found, the
model should answer “yes”, which is slightly different from finalizing the count. Also, if the
proposition does not hold, the model will hit a retrieval error at some point. On a retrieval
error, the first slot of the retrieval buffer will be set to error (which is, in the example,
matched by (RT1 = error)).

Here is an example of a run of the model:

0.00 *** Retrieved operator start-semantic with spread 3.0
0.00 Firing V1<>nil
0.05 Firing WM1=nil
0.35 Firing V1->WM1
0.65 Firing C1->RT1
0.95 Firing V1->RT2
1.25 Firing C2->AC1
1.55 Firing V1->AC2
1.85 Retrieving sem1 (latency = 0.0458280985167914)
1.85 New imaginal chunk imaginalN6 (latency = 0.2)
1.85 Subvocalizing lion (latency = 0.3)
2.15 *** Retrieved operator move-up-tree with spread 2.0
2.15 Firing RT2=WM1
2.20 Firing V2<>WM1
2.50 Firing RT3->WM1
2.80 Firing C1->RT1
3.10 Firing RT3->RT2
3.40 Firing C2->AC1
3.70 Firing RT3->AC2
4.00 Retrieving sem2 (latency = 0.0750171372159093)
4.00 Subvocalizing mammal (latency = 0.3)
 4.31 *** Retrieved operator start-semantic with spread 2.0
 4.31 Firing V1<>nil
 4.36 Firing WM1=nil
 4.66 Operator start-semantic16 failed
 4.67 *** Retrieved operator say-no with spread 2.0
 4.67 Firing V2<>WM1
 4.72 Firing RT1=C1
 5.02 Operator say-no19 failed
5.03 *** Retrieved operator move-up-tree with spread 2.0
5.03 Firing RT2=WM1
5.08 Firing V2<>WM1
5.38 Firing RT3->WM1

PRIMs Tutorial � 11

5.68 Firing C1->RT1
5.98 Firing RT3->RT2
6.28 Firing C2->AC1
6.58 Firing RT3->AC2
6.88 Retrieving sem3 (latency = 0.0460701809949314)
6.88 Subvocalizing animal (latency = 0.3)
 7.19 *** Retrieved operator start-semantic with spread 2.0
 7.19 Firing V1<>nil
 7.24 Firing WM1=nil
 7.54 Operator start-semantic28 failed
 7.55 *** Retrieved operator say-no with spread 2.0
 7.55 Firing V2<>WM1
 7.60 Firing RT1=C1
 7.90 Operator say-no30 failed
7.90 *** Retrieved operator move-up-tree with spread 2.0
7.90 Firing RT2=WM1
7.95 Firing V2<>WM1
8.25 Firing RT3->WM1
8.55 Firing C1->RT1
8.85 Firing RT3->RT2
9.15 Firing C2->AC1
9.45 Firing RT3->AC2
9.75 Retrieval failure
9.75 Subvocalizing living-thing (latency = 0.3)
11.24 *** Retrieved operator say-yes with spread 2.0
11.24 Firing V2=WM1
11.29 Firing C1->AC1
11.59 Firing C2->AC2
11.89 Firing C3->G1
12.19 Saying yes (latency = 0.3)

However, if you first run the count model for a while, productions have been compiled that
can be reused:

1108.01 *** Retrieved operator start-semantic with spread 3.0
1108.01 Firing V1<>nil;WM1=nil;V1->WM1;C1->RT1
1108.06 Firing V1->RT2;C2->AC1;V1->AC2
1108.36 Retrieving sem2 (latency = 0.0557285933220927)
1108.36 New imaginal chunk imaginalN12151 (latency = 0.2)
1108.36 Subvocalizing mammal (latency = 0.3)
 1108.67 *** Retrieved operator say-no with spread 2.0
 1108.67 Firing V2<>WM1
 1108.72 Firing RT1=C1
 1109.02 Operator say-no12156 failed
1109.03 *** Retrieved operator move-up-tree with spread 2.0
1109.03 Firing RT2=WM1;V2<>WM1;RT3->WM1;C1->RT1;RT3->RT2;C2->AC1;RT3->AC2
1109.08 Retrieving sem3 (latency = 0.0922408709785375)
1109.08 Subvocalizing animal (latency = 0.3)
 1109.39 *** Retrieved operator say-no with spread 2.0
 1109.39 Firing V2<>WM1
 1109.44 Firing RT1=C1
 1109.74 Operator say-no12166 failed
1109.75 *** Retrieved operator move-up-tree with spread 2.0
1109.75 Firing RT2=WM1;V2<>WM1;RT3->WM1;C1->RT1;RT3->RT2;C2->AC1;RT3->AC2
1109.80 Retrieval failure
1109.80 Subvocalizing living-thing (latency = 0.3)
1111.29 *** Retrieved operator say-yes with spread 2.0

PRIMs Tutorial � 12

1111.29 Firing V2=WM1
1111.34 Firing C1->AC1
1111.64 Firing C2->AC2
1111.94 Firing C3->G1
1112.24 Saying yes (latency = 0.3)

How do we assess transfer between these two models? A first option is to look at the overlap
of chunks in declarative memory between the two models. The figure below gives an
impression of this overlap (all the yellow halos), which is considerable.

To get a real sense of the amount of transfer, we have to run the model. We first run the
Count model a number of times, and then the Semantic model. Then we run the Semantic
model without prior training.

To do this in a simple way, do the following. Load in both the Count and Semantic model.
Click on the count model in the top-left panel to activate it. Click the “Run 10” button ten
times to run the model for 100 times. You will see the learning curve in the right bottom
corner. Now activate semantic, and run it 100 times. The new curve will show semantic after

PRIMs Tutorial � 13

learning count. Now push the Reset button, and run the semantic model again for 100
times. Your graph should look
something like:

The top blue curve is semantic
without transfer from count, and the
bottom curve is the one with
transfer.

We can also collect this type of data
by automatizing this. Choose the
“Run Batch…” option from the Run
menu, and select the
“testbatch.bprims” as input in the
file dialog. Then choose a filename
of your choice as output. The system
will now run what we just did by
hand ten times. It will also generate
a datafile that we can analyze with

R, Excel or any other packages that
takes data tables.

Perception and Action
PRIMs uses a simplified version ACT-R’s perception and motor modules. This means that
some of the precision is lost, but on the other hand that it is easier to program the
experiment part of the model.

For reasonably straight-forward experiments, PRIMs supplies some methods to specify the
interaction between the model and the outside world. In the count and semantic models, we
have specified a single screen with two pieces of information on it. However, we can specify
several screens and conditions under which the model will change screens. Moreover, a
screen can have a hierarchy of items on it that the model can traverse. We will look at the
latter aspect in Unit 2.

For the current assignment, we are going to build two models of addition by counting. The
first one will be done through mental operations, but the second model assumes that one of
the two counters that has to be maintained will use the fingers. The assumption of the
model is that each time we say a number, we also stick up an additional finger, and the total

PRIMs Tutorial � 14

number of fingers is available to perception. To model this we need the following
specification:

define screen start {
(?0 ?1)
}

define screen one-finger {
(?0 ?1 one)
}

define screen two-finger {
(?0 ?1 two)
}

define screen three-finger {
(?0 ?1 three)
}

define screen four-finger {
(?0 ?1 four)
}

transition(start,one-finger) = action(say)
transition(one-finger,two-finger) = action(say)
transition(two-finger,three-finger) = action(say)
transition(three-finger,four-finger) = action(say)

In this example, the start screen just has the two numbers that have to be added. The four
others screens also have that information, augmented by a number of fingers. The transition
specifications determine how one screen is replaced by another screen: by a say action. So
the first time the model says something, a first finger is put up, etcetera.

Assignment
The assignment is to add a model of addition by counting to the existing two models, and to
assess transfer between counting and addition.

There are two possible solutions to explore. The first is a direct translation of the unit 1
model into PRIMs. The two numbers to be added are perceptual input, and two WM slots are
needed to hold the current count and the current sum.

Your first operator has to initialize the process by putting the first addend (which is in V1)
into WM1, and zero in WM2. It then has to make a retrieval request for the a count-fact about
the number in V1.

PRIMs Tutorial � 15

The second operator harvests a retrieval count-fact that matches WM1, updates the number
in WM1, and issues a count-fact retrieval request for WM2.

A third operator harvest a count-fact retrieval that matches WM2, checks whether WM2 is not
equal to the second addend (in V2), and issues a count-fact retrieval for a count-fact about
WM1.

A fourth operator checks whether the count in WM2 equals V2, and gives the contents of
WM1 as an answer.

One important parameter to set is imaginal-autoclear, which should be set to nil (just as in
the original count model). We’ll explain why in unit 2.

Implement this model, and check whether it works. You should also specify what the start
screen looks like, and supply it with a few inputs and count-facts (you can take these from
the count model, don’t forget to add a count-fact about zero).

Once you have made sure the model works, you can check how fast it learns. You can then
also see how much transfer there is from the count model, using the same method as with
semantic. If you want to use the method with the batch file, you should edit the .bprims
file so that it uses your new model instead of semantic (hopefully the structure of the batch
file speaks for itself).

You will probably conclude that transfer between counting and this addition model is
limited. You can therefore try to build an alternative model using fingers. This model only
requires three operators, and should show more transfer than the “standard” model.

PRIMs Tutorial � 16

PRIMs parameters
imaginal-delay: 

Time it takes to put a new chunk in the imaginal buffer (default 0.2)

egs: 
Utility noise (default 0.05)

alpha: 
Learning parameter for production compilation (default 0.1)

nu: 
Utility for newly compiled productions (default 0.0)

primU: 
Utility of productions that handle a single PRIM (default 2.0)

dat: 
Default time to fire the first production to handle an operator (default 0.05)

production-prim-latency:  
Default time to fire subsequent productions to handle an operator. The idea is that
this takes longer because it also involves retrieving a chunk from memory. The
current implementation doesn’t actually do this, but the time this would take should
be accounted for. The consequence is that a fully proceduralized operator only takes
de default action time (dat:) to carry out, but if multiple productions have to fire it
takes substantially longer. (default 0.3)

bll: 
Base-level decay (default 0.5)

ol: 
Optimized learning (default t). Set to nil for the standard equation.

mas: 
Maximum associative strength (default 3.0)

rt: 
Retrieval Threshold (default -2.0)

lf: 
Latency Factor (default 0.2)

PRIMs Tutorial � 17

mp: 
Mismatch Penalty (default 5.0). Note that the current version of PRIMs doesn’t yet
have an option to switch on partial matching.

ans: 
Activation noise (default 0.2)

ga: 
Spreading activation from the goal (default 1.0)

input-activation:  
Spreading activation from the input (default 0.0)

default-activation: 
In most models, the chunks you specify as part of the model can be assumed to exist
for a while, so they probably have reasonable stable activation values. When you give
a value to default-activation, that value becomes the lower-bound of baselevel
activation for all chunks you specify in the model (including operators). There is no
default for this parameter, because when you omit it there is no lower-bound, and any
chunk you specify will have a single reference.

default-operator-assoc:  
Sji between an operator and the goal it is defined in. This ensures that operators
relevant to one of the goals in the goal buffer are more likely to be retrieved instead
of other operators. (default 4.0)

goal-chunk-spreads:  
Normally, the amount of spreading from the goal is equal to the ga parameter divided
by the number of chunks is the goal. If you set this parameter to t, the amount of
spreading will be equal to the activation of the goal, allowing you to give goals more
or less priority. (default nil)

default-inter-operator-assoc: 
Sji between an operator and other operators for the same goal. Make it more likely
that an operator that is associated to the same goal as the previous operator is
selected. (default 1.0)

default-operator-self-assoc: 
Sji between an operator and itself. Should be negative to make it less likely that an
operator will fire repeatedly. (default -1.0)

PRIMs Tutorial � 18

perception-action-latency:  
Default time for any action (default 0.2)

say-latency: 
Latency of a say action (default 0.3)

subvocalize-latency: 
Latency of a subvocalize action (default 0.3)

read-latency: 
Time of a read action (default 0.2)

imaginal-autoclear:  
When set to t (true), a new chunk will be made in the imaginal buffer whenever an
operator puts something in a slot of the imaginal buffer in which there is already a
value. The old chunk is moved to declarative memory. When set to nil, slot values are
simply overwritten. (default: t)

goal-operator-learning:  
Experimental mechanism for a task to find its own operators. When set to t (true),
the mechanism will be active. What the mechanism does is try to learn associations
between the goal in G1 and operators it retrieves using reinforcement learning.
Whenever the model successfully completes a task, all the operators responsible are
updated. The next three parameters also need to be specified. (default: nil)

beta: 
Learning speed for goal-operator learning (similar to alpha). (default: 0.1)

reward: 
Reward used in goal-operator learning. The reward also maximizes the time that the
model will try to reach the goal (default is 0.0, which switches it off, so if you want to
use it you have to give it a sensible value, i.e., something slightly longer than the time
necessary to reach the goal).

explore-exploit: 
Goal-operator learning adds extra noise to goal-operator combinations it hasn’t tried
very often yet. This parameter scales how fast noise on the goal-operator association
is reduced with more experience. A higher value corresponds to a longer period of
exploration (default 0.0). Still very experimental, so off by default.

PRIMs Tutorial � 19

UNIT 2
 Multiple goals, building memory, more complex input

Building Memory
Up to now we have been using the imaginal or WM buffer as scratchpad with arbitrary slots
to store stuff in. However, it is more interesting to see the imaginal buffer as the place where
new memory structures are created for storage in long-term declarative memory. PRIMs is
therefore a bit more frugal in adding things to DM: only chunks removed from the imaginal
buffer end up in DM, instead of chunks from any buffer (most of those chunks are not
particularly useful for future purposes anyway).

In order to facilitate but also constrain the building of memory structures, PRIMs
automatically creates a new chunk in the imaginal buffer whenever you try to overwrite a
slot in that buffer. If you don’t want this to happen, set imaginal-autoclear to nil. In
order to link chunks together you will probably of put a direct reference to another chunk
in a slot. To make this possible in PRIMs, each chunk has a virtual “slot0”, which refers to
the name of the chunk itself. We will need this to gradually build up large chunk structures,
as we will see in the example of list learning. The list learning model also illustrates a second
aspect of PRIMs: multiple goals.

Multiple parallel goals
We encounter new tasks every day, many of which we can carry out without instruction or
training. The probable reason is that these new tasks are combinations of things that we
already know how to do. Up to now, tasks have corresponded to a single goal. However, a
task may consist of several goals, possibly parallel or with some imposed control structure.

In the earlier examples, the goal was stored in slot G1. However, we can also store goals in
subsequent slots G2 and up. Each of these goals can be associated with their own set of
operators. Each of the goals in slots in the goal buffer spread activation to associated
operators (the Sji for this association is default-operator-assoc). Operators for a
particular goal are also associated with each other (with an Sji of default-inter-
operator-assoc). This makes sure we normally stay within a goal as long as there are
applicable operators. Finally, in most models we don’t want the same operator to fire
repeatedly, so operators are negatively associated with themselves (by default-
operator-self-assoc). Operators can put new goals in G slots (e.g., count-goal-
>G2), and can also remove them (by putting nil into them, e.g. nil->G2).

PRIMs Tutorial � 20

To further help reusability of operators, we can define task-specific constants, so that they
are no longer part of the operator.

In the list-learning example, we will have four goals: read-in-memory (reads letters and
stores them in memory), report-vocal (recalls list from memory and says them), rehearsal
(which rehearses the items in the list), and be-lazy (which just waits for something to
happen). We further define “letter”, “list” and “say” as task-specific constants. In that way, we
can change the type of item in the list, or the action that has to be performed on recall
without needing new operators. We declare this as follows:

define task list-recall {

 initial-goals: (read-in-memory rehearse report-vocal)

 goals: (be-lazy)

 task-constants: (letter list say)

Anything in the list after initial-goals will be placed in G1, G2, etc. To make sure they
are properly declared, additional goals should be put in a list after goals.

Task-specific constants are declared in task-constants. At the start of a run, they are put in
slots GC1, GC2, etc. Let us now see how we can build a list of chunks in declarative memory.
The visual input has “letter” in V1, and the letter itself in V2.

define goal read-in-memory {
 operator read-first-letter {
 "Read the first letter and put it in WM. Store goal id in WM"
 WM1=nil
 V1=letter
 ==>
 V2->WM3
 list->WM1
 G0->WM2
 nil->V1
 }

 operator read-next-letter {
 "Read the next letter, store it in WM"
 WM1<>nil
 V1=letter
 ==>
 V2->WM3
 list->WM1
 WM0->WM2
 nil->V1
 }
}

The first of these operators is activated by the first letter in the input. Because letter is
actually a task constant, V1=letter is translated into V1=GC1. Once a letter has been
recognized, a chunk is built in the imaginal buffer, with “list” in slot1, a reference to the

PRIMs Tutorial � 21

current goal in slot2 (G0->WM2), and the letter in slot3. The V1 slot is then set to nil to
ensure we do not put that letter in the list a second time.

Once we have a first letter, subsequent letters are stored in new chunks in the imaginal,
bumping the earlier chunk to DM. The read-next-letter operator has almost the
same action as reading the first letter, except that a reference to the previous chunk is put
into slot2. WM0->WM2 may look confusing, but what it does is putting a reference of the
old list item in slot2 of the new list item.

After reading the list, DM now has a chunk for every item in the list. We now need to recall
the list:

define goal report-vocal {
 operator start-report {
 "Retrieve the first item and bump anything remaining in WM to DM"
 V1=report
 RT1=nil
 ==>
 G0->RT2
 report->WM1
 }

 operator report-item {
 "Say item and retrieve next"
 V1=report
 ==>
 RT3->AC2
 say->AC1
 RT0->RT2
 }

 operator done-report {
 "On retrieval error end report"
 V1=report
 RT1=error
==>
 stop->G1
 }
}

If the input tells us to report the letters, we retrieve the first item by using the goal as a
retrieval cue for slot2. Putting something in WM1 ensure the last chunk is cleared out of
the imaginal. If an item is retrieved successfully, the report-item operator can then say it,
and retrieve the next item in the list. This is accomplished by RT0->RT2: the next item on
the list points back to the one we just retrieved, so we need to use the current chunk itself
(which is in RT0) as a cue for retrieving the next item (RT2).

One last item to take care of in this model is what happens between the presentation of the
letters. Even though we have a rehearsal goal in the specification, the current model does
not have any operators for that goal. These can in theory be borrowed from another model.

PRIMs Tutorial � 22

Or we can still add them. Presently, the model will have to fall back on the rehearse-no-
rehearse operator. This operator will carry out a wait action whenever V1 is equal to nil.
The wait action is a special action that will do nothing until the next timed screen switch
happens (unless there is no next timed switch, in which it will do nothing). The last of the
model shows how this timing works:

define screen screen1 {
(letter x)
}

define screen screen2 {
(letter k)
}

define screen screen3 {
(letter p)
}

define screen screen4 {
(letter f)
}

define screen report {
(report)
}

transition(screen1,screen2) = absolute-time(2.0)
transition(screen2,screen3) = absolute-time(4.0)
transition(screen3,screen4) = absolute-time(6.0)
transition(screen4,report) = absolute-time(8.0)

There are four screens with a letter, followed by a screen with “report”. The transitions are
specified with respect to the start of the trial. Alternatively, transitions can be specified
relative to the moment the screen appears, using relative-time(time). So we could also
have specified relative-time(2.0) for each of the transitions.

More complex screens
Up to this point we have only looked at screens that are
represented in a single chunk. To allow a slight more
complex, but also not overly complex representation,
PRIMs allows a more hierarchical representation of
structure. Consider the following example:

This picture consists of two placemats, each of which has
a number of items, each of which has properties. We can
represent this picture as follows:

PRIMs Tutorial � 23

define screen start {
 (placemat one
 (item fork)
 (item fork)
 (item plate)
 (item knife)
 (item spoon))
 (placemat two
 (item fork)
 (item plate)
 (item knife)
 (item spoon)
 (item spoon))
}

If this screen is selected, the first top-level item is automatically placed in the input buffer,
in this case (placemat one). The rest of the screen can now be traversed using four
special actions:

• focusnext Move attention to the next item on the current level. A focusnext right at
the beginning would move attention to placemat two. If there is no next item, the item
type of the current level (e.g. placemat) is placed in V1, and error in V2.

• focusdown Move attention to the first sub-item below the current level. A focusdown
on placemat one would produce item fork.

• focusup Move attention back up a level.

• focusfirst Move attention back to the first item on the current level.

This particular example is worked out in the model count-spoons.prims. Load in the model,
and see how it performs. You might conclude you need quite a few operators for such a
simple task. However, once we know how to count spoons, we can reuse some of the
knowledge for a slightly different task. The more-fish.prims model is a model that looks at
which of two acquaria has more red fish. The top-level goal for the task is different, but the
subgoal is the same. Therefore there is quite some overlap between the models (both specify
the countgoal goal, but they are identical and are merged upon loading).

Assignment
The assignment is to write a model for one or more new cards, and combine these with the
two example models, and models made by others. It is then possible to see what the overlap
is between the different models. Here are things to try:

PRIMs Tutorial � 24

• Look for the most similar task to the task you are interested in, and see how much
transfer there is between the two.

• Run all the models except the one you are interested in a couple of times, and then assess
transfer to that model.

Some cards:

More in separate files cards1.pdf and cards2.pdf.

PRIMs Tutorial � 25

PRIMs Tutorial � 26

UNIT 3
Far Transfer and Learning Operators

The challenge of long-term learning is to properly organize skills, to define mechanisms to
evaluate knowledge, and to have strategies to discover the best operators for a new task.
Although this puzzle is far from solved, we offer some starting points in this Unit.

Evaluating operators
An operator is a chunk in declarative memory, so just like any other chunk it has a baselevel
activation, and strengths of association with other chunks. Just like any other chunk, these
activations correspond to the odds that we need the operator in the current context.

For operators, the baselevel activation represents how useful the operator is regardless of
the task. In the current implementation, it receives an extra reference if it leads to a
successful completion of a goal. To set this up properly, we need to specify a number of
things in a task. Here is the parameter declaration of count-learn.prims, a model we will use
as a demonstration:

define task count-learn {
 initial-goals: (learncount)
 task-constants: (count-fact say say stop)
 start-screen: start
 imaginal-autoclear: nil
 default-activation: 1.0
 ol: t
 rt: -2.0
 lf: 0.2
 default-operator-self-assoc: 0.0
 default-operator-assoc: 4.0
 goal-operator-learning: t
 reward: 10.0
 beta: 0.1
}

The goal-operator-learning parameter switches on the learning mechanisms for operators.
Each time an operator is successful in reaching a goal, it will receive an extra reference.
Success is defined in terms of whether the goal-action is carried out. The reward parameter
sets the maximum time to reach the goal (10 seconds in the example).

Associative strength will be used to represent the usefulness of an operator for a particular
goal. The figure below illustrates the overall picture of associations:

PRIMs Tutorial � 27

The key associations
that need to be learned
are the associations
between goals (like
count and daydream),
and operators. The
assumption is that these
associations are initially
set to 0, but increase if
an operator is successful
in accomplishing a goal.

Remember that there is
no hard connection
between operators and
goals. So in any situation

any operator may be retrieved for any set of goals, but typically only operators will be
chosen with a positive association to that goal. However, if a goal is in a situation in which
there are no associated operators, any matching operator can be tried. If that leads to
success, the association between the operator and the goal will be strengthened using
reinforcement learning. The equation for the update is:

delta Sji = beta(payoff - Sji)

in which

payoff = MaximumSji * (reward - timeToReward)/reward

If the operator does not lead to a reward, it is penalized:

payoff = MaximumSji * (0 - timeToFailure)/reward

In these equations, reward, beta and MaximumSji are parameters that are set by the model
(see example above). MaximumSji is the default-operator-assoc parameter.

If we run the count-learn model, nothing will happen (in fact, the current version will crash).
But luckily another model can supply all the necessary operators. So, also load semantic-
global.prims, and now try to run count-learn. It will now run successfully, and will learn
associations between the semantic operators, and the count goal.

PRIMs Tutorial � 28

Just semantic-global and count-learn can hardly go wrong. Load in a couple of other models,
so that the right operators have some competition from wrong operators.

Example of Far Transfer
Karbach and Kray have shown in an experiment that training on task-switching transfers to
several other control tasks, among which the Stroop task. You can load in both models, and
check the overlap. The key aspect to modeling transfer here is not so much that there is a
large overlap between the two tasks (which there isn’t), but that task switching, at least this
particular version, trains a particular skill that is useful for getting better at Stroop.

In the particular version of
task switching, subjects
have to keep track of what
the task is themselves:
there is no external cue.
The stimuli consist of
either pictures of fruit or
vegetables, which can be
either small or large. For
the first two stimuli,
subjects have to respond
to fruit/vegetable, the next
two large/small, the next two fruit/vegetable, etc. The structure of this version of task
switching forces a strategy the prepares for the upcoming stimulus (other versions of task
switching also allow a more reactive policy, so training on them may not always have the
desired result).

In the model this means that after a response has been made on an item, it is not sufficient
to wait for the next item: it has to prepare for what to do with that next item. But it should
only prepare once.

To prepare, the model will set up a second goal that it will retract when it is done preparing.
Setting up the second goal is done with the following operator, which activates when the
model is looking at the fixation cross:

 operator choose-next-task {
 V1 = fixation
 G2 = nil
 ==>
 prepare-next -> G2
 }

PRIMs Tutorial � 29

The prepare-next goal now has to decide what the task will be. While waiting during the
first fixation cross, the model sets the task to foodtask (in WM1), the count to one (WM2),
puts nil in G2 to indicate that it is prepared for the task, and that waits for the stimulus.

define goal prepare-next {
 operator set-first-task {
 V1 = fixation
 WM1 = nil
 ==>
 foodtask -> WM1
 one -> WM2
 nil -> G2
 wait -> AC1
 }

After the task has been carried out (you can check the model yourself to see whether you
can figure out how it works), the model needs to check what it has to do next. It there for
uses the choose-next-task operator again that reinstates the prepare-next goal.
The following operator, which is also part of the prepare-next goal, starts determining the
next task:

 operator determine-next-task-retrieve-count {
 V1 = fixation
 RT1 = nil
 WM1 <> nil
 ==>
 count-fact->RT1
 WM2->RT2
 }

Whereas the task switching model has no choice whether to prepare, the Stroop model
does have a choice. The idea is that the model can just wait for a stimulus to appear, or that
it can prepare by being ready to just focus on the color and ignore the word. If the model
just attends the stimulus, both the word and the color will be put in slots in the input buffer,
but if the focus is on color-only, only the color will be represented. In the case of a conflict
trial and a regular attend action, spreading activation will both increase and decrease
activation of the response, while in a congruent trial spreading activation only increases
activation. But if the focus is just on color, the difference disappears.

Preparation in the Stroop model is done by the following operators:

 operator prepare {
 "Prepare for the upcoming stimulus"
 V1 = fixation
 G2 = nil
 ==>
 focuscolor -> G2
 }

 define goal focuscolor {
 operator attendjustcolor {

PRIMs Tutorial � 30

 V1 = stim
 V2 = nil
 ==>
 attendcolor -> AC1
 }
}

While watching the fixation cross, the model sets up a second goal to focus on just the color
when the stimulus appears. This goal has just a single operator, attendjustcolor, which
carries out the attendcolor action that will but the color of the ink in V2.

The preparation strategy competes with the more default just-wait strategy:

 operator just-wait(activation=1.5) {
 "Just wait for the stimulus"
 V1 = fixation
 ==>
 wait -> AC1
 }

 operator attend(activation=1.5) {
 V1 = stim
 V2 = nil
 ==>
 attend -> AC1
 }

The attend action will attend both the color of the ink (which will appear in V2) and the
identity of the word (which appears in V3). If both attributes are attended, the identity of
the word will interfere with the color of the ink, but if only the color of the ink is attended,
interference will be absent.

The (activation=1.5) addition to more default operators means they have a higher
base-level activation than the prepare operator, so they would normally win the
competition most of the time. However, the prepare operator is identical to the
choose-next-task operator from task-switching . Training on task-switching will
therefore increase the activation of that operator, making it more likely that it will be
chosen after switching to Stroop.

You can try this out by running this by hand and observing the choice of strategy (and the
resulting latencies), or by running the provided batch script
(taskswitchstrooptransfer.bprims). A simple R-script is provided to extract the
results out of the data file.

Assignment
Your goal is to make a model of the Zbrodoff task. From ACT-R’s unit 4:

PRIMs Tutorial � 31

The following data were obtained by N. J. Zbrodoff on judging alphabetic arithmetic
problems. Participants were presented with an equation like A + 2 = C and had to
respond yes or no whether the equation was correct based on counting in the alphabet –
the preceding equation is correct, but B + 3 = F is not.

She manipulated whether the addend was 2, 3, or 4 and whether the problem was true or
false. She had 2 versions of each of the 6 kinds of problems (3 addends x 2 responses)
each with a different letter (a through f). She then manipulated the frequency with which
problems were studied in sets of 24 trials:

- In the Control condition, each of the 2, 3 and 4 addend problems occurred
twice.

Each participant saw problems based on one of the three conditions. There were 8
repetitions of a set of 24 problems in a block (192 problems), and there were 3 blocks for
576 problems in all. The data presented below are in seconds to judge the problems true
or false based on the block and the addend. They are aggregated over both true and false
responses:

Control Group (all problems equally frequently)
 Two Three Four
Block 1 1.840 2.460 2.820
Block 2 1.210 1.450 1.420
Block 3 1.140 1.210 1.170  

Your assignment is to write the whole model, but with some transfer from a given model,
addition.prims. That model does addition by counting, similar to your unit 1 exercise,
but it yields addition-facts as a result. The assumption is that this model is one of the
building blocks for the zbrodoff model. (zbrodoff-start.prims will give you start).

There are several things you can do. One is to write a stand-alone zbrodoff model. If you run
that with the appropriate number of trials (see for a bprims script below that does that), you
will find that the model is too slow in block 1, because it has to start all the way from
scratch.

repeat 5
reset
run zbrodoff block1c 192
run zbrodoff block2c 192
run zbrodoff block3c 192

However, with some prerequisite skills, for example by training the model on addition first,
you may get closer to the data.

PRIMs Tutorial � 32

An alternative is to let the zbrodoff model discover (some of) the relevant operators itself,
after learning addition first, and possibly other tasks (something with instance retrieval that
fits).

PRIMs Tutorial � 33

