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Abstract

Within the context of heterogeneous neuro-evolutionary specialization, we com-

pared evolutionary methods operating on the network level with methods oper-

ating on the neuron level, as well as evolutionary methods employing multiple

genotype populations with methods employing just a single population. As such,

four approaches for neuro-evolution were compared: multi-population network-

level evolution, single-population network-level evolution, multi-population neuron-

level evolution, and single-population neuron-level evolution. These approaches

were compared in compliance with two instances of the Multi-Rover Problem,

namely the distributed rover task and the collective rover task. According to

our results, for either task, network-level evolution appeared more suitable than

neuron-level evolution. Besides that, it appeared that single-population evolu-

tion is more suitable for the distributed task, whereas multi-population evolution

performs better on the collective task. Multi-population evolution consistently

leads to a greater amount of diversity than single-population evolution.
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Part I

Introduction

Biological social systems have since long been a source of inspiration to engi-

neers. The collective behavior research on multi-agent systems and arti�cial life

in particular has attempted to replicate the success of social insect societies at

decomposing the group's labor into several complementary roles. By decompos-

ing labor, insect societies are able to accomplish goals unattainable by elaborate

but solitary individuals. A particular problem domain amenable to biologically

inspired engineering is the domain of multi-agent systems, as behavioral spe-

cialization has proved to be advantageous for certain types of multi-agent tasks.

In this project, our primary interest lies in the emergence of behavioral special-

ization for the purpose of improving collective performance on two extensions

of the Multi-Rover Task. The desired outcome is the derivation of a set of com-

plementary specialized behaviors that together yield a (nearly) optimal level of

task performance.

1 Research Questions and Hypotheses

Within the context of heterogeneous neuro-evolutionary specialization, we aim

to compare on the one hand evolutionary methods operating on the network

level with methods operating on the neuron level, and on the other hand evo-

lutionary methods employing multiple genotype populations with methods em-

ploying just a single population. As such, four neuro-evolutionary methods are

compared: multi-population network-level evolution, single-population network-

level evolution, multi-population neuron-level evolution, and single-population

neuron-level evolution. The methods are compared with respect to the degree

of behavioral specialization of the evolved rover collectives as well as their per-

formance . We may thus formulate four research questions:

Which type of evolution leads to greater performance,

multi-population evolution or single-population evolution?

Given that the rover tasks require specialization, the multi-population approaches

should be advantageous, as multi-population approaches have been shown to en-

courage specialization [28]. May it appear that specialization is not required,

then the single-population approaches are expected to be advantageous, as a

single genotype population is less likely to converge prematurely.
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Which type of evolution leads to greater performance,

network-level evolution or neuron-level evolution?

The background section treats several issues on conventional network-level neuro-

evolution. Considering the fact that neuron-level evolution was designed to solve

these issues, we may expect that neuron-level evolution will prove advantageous.

Earlier comparisons between network-level evolution and neuron-level evolution

[18, 16] support this hypothesis.

Which type of evolution leads to stronger behavioral specialization,

multi-population evolution or single-population evolution?

Multi-population evolution is expected to bring forth greater degrees of spe-

cialization than single-population evolution. Multi-population methods evolve

a separate collection of genotypes for each rover; single-population methods

evolve a single population shared by all group members. During the evolu-

tionary process, the genotypes evolved by single-population methods may be

recombined with genotypes from other rovers. The genotypes evolved by multi-

population methods on the contrary cannot be recombined with genotypes from

other rovers. The segregation in multi-population methods allows the separate

genotype populations to follow their own evolutionary path and become more

and more deviant from each other, whereas the genotypes from single-population

methods are persistently related by recombination.

Which type of evolution leads to stronger behavioral specialization,

network-level evolution or neuron-level evolution?

We have no evidence that either level of evolution will produce stronger behav-

ioral specialization.

2 Thesis Overview

Background The background section provides a raw sketch of the two pillars

whereupon our research is based, namely the specialization of agent collectives

and the evolution of neural networks, or neuro-evolution. The intersection of

these two �elds is often referred to as neuro-evolutionary specialization. The

�rst chapter elaborates how specialization emerges from interaction between

division of labor and dedication of collective members. The second chapter

gives a brief summary of network-level evolution and neuron-level evolution.
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Method The method section covers the description of our experiments. In the

�rst chapter, two instances of the Continuous Multi-Rover Problem are elab-

orately described, referred to as the distributed rover task and the collective

rover task. The second chapter covers the evaluation of individual rover perfor-

mances. Thereafter, the compared neuro-evolutionary methods are described.

The fourth chapter then discusses the quanti�cation of specialization. Finally,

the last chapter summarizes the parameter settings as used in our experiments.

Results and Discussion In this section, the results of our experiments are

treated. Before the actual results are presented, some remarkable qualitative

features of the evolved behaviors are described, followed by a discussion on the

development of several important statistics. So as to �nd out which method

leads to the strongest behavioral specialization, the idea was to apply the spe-

cialization measure proposed in the method section. Due to unexpected devel-

opments within the experiments, however, this measure appeared inapplicable.

The second best option then was to apply the measures for dedication and diver-

sity independently from the proposed specialization measure. These measures

were thus used to compare the four evolutionary methods.

Conclusion In the conclusion section, our �ndings are summarized. The evo-

lutionary processes showed a development quite di�erent from what we pre-

sumed. Thereby, we were unable to use the proposed specialization measure.

As we still wanted to form an impression of how strong the several evolutionary

methods stimulate specialization, the next best option was to compare dedica-

tion, diversity, and performance independently.
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Part II

Background

The background section provides a raw sketch of the two pillars whereupon

our research is based, namely the specialization of agent collectives and the

evolution of neural networks, or neuro-evolution. The intersection of these two

�elds is often referred to as neuro-evolutionary specialization. The �rst chapter

elaborates how specialization emerges from interaction between division of labor

and dedication of collective members. The second chapter gives a brief summary

of network-level evolution and neuron-level evolution.

3 Specialization

In our world, numerous examples of complex adaptive systems exist, including

complex ecological and social communities, such as social insect colonies or

macro-level economies, as well as (biological) neural networks and infrastructure

networks. Within many of these complex adaptive systems, a mechanism called

specialization can be observed. This mechanism allows collectives to increase

performance or quickly respond to changes in their environment. According to

Seligmann [31], specializations in complex ecological communities have evolved

over time as a means of diversifying the community in order to adapt to the

environment. For instance, morphologically specialized castes have emerged in

certain termite colonies [25], while honeybees may adapt their foraging behavior

for pollen, nectar, and water to individual preference and colony demand [8].

Ecological communities like these have been a source of inspiration for design

principles used in many arti�cial collective behavior systems. These design

principles are especially prevalent in multi-robot systems [27], swarm intelligence

[5], and arti�cial life [24].

Two major components constitute the mechanism for specialization, namely the

division of labor amongst members of a collective, and the dedication of members

to a certain share of labor. The interaction between these two components may

adopt both morphological [37] and behavioral [6] forms and potentially gives

rise to the emergence of specialized castes. Both forms of specialization apply

to collectives that are situated and embodied, while operating in physical or

virtual environments.
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3.1 Division of Labor

Robinson [29] states that division of labor in insect colonies is characterized

by two features: (a) di�erent activities are performed simultaneously by (b)

groups of specialized individuals, which is assumed more e�cient than if tasks

are performed sequentially by non-specialized individuals. Although these two

features do characterize division of labor within many collectives, they do not

hold for division of labor in general. Division of labor may also occur within

homogeneous (and therefore non-specialized) groups performing a sequence of

tasks, as members are forced to successively take over control from one another,

due to for instance limited battery capacity. Labor division thus may also

play a role if activities are performed neither simultaneously nor by specialized

individuals.

The essence of labor division is actually that the execution of a collective's

general task is broken up into smaller parts, which then are distributed amongst

multiple members of the collective. Given a collective and its overall task, labor

division may lead to either sequential or parallel execution, and may or may not

lead to di�erentiation, dependent on the nature of the collective and the task

environment. Typical distributions of labor are distribution over time (members

successively take over task execution from one another), distribution over space

(members perform similar tasks at di�erent locations), and distribution over

roles (members perform tasks �tting their individual capacities and preferences),

as well as mixtures of these.

We often speak of labor division as if it would be a freestanding part of the

system, a separate module that distributes labor by explicitly guiding individual

members to their tasks. In most collective behavior systems, however, such a

distribution actually occurs as a result of local decision-making. Division of

labor typically is not coordinated on the collective level, but arises from choices

autonomously made by individual members. Each member deduces its next

action by applying behavioral rules to the information received, in the hope

that the action will be in line with those of other members. The collective-level

distribution of labor thus lies in the hands of individual-level controllers and

emerges from local interactions between members.

3.1.1 Advantages of Labor Division

Labor distribution may enhance the performance of a collective in several ways.

In the �rst place, a labor distribution mechanism is there to prevent members

from becoming idle and uncertain regarding their next goal, while there is still

work to be done. Individual members must be guided towards a new goal as
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soon as they �nished working on their current share of labor, so as to ensure

that they contribute to the collective performance as much as they can.

Secondly, a labor distribution mechanism must keep the collective members from

standing in each other's way. For instance, any two members should never try

to perform exactly the same task, as either one of them will be watching how

the work is done, or even worse, will interfere with the work of the other. Any

form of counter-productive interference between members should be eliminated.

The third purpose of a labor distribution mechanism is to choose the right mem-

ber for each task. Within almost any collective, there exist inequalities between

members. Within heterogeneous collective behavior systems, the morphological

and behavioral inequalities are obvious. Yet, even within homogeneous collec-

tives, one can �nd numerous inequalities with regard to the circumstances of

individual members. For example, the members of a homogeneous collective

may then be morphologically and behaviorally identical, still they may occupy

di�erent positions or have di�erent amounts of energy remaining. Although

these smaller di�erences may often seem insigni�cant, for an accurate view on

labor division, they turn out to be just as important as the more outstanding

di�erences. Inequalities within a collective cause that some of its members are

more suitable to cope with certain tasks than others, due to advantageous char-

acteristics and circumstances, while other members may be more suitable for

other tasks. A mechanism for labor division is to assign each task at disposal

to the member that is expected to be most pro�cient in ful�lling it.

3.1.2 Criteria for Division of Labor

In order to �nd the member that is most pro�cient for a particular task, a

mechanism for division of labor compares the collective members by a number

of criteria. Each of these criteria evaluates a single aspect of the individual char-

acteristics and circumstances. Some criteria evaluate members with respect to

a particular aspect of their competence, others with respect to their availability,

while still others evaluate members with respect to their willingness to perform a

task. The resulting evaluations together form an impression of a member's pro-

�ciency. By comparing the evaluation results, the mechanism for labor division

infers for each encountered task which member will be most convenient.

Competence Because of the morphological and behavioral di�erences that

exist within heterogeneous collectives, some members will be more capable of

performing certain tasks than others, simply due to the fact that these members

have morphological and behavioral traits that are advantageous with respect

to these tasks, or lack traits that are disadvantageous. The dependency of
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labor division upon the di�ering competences of collective members is beyond

questioning, since it is a member's competence in performing a certain task that

will be decisive for successful accomplishment. Criteria based on competence

may for instance compare capabilities for crossing rough terrain or look for

members with instruments for nocturnal perception.

Availability However, a mechanism for division of labor that is merely depen-

dent on competences will always choose the member most capable of completing

it, even if this member is not available. It might therefore come up with imprac-

tical solutions. A division of labor mechanism thus also needs to account for

criteria selecting for a member's availability for a particular task. Such criteria

are for instance a maximum distance between a member and the location where

the task should be performed, or a minimally required battery level. Incorporat-

ing a dependency on availability of members allows for a more practical division

of labor.

In addition to that, the dependency on availability of collective members en-

ables labor distribution amongst members with equivalent capabilities for cer-

tain tasks, as it selects the member with the greater availability. A labor di-

vision mechanism that incorporates a dependency on availability therefore will

be capable of solving con�icts between equally capable members in heteroge-

neous collectives, as well as that it enables division of labor for homogeneous

collectives.

Willingness For a given task, an individual's competence and availability

together determines its appropriateness. If the individual's capabilities and

circumstances allow it to solve a particular task, then the individual must be

appropriate. Besides the criteria of competence and availability, however, one

might choose to introduce a third criterion: the individual's willingness to per-

form a task. The willingness of an individual can be described as a behavioral

predisposition towards performing particular shares of labor, either acquired by

learning or genetically inherited, but without respect to the individual's ap-

propriateness. That is, an individual may simply prefer some tasks to others,

whether or not that preference is justi�ed by its competence or availability.

Labor distribution on the sole basis of willingness does not look for members

appropriate for a task, but instead chooses those just willing to perform it.

In their labor division model for social insect workers, Theraulaz et al. [35]

nicely illustrate the role that individual preference may play within distribu-

tion of labor. They equipped each of their arti�cial workers with a set of task

response thresholds. Such threshold determines the likelihood of reacting to
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certain task-associated stimuli. The higher a worker's response threshold for

stimuli associated with a certain task, the stronger the stimuli must be for the

worker to react. In addition, performing a certain task induces a worker to de-

crease its associated response thresholds, while not performing the task induces

the worker to increase them. The arti�cial workers thus varied their response

thresholds during lifetime so as to adjust their responsiveness to stimuli. A

worker with a preference for particular tasks will reinforce that preference by

reacting to associated stimuli, but will also decrease the likelihood of performing

other tasks as it ignores stimuli associated with these depreciated tasks. This

combined reinforcement process evokes the emergence of specialized workers

from a group of initially identical individuals.

A worker's set of response thresholds refers to neither its competence nor its

availability, but instead represents nothing more than the worker's preference

for some of the available tasks. The smaller a worker's threshold for a certain

task is, the more the worker is willing to perform this task. Theraulaz et al.

[35] thus designed a labor division model that does not take into account the

appropriateness of workers, but instead distributes labor exclusively based on

varying individual preferences.1

3.1.3 Arguments for Willingness-Based Criteria

One might wonder what use criteria based on willingness may have: why would

we allow a collective member to decide whether it is willing to perform a task,

especially if it is already known that this member will be the most convenient?

One argument is that such criteria may solve con�icts between furthermore

equal members. Criteria based on willingness as such enable distribution of

labor for collective behavior systems lacking any foothold for criteria based on

competence or availability, such as Theraulaz's arti�cial insect society mentioned

above. A labor division mechanism operating in such systems can be used to

optimize the collective performance, even though it cannot distribute labor with

respect to competence or availability.

A second argument is more interesting though. Criteria based on willingness

can be used to take account for other criteria, on the assumption that the sub-

stitute (willingness-based) criteria are somehow representative for the originals.

Such replacement might for instance be useful for omitting competence-based

criteria, which may be rather hard to construct. One might choose to prescribe

the morphological and behavioral characteristics required to perform particular

1The arti�cial worker as modeled by Theraulaz et al. [35] actually is nothing but a set of
response thresholds, so to say. It does not have any characteristics that would de�ne some
sort of competence, nor does it have a position, energy level, or whatsoever, from which its
availability for a task could be deduced.
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tasks, but this often will be an unattractive solution, as such criteria mostly

will not be very �exible and certainly close the door to unexpected but valuable

solutions. Besides that, it will not always be possible to prescribe the required

characteristics, as it may not always be clear what these characteristics should be

like. A more �exible solution then is to establish a proper relationship between

a member's competence and willingness, after which the competence-based cri-

teria can be substituted for one based on willingness. The members then learn

to prefer tasks they are good at, but dislike those they cannot cope with. A cri-

terion based on willingness as such selects the more pro�cient members without

comparing competences.

Evolutionary methods provide a nice example of how such a relationship between

competence and willingness can be established. For any individual counts that

the greater the resemblance between its willingness and competence, the smaller

the chance it will deny tasks it is convenient with, or accept tasks it cannot

handle. Just as well, it counts that individuals exclusively performing tasks

they are good at will be more productive than those performing tasks they

cannot handle. Considering that evolutionary methods repeatedly select for

productivity, the less productive individuals will eventually be eliminated, and

only those of which their task preference correctly represent their capabilities

will be left, provided that they do have relevant capabilities of course. During

an evolutionary process, the relationship between willingness and competences

is established as a matter of course.

3.2 Dedication of Members

During the learning stage, individuals have their performance optimized gradu-

ally. Each step is made by slightly adjusting morphology and behavior in such

a way that performance increases. The di�cult thing here is that adjustments

made with a view to improved performance on speci�c shares of labor, might

also have unwelcome side e�ects concerning performance on other shares. Indi-

viduals that must be su�ciently equipped for any task they may encounter are

thereby forced to spread their capacities over all shares of labor and will often

have to settle with just moderate competences. For instance, individuals oper-

ating on their own cannot a�ord to concentrate on just a few shares of labor,

while paying no attention to other shares. They must be su�ciently capable of

handling any task they may encounter, simply because no help is available.

If such an individual had been part of a collective, however, it also would have

had fellow members that could account for some of its tasks. Yet, as part of

a collective, an individual may only drop its responsibility for certain shares

of labor, if it can be con�dent that it will not have to perform these anymore.
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To establish such con�dence within a collective, its labor must be distributed

amongst the members in a consistent way, so that they will be able to learn

which shares of labor they may be assigned to and which not. A consistent

division of labor allows members to ignore the larger part of the workload and

to dedicate themselves to the smaller part left. These dedicated individuals are

then free to further elaborate competences that are advantageous for their part

of the workload. Even though the development of extraordinary competences

still will be at the cost of other competences, there is no harm in it anymore, as

these other competences, employed for the bene�t of tasks now ignored, have

lost their relevance.

Of course, since all encountered tasks still have to be executed, the members

of a collective must not all compete for the same part of the workload, as

that would leave other tasks unattended. Instead, they must complement each

other, so that despite the fact that they individually cover only a small part of

the workload, yet they collectively handle all tasks encountered. This implies

that collective members have to assume di�erent roles. Some members take

care of one part of the workload, while others will take care of another part. As

the members then claim di�erent parts of the workload, however, they will also

require di�erent characteristics, since di�erent tasks demand di�erent morpho-

logical and behavioral traits. Each collective member therefore has to develop

its own morphology and behavior, so it can optimize these for its own range of

tasks. Members thus have to di�erentiate from each other.

Note that the criteria regulating the division of labor also determine the pos-

sibilities for dedication. Even though any morphological or behavioral trait is

allowed to di�erentiate, only the di�erentiation of traits invoked by at least one

of the prevailing criteria will be relevant for the distribution of labor. Any trait

ignored by these criteria is insigni�cant as far as concerned by the specialization

process. The criteria for labor division thus decide what traits will form a basis

for dedication and as such will play a role in the specialization process.

3.2.1 Advantages of Member Dedication

The di�erentiation of collective members nevertheless is not a strict require-

ment for distribution of labor. In their work on Adaptive Teams of Agents,

Bryant and Miikkulainen [7] show that even members of homogeneous collec-

tives may adopt heterogeneous roles appropriate to their environment. Even

though homogeneous collectives impose a single morphology and behavior to

all of their members, they may thus still negotiate a division of labor merely

based on availability of members. However, the strict similarity between the

members of a homogeneous collective implies that each of them must be capa-
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ble of performing any share of labor the collective may encounter. Collectives

consisting of such generalist members therefore must have an eminent degree

of redundancy. A high degree of redundancy provides for great �exibility and

robustness [33, 7], but also goes hand in hand with reduced e�ciency. Section

3.2 discussed how generalist individuals are forced to settle with just moderate

competences for their broad spectrum of tasks. Collectives merely consisting of

generalists therefore cannot appeal to members with special competences. As

such, their homogeneity may impede their performance.

On the contrary, heterogeneous collectives let each member develop its own

morphology and behavior. Such individual development encourages members

to di�erentiate and allows them to dedicate themselves towards their own range

of tasks. The main reason for allowing collective members to di�erentiate is to

gain extra performance. The previous section (3.2) already argued that di�er-

entiation is mandatory for dedication of members. Dedication then on its turn

encourages members to develop outstanding competences. If the labor division

mechanism for each part of the workload will be capable of �nding a member

that is especially convenient, one may expect that the complete workload is

performed in a more e�cient way than it would be done by an undi�erentiated

collective. Provided equal amounts of time and resources, this leads to greater

performance.

The second reason for allowing di�erentiation is to reduce the complexity of

morphologies and behaviors by simplifying division of labor. It might be tempt-

ing to conclude that labor distribution for homogeneous collectives must be less

complex than for heterogeneous collectives. Homogeneous collectives after all

mostly have greater �exibility and robustness than their heterogeneous equiva-

lents, which should make it easier to �nd members for the tasks at disposal. In

addition, for homogeneous collectives, the criteria for labor division refer only to

the availability of members, whereas for heterogeneous collectives, they refer not

only to the availability of members, but as well to their competence and willing-

ness. This conclusion will often be misleading however. The apparent simplicity

of labor distribution within homogeneous collectives is often only super�cial.

Typical mechanisms for division of labor are � whether applied to homogeneous

or heterogeneous collectives � often entirely based on local decision-making; the

individual members of a collective choose their tasks autonomously and solely

based on local information. In order to ensure that labor is performed e�ciently

and tasks are selected in accordance with other members, they must somehow

individually be capable of applying the prevailing criteria for labor division to

the information they collected. The crucial point here is that any collective

member must do so according to its own range of tasks. The generalist nature
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of members belonging to homogeneous collectives requires that they must be

able to collect all pieces of local information that might be relevant for any

possible task, to which they then must apply all criteria for labor division. The

dedicated members from heterogeneous collectives just as well apply the relevant

criteria to the information collected, but as their spectrum of tasks is much more

restricted, the greater part of criteria will be irrelevant and the information to

which these criteria would be applied may just be ignored. Division of labor

therefore demands less coordination from members of heterogeneous groups than

from members of homogeneous groups. This is likely to have consequences for

the complexity of morphologies and behaviors.

The advantages of heterogeneous specialization do come at a certain cost though.

Whereas homogeneous specialization processes invariably have to optimize only

a single morphology and behavior, heterogeneous processes have to optimize as

many morphologies and behaviors as there are collective members, or at least as

there are specializations. Even though genotypes of homogeneous specialization

processes generally are more elaborate than those of heterogeneous processes, as

they encode complexer morphologies and behaviors, the search space of hetero-

geneous processes will usually still be much greater, as they evolve large numbers

of genotypes. In order to exhaustively explore the search space, heterogeneous

specialization processes require more computation than homogeneous processes.

3.3 Emergent Specialization

The essence of emergent specialization lies in the interaction between division

of labor and dedication of members. At the same time the workload is divided

amongst collective members in such a way that each share of labor is assigned

to the member most pro�cient in ful�lling it, each of the members individually

dedicates itself to the share of labor it received so as to indeed become more

pro�cient. From this interaction between division of labor and dedication of

members rises a diversi�cation of collective that may eventually turn into a set

of specialized castes. In the course of a collective's specialization process, as

the members dedicate themselves to their own range of tasks, one may expect

that each member's behavioral repertoire becomes more and more restricted

to a limited number of actions and increasingly deviant from those of other

members. Therefore, within any group subject to specialization, both the degree

of dedication and the degree of diversity are expected to grow.

However, note that specialization involves more than just diversi�cation and

dedication. Considering diversi�cation, Li et al. [21] were right in arguing that

collectives become specialized only if behavioral diversity is evoked for increased

performance. The same holds true for dedication. Collectives may then become
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greatly diverse � for instance, due to noise in the replication mechanism � and

their members strongly dedicated, but if performance does not bene�t, one

can hardly speak well of specialization. The mere purpose of specialization is

to enhance a collective's performance, so diversi�cation and dedication should

both serve for that.

4 Neuro-Evolution

Evolutionary algorithms are designed to �nd suitable parameter values for a

system, so that it may operate properly given a certain environment and task.

Within the �eld of neuro-evolution, these algorithms are applied to �nd suitable

parameters for neural networks. Well-known parameters are the strengths of

connections between neurons, as well as several activation function parameters,

such as the activation threshold and decay.

4.1 Advantages of Neuro-Evolution

Evolution of neural networks has some advantages over more traditional net-

work training methods, like back-propagation [30] and cascade correlation [13].

Firstly, it allows for more �exibility in network design. Most traditional network

training methods calculate the gradients required for hill-climbing search from

errors in the network output. The derivation of gradients requires continuous

activation functions and is costly if applied to complex network architectures,

like for instance recurrent networks [39]. Since evolutionary methods do not

rely on hill-climbing techniques, the development of networks with complexer

architectures and discontinuous activation functions comes within reach.

In the second place, neuro-evolutionary methods do not require examples of

correct behavior. These methods may therefore be used for unsupervised learn-

ing. There are numerous problem domains to which supervision is not available,

because either supervision may be impractical or simply no examples of proper

behavior exist. Training methods that rely on supervision cannot cope with

such domains. Neuro-evolution does not deduce its reinforcement signals from

correct examples and is thus capable of building networks in response to problem

domains where supervised learning is not possible.

Thirdly, evolutionary methods are able to train under sparse, infrequent rein-

forcement. Apart from problem domains to which supervised learning tech-

niques cannot be applied at all, many other domains only allow for sparse,

infrequent reinforcement. For instance, certain sequential task domains pro-

vide reinforcement signals only after a sequence of actions, or even just one
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signal at the end of an agent's lifetime. In such domains, training networks will

be di�cult using back-propagation or other traditional techniques, due to the

credit assignment problem. Traditional techniques require separate reinforce-

ment signals for individual network outputs, but receive signals only after series

of outputs, which makes it impossible to distinguish how much each individual

network output contributed. Since neuro-evolution methods require just one

signal at the end of an agent's lifetime, instead of separate reinforcement signals

for individual network outputs, they can be applied to sequential tasks more

easily. Besides the sequential task domains, many other domains exist as well

that return only sparse, infrequent reinforcement. For these domains, neuro-

evolutionary methods thus will be more suitable than traditional methods.

4.2 Conventional Neuro-Evolution (CNE)

Conventional methods for neuro-evolution encode a set of network parameters as

a string of values, which then serves as a network's genotype representation. A

large number of such genotype representations is stored in a population. These

genotypes are repeatedly evaluated according to a particular task. In order to

evaluate the genotypes, from each is constructed a network, which is then used

to solve the task. From the performance of the network is derived a quantita-

tive measure that describes how well this network is suitable for the task, often

referred to as the network's �tness value. The �tness value is fed back to the

corresponding genotype. After each evaluation, the evolutionary algorithm re-

combines and mutates the genotypes in accordance with their respective �tness

values. The more suitable genotypes are preserved, whereas less suitable ones

are mutated or even replaced by recombinations of superior genotypes. By re-

peatedly selecting for greater performance, an evolutionary method eventually

develops a population of appropriate genotypes.

4.2.1 Issues on Conventional Neuro-Evolution

There are some issues on conventional neuro-evolution, however, concerning a

bias in recombination of genotypes and premature convergence of populations.

In conventional approaches, neural weights correspond directly to a location on

the genotype. This strict one-to-one mapping inhibits the �exibility of evolution-

ary algorithms. The forced correspondence between weights and gene locations

introduces a bias with regard to recombination of weights. When using n-point

crossover, with n much smaller than the size of the genotypes to recombine,

genes located close to each other have greater chance to be recombined than

genes located far from each other. This bias may be counter-e�ective, since

17



weights corresponding to genes located far from each other may still produce

highly �t neural structures.

The second issue concerns genetic convergence that is stronger than bene�cial.

Methods for neuro-evolution repeatedly select and breed the best genotypes of a

population. The genetic convergence that inherently follows from this selection

and breeding is crucial for the elimination of inferior genotypes. However, with-

out being taken care of, the convergence of a population may also obstruct its

development, by prematurely converging the population to a very small set of

unique genotypes. Common conventional evolutionary methods are incapable

of moderating excessive convergence.

A great loss of genetic diversity is undesirable because it makes exploration

of the solution space less e�cient and e�ective. Given a diverse population,

genetic algorithms are forced to search di�erent niches of the solution space

simultaneously, since di�erent genotypes inherently do not occupy the same

niche. However, if population diversity reduces, more and more genotypes will

be searching the same niche, making the exploration less e�cient. Apart from

that, recombination of greatly di�erent genotypes permits greater traversals

in the solution space and enables populations to overcome local maxima. If

diversity diminishes, greater traversals in the solution space become infeasible

and exploration may be trapped into a local maximum, making it less e�ective.

Excessive convergence also con�nes genetic adaptability. Given a dynamic task

and environment, genetic populations must be capable of quickly adapting to

changes. Populations with larger numbers of di�erent genotypes incorporate

adaptability to a wider variety of tasks and environments. As its diversity

reduces, a population has less unique genotypes available and may thereby not

be able to respond adequately.

4.2.2 Maintaining Population Diversity

Several techniques for maintaining genetic diversity have been developed. The

most common techniques are to weaken the selection strategy, or to increase

the mutation rate. However, delaying convergence by weakening the selection

strategy roughly boils down to delaying the complete evolutionary process, en-

suring retarded development rather than greater population diversity. The sec-

ond technique, increasing the mutation rate, attempts to maintain diversity by

adding extra noise to a genetic population. Adding extra noise does not result

in diversity among proven solutions, however, but in diversity among more or

less random values. Besides that, increasing the mutation rate limits the reso-

lution of the genetic search, and as such prevents the population from closely

approaching optimal solutions.

18



Somewhat more sophisticated techniques for maintaining genetic diversity are

�tness sharing [15], crowding [10], and local mating [9]. In order to preserve ge-

netic diversity, techniques like these only recombine genotypes that do not di�er

too much. So as to determine if genotypes do not di�er too much, any pair of

genotypes that might be recombined must be compared. However, since compar-

ing genotypes is computationally expensive, such comparison-based techniques

are impractical for large populations of elaborate genotypes [32].

Another technique that must ensure genetic diversity is implicit �tness sharing

[20, 32]. In this technique, the evolutionary pressures for diversity do not rely

on comparison of genotypes, but emerge from the fact that individuals are being

forced to cooperate. Cooperation between individuals is forced, as the individ-

uals do not represent complete solutions to a task, but only partial solutions

that need each other in order to complete a common task. This way, the popu-

lation cannot loose much of its diversity, as many di�erent individuals may be

necessary for completing the task.

4.3 Symbiotic Adaptive Neuro-Evolution (SANE)

The work of Horn et al. [20] and Smith et al. [32] on implicit �tness sharing was

not designed for neuro-evolution, however. Moriarty and Miikkulainen suited

the work to neuro-evolution [22, 23], which resulted in the neuro-evolutionary

counterpart of implicit �tness sharing, called Symbiotic Adaptive Neuro-Evolution,

or SANE. Similar to implicit �tness sharing, which operates on a population of

genotypes representing partial solutions instead of full solutions, SANE pri-

marily operates on a population of genotypes representing neurons instead of

complete neural networks.

The SANE method thus evolves a population of neuron genotypes. Apart from

that, the procedure of iteratively evaluating genotypes and performing genetic

operations is quite similar to that of conventional neuro-evolution. From sev-

eral neuron genotypes together, a network is constructed and then evaluated

according to a certain task. The neuron genotypes involved in the construction

of the network are rewarded with respect to the network's performance. After

all genotypes have been evaluated, the evolutionary algorithm recombines and

mutates the genotypes in accordance with their respective �tness values. Also

see �gure 1.

Evolution of neuron populations on itself, however, cannot generate complex

neural networks. On top of the evolution of neuron genotypes, a second popu-

lation of network genotypes is evolved that must keep track of e�ective combi-

nations of neurons. This extra evolutionary layer roughly compares to conven-

tional neuro-evolution, including selection and breeding based on �tnesses, but
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with the di�erence that these network genotypes do not actually incorporate

blueprints of neurons by themselves, but as it were point to neurons from the

underlying neuron genotype population.

Figure 1: Graphical representation of SANE.

4.3.1 Symbiotic Evolution of Neurons

Obviously, any single neuron cannot perform a complex task by itself; it may

only target a small aspect of the complete network response. So, a number of

di�erent neurons is forced to cooperate, so as to combine the di�erent aspects of

the response. The fact that neurons cannot solve a complex task on their own,

but rely on genetically di�erent neurons, ensures that the genotype population

cannot loose much of its diversity. In fact, the population will increasingly be-

come divided into various clusters of which the genotypes target approximately

the same aspect of the network response. Separate clusters emerge from which

the genotypes have the same specialization. Neurons from the same cluster, thus

having the same specialization, compete with each other, while neurons from

di�erent clusters, thus having di�erent specializations, may cooperate with each

other. Moriarty [23] uses the term symbiotic evolution here, referring to the type

of co-evolution where individuals for their survival explicitly rely on the presence

of each other.

The advantages of symbiotic evolution are twofold: the maintenance of popula-

tion diversity increases e�ciency and e�ectiveness, as well as that it allows for

greater accuracy in evaluating possible solutions. In contrast to evolutionary

methods that evolve complete networks, SANE evolves neurons representing

only partials solutions. As these neurons rely on each other, none of their geno-

types can take over the complete genotype population, which ensures a certain

level of population diversity. As pointed out in section 4.2.1, population diver-

sity is desirable for e�ciently and e�ectively searching for optimal solutions.

SANE also allows for greater accuracy in evaluating solutions. Conventional

evolutionary approaches evaluate neurons within the context of invariably the
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same neural network. In such approaches, highly �t neurons may easily be

concealed by poor performance of other neurons in their network or, the other

way round, poor neurons may take advantage of favorable neurons. In contrast,

SANE evaluates each neuron given multiple, di�erent networks, so as to make

evaluation of neurons less dependent on the networks they were part of, which

should result in greater accuracy.

4.3.2 Issues on SANE

Regrettably, the SANE method is not free from shortcomings either, since it

seems to be designed only for tasks satisfying the Markov assumption. The

Markov assumption means that the next state of a system entirely depends on

the present state and is thus independent of previous states. Although many

tasks are Markovian in nature or can be formulated such that they satisfy the

assumption, they may still appear non-Markovian to agents, as these may not

have complete knowledge of the environment. Having agents to incorporate

some form of memory then may help them to solve their task. Agents may

for instance be able to remember locations of objects that went out of sight.

If SANE would be able to evolve networks incorporating memory, then the

performance on non-Markovian tasks might bene�t from that.

A common way to incorporate memory is to evolve networks with recurrent

connections between their neurons. Recurrent connections implement a form

of memory by maintaining input activation for more than one round. SANE

has some di�culties evolving recurrent networks however. A neuron's behavior

strongly depends on the behavior of a�erent neurons, as its behavior changes

as soon as the behaviors changed of neurons it receives input from. In order

to function properly, a neuron must therefore be able to have at least some

expectations regarding the behavior of a�erent neurons. So as to achieve those

expectations, over several generations, the behavior of neurons subsequently

occupying a certain position in network must be more or less consistent. Small

changes are necessary in order to search for optimal solutions, but dramatic

changes distort the development.

However, in subsequent generations, SANE allows positions in the hidden layer

to be occupied by neurons from di�erent specializations. Whereas genotypes

from the same specialization become more or less consistent to each other

throughout the evolutionary process, genotypes from di�erent specializations

rather should not, as they target di�erent aspects of the network response. As

SANE allows neurons from di�erent specializations to subsequently occupy the

same position in the hidden layer, it can comprehensibly not achieve the ex-

pectations of hidden neurons about their neighbors. SANE thus will only be
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reliable for evolution of neuro-controllers of which the evolved neurons do not

depend upon each other, thereby ruling out evolution of recurrent networks.

This is a serious drawback, since reactive single-layer neuro-controllers are only

su�cient for less interesting, simpler tasks.

4.4 Enforced Sub-Populations (ESP)

Three years after the introduction of SANE, Gomez and Miikkulainen came up

with a second neuro-evolutionary method operating on the neuron level [17].

Gomez's method primarily di�ers from SANE in that SANE's emerging spe-

cializations in the single neuron population are substituted for pre-speci�ed

specializations, called sub-populations. The forced segregation of specialization

clusters solves the expectancy issues on SANE (see section 4.3.2), allowing it to

evolve recurrent networks. Gomez exploited this solution to build an evolution-

ary method called Enforced Sub-Populations, abbreviated as ESP.

4.4.1 Enforcing Specializations

The behavior of hidden neurons participating in a recurrent network is strongly

dependent on the behavior of other hidden neurons. Throughout the course of

evolution, these neurons must be able to expect a certain behavior from other

hidden neurons in order to behave properly. Since SANE utilizes loose, im-

plicit segregation of specialization clusters, it cannot satisfy those expectations,

disabling it to reliably evolve recurrent networks. The most obvious solution

is to replace SANE's loosely, implicitly segregated specialization clusters with

strictly and explicitly segregated clusters, or sub-populations. For each position

in the hidden layer, such a sub-population is pre-speci�ed. As evolution pro-

ceeds, neuron behavior within the several sub-populations becomes more and

more consistent, and hidden neurons may increasingly expect a certain behav-

ior from other hidden neurons. This enables ESP to achieve the expectations of

neurons about their connected neighbors and so to evolve networks with a more

complex structure, such as recurrent networks. Although Gomez extended his

method with several features, the basic evolutionary procedure is furthermore

similar to SANE, as shown in �gure 2.

In [16], Gomez and Miikkulainen argue that segregating neurons into sub-

populations speeds up the evolutionary process for two reasons: the special-

izations do not have to organize themselves out of a single large population,

and their progressive specialization is not hindered by recombination across spe-

cializations. According to Gomez and Miikkulainen, these cross-specialization

recombinations would ful�ll relatively orthogonal roles in the evolution of net-
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works. Recombination of genotypes from di�erent specializations may result in

o�spring from which the genes are completely inconsistent with each other, even

if the parent genotypes were highly �t.2

Figure 2: Graphical representation of ESP.

4.4.2 Burst-Mutation

Gomez realized that without recombination across di�erent specializations, ESP

is subject to premature convergence of populations, just as well as conventional

evolutionary methods are, as treated in section 4.2.1. He therefore equipped

ESP with a method called burst-mutation, based upon Whitley's Delta-Coding

method [38]. If performance stagnates for a predetermined number of gener-

ations, all genotypes in the least contributing sub-population are substituted

for noisy clones of the sub-population's best genotype. To �nd the poorest

sub-population, all sub-populations are compared using lesioning, a technique

described in section 4.4.4. The newly generated genotypes must then explore

the surrounding evolutionary space of the best genotype.

On the one hand, since the best genotype mostly will already have at least some

competence in solving the task, dramatic changes will not be necessary for most

of the weights. On the other hand, however, a few dramatic changes should not

be prohibited, in order to regain genetic diversity. The Cauchy distribution is

suitable for generating a genetic noise that ful�lls these requirements. During a

burst-mutation, the concerned genotypes are mutated according to the Cauchy

distribution:

f (x) =
α

π (α2 + x2)
2Note that on the one hand Moriarty states that recombinations across specializations are

necessary to maintain population diversity, while on the other hand Gomez and Miikkulainen
state that such recombinations will ful�ll relatively orthogonal roles. So there must be a
trade-o� between population diversity and genotype consistency.
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Figure 3: The Cauchy distribution (α = 1) and the normal distribution (µ = 0
and σ = 1). Notice the longer tails of the Cauchy distribution. While most of
the returned values will be small, the Cauchy distribution also allows for the
more dramatic genetic changes.

4.4.3 Adapting the Network Size

Whether neural networks are trained using gradient-descent techniques or using

neuro-evolution techniques, it is important for these networks to have the ap-

propriate number of neurons in order to learn a task su�ciently. Too few or too

many neurons may seriously reduce the generalizing capabilities of networks,

or at least slow down the learning process. Networks equipped with too few

neurons are not powerful enough to be able to generalize the task. On the other

hand, oversized networks that learn by means of gradient-descent techniques will

more or less store the training data instead of its distinctive features, whereas

oversized networks trained by means of neuro-evolution will evolve several in-

e�ective neurons. An evolved network containing too many neurons will thus

in general not over�t its training data, yet excess neurons will slow down the

evolution process and reduce the accuracy of evaluations.

ESP is able to adapt the size of the evolving networks by adding or removing

sub-populations. When performance stagnates for a predetermined number of

generations and burst-mutation already has been applied, a neuron may be ei-

ther added or removed, by respectively adding or removing a sub-population.

Using lesioning, described in the next section (4.4.4), each of the sub-populations

is tested for its contribution to the network response. If every single sub-

population proves to be su�ciently contributing, a new sub-population is added,

thereby extending the network with an extra neuron position. If one or more

sub-populations are found to be insu�ciently contributing, the least contribut-

ing is removed, and the corresponding neuron position is withdrawn.
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4.4.4 Lesioning

If the progression of the evolutionary process stagnates, ESP may apply burst-

mutation or adapt the network size. Both features need to know which sub-

population is least contributing, as burst-mutation is applied only to that sub-

population and adaption of the network size possibly comprehends its with-

drawal. A technique called lesioning provides this information.

During a lesion study, a network is evaluated with one of its neurons disabled,

or lesioned. The resulting loss of performance indicates the contribution of this

neuron to the network output. If the performance of the network degraded

considerably, the contribution of the neuron apparently was signi�cant. On the

other hand, if the performance did not degrade that much, or even increased,

the contribution of the neuron must have been insigni�cant, or even counter-

e�ective. By successively dedicating a lesion study to each neuron, the lesioning

technique compares the signi�cance of neurons and their corresponding sub-

populations. The lesion with the least degraded performance indicates the least

contributing neuron position.

4.4.5 Enforced Sub-Populations for Multi-Agent Systems

In their paper on cooperative co-evolution of multi-agent systems, Yong and

Miikkulainen [40] presented a multi-agent extension of the ESP method. The

Multi-Agent ESP method comes down to simultaneously running a separate ESP

process for each of the collective members, while still evaluating the members

together, according to a certain multi-agent task. Each ESP process constructs

a network by choosing a neuron from each of its sub-populations. The networks

from the several ESP-processes then are brought together to form an agent

collective. The collective is evaluated with respect to a certain multi-agent

task and the involved genotypes receive a certain �tness value, derived from

the collective's performance. Figure 4 shows a graphical representation of the

Multi-Agent ESP method.

Bryant and Miikkulainen [7] employed the ESP method to evolve agent collec-

tives as well. However, in contrast to the extension of Yong and Miikkulainen,

their version of the ESP method involves just a single ESP process. An agent col-

lective is composed by constructing a single network that then is duplicated for

each of the collective members. Whereas the method by Yong and Miikkulainen

was designed to evolve heterogeneous collectives, Bryant and Miikkulainen de-

signed theirs to evolve homogeneous collectives.
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Figure 4: A graphical representation of the Multi-Agent ESP method.
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Part III

Method

The method section covers the description of our experiments. In the �rst

chapter, two instances of the Continuous Multi-Rover Problem are elaborately

described, referred to as the distributed rover task and the collective rover

task. The second chapter covers the evaluation of individual rover perfor-

mances. Thereafter, the compared neuro-evolutionary methods are described.

The fourth chapter then discusses the quanti�cation of specialization. Finally,

the last chapter summarizes the parameter settings as used in our experiments.

5 Continuous Multi-Rover Problem

A well-known reinforcement learning problem is the Grid World Problem [34].

An agent navigates about a two-dimensional n ×m grid space, of which each

square represents a certain value. After each move, the agent is rewarded for

the value of the grid square it has moved into. The observable state space of

the agent consists only of its current grid coordinate. Given a limited number

of moves, the agent then must use that information to �nd the path that will

maximize its sum of rewards.

Agogino devotes a chapter of his dissertation [3] on the description of the Dis-

crete Rover Problem, which essentially is a multi-agent version of the traditional

Grid World Problem. Agogino's version is slightly di�erent in that it involves

a collective of multiple autonomous agents, or rovers, to look for certain to-

kens that are distributed throughout the discrete environment. When a rover

moves into a grid square holding such token, it receives a reward for this token's

value, after which the token is removed. The rover collective must then learn

to maximize the accumulate reward.3

In the next chapter of his dissertation, Agogino describes yet another version of

the Rover Problem. In the Continuous Rover Problem, a group of autonomous

rovers searches for points of interest, just as in the Discrete Rover Problem,

but then within a continuous environment. Whereas the number of possible

positions is limited for a discrete n×m grid space, the continuous environment

allows for a (theoretically) in�nite number of possible positions, even if the size

of the environment is restricted.4

3See [36] as well.
4See [1, 2] as well.
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5.1 Environment

In our case, the task environment is a continuous but con�ned two-dimensional

space containing a given number of rocks. These rocks are the points of interest

that rovers will be looking for. Each of them represents a certain value, deviating

from one rock to another, but always greater than zero. Three types of rock

are present: red rocks, green rocks, and blue rocks. Central point in the design

of the task environment (as well as in the design of the rovers themselves) is

that no type of rock may a priori be more appealing for rovers than another.

Each rock type therefore represents an equal amount of rock value, distributed

amongst an equal number of rocks, with an equal deviation in rock value. Figure

5 shows an example of how rocks may be distributed.

Figure 5: A possible distribution of rocks.

As one can see in the �gure, rocks are not uniformly distributed over the envi-

ronment, but clustered into several piles. These rock piles are randomly located

in the environment, but in such a way that the piles do not overlap. Even

though all piles contain an equal number of rocks, the amount of rock value

is not necessarily equal per pile. The clustering is done with respect to the

several rock types, in the sense that one-third of each pile consists of red rocks,

one-third of green rocks, and one-third of blue rocks. Besides that, within the

piles, rocks of a similar type tend to be located somewhat closer to each other,

thereby sometimes forming smaller loose sub-clusters. This bias is very slight

though. The sub-clusters of a rock pile should not be situated too far apart,

as then it would be likely that one sub-cluster will be easier to �nd than the

others, thereby making one type of rock more appealing.
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5.2 Task

Given the described environment, the task for a rover group is to discover as

much rock value as possible, provided a limited number of simulation time steps

and a limited amount of energy. For our project, we implemented two versions

of the rover task, namely a task requiring distributed behavior from rover groups

and a task requiring collective behavior. In the distributed rover task, a rock is

"discovered" as soon as a single rover successfully detected it. This in contrast

to the collective rover task, which prescribes that a rock may only be discovered

if at least two rovers simultaneously detected it � see �gure 6. Although the

di�erence between the distributed behavior task and the collective behavior task

is very slight, it still makes that rovers adopt fundamentally di�erent approaches.

Figure 6: Two pairs of rovers trying to discover rocks. In the distributed task
(left pair) rovers may discover rocks individually. The joint area in which rocks
are discovered (colored gray) is the union of the individual perceptive �elds.
In the collective task (right pair), rovers may only discover rocks if at least
two of them simultaneously detected these. The joint area in which rocks are
discovered thus is the intersection of the individual perceptive �elds.

Under the regulations of the distributed task, only one rover is required to �nd

all rocks, provided su�cient time and energy. Only as restrictions posed on time

and energy become stronger, more rovers will be needful for completion of the

task. However, these extra rovers only compensate for lack of time and energy.

Although rovers performing the distributed task may certainly combine e�orts

in order to �nd as much rock value as possible, there is no need to cooperate. In

contrast, the collective task prescribes that at least two rovers are required to

�nd a rock. A single rover will never be able to �nd any rocks at all, no matter

how much time and energy is provided. Notwithstanding the fact that stronger

restrictions on time and energy may ask for even more rovers, at least two rovers

will unconditionally be an essential ingredient for discovery of any amount of

rock value. Rovers performing the collective task therefore will have to bring

into line their behaviors, since in order to discover a particular rock, two rovers

must both be located close to it, as well as that they must activate their sensors

synchronously. Cooperation thus plays an essential role in the collective task.
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5.3 Rovers

The members of a rover group may explore their environment by moving around,

perceiving each other, and perceiving rocks. There are some constraints though.

In the �rst place, the task must be performed within a limited number of time

steps, while rovers may perform only one action per time step. For each time

step, a rover thus has to choose between motion, rover perception, and rock per-

ception. In the second place, rovers receive only limited energy resources, while

each action consumes a certain amount of energy. Once its energy resources are

depleted, a rover will not be able to continue exploring its environment anymore.

Rovers therefore will have to make good use of their time and resources.

5.3.1 Perception of the Environment

In order to complete their task successfully, rovers of course must be aware

of any rocks and rovers present in their environment. For that, each rover is

equipped with two collections of sensors: one collection for detection of rocks,

another for detection of fellow rovers. The alignments of these two sensor collec-

tions are identical. Either collection consists of four sensors aligned orthogonally

to the rover's heading, whereas each sensor covers a di�erent quadrant of the

rover's environment (�gure 7). For either sensor collection, a detection range

r and a detection probability p is de�ned. The detection range is the distance

up to which sensors may perceive any rocks or rovers, the detection proba-

bility the chance that an attempt to perceive the environment will "succeed".

Rovers attempting to perceive rocks or fellow rovers may not do so by activat-

ing individual sensors, but have to activate the respective sensor collection in its

entirety, thereby obtaining a panoramic view of their surroundings. The success

of an attempt is not determined per sensor, but for the collection at once. If

an attempt succeeds, all sensors record the presence of rocks or rovers within

their respective scope; does the attempt fail, then no rocks or rovers at all are

detected.

Figure 7: The four �elds of view that together give the rover a panoramic view.
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Perception occurs at the expense of energy. For both rock detection and rover

detection, the detection energy cost ∆edet is calculated as:

∆edet = ρπr2p

in which ρ is a constant that may di�er for rock detection and rover detection.

The term πr2 represents the surface of a rover's panoramic �eld of view, given

detection range r. As such, the energy consumption for detection is proportional

to the �eld of view multiplied by the probability of success p. The detection

energy cost is charged regardless of an attempt's success or failure.

Sensor Activation for Rock Detection From a rover's collection of rock

sensors S, an individual sensor s receives an amount of activation for each rock

within scope, determined by the rock's value and the distance between the rover

and rock. Provided that the sensor successfully detected a set of rocks Qdet, the

amount of activation As obtained from these rocks is de�ned as:

As =
∑

q∈Qdet

vq

1 + δ ‖∆xq‖2

in which vq is the value of a detected rock q, ∆xq the disposition between the

rock and the sensor, and δ a global constant specifying the slope of the activation

function. Note that, according to this function, the more valuable a rock, the

more salient it will be to rovers. In addition, the sensor activation decreases as

the distance between rock and rover grows. A successful rock detection results

in an activation vector AS containing |S| sensor activations. As our rovers

carry four rock sensors, the activation vector for rock detection contains four

activation elements. If an attempt for rock detection fails, the activation vector

will be �lled with zeros. A rover that received such array �lled with zeros cannot

tell whether that was because no rocks were found or because its attempt failed.

Whereas in the distributed task rovers may discover rocks independently of other

rovers, in the collective task, rocks will only be marked as discovered if detected

by at least two rovers concurrently. However, this additional requirement does

not a�ect the perception of rovers itself. Rovers that independently detected

a rock still receive an amount of activation for that rock, despite the fact that

this rock will not be counted as discovered.

Sensor Activation for Rover Detection The sensors for rover detection

receive their activation for perceived rovers in a similar way. The single di�er-

ence is that rovers do not have some kind of value, so the activation function

is merely dependent on the distance between rovers. If U is a rover's collection
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of rover sensors, and u an individual sensor that successfully detected a set of

rovers Rdet, then the amount of activation Au for this sensor equals:

Au =
∑

r∈Rdet

1
1 + δ ‖∆xr‖2

in which ∆xr is the disposition between a detected rover r and the sensor. Pa-

rameter δ is the same global constant as used in the rock detection activation

function and still speci�es the slope of the activation function. Similar to rock

detection, successful rover detection results in an activation vector AU contain-

ing |U | sensor activations. In the case that an attempt for rover detection fails,

then the activation vector is �lled with zeros.

Detection Modes Corresponding to the three types of rock, rovers can as-

sume three detection modes: a red mode, a green mode, and a blue mode.

The relation between these modes and detection of rocks and rovers is rather

straightforward. Rovers that assumed a certain mode � red rovers, green rovers,

blue rovers � are allowed to detect rocks and rovers of the same color. Red

rovers may as such detect red rocks and other red rovers; green rovers may de-

tect green rocks and other green rovers; blue rovers may detect blue rocks and

other blue rovers. Rovers can switch between modes at any time.

However, there are two penalties for switching between detection modes. In the

�rst place, after a rover has switched between modes, it will be unable to detect

for τ iterations. In addition, switching from one mode to another happens at

the expense of the switching energy cost ∆emod according to:

∆emod = µ

in which µ is a global constant. A rover remains in its current mode until it

tries to detect a di�erent color of rock or rover. Rovers may thus change from

detecting rocks to detecting rovers and vice versa, choose to accelerate, or to

perform no actions at all, without actually switching detection mode.

5.3.2 Motion

In order to explore their environment, rovers must of course be able to move

around. However, rovers cannot control their velocity directly, but will have

to adjust it through acceleration. For any acceleration a rover intends, it must

select both a magnitude and direction. The magnitude for the intended ac-

celeration is unrestricted, but the direction can only be chosen from the four

orthogonals to the rover's current heading � forward, back, left, or rightward.
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A rover's motion is de�ned by the following set of equations:

∆x = v

∆v = a− k

2m
‖v‖v

x, v, and a being vectors representing respectively the rover's position, velocity,

and acceleration. In the velocity function, the term − k
2m‖v‖v represents fric-

tion, with k and m respectively being the friction constant and the rover's mass.

In our simulation, both are equal for all rovers. A rover derives its acceleration

from the output of its neural network. Section 5.4 elaborately describes the

topology of such a network, for now it is su�cient to mention that the network

output consists of eleven activation values, of which four values concern the

rover's motion. If one of these four activation values exceeds all other values

of the network output, the rover will accelerate in the corresponding direction.

The magnitude of the acceleration is deduced from the activation value:

‖a‖ = αAa

where α is a global constant and Aa the activation value in question. Rovers are

charged a certain amount of energy for each of their accelerations, respective to

the acceleration's magnitude. The acceleration energy cost ∆eacc equals:

∆eacc =
1
2
m ‖a‖2

5.3.3 Orientation

The simulation environment is just a small part of the practically unlimited

space that the rovers are situated in. No restrictions are posed on the movement

of rovers, so even though rovers initially are positioned within the boundaries

of the simulation environment, they are not restricted to stay within these. As

all rocks are located within the boundaries of the environment, however, rovers

are preferred to spend their time within the boundaries as well. The rovers

thus will need some kind of orientation, so that they might have a sense of their

disposition towards the environment and the rocks, and may choose to return

when they are too far o�.

Rovers therefore are equipped with two orientation neurons. One of these trans-

lates the horizontal component of the disposition towards the center of the task

environment, the other the vertical component, simply by keeping their acti-

vation level equal to the respective component of the disposition. Rovers then

must learn to interpret these activation values correctly and utilize them in

order to keep close to the rocks they must discover.
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5.4 Control Architecture

Each rover's behavior is determined by its private control architecture. Rovers

are equipped with an Elman neural network [11, 12], a triple-layered network

having each of its hidden neurons recurrently connected to each other, and fully

connected to the neurons of the input and output layers. Figure 8 shows the

topology of the network employed by the rovers. In the �gure, the neurons from

the input and output layers are grouped by functionality. On the left side, one

can �nd the input neurons: those reacting to the rock sensor in front (F), at

the back (B), to the left (L), and right (R); the neurons reacting to the rover

sensors; and the two neurons translating the horizontal (H) and vertical (V)

component of the rover's position. On the right side, the output neurons are

shown: those corresponding to the activation of the rock sensors for the three

di�erent colors red (R), green (G), and blue (B); the neurons corresponding to

the activation of the rovers sensors; the neurons specifying the rover's motion;

and the neuron acting as a threshold neuron. In between the input and output

neurons, the hidden layer is shown with eight neurons, although its size is to be

pre-speci�ed by the user.

Figure 8: The topology of the Elman network [11, 12] rovers are equipped with.
For the sake of clarity, from each group of input or output neurons, one neuron
is shown to be connected to the hidden layer, though in fact, all input and
output neurons are connected.

This network layout does not provide room for discerning rocks or fellow rovers

by their color, as the input layer does not contain separate neurons for the

di�erent colors. The reason for this is that our rovers are expected to dedicate

themselves to just a single color and the ability to discriminate colors thus would

be somewhat super�uous. A certain awareness of colors will doubtlessly be

helpful in accomplishment of the rover task. The description of the environment

(section 5.1) mentioned that rocks of the same color tend to be located somewhat

closer to each other. As a rover just encountered rocks of a particular color, it

might want to look out for more, since it will be likely that more rocks of this
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color are around. In order to decide whether it should keep looking for this color,

however, the rover then of course must be aware of the color it just encountered.

Just as well, it often will be advantageous for a rover to be aware of the colors of

recently detected fellow rovers. The collective rover task prescribes that rocks

may only be discovered if two rovers simultaneously detect these. As such, either

two rovers must be very lucky looking at the same time for the same color at

the same location, or they must somehow coordinate their behaviors.

Generalist rovers require a control architecture that is capable of recognizing

colors. Since they may choose to look for any color, one can imagine that they

would become confused if their control architecture is not capable of distin-

guishing colors. Specialist rovers in contrast may still be aware of the color they

encountered without truly being able to discern between colors, because they

never look out for any but the color they are dedicated to. A rover that will

only try to detect red rocks or other red rovers may clearly be certain about the

color of the rocks and rovers it observed, even though it might be ignorant of

the existence of di�erent colors. As our rovers are to become such specialists,

their control architecture has no need to provide for discrimination of color.

Having said that, one might wonder why rovers then still receive three separate

pairs of detection output neurons, one pair for each color. It is true that during

the specialization process, control architectures are likely to develop one pre-

dominant pair of detection output neurons, while the two other pairs become

more and more redundant. However, as specialization emerges from interac-

tion between division of labor and dedication of members, one cannot predict

what role individual members are to assume. The architecture must therefore

avoid any predetermination towards a particular role. This can only be done by

supplying neurons for all possible actions.

6 Evaluating Individual Rover Performances

After a collective has tried to complete the task, its members must somehow

be evaluated with respect to the discovered amount of rock value. Our starting

point for the design of a suitable evaluation function will be that the members

of a collective must collectively strive to optimize a global evaluation function

rating the collective's performance. One solution would be to couple each mem-

ber's �tness directly to the collective performance. The collective members will

then certainly strive to optimize the collective's performance, since that will in

turn straightaway enhance their own �tness. An important drawback of this

solution is that it completely ignores contributions of individual members. The

more contributing members may easily be concealed by poor performance of
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other members, while poorly performing members may be given credit for the

contribution of fellow members. A better solution is to equip the members with

an evaluation function that takes into account their individual contribution.

Agogino and Tumer [1, 2] describe two requirements to which such evaluation

functions should comply. The �rst requirement is that they should be in line

with the global evaluation function, so that the maximization of individual

�tness does not hinder the collective performance. The second requirement

states that they still should be sensitive to individual performances, so that

it may provide for the right selective pressure. In the evaluation of a certain

member, the impact of other members should be minimized. Based on these

two requirements, Agogino and Tumer constructed an evaluation function they

refer to as the di�erence evaluation function. Its abstract form is de�ned as:

Dη = G (z)−G (z−η + cη)

The function obtains the �tness of member η by taking the di�erence between

the global evaluation function G (z) and the evaluation function with respect to

all variables not a�ected by member η, denoted as G (z−η + cη). In the latter

term, z−η stands for all components of z on which member η had no e�ect and

cη is a constant replacing those components of z that were actually a�ected

by η. The most intuitive application of the di�erence evaluation function is to

measure the collective's performance �rst with all members and thereafter with

all members but η. The di�erence in performance then must have been the

contribution of member η.

6.1 Distance-Based Di�erence Evaluation Function

Furthermore, Agogino and Tumer [1, 2] describe how their di�erence evaluation

function may be applied to the Continuous Rover Problem. In their version of

the Continuous Rover Problem, a rover's sensors have unlimited range, so rovers

may instantly see all rocks. The evaluation function compensates for that by

reducing the reward for observed points of interest as the distance increases. In

addition, points of interest are not removed after being observed, otherwise the

unlimited sensor range would have caused the points of interest to be removed

instantly. Provided that a point of interest i represents a value Vi, then an

observation yields an observation value inversely proportional to the distance

between the rover and the point of interest:

Oδη,i,t =
Vi

δ (Li, Lη,t)
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where δ (Lj , Lη,t) is a measure that increases with the distance between position

Lj of rock j and position Lη,t of rover η at time step t. So, the closer a rover

approaches a point of interest, the greater the reward. The collective's task

then is to maximize the total amount of value observed. The global evaluation

function G and the private evaluation function Pη are respectively de�ned as:

Gδ =
∑
t

∑
i

Vi
minη δ (Li, Lη,t)

P δη =
∑
t

∑
i

Vi
δ (Li, Lη,t)

For each time step, the global evaluation function G accumulates the obser-

vation values of rovers that were closest to some point of interest. A rover's

private evaluation function Pη accumulates for each time step its observation

value with respect to all points of interest. By inserting these two evaluation

functions into the abstract di�erence evaluation function, Agogino and Tumer

created a distance-based di�erence evaluation function speci�cally designed for

the Continuous Rover Problem:

Dδ
η =

∑
t

[∑
i

Vi
minη′ δ (Li, Lη′,t)

−
∑
i

Vi
minη′ 6=η δ (Li, Lη,t)

]

=
∑
t

∑
i

Ii,η,t (z)
Vi

δ (Li, Lη,t)

where Ii,η,t (z) is an indicator function, returning one if and only if rover η was

closest to point of interest i at time t. Within the square brackets of the �rst

equation, the left term denotes the global evaluation function for time step t,

whereas the right term represents the total observation value collected at time

step t if rover η were not in the system. The second equation states that η only

is rewarded for a point of interest at time steps no other rover was closer.

6.2 Time-Based Di�erence Evaluation Function

Even though our version of the Continuous Rover Problem is somewhat di�erent

from the one Agogino and Tumer [1, 2] designed their di�erence evaluation

function for, we might still exploit some of the function's bene�ts. In the rover

task described by Agogino and Tumer, rovers may perceive any point of interest

at any time step, due to an unlimited sensor range. To compensate for that,

the observation value had to be inversely related to the distance between a

rover and a detected point of interest, to rule out that rovers always collect the
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maximum amount of observation. With concern to the evaluation functions,

a certain notion of time would have had only little meaning, since rovers may

always detect each individual point of interest.

In our rover task, however, rovers may detect points of interest only up to a

certain range. The observation value thereby does not have that much need

anymore for being inversely related to the distance. On the other hand, the

notion of time becomes quite important, since rovers may not anymore detect

any point of interest at any time step. As such, in our simulation, we are not so

much interested in how closely rovers approach the points of interest, or rocks,

rather that they should discover as many rocks as possible within a limited time

frame, given restricted perception. The evaluation function therefore will not

be dependent on the distance between a rover and a detected rock, but on the

time passed before a rock was found. Consequently, the distance measure is

substituted for a time measure τ (Tη,i) that increases with the time passed. The

time-based observation value is de�ned as follows:

Oτη,i =
Vi

τ (Tη,i)

in which Tη,i is the time step rover η discovered rock i. So, the earlier a rover

detected a point of interest, the greater the reward. The collective's task still

is to maximize the total amount of observation value. The global evaluation

function G and private evaluation function Pη are thus respectively de�ned as:

Gτ =
∑
i

Vi
minη τ (Tη,i)

P τη =
∑
i

Vi
τ (Tη,i)

The global evaluation function G accumulates the observation values of rovers

that were �rst to observe a point of interest. A rover's private evaluation func-

tion Pη accumulates its observation value with respect to all points of interest.

By coupling these two evaluation functions to the abstract di�erence evaluation

function, we obtain the time-based di�erence evaluation function:

Dτ
η =

∑
i

Vi
minη′ τ (Tη′,i)

−
∑
i

Vi
minη′ 6=η τ (Tη,i)

=
∑
i

Ii,η (z)
Vi

τ (Tη,i)

where Ii,η (z) is an indicator function, returning one if and only if rover η was
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�rst to detect rock i. Note that the di�erence evaluation function rewards faster

rovers in two ways. In the �rst place, the indicator function selects for each rock

the rover that was �rst to detect it. In the second place, the sooner a rover found

a rock, the greater the accompanying reward. In a certain sense, the evaluation

function thus delivers the same message twice. One might therefore choose to

eliminate the time measure:

Dτ
η =

∑
i

Ii,η (z)Vi

The simpli�ed function rewards rovers for the values of the rocks they were �rst

to detect. Provided that rocks are removed after being detected, the reward-

ing mechanism applies the (simpli�ed) time-based di�erence evaluation function

simply by rewarding rovers for the rocks they discovered. The evaluation func-

tion can then also be readily adapted to the collective rover task, by instead

rewarding the two rovers �rst to detect a rock jointly.

7 Methods for Neuro-Evolution

Rover collectives are to become familiar with their task by means of neuro-

evolution. Neuro-evolutionary methods employ genetic algorithms so as to �nd

suitable weight values for neural networks. Since the behavior of our rovers is

controlled by such neural networks, we can use neuro-evolution to optimize their

neuro-controllers. Before the actual process starts, a large number of genotypes

is created and then stored in a genotype population. These genotypes will then

be repeatedly evaluated and adapted in compliance to the concerned rover task,

so that they become more and more appropriate.

Evolutionary processes last for a certain number of generations. With each gen-

eration, all genotypes are evaluated according to the rover task several times,

before they are put through the process of recombination and mutation. Since

our rovers operate as part of a collective, genotypes are always evaluated in as-

sociation with others. From the genotypes not yet evaluated during the current

evaluation cycle, several genotypes are randomly brought together so as to form

the blueprint of a rover group. The rover group created from these genotypes

then performs its task within each of the speci�ed task environments for a �xed

number of iterations, while for each group member is recorded the total amount

of rock value it has discovered. The discovered amount of rock value is fed back

as a �tness value to the genotypes involved in the construction of the rover.

After one rover group has completed its trials, another one is put to the test,

until all genes have participated in one of the collectives.
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At the end of an evaluation cycle, all genotypes have received a certain amount

of �tness value. Such an evaluation cycle is repeated several times, so as to

evaluate the genotypes in association with several di�erent genotypes. After

the evaluation cycles are completed, the genotypes are recombined and mutated

according to their �tness values. Copies are made of the highly �t genotypes,

which then are recombined and replace the genotypes with the lowest �tness

values. Finally, the genotypes that earned an intermediate �tness value � those

neither copied nor replaced � are mutated. After the process of recombination

and mutation, the next generation starts.

The background section already hinted that there exist several levels of neuro-

evolution. Although more levels may exist, only two were mentioned, namely

the network level and the neuron level. Section 7.1 brie�y summarizes the

distinction between these levels and provides a short description of how we

built respective implementations.

In addition to the di�erent levels of neuro-evolution, we also have multiple op-

tions regarding the organization of the genotypes. As rover collectives accom-

modate multiple rovers, the evolution of collectives involves multiple agents.

Concerning the organization of genotypes, one option is to provide each rover

for its own collection of genotypes, which thus involves multiple genotype popu-

lations. Another option is to have the rovers share a common collection of geno-

types. Section 7.2 further elaborates the distinction between multi-population

evolution and single-population evolution.

7.1 Network-Level versus Neuron-Level

In the �rst place, this project aims to compare methods for neuro-evolution

operating on the network level with methods operating on the neuron level.

Conventional neuro-evolution methods typically operate on the network level,

in the sense that they evolve genotypes acting as blueprints of complete neural

networks. Somewhat more recent methods for neuro-evolution, like SANE [23]

and ESP [19], operate on the neuron level, as they evolve genotypes representing

single neurons. In sections 4.3 respectively 4.4, it is described how Moriarty [23]

came up with the idea to evolve separate neurons instead of complete networks

and how that idea was further elaborated by Gomez [19]. Both Moriarty and

Gomez argue that neuron-level evolution has certain advantages over network-

level evolution, although Moriarty provides for di�erent arguments than Gomez.

These arguments are presented in the background section as well.

In order to compare neuro-evolution on the network level with that on the

neuron level, we �rst rebuild Gomez's ESP-method, without the mechanisms

for burst-mutation and lesioning. The reason for disposing these stagnation
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counter-mechanisms is that these techniques are not necessarily unique to evo-

lution on the neuron level, but may as well be incorporated into network-level

evolution. In order to make an accurate comparison between both levels of evo-

lution, one must therefore either implement these techniques for both levels of

evolution, or leave them out at all. As the counter-measures are likely to make

the contest needlessly complex, we chose to leave them out. From our simpli�ed

version of the ESP-method, we then constructed its network-level counterpart.

7.2 Single-Population versus Multi-Population

So as to add another dimension to our experiments, we also compared evolv-

ing a single shared genotype population5 for the complete rover collective, as

opposed to evolving a separate genotype population for each rover individually.

Accordingly, four methods were constructed: a multi-population network-level

method, a single-population network-level method, a multi-population neuron-

level method, and a single-population neuron-level method.

On the network level, single-population network-level methods work with just a

single population of network genotypes shared by all rovers. In contrast, multi-

population network-level methods have for each rover a separate population of

network genotypes. Nevertheless, for a fair comparison, the total number of

genotypes must be equal for both methods, so as to ensure an equally sized

search space. Assume n rovers are evolved, where k network genotypes are

supplied per rover. A single-population method then makes use of just one

population, containing n × k network genotypes. A multi-population method

utilizes n genotype populations, containing k network genotypes each.

Concerning neuron-level evolution, single-population neuron-level methods pro-

vide for just one collection of neuron genotype sub-populations, which is shared

by all rovers. Neurons that are to occupy the same positions in the several rover

networks must be extracted from a common sub-population. In contrast, multi-

population neuron-level methods provide each rover with a separate collection of

sub-populations. For the network-level methods counts as well that they should

involve just as many genotypes. Assume n rovers are evolved, each employing a

neuro-controller with m neurons, with k neuron genotypes per neuron position.

A single-population method would then count m sub-populations, where each

sub-population contains n× k neuron genotypes. A multi-population network-

level would count n×m sub-populations, with each k neuron genotypes.

The terms "single-population" and "multi-population" may be somewhat con-

fusing concerning the neuron-level methods. However, note that the single-

5Not to be confused with the sub-populations from the neuron-level methods.
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population methods have in common that rovers share their genotype resources,

whether these consist of network genotypes or neuron genotypes, whereas in the

multi-population methods, rovers have their private genotype resources. Also

see �gures 9 and 10.

Figure 9: Graphical representations of the single-population network-level
method (left-hand �gure) and the multi-population network-level method (right-
hand �gure). In the left-hand �gure, three rovers share one network genotype
population, while in the right-hand �gure, each rover has a private population.

Figure 10: Graphical representations of the single-population neuron-level
method (left-hand �gure) and the multi-population neuron-level method (right-
hand �gure). In the left-hand �gure, three rovers share a single set of three
neuron genotype sub-populations; in the right-hand �gure, each of the rovers
received its own set.

Regarding the ESP methods for evolution of multi-agent collectives mentioned

in section 4.4.5, our multi-population method does indeed closely resemble Yong

and Miikkulainen's Multi-Agent ESP method [40], but on the other hand our

single-population method is fundamentally di�erent from Bryant and Miikku-

lainen's version [7]. The latter methods may both then maintain just a single

set of sub-populations for the complete collective, but whereas Bryant and Mi-

42



ikkulainen's method extracts only one network and duplicates that for each of

the collective members, our method extracts a di�erent network for each of the

members. Bryant and Miikkulainen's method as such is designed to compose

homogeneous collectives, whereas our single-population method is designed to

compose heterogeneous collectives.

7.3 Initial Heterogeneity of Collectives

For the analysis of a specialization process, it would be most intuitive to have a

collective of initially identical agents that slowly drift apart into several castes as

the agents learn to assume di�erent roles and dedicate themselves to their own

share of labor. The specialization process, as it were, turns a non-specialized

group of agents into a specialized group. Although such a point of view may be

helpful for some mechanisms for specialization, within the context of evolution-

ary specialization, however, it will undoubtedly lead to a con�ict of interests. As

the agents of the collective should be identical at the start of the evolutionary

specialization process, so must be the genotypes from which these agents are

built. However, this will always be in con�ict with the interest of evolutionary

methods, as these require a certain amount of genetic diversity in order to work

properly. Without any diversity, a genotype population will hardly be able to

evolve.

Consequently, on the one hand an intuitive analysis requires the genotype pop-

ulation to be initialized homogeneously, while on the other hand a great deal of

heterogeneity is imperative for a proper development of agents. As poor popu-

lation diversity will intolerably frustrate the specialization process and distort

the analysis, we chose to provide for a su�cient amount of diversity for a proper

development and accept that the analysis of the specialization process may not

always lead to intuitive results.

8 Quantifying Specialization

The essence of emergent specialization is that the workload is divided amongst

collective members, in such a way that each share of labor is assigned to the

member most pro�cient in ful�lling it, while at the same time members indi-

vidually dedicate themselves to the share of labor they received, so as to indeed

become more pro�cient. Provided that members have a �nite set of di�erent

actions to choose from, one may keep a histogram of performed actions for each

individually, and use these to measure the degree of dedication as well as the

degree of behavioral diversity.
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Concerning the measuring of dedication, it counts that the more dedicated a

member is to a limited range of tasks, the more the distribution of its action

histogram is likely to be concentrated on relatively few actions. The collective

measure for dedication thus can be de�ned in terms of the average degree of

convergence in the individual action histograms. Likewise, concerning the mea-

suring of diversity, the more the behaviors of members di�er in their selection of

actions, then for each di�erent action, the stronger the distribution of its cross-

member histogram will be concentrated on just a few members of the collective.

The measure for behavioral diversity therefore can be de�ned as the average

degree of convergence in all cross-member histograms.

In the coming sections, the measures for dedication and diversity are further

elaborated. First, a method for quanti�cation of a histogram's degree of con-

vergence is introduced. Then is described how this method can be applied to

action histograms so as to measure dedication and diversity. After that, these

measures are extended for the use of action transition tables, allowing for a

somewhat more detailed analysis. Finally, the quanti�cation of dedication and

diversity is coupled to the performance of collectives, which results in a measure

for specialization. Note that for both the dedication measures and the diversity

measures a collective consisting of n rovers is assumed, and that each of these

rovers may choose its actions from a common set of m alternatives.

8.1 Measuring the Degree of Convergence in a Histogram

The �rst step in �nding a suitable measure for the degrees of diversity and

dedication based on action histograms is to de�ne a function determining the

degree of convergence within a histogram. Given a histogram H enclosing n

categories, we de�ne the degree of convergence conv (H) of the histogram as:

conv (H) =

√
1

n−1

∑n
i=1

∑n
j=i+1 (Hi −Hj)

2∑n
k=1Hk

The function accumulates the squared di�erence between each pair of histogram

elements and normalizes the summation so as to guarantee a value between

zero and one. If a histogram's degree of convergence is equal to zero, then it is

uniformly distributed. On the other extreme, if its degree of convergence equals

one, then the distribution is completely oriented towards a single element.
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8.2 Measuring Dedication and Diversity

from Action Histograms

In order to measure dedication within rover collectives, we denote the kth rover's

individual action histogram Arovk as the vector

Arovk =
[
rovkact1 · · · rovkactm

]
in which each element rovkacti refers to the number of times the kth rover

performed the ith action. The vector corresponds to the kth row in table 1. The

dedication measure for this rover equals the degree of convergence within its

action histogram:

dedk = conv (Arovk)

The degree of dedication ded for the complete rover collective then is obtained

by taking the average of the degrees of dedication for the individual rovers:

ded =
1
n

n∑
k=1

dedk

In a similar way, one may also build a measure for diversity within rover collec-

tives. We de�ne the cross-rover action histogram Racti as the vector

Racti =
[
rov1acti · · · rovnacti

]
This vector indicates how often each rover in the collective performed action acti

and corresponds to the ith column in table 1. The diversity measure concerning

action acti is de�ned as the degree of convergence within the linearly normalized

cross-rover action histogram:

divi = conv
(
R̃acti

)
The elements of the normalized histogram represent the proportions of time

spent on respective actions. Given that the members of a collective performed

Q actions altogether, the diversity measure div for the rover collective is de�ned

as the average of the diversity measures for the several actions, weighted by the

number of times qi each action acti was performed:

div =
1
Q

m∑
i=1

qidivi
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act1 act2 act3 · · · actm

rov1 . . . . . → ded1

rov2 . . . . . → ded2

rov3 . . . . . → ded3

... . . . . . →
...

rovn . . . . . → dedn

↓ ↓ ↓ ↓ ↓
div1 div2 div3 · · · divm

Table 1: The relation between individual action histograms and dedication,
as well as cross-rover action histograms and diversity. Each row represents
the action histogram Arovk for rover k, used for deriving the rover's degree
of dedication dedk. Each column can be interpreted as the cross-rover action
histogram Racti , which yields the degree of diversity divi regarding action acti.

8.3 Measuring Dedication and Diversity

from Transition Tables

In addition to the action histogram, one may also keep a table of transitions

between actions. Such an action transition table thus keeps track of how often

one action was succeeded by another. The individual action transition table

Urovk for the kth rover may be denoted as:

Urovk =


rovktrn1,1 · · · rovktrn1,m

...
. . .

...

rovktrnm,1 · · · rovktrnm,m


In the transition table, each element rovktrni,j refers to the number of oc-

currences the kth rover has performed action actj consecutive to action acti.

Putting the rows of the table after another results in the individual action tran-

sition histogram Trovk :

Trovk =
[
rovktrn1,1 · · · rovktrn1,m · · · rovktrnm,1 · · · rovktrnm,m

]
The histogram corresponds to the kth row in table 2. Provided that the kth

rover's degree of dedication obtained from its transition histogram is de�ned as:

dedk = conv (Trovk)

then the degree of dedication ded for the complete rover collective is obtained

by averaging the n individual dedication measures:

ded =
1
n

n∑
k=1

dedk
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We may use the action transition histograms to obtain a more detailed mea-

sure for diversity as well. The cross-rover transition histogram Rtrni,j for the

transition trni,j from action acti to action actj is de�ned as:

Rtrni,j =
[
rov1trni,j · · · rovntrni,j

]
The vector indicates how often each rover in the collective performed action

actj right after action acti, and corresponds to the columns in table 2. The

diversity measure concerning action transition trni,j is de�ned as the degree of

convergence within the linear normalization of Rtrni,j :

divi,j = conv
(
R̃trni,j

)
Finally, our measure for diversity is obtained by taking the weighted average

of the degrees of diversity for each possible action transition. Given that the

members of performed Q actions altogether, and that each action transition

trni,j occurred qi,j times, then the degree of diversity div is de�ned as:

div =
1
Q

m∑
i=1

m∑
j=1

qi,jdivi,j

trn1,1 · · · trn1,m · · · trnm,1 · · · trnm,m

rov1 . . . . . . . → ded1

rov2 . . . . . . . → ded2

rov3 . . . . . . . → ded3

... . . . . . . . →
...

rovn . . . . . . . → dedn

↓ ↓ ↓ ↓ ↓ ↓ ↓
div1,1 · · · div1,m · · · divm,1 · · · divm,m

Table 2: The relation between individual transition histograms and dedication,
as well as between cross-rover transition histograms and diversity. Each row is
to be interpreted as the kth rover's individual transition histogram Trovk , used
for deriving its degree of dedication dedk. Each column stands for a cross-rover
transition histogram Rtrni,j , used for deriving the degree of diversity divi,j with
respect to the transition trni,j from action acti to action actj .

8.4 Relating Dedication and Diversity to Performance

In the past, several specialization metrics have been designed. O'Donnell and

Jeanne [26] de�ne the degree to which individual forager wasps have been spe-

cialized as the entropy of the proportions of activity. Low entropy indicates

that a forager has focused on fewer activities. Any metric based upon propor-
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tions of activity, however, cannot distinguish between for instance an individual

spending half of its time on a certain task A and then switches to task B for the

remainder of the time (AAAABBBB) and an individual repeatedly alternating

between two tasks (ABABABAB), since for both individuals the proportions

are equal. However, according to Gautrais, Theraulaz, Deneubourg, and Ander-

son [14], the �rst individual intuitively still seems more of a specialist than the

latter. As such, they designed a specialization metric based upon the frequency

of switching between tasks. The lower the frequency of changing between tasks,

the more an individual is considered to be specialized.

However, note that in terms of our project, both of these specialization measures

actually measure the degree of dedication and thus put individual dedication

on a par with specialization. Notwithstanding the ingenuity behind these mea-

sures, Li et al. [21] yet have two points of criticism. In the �rst place, they argue

that these de�nitions are too much focused on individuals, while specialization

may also be considered as a quality of the complete collective. Viewed in that

light, they propose Balch's measure for collective diversity [4]. In the second

place, they argue that specialization measures should somehow be linked to the

productiveness of the collective. According to Li et al., the degrees of dedication

and behavioral diversity themselves do not say much about the degree of spe-

cialization: a collective may then be very diverse and the individual members

strongly dedicated, but if the performance of the collective does not bene�t, one

can hardly speak well of specialization. The mere purpose of specialization is to

increase the e�ciency of a collective, so dedication and diversity should simply

lead to greater performance. A well-designed specialization measure makes clear

whether the performance of a particular task actually is enhanced by dedica-

tion and diversi�cation. Without relating them to performance, the measures

mentioned above thus cannot be used to quantify specialization.

Li et al. [21] designed a specialization measure based on the correlation between

a collective's behavioral diversity and its performance. Assuming that the sys-

tem starts from a homogeneous setting with no diversity or specialization, and

the collective's diversity D and performance P change with time as correlated

random variables, then the correlation coe�cient between D and P naturally

acts as the proportion of specialization in diversity. If the developments of di-

versity and performance are respectively denoted as the vectors D and P, then

the specialization measure S is de�ned as:

SD = R (D,P)×D

where R (D,P) is the correlation coe�cient between the collective's behavioral

diversity and its performance. The specialization measure returned by this func-
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tion actually is a vector representing the development of the collective's degree

of specialization. When the collective's diversity enhances its performance, D

and R will be positively correlated, and SD will be positive. If diversity holds

back the collective's performance, then D and R will be negatively correlated,

and SD will be negative. The specialization measure thus tells whether diver-

si�cation may be helpful to complete a task. In a similar way, we may also

construct a second specialization measure, based on the correlation between the

development of dedication E and the development of the performance:

SE = R (E,P)×E

As we have seen in section 7.3, however, for heterogeneous neuro-evolutionary

specialization processes, it will often be unrealistic to assume that the evolv-

ing collective is initialized homogeneously, since that would intolerably impede

the collective's development. The measuring of specialization in heterogeneous

neuro-evolutionary systems therefore might require extra care.

9 Experimental Setup

Table 3 shows the parameter settings used in the experiments. Note that the

number of epochs per evaluation cycle also determines number of genotypes per

rover as well as the number of rover collectives per evaluation. These parameter

settings were derived from several preliminary experiments. In these test ex-

periments, minor changes led to similar results. Before the actual experiments

were started, the implementation of each evolutionary method was tested in

compliance with the Iterated Prisoners Dilemma.
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distributed task collective task

number of generations 501 1001

number of evaluation cycles per generation 4

number of epochs per evaluation 32

number of trials per epoch 4

number of iterations per trial 250 1000

number of rovers (|R|) 24

number of rock piles (|P |) 4

number of rocks (|Q|) 720

total rock value (vQ) 36000.0

rock value deviation 25.0

rover group starting position deviation 0.25

rover starting position deviation from group position 0.035

rock pile position deviation 0.45

rock position deviation from pile position 0.065

number of rock sensors (|S|) 4

rock sensor power/scope ratio (ρS) 0.05

rock sensor range (rS) 0.08

rock sensor resolution (pS) 1.0

number of rover sensors (|U |) 4

rover sensor power/scope ratio (ρU ) 0.05

rover sensor range (rU ) 0.08

rover sensor resolution (pU ) 1.0

energy cost for switching colors (µ) 0.0

delay for switching colors (τ) 1

number of simultaneous detects to discover rocks 1 2

distance factor for detection of rocks and rovers (δ) 1000.0

conversion factor for activation to acceleration (α) 0.00025

friction constant (k) -100000.0

rover mass (m) 2000.0

energy capacity (e) 0.25 1.0

number of inputs 10

number of hidden neurons 8

number of outputs 11

fraction of genotypes as example for recombination 0.25

mutation probability for initialization 1.0

mutation probability for common mutations 0.2

mutation rate 0.55

Table 3: An overview of the parameter settings used.
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Part IV

Results and Discussion

In this section, the results of our experiments are treated. Before the actual

results are presented, some remarkable qualitative features of the evolved be-

haviors are described, followed by a discussion on the development of several

important statistics. So as to �nd out which method leads to the strongest

behavioral specialization, the idea was to apply the specialization measure pro-

posed in the method section. Due to unexpected developments within the exper-

iments, however, this measure appeared inapplicable. The second best option

then was to apply the measures for dedication and diversity independently from

the proposed specialization measure. These measures were thus used to compare

the four evolutionary methods.

10 Qualitative Analysis of

Evolved Rover Behaviors

In the course of the specialization processes, rovers evolved certain behaviors.

Some features of these behaviors are particularly worth mentioning. The fun-

damental di�erence in the nature of the distributed task and the collective task

unsurprisingly led to di�erent strategies for discovery of rocks. One may expect

that rovers performing the collective task would learn to interact with each other,

more than rovers performing the distributed task would. In the distributed task,

rovers may individually detect rocks, without help of others. Rovers performing

the distributed task thus are not likely to become interactive. In contrast, the

collective task requires rovers to coordinate their behaviors, since they may dis-

cover rocks only if they activate their detection sensors concurrently with at least

one other rover. Although the coordination of behaviors itself will be di�cult

to quantify, the number of rover detections may yet provide for an indication of

how strong the interaction between rovers is. The more rover detections were

performed, the stronger the interaction between rovers.

10.1 Distributed Rover Task

In the distributed rover task, the members of a rover group may individually

look for rocks. In contrast to the collective task, rovers do not have to coordinate

their behaviors, since rovers may discover rocks without the help of other rovers.

As one might expect, in compliance to the distributed task thus very primitive
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behaviors evolved. Rovers are all initialized in a random direction. Provided

enough rovers, the simplest solution then is have each rover move straight ahead,

while looking out for any rocks. Part of the rovers also learned that as they

crossed the borders of the simulation environment, they had to turn around

and roam the environment in another direction.

While some rovers indeed dedicated themselves to a single color, others seem

to have made do with the penalty for switching color modes. In our exper-

iments, sensors were disabled for just a single iteration, so apparently these

rovers learned to cope with the brief loss of perception.

10.2 Collective Rover Task

With regard to the collective rover task, the rover behaviors evolved in a rather

di�erent way than expected. Whereas the distributed task does not provoke

rovers to become aware of each other, we actually did expect some form of

interaction with respect to the collective rover task. However, it appeared that

even under the regulations of the collective task, rovers just scarcely learned to

interact. We assumed that the rovers would learn to stick together pairwisely,

so as to be able to detect rocks uninterruptedly, but instead they came up with

an even more straightforward and elegant solution. When a rover came across

a pile of rocks it would simply stay within that pile, waiting for another rover

to come by. As then after a while a second rover with the same color turned

up, the rocks could be detected. At last, when the rovers could not discover

any rocks there anymore, they would go their own way. Instead of explicitly

interacting with each other, rovers made use of changes in the environment so

as to coordinate their actions; a mechanism often referred to as stigmergy. As

such, the rovers were able to cooperate without ever taking notice of each other.

Such a strategy is not only easier to learn, but might also be more e�ective.

Whereas interactive rovers would need to spend part of their actions on mutual

awareness, the evolved rovers were free to devote all time and energy resources

to detection of rocks.

Not all rovers took advantage of the information provided about their disposition

towards to the center of the environment. While some rovers consequently

returned to the task area as soon as they crossed the boundaries, other rovers

simply ignored the signs and did not come back.
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11 Developments of Dedication,

Diversity, Performance

During the evolutionary processes, for each generation several statistics were

collected. From these statistics, the development of the dedication, diversity,

and performance were analyzed. The degree of dedication and the degree of

diversity were both expected to grow during the evolutionary process. However,

it turned out that the development of these statistics would be rather di�erent.

Sections 11.1 and 11.2 show how the dedication, diversity, and performance

evolved in the course of the processes, in accordance with the distributed task

and the collective task, respectively. Section 11.3 then describes how this a�ects

the quanti�cation of specialization.

11.1 Distributed Rover Task

Figures 11, 12, and 13 visualize the developments of respectively dedication,

diversity, and performance during the evolutionary specialization processes in

the distributed rover task. The graphs contain four series each, corresponding to

the four neuro-evolutionary methods being evaluated. Each series is constructed

by taking the average of ten runs. Some points in the development of the series

are particularly worth mentioning. These are described below.

Dedication The several degrees of dedication rise sharply for just a few gen-

erations, but only until the high degrees of dedication quite suddenly collapse,

especially for the single-population methods. In the end, the degrees of dedi-

cation of the multi-population methods turn out to be slightly greater than for

the single-population methods, whereas the neuron-level methods preserved a

somewhat greater degree of dedication than their respective network-level coun-

terparts did.

Diversity For each evolutionary method, the development of diversity starts

with a quick drop. After that, the degrees of diversity recover for a while, but

then again start to decline, although just very slightly for the multi-population

methods. The multi-population methods end up with evidently higher degrees

of behavioral diversity.

Performance Just as we may expect, all curves presenting the performance

begin at a value barely greater than zero. After a brief period of growth, the

development of the performance soon encounters a short stagnation. The single-

population neuron-level method may then be slower to overcome the stagnation,
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but compensates for that by suddenly gaining performance at a remarkably high

rate. At the end of the evolutionary process, the single-population methods show

signi�cantly better performance than the multi-population methods.

11.2 Collective Rover Task

Figures 14, 15, and 16 show the developments of respectively dedication, diver-

sity, and performance during the evolutionary specialization processes for the

collective rover task. The graphs each contain four series, one for each of the

evaluated neuro-evolutionary methods. Each series is constructed by taking the

average of ten runs.

Dedication Generally speaking, the degrees of dedication develop in a way

quite similar to those of the distributed task, although the developments seem

to be temporized. For just a few generations the degrees rise sharply. The high

degrees of dedication then remain for a while, but sooner or later start to decay.

Diversity The diversity series is quite similar to that in the distributed task,

in the sense that they show a rapid decline as well, followed by an increase

again. After this revival, the degrees of diversity decay during the remainder

of the process, although the multi-population methods loose very little. The

multi-population methods eventually enclose a signi�cantly larger amount of

behavioral diversity.

Performance For each method, the development of its performance starts

with a short period of growing performance, followed by a shorter or longer pe-

riod of stagnation. The multi-population methods then are the �rst to overcome

the stagnation. After its period of stagnation, the single-population network-

level method brings forth a promising development, yet seems to drop out after

about 300 generations. Although the single-population neuron-level method

lingers for more than 250 generations, it still does catch up with the other

methods by suddenly showing an impressive growth. The multi-population

network-level method performs signi�cantly better than any of the other meth-

ods, while its single-population counterpart performs signi�cantly worse. Both

neuron-level methods show intermediate performance.

11.3 The Course of Specialization

We presumed that the degrees of dedication and diversity would grow during an

evolutionary specialization process, as rovers increasingly dedicate themselves
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Figure 11: The development of dedication in the distributed task.

Figure 12: The development of diversity in the distributed task.

Figure 13: The development of performance in the distributed task.
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Figure 14: The development of dedication in the collective task.

Figure 15: The development of diversity in the collective task.

Figure 16: The development of performance in the collective task.
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to a limited share of labor and the group becomes more and more diverse.

It is clear that for both tasks the progress of dedication and diversity does

not comply with these presumptions. We expected dedication to grow, but it

actually starts at almost the highest degree possible and then descends until it

reaches a certain minimum. Concerning diversity, from the fact that collectives

are initialized heterogeneously, we did expect some degree of behavioral diversity

to be present at the very beginning. However, as one can see in the graph, the

degree of diversity then already is close to its maximum as well.

A possible explanation for the impressive degrees of dedication and diversity

during the �rst few generations are the primitive behaviors of collective mem-

bers. It appeared that during the earliest stages, most members repeat at each

time step almost exclusively the same action, although this action di�ers per

member. Such a strong domination of the behavioral repertoires by only one

action leads to an exceptionally high degree of dedication. After all, provided

such simplistic behaviors, a rover's action transition table will be concentrated

entirely on a single action transition, namely the transition from the repeated

action to itself. This results in a high degree of convergence in its transition

table, which then on its turn leads to an eminent degree of dedication. Hav-

ing said that, then any variation between members in these dominant actions

inevitably leads to a high degree of diversity. As each member strictly focuses

itself on just a single action transition, while the transition di�ers per member,

each action's cross-rover transition histogram will be strongly concentrated on

just a few rovers. The resulting high degrees of convergence aggravate the de-

gree of diversity. Therefore, right at the beginning of the specialization process,

the collective's degrees of dedication and diversity already will be greater than

we may ever expect for the evolutionary end products.

In terms of quanti�cation, the development of a heterogeneous evolutionary

specialization process cannot be characterized by growing degrees of dedication

and diversity, but instead by ensuring certain minimum levels. One might say

that strong dedication and diversity are signs of primitive behaviors, whereas

weak dedication and diversity indicate complex behaviors. So, in the course of

the process, the collective members learn to extend their behavioral repertoires

and temper excessive dedication and diversity, while yet they are prevented

from becoming overly complex. Instead of collectives simplifying complex ade-

quate behaviors, which indeed would lead to growing dedication and diversity,

we have collectives extending primitive inadequate behaviors. Although upcom-

ing dedication and diversi�cation may play an important role in homogeneously

initialized specialization processes, it seems that the essence of evolutionary spe-

cialization is more like channeling already existent dedication and diversity, so
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as to enable fruitful cooperation, and to keep collective members from becoming

as complex as their non-specialized counterparts.

The "inverted" development of dedication and diversity does introduce some

complications for the design of a specialization measure however. As an evo-

lutionary specialization process advances, one does expect performance to rise,

but dedication and diversity to decline. The correlations between dedication

and performance on the one hand, and diversity and performance on the other,

will thereby always be negative if measured over evolutionary time, no matter if

dedication and diversity are known to enhance the performance � as if any order

of dedication or diversity would impede the evolving collective's performance.

Clearly, the latter will not generally be true. However, for any heterogeneous

evolutionary specialization process, it is simply impossible to distinguish the

tempering of dedication and diversity due to growing complexity of behaviors

from the strengthening caused by emergence of di�erent roles and castes. Con-

sequently, the correlation between the developments of dedication and diversity

on the one hand and the performance on the other will be unsuitable for het-

erogeneous evolutionary specialization. As such, both specialization measures

proposed earlier in section 8.4 are unusable.

11.4 Unsteady Development

of Single-Population Methods

One might have noticed that for either rover task the single-population meth-

ods show a fairly unsteady development. Whereas the multi-population methods

show a �uent development for each of the statistics, especially the development

of the single-population neuron-level method seems unstable. A possible expla-

nation may be that multi-population methods include a genotype population

for each rover separately, in contrast to single-populations methods evolving a

single population, from which all rovers are to be constructed.

The cumbersome genotype population of the single-population methods then has

great di�culty achieving a su�cient degree of consistency. On the one hand,

the nature of our rover tasks causes the genotypes to di�erentiate and thus

become incompatible with each other, but on the other hand, these genotypes

are nevertheless all contained by a single population, so may still be recombined.

The recombination of highly �t but incompatible genotypes then still produces

improper descendants. Note that this issue closely resembles the expectancy

issue concerning Moriarty's SANE method [23], mentioned in section 4.3.2.

As long as there is a lack of consistency in the genotype population, there also

will be no consistency in the composition of rover collectives. Whereas in the
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multi-population methods each position in the rover group is occupied by a rover

constructed from invariably the same subset of genotypes, this will never be the

case in single-population methods, since these contain just a single set. It may

then happen that rover collectives are composed of highly competent but incom-

patible rovers. Even if a rover has made a great contribution to one collective's

performance, it may yet not stand out well in the context of another collective.

This clearly will corrupt the accuracy of the genotype evaluation. Only if the

genotype population in its entirety shows a certain degree of consistency, the

consistency of the derived rover collectives may grow.6

The multi-population methods omit the issue troubling the single-population

methods in the same way Gomez's ESP method [19] omits SANE's expectancy

issue. The segregation of genotypes in the multi-population methods allows the

populations to become increasingly consistent. As each position in the rover

groups is occupied by a rover constructed from invariably the same subset of

genotypes, the collective may slowly develop certain expectancies regarding each

position, while at the same time the separate populations by themselves grow in

consistency as they become increasingly compliant to these expectancies. The

separate populations di�erentiate from each other, but the genotypes within

each population converge and become more and more compatible. The recom-

bination of highly �t genotypes then is likely to produce descendants that are

highly �t as well.

Consequently, as rover collectives are composed by constructing one rover from

each genotype population, a certain consistency will grow in the composition of

the rover groups. Rovers that made a great contribution to the performance of

one rover group then probably will do so within other collectives as well. How-

ever, note that population convergence may yet also be dangerous, in the sense

that premature convergence eventually impedes a population's further evolution.

As in the course of the evolutionary process the separate populations converge

and grow increasingly consistent, genetic diversity will inevitably decay. If a

(nearly) optimal solution already has been found, strong convergence prevents

an evolutionary process from substantially drifting away from its solution. How-

ever, as long as no optimal solution has been found yet, strong convergence is

undesirable, as it inhibits the e�ectiveness and e�ciency of the evolutionary

process by hindering the exploration of its solution space and restraining its

genetic adaptability.

6Although we cannot provide for a sound veri�cation, it might be the case that a certain
degree of consistency in the genotype population evokes the sudden turning points in the
development of the several statistics.
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12 Quantitative Comparison of Methods

Section 11.3 already pointed out that the proposed specialization measure based

on the correlation between diversity and performance appeared unsuitable for

quantifying specialization during a heterogeneous neuro-evolutionary specializa-

tion process. The second best option then is to apply the measures for dedication

and diversity independently from the specialization measure.

In order to make a statistically sound comparison between the four neuro-

evolutionary methods, for either rover task we performed ten runs per method

(n = 10). From each run's �nal generation several statistics were collected, so

as to obtain per statistic a mean and deviation for each of the methods. By

applying a t-test with α = 0.05 to these means and deviations, for all statis-

tics we determined whether the di�erences between the evolutionary methods

are statistically signi�cant. After some tuning, we created such circumstances

that the rover collectives were able to achieve moderate performances, so that

any comparison involving performance would not be a�ected by either �oor or

ceiling e�ects.

12.1 Distributed Rover Task

Multi-population methods Between the two multi-population methods,

there existed no signi�cant di�erences for any of the statistics. (See table 4)

Single-population methods The single-population neuron-level method pre-

served just a slightly higher degree of dedication (0.4589 ± 0.0430) than the

single-population network-level did (0.4197± 0.0072). On the other hand, their

degrees of diversity as well as their performances were statistically equal.

Network-level methods Even though the di�erence between the degrees

of dedication was statistically signi�cant, this di�erence yet was not very im-

pressive. Concerning the degrees of diversity, however, the multi-population

network-level method yielded a much higher degree of the diversity (0.3838 ±
0.0199) than the single-population network-level method (0.1448±0.0120). De-
spite its reduced dedication and diversity, the single-population neuron-level

method still achieved a signi�cantly better performance (0.7137± 0.0337) than
the multi-population network-level method did (0.6220± 0.0384).

Neuron-level methods The same is true for the neuron-level methods. The

di�erence between the degrees of dedication was not very impressive again,

but the multi-population neuron-level method yielded a much higher degree
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of diversity (0.4077 ± 0.0375), compared to the single-population neuron-level

method (0.1543 ± 0.0289). The performance of the single-population neuron-

level method (0.6807 ± 0.0381) was signi�cantly better than that of the multi-

population network-level method (0.6025± 0.0274).

From the data appears that single-population methods show greater convenience

with the distributed task than multi-population methods. Even though dedica-

tion experiences a di�erent development using single-population methods than

using multi-population methods, in the end it turns out to be fairly indi�erent

towards the method for evolution. Regarding behavioral diversity, however, col-

lectives evolved by either of the two multi-population methods tend to become

much more diverse than those evolved by single-population methods do. For

the development of each of these three statistics counts that multi-population

methods show a smoother development than single-population methods.

level populations dedication diversity performance

network multiple 0.4671± 0.0302 0.3519± 0.0242 0.6220± 0.0384

network single 0.4197± 0.0072 0.1301± 0.0101 0.7137± 0.0337

neuron multiple 0.4938± 0.0376 0.3562± 0.0326 0.6025± 0.0274

neuron single 0.4589± 0.0430 0.1491± 0.0306 0.6807± 0.0381

Table 4: A summary of the three most important statistics for the several neuro-
evolutionary methods in compliance with the distributed rover task.

12.2 Collective Rover Task

Multi-population methods The multi-population methods showed a small

but statistically signi�cant di�erence between the degrees of dedication. The

degrees of diversity were similar. Nevertheless, the multi-population network-

level showed signi�cantly better performance (0.6059± 0.0456) than the multi-

population neuron-level method (0.5590± 0.0482). (See table 5)

Single-population methods For the single-population methods, the di�er-

ence between the degrees of diversity was insigni�cant. The single-population

network-level method preserved a signi�cantly higher degree of dedication, but

did not perform as well as its neuron-level counterpart. The single-population

neuron-level method achieved a performance of 0.4970 ± 0.1231; the single-

population network-level method stuck to a performance of 0.3638 ± 0.1349.
Both methods seem to struggle with considerable deviation in performance.
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Network-level methods The multi-population network-level method yielded

a much higher degree of diversity (0.3754±0.0201), compared to the degree of di-

versity yielded by the single-population network-level method (0.0798±0.0114).
As well, the multi-population variant did perform considerably better than the

single-population variant.

Neuron-level methods Regarding the neuron-level methods, both the de-

grees of dedication and the degrees of diversity were signi�cantly di�erent, with

degrees of 0.4654± 0.0264 respectively 0.3768± 0.0118 for the multi-population

network-level method and 0.3866 ± 0.0326 respectively 0.0835 ± 0.0155 for the

single-population network-level method. These di�erences did not lead to a sta-

tistically signi�cant di�erence in performance. However, the fact that the multi-

population neuron-level method does not signi�cantly outperform the single-

population network-level method might be due to the considerable amount of

deviation for the latter method.

Regarding the collective task, the multi-population network-level method out-

performed all other methods. Its single-population counterpart on the other

hand showed least impressive performance. The performances of the two neuron-

level methods lay in between those of the network-level methods and were sta-

tistically equal. Despite the disparity in development, the degrees of dedication

eventually turned out to be more or less comparable. Similar to the distributed

task, collectives evolved by multi-population methods tend to become signi�-

cantly much more diverse than those evolved by single-population methods do.

For the collective rover task counts as well that multi-population methods show

a much smoother development than single-population methods.

level populations dedication diversity performance

network multiple 0.4203± 0.0197 0.3754± 0.0201 0.6059± 0.0456

network single 0.4475± 0.0764 0.0798± 0.0114 0.3638± 0.1349

neuron multiple 0.4654± 0.0264 0.3768± 0.0118 0.5590± 0.0482

neuron single 0.3866± 0.0326 0.0835± 0.0155 0.4970± 0.1231

Table 5: A summary of the three most important statistics for the several neuro-
evolutionary methods in compliance with the collective rover task.

12.3 Multi-Population vs Single-Population

In accordance with the distributed rover task, the single-population methods

evolved better collectives than the multi-population methods. Concerning the
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collective rover task, however, the roles were reversed, as for this task the multi-

population methods showed to be more suitable than the single-population

methods. The multi-population methods did not only outperform the single-

population methods by achieving better performances, but also by showing

greater reliability, since both single-population methods seem to su�er from

a considerable amount of deviation. The segregation of genotypes as such holds

back the performance with respect to the distributed task, but nonetheless en-

hances the performance in compliance with the collective task.

For either task, the segregation of genotypes evidently leads to a higher degree

of behavioral diversity, as well as that it might have a slightly positive e�ect on

the degree of dedication. The question is however to what extent evolutionary

search may in�uence the development of dedication and diversity. Since evo-

lutionary specialization methods are to search for optimal collective behaviors,

one may expect that the degrees of dedication and diversity are optimized as

well. Apparently, this is not necessarily the case, as the multi-population meth-

ods consistently preserve an amount of diversity substantially greater than the

single-population methods, even though that leads to inferior performance with

respect to the distributed task. The other way round, the single-population

methods seem incapable of maintaining an appropriate degree of diversity in

compliance with the collective task, even when the multi-population methods

show that higher degrees of diversity may lead to better performance.

Both the multi-population methods and the single-population methods thus

are not always capable of �nding the optimal degree of behavioral diversity.

The same might be true for the degree of dedication, but since the variances in

dedication are not that pronounced for either rover task, this cannot be veri�ed.

Yet, it appears that the organization of genotypes has such a strong impact on

the development of collectives, and thereby also on the development of the

dedication and diversity, that evolutionary algorithms may only manipulate the

collectives and their dedication and diversity within a very limited range. A

more �exible organization of genotypes may therefore turn out to be helpful.

12.4 Network-Level vs Neuron-Level

One of the key features of the neuron-level methods is that neuron-level evolu-

tion allows for a more �ne-grained view on the contribution of individual neu-

rons. Network-level methods evaluate neurons within the context of invariably

the same neural network. Highly �t neurons may then easily be concealed by

poor performance of other neurons in its network, as well as that poor neurons

may take advantage of the greater performance of other neurons. Neuron-level

methods evaluate each neuron within the context of multiple networks, so as
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to make the evaluation of each neuron less dependent of the networks it was

part of. This must then result in greater accuracy, speeding up the evolutionary

process.

Be sure to note however, that this improved accuracy does require multiple eval-

uations per generation. Considering tasks such as the rover problem, for which

evaluations are computationally very expensive, these multiple evaluations turn

out to be a considerable weakness. Whereas for network-level evolution a single

evaluation cycle per generation will be su�cient, since these neurons cannot be

evaluated within the context of multiple networks anyway, neuron-level meth-

ods need multiple evaluation cycles. Assuming that the performance of the

rover tasks accounts for by far the larger part of computation, under further-

more equal circumstances, a neuron-level process performing four evaluations

per generation will take about as much as four times the computational time as

a network-level process.7

The comparison between network-level evolution and neuron-level evolution

shows that the advantage from greater accuracy is quite relative, as appar-

ently it led to higher performance for neither the distributed rover task nor the

collective rover task. Although the single-population neuron-level method out-

performed the single-population network-level method on the collective task, yet

the multi-population network-level method again showed a performance signi�-

cantly superior to both neuron-level methods. Considering that the neuron-level

methods could not turn the additional computational expenses into an increased

performance compared to the network-level methods, we may doubtlessly con-

clude that network-level evolution is more e�ective with respect our rover tasks.

Furthermore, based on our results, there is no reason to believe that the level

of evolution largely a�ects either the amount of dedication or the amount of

diversity. Although for both statistics it is true that, dependent on the level of

evolution, their development may substantially di�er during the evolutionary

process, especially for the single-population methods, yet at the end of the

process either statistic seems to be indi�erent towards the level of evolution.

7Nonetheless, in our experiments, both the network-level methods and the neuron-level
methods performed four evaluations per generation, so as to preserve possible side-e�ects.
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Part V

Conclusion

In the conclusion section, our �ndings are summarized. The evolutionary pro-

cesses showed a development quite di�erent from what we presumed. Thereby,

we were unable to use the proposed specialization measure. As we still wanted

to form an impression of how strong the several evolutionary methods stimulate

specialization, the next best option was to compare dedication, diversity, and

performance independently.

13 The Course of Specialization

At the beginning of each evolutionary specialization process, the genotypes were

initialized randomly, so as to facilitate for proper evolution. However, such an

approach appeared to have considerable consequences for the behavioral devel-

opment of collective members. During the earlier stages of the evolutionary pro-

cess, the members of evolving collectives often conducted an improper, primitive

behavior. Although a few members might have been little more sophisticated,

the greater part did invariably repeat a particular action for all of the time

steps, where this action di�ered per individual. Such a strong imbalance in the

behavioral repertoires led to an overly strong degree of dedication. Variation

across members in these dominant actions resulted in an overly strong degree

of behavioral diversity.

In the further course of the process, the collective members learn to extend

their behavioral repertoires and temper the excessive degrees of dedication and

diversity, while specialization keeps them from becoming as complex as their

non-specialized counterparts. Although upcoming dedication and diversi�cation

may play an important role in (homogeneously initialized) non-evolutionary spe-

cialization, it seems that the essence of evolutionary specialization is more like

learning how to make optimal use of already existent dedication and diversity

in individual preferences and capabilities, so as to enable fruitful cooperation.

14 Consequences for Quantifying Specialization

The inverted development of dedication and diversity seriously a�ects the quan-

ti�cation of specialization. Although members undoubtedly will learn to extend

their primitive behavioral repertoire in the course of the specialization process,
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initial behaviors still introduce considerable complications for the design of an

adequate specialization measure. Strongly unbalanced behavioral repertoires

will lead to high degrees of dedication, while variation in dominant actions

across members leads to high degrees of behavioral diversity. Therefore, the

degrees of dedication and diversity are at the beginning of the process already

greater than ever to be expected for the evolutionary end products. As the

process carries on and behaviors become more and more complex, the degrees

of dedication and diversity decline, down to a certain minimum.

The point then is that during the evolutionary process, one does expect the

performance to rise, but the dedication and diversity to decline. Both the cor-

relations between dedication and performance on the one hand and diversity

and performance on the other, will thus invariably be negative if measured

over evolutionary time, even in task domains for which dedication and diversity

are known to enhance performance. As such, one cannot simply correlate the

developments of dedication and diversity to performance. Neuro-evolutionary

specialization is a promising method for evolving heterogeneous collectives, but

certainly needs some metric for the quanti�cation of specialization. Further

investigation of such a metric might thus be valuable.

15 Comparison of Methods

In the distributed rover task, the single-population methods evolved better col-

lectives than the multi-population methods. In the collective task, however, the

multi-population methods showed to be more suitable than the single-population

methods. The segregation of genotypes thus holds back the performance on the

distributed task, but nonetheless enhances rover performance in the collective

task. Both the multi-population methods and the single-population methods

thus were incapable of consistently �nding the optimal degree of dedication and

diversity. An explanation might be that the organization of genotypes has such

a strong impact on the development of collectives, that an evolutionary algo-

rithm may only manipulate the collectives � and their dedication and diversity

� within a very limited range. A more �exible segregation of genotypes might

perhaps overcome this problem.

For the comparison between the network-level methods and the neuron-level

methods, one must take into account that neuron-level methods normally con-

sume considerably more computation than network-level methods. Neuron-level

evolution requires multiple evaluations per generations, whereas for network-

level evolution just a single evaluation will su�ce. Considering that the neuron-

level methods could not turn these additional computational expenses into
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an increased performance compared to the network-level methods, we may

doubtlessly conclude that the network-level methods were more e�ective with

respect to our rover tasks. Furthermore, based on our results, there is no reason

to believe that the level of evolution does largely a�ect either the amount of

dedication or the amount diversity.
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