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Preface

In 2004 I started my master Agents & Computational Intelligence after finishing a bachelor
in Information and Communication Technology in Enschede. I have always been interested
in machine learning and of course in games. During this master I took all courses about
learning and about games, because those are my favourite subjects in the field of Artificial
Intelligence.
After finishing all my courses I started my master thesis in April 2006 and tried to do
research on several aspects of gaming and reinforcement learning. Marco Wiering was my
mentor from the start. Due to circumstances and other causes and despite all the good
input from Marco I never really started a good research.
Then in the beginning of 2007 I found out that Bas Jacobs was looking for a subject for his
master thesis and because we have worked together before, we decided to start a research
together. After speaking with Marco we decided to go for Othello in combination with
several learning techniques. In 2005 Bas and I, together with Wouter Tinus and Tina
Mioch, had already done some research on reinforcement learning and Othello, so that was
a good base to start from. In April 2007 I finally started with a good research and now in
January 2008 I have finished it.

I would like to take this opportunity to thank Bas Jacobs for being there at the time I really
needed to start my master thesis and for the time we worked on this project together. We
had great fun and did a lot of work.
Of course I would like to thank Marco Wiering for his support during all my unfinished
researches and finally helping me to set up this research. And of course for all his input
during this research.
Last but not least I want to thank all the people who supported me during my long thesis
period and who kept me going until I was able to finish this research.
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Abstract

Games like chess and Othello have been subjects of research for many years in the field
of Artificial Intelligence. Because of their complexity and yet their simple rules and fully
observable and deterministic nature these boardgames are very interesting subjects of re-
search.
This thesis will focus on the game Othello. Othello is a boardgame with simple rules and a
simple strategy which is easy to learn for humans. Mastering a good strategy on the other
hand is difficult. Because of the many possible moves and its huge statespace it is hard to
look ahead many moves.
At this moment there are several computer programs that cannot be beaten by human
players anymore. They use advanced knowledge and look ahead several moves and use
brute force to calculate good moves.

The subject of this research is about learning to play Othello without a priori knowledge
using neuroevolution techniques and reinforcement learning.
Using a neural network as a function approximator to evaluate the boardstates, three differ-
ent neuroevolution techniques are compared: SANE, ESP and NEAT. This thesis describes
these techniques and shows results of experiments with learning Othello against a random
Othello player. The best technique, NEAT, is also tested against some more sophisticated
deterministic players. The main conclusion is that NEAT is a potential good technique to
learn to play Othello.
This covers Part I of this thesis which is a collective research of Michiel Vuurboom and Bas
Jacobs.

Part II contains the research of Michiel Vuurboom which uses NEAT and combines it with
the reinforcement learning method TD(λ) to improve NEAT. First TD(λ) is explained and
tested against the random and deterministic opponent which shows that TD(λ) is able to
learn against them all except one, the Positional opponent.
Then NEAT is extended with TD(λ) resulting in NEAT-TD(λ) which is then tested against
the random and the deterministic players.
Extending the sophisticated random global search of NEAT with the local search of TD(λ)
should possibly result in an improvement for NEAT.
The experiments performed with NEAT-TD(λ) show that this is not the case. Possibly
due to sub-optimal parameters for the techniques and other causes explained in this thesis,
NEAT-TD(λ) only performs as good as NEAT in most experiments and even worse in one
experiment: against the Positional opponent.
The main conclusion is that NEAT-TD(λ) might be promising, but it needs some adjust-
ments and improvements.
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Chapter 1

Introduction

”Failure is always the best way to learn,
retracing your steps ’til you know,

have no fear your wounds will heal.”
Failure, Kings of Convenience

1.1 Research motivation

Game playing has always been an interesting part in the field of Artificial Intelligence.
Games like chess and Othello have been subjects of research for many years. These games
are interesting because of their complexity and their many possible game states while they
are also fully observable and deterministic. And because of a well defined set of rules they
are easy to implement.

There are many human players who play these games at an excellent level, although since
a few years the computer beats man in these games. In 1997 the chess program Deep Blue
defeated the world champion for the first time [Hsu04]. In 1980 an Othello program called
The Moor won a game against the reigning world champion and after 1997 world champion
Othello players are no match for Othello computer players [Bur97].

The current techniques to create a great computer player for chess or Othello use a priori
knowledge of good strategies and use advanced search techniques to look ahead as many
moves as possible. Of course a computer can look ahead much further than a human being
and as computer power increases, this gap between computer and human skill level will also
increase.

Although computers can beat man playing chess and Othello, that does not mean these
computer players are intelligent. They are fast, they have a very large memory, but they
use strategies that they did not invent themselves; they use human knowledge combined
with computation power.

What if we can create a computer player that can learn playing games like Othello and
chess without a priori knowledge about good strategies? Will they be able to learn to play
a good competing level? Will they be able to learn the same good strategies as humans?

In 2005 we, Bas Jacob and I, made a start with research on learning to play the game Othello
without a priori knowledge using reinforcement learning and neural networks resulting in a
player who can defeat a novice player. Based on this result we did further research on the
game Othello and this time using neuroevolution techniques.
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CHAPTER 1. INTRODUCTION

1.2 Problem statement

Neuroevolution techniques seem promising, although at this moment there has not been
that much research done on game playing such as Go and Othello using these techniques.
In [Lub01] research is done on using the neuroevolution technique SANE to learn to play Go.
Another example is [Per01] where the neuroevolution technique ESP is used to learn to play
Go. In both articles only small boards (up to 7x7 positions) of Go have been used, because
of the complexity of the game. Games like Othello and Go have huge state spaces and
relatively simple rules and are therefore interesting subjects for research on neuroevolution
techniques.
With a good neuroevolution technique as a start we think it must be possible to learn to
play Othello at a good level without any a priori knowledge. But to be sure of that, we
first need a good neuroevolution technique.
Therefore our shared research goal for this research is: Find the neuroevolution technique
that is best at learning to play Othello.
For this we research some of the best known neuroevolution techniques and find out which
techniques have potential and then compare them to find out which one is best at learning
to play Othello. We will compare the techniques in terms of learning potential and learning
speed.

Because in 2005 we discovered that the reinforcement learning technique TD(λ) was able to
learn to play Othello, I want to find out whether a good neuroevolution technique combined
with TD(λ) will perform even better. So besides our shared research and research goal that
covers chapter 2, 3 and 4, I have my own research covered in chapter 5, 6, 7 and 8.

The research goal I defined (based on the outcome of our collective research): How can the
neuroevolution technique NEAT be combined with TD(λ) to perform even better than the
techniques on their own?

Our expectation is that all the techniques we compare will perform at least as good as
the player created in 2005 at playing against a random opponent. One problem with the
research in 2005 is that there is a bug in the software (explained in chapter 6), so the results
of that research are not that good to compare to.
My personal expectations of my research on combined techniques is that they will perform
slightly better than the neuroevolution techniques and the TD(λ) techniques alone.

1.3 Structure of the thesis

This thesis is split into two parts. The first part is a collective research about the comparison
of the three neuroevolution techniques SANE, ESP and NEAT. In this part the game
Othello is explained as well as the different strategies and the different opponents used in
the experiments in chapter 2. The three neuroevolution techniques are explained in detail
in chapter 3 including their implementations used for the experiments. The experiments
are described in chapter 4 including all results and the first conclusion.
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CHAPTER 1. INTRODUCTION

Part II is my own research involving the combining of the neuroevolution technique NEAT
and the reinforcement technique TD(λ). It starts with chapter 5 which explains TD(λ) and
then in chapter 6 it shows the experiments and results of learning Othello using TD(λ).
How NEAT and TD(λ) are combined is explained in chapter 7. The experiments and their
results are described in chapter 8.

Chapter 9 and chapter 10 contain the conclusions and recommendations of both Part I and
Part II.

1.4 Division of tasks

Part I is a collective research of both me and Bas Jacobs. All implementations of the
techniques, the chapters in this thesis and the conlusions and recommendations of Part I
are done together.
All research, including all implementations, all experiments, all conclusions and recommen-
dations of Part II are my own work.

Michiel Vuurboom

5





Part I

Neuroevolution and Othello
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Chapter 2

Othello

Othello is a derivative of the the Go family of games, and existed since the nineteenth
century under the name Reversi. In 1974 the game Othello was formalized in Japan. Like
Go, the game Othello is about capturing territory of your opponent. It is a two-player game
on an 8x8 board with black and whites pieces. The initial board setup is shown in figure
2.1.

Figure 2.1: Initial boardstate

Each player takes turns placing pieces on the board. A player may only move to an open
space that causes an opponent’s piece or pieces to be flanked by the new piece and another
one of the player’s own pieces. The opponent’s pieces are then captured. Pieces may be
captured vertically, horizontally and diagonally. Figure 2.2 shows the legal moves for black
for the given board pattern.

Figure 2.2: Legal moves for black
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CHAPTER 2. OTHELLO

Once a move is made the captured pieces are flipped. Figure 2.3 shows the board layout
resulting from a move by black in the second row of the sixth column. The game is continued
until there are no legal moves available for either player. If a player has no legal move he
has to pass. The winner is the player with most pieces in the final board configuration.

Figure 2.3: After black’s turn

2.1 Playing Othello

There are different strategies for playing Othello. A player can focus on capturing the
corners and edges, or he can use a strategy where capturing corners is only a sub-goal. The
best human players use very sophisticated strategies and they try to look as many moves
ahead as possible.

An Othello game can be divided in an opening-game, a mid-game and an end-game. Of
course the end-game (approximately the last 20 moves) is the final battle in which each
player tries to capture as many stones as possible. The foundation for that end-game is
the mid-game. The first moves in the opening-game are important for a good mid-game.
Two general classes of mid-game strategies exist in Othello: the positional strategy and the
mobility strategy.

The positional strategy is simpler than the mobility strategy, but also inferior. Using a
positional strategy the player has the immediate goal to capture as many stones as possible.
To accomplish that, he will try to capture the edges to ring the opponent and he will try
to capture the corner places at any given time because a piece in a corner can never be
captured. A game with two players using a positional strategy will end up in an arms race
with both players trying to get the upper hand.
The positional strategy is an easy strategy to understand and to learn and it is also easy to
implement in a computer player. Most new and novice players use this strategy.

The mobility strategy on the other hand is much more complicated, but also superior. It
is based on the notion of mobility: forcing the opponent to give up available moves until
the player is in a position to decide exactly where the opponent will have to move. To

10



CHAPTER 2. OTHELLO

accomplish this the player attempts to control the centre of the board, forcing the opponent
to surround the player’s pieces. The opponent will be forced to surrender corners and edges
in the end game because of what the player does in the mid-game. A mobility strategy can
be characterized by a low piece count and a large number of available moves for the player
during the mid-game. Then the opponent will have many pieces and only a few available
moves.
The mobility strategy is difficult to learn. Not only for a human player is this hard to
master, but it is also difficult to make a computer learn this technique [Bil90].

2.2 Computer players

Human players can only look a few moves ahead. Computer programs can compute many
steps ahead, only limited by their memory capacity and speed (or the amount of time one
is willing to wait for the calculations to complete). It should be stated that expert human
players do not scan any more moves ahead than novice players [Gro65]. Most Othello
programs use a priori knowledge for playing the game. They use an opening-book for the
first few moves and use complex search algorithms in combination with different strategies
to decide the next move.
By now computers are fast enough to compute many steps ahead and beat the best human
players in playing Othello. But they can beat human players only because of their computing
power. Search-algorithms have been developed and evolved to very fast algorithms and
many strategies for playing Othello have been developed in the last 40 years [Rus95].

Current expert computers players, like WZebra [And04] and Edax [Del04], can beat all
human players. They use sophisticated pattern recognition and a notion of mobility to
play a mobility strategy. An opening book (a large database with opening moves and their
desirability) is used for the opening-game. Then an advanced search tree is used to play
the mid-game using mobility strategy. The end-game is usually played by calculating the
last moves (up to the last 20 moves). By calculating the end-game, the computer already
knows at the end of the mid-game whether it can win the game or not. It will then try to
maximize its score, or minimize its losses using look ahead to the last move of the game.
Players like WZebra, which is one of the best computer players at the moment (and free to
download and use), use advanced a priori knowledge and well defined strategies combined
with brute force computation to play the game. They are optimized to play Othello with
the mobility strategy. All knowledge was implemented and nothing was learned.
It would be interesting to find out whether it is possible to have a computer learn the
mobility strategy. Some research has been done on this subject.
In [And02] the authors claim to have developed an Othello learning player that is capable
of learning a mobility strategy using the neuroevolution technique NEAT. Although the
player does not play at an expert level, it was able to learn the mobility strategy.

2.3 Othello opponents

For this research several several different opponents have been created to test against. They
consist of non-deterministic and deterministic players.
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2.3.1 Random opponent

The Random opponent is a very simple player. It does not use any strategy or board
evaluation at all and just picks a random move from the possible legal moves.
In chapter 6 it is explained that the Random opponent used in earlier research ([Jac05]),
where this research is based upon, contained a bug that has been fixed for this research.

2.3.2 Positional opponent

The Positional opponent is a deterministic opponent. It plays using a positional strategy
using a list of boardposition values to evaluate the board state.
When this player can make a move, it looks at the list of possible moves and it evaluates
the resulting board states using the position values in figure 2.4.

Figure 2.4: Othello position values

It just accumulates all the position’s values of the positions where the player has a stone.
The board state with the highest evaluation is the best, so the move that will result in that
state will be chosen.
As stated before, the corner positions are important, so they have high values, and the
positions adjacent to the corners are bad positions to be in, because it makes it possible for
your opponent to capture the corner position, so these positions have very low values.
This player does not use look ahead. It just evaluates the next moves. This is done because
looking ahead takes time, and time is valuable in the many experiments in this research.
This Positional opponent is a good opponent for novice players, but can be beaten by more
experienced players.
When playing against a random opponent this player wins 85% of the games. This is tested
by playing 10.000 games against the random opponent and this was repeated 10 times to
get a good average.

2.3.3 Mobility opponent

The mobility player uses a simple form of the mobility strategy. Because a sophisticated
mobility strategy is not possible without looking more moves ahead, this player is not an
advanced mobility player. It does use a notion of mobility, defined as the number of legal
moves a player can make in a certain position.

12
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This player’s objective is to maximize the number of corner squares occupied by its own
discs while minimizing the number of corner squares occupied by opponent’s discs, and to
maximize its own mobility while minimizing its opponent’s mobility.
It uses the evaluation in figure 2.5.

Eval(s) = w1(cplayer − copponent) + w2(mplayer−mopponent

mplayer+mopponent
)

Figure 2.5: Board evaluation function of the Mobility opponent

Where:

w1 : a constant, 10 in this case
w2 : a constant, 1 in this case
cplayer : number of corner positions occupied by player’s stones
copponent : number of corner positions occupied by opponent’s stones
mplayer : the mobility of the player
mopponent : the mobility of the opponent

When this player can make a move, it looks at the list of possible moves and it evaluates the
resulting board states by looking at the number of corner positions occupied by itself and
by the opponent and looking at the numbers of possible moves of itself and of the opponent.
Using the Eval(s) function of figure 2.5 all possible moves are evaluated. The board state
with the highest evaluation is the best, so the move that will result in that state will be
chosen.
For the sake of time, this player does not use look ahead.
This Mobility opponent is a good opponent for novice players, but can be beaten by more
experienced players.
The player has been tested for 10 times 10.000 games against the random opponent and it
has a win percentage of 87%.

2.3.4 TD-Greedy opponent

The TD-Greedy opponent is the final result of the research in [Jac05]. This opponent has
learned to play Othello using random opponents combined with batch-learning using sample
data from worldclass tournament games.
In the end it scored 83% against a random opponent and is a good opponent for novice
Othello players.
This player is deterministic and it uses a neural network with 20 hidden neurons for the
board evaluation. Details of this research and the player can be found in [Jac05].
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Chapter 3

Neuroevolution

Creating a computer based Othello player can be done in quite a few different ways, although
creating an expert one requires a priori knowledge and a lot of raw computing power. Many
leaps have been made in the development of techniques capable of learning to play Othello.
One of the more recent ones is the development of neuroevolution. Neuroevolution is a
technique which uses genetic algorithms to train artificial neural networks.

3.1 Neural networks

An Artificial Neural Network, also known as Neural Network, is a processing unit based
upon the principles of biological information processing performed by the brain [Ste96].
Key components are the neurons and the connections between them. These neurons are
linked in a specific manner depending on the task a neural network is assigned to. A neural
network is designed to learn by example and through examples its connections are updated
in order to generate better solutions to the problem presented. A typical neural network
can be seen in figure 3.1. The Input Layer is where information is fed to the neural network;
the Output Layer gives the outcome of the neural network based upon the inputs given;
The Hidden Layer allows for more complicated tasks to be learned. More hidden units and
layers allow for more complicated tasks to be learned at the expense of computation time.

Figure 3.1: Simple feedforward neural network

Neural networks have been used in many fields such as sales forecasting, industrial process
control, customer research, data validation, risk management, target marketing and more
recently the gaming industry. Neural networks allow a system to map a domain state to a
desired action and they are capable of generalizing over states easily which is most welcome
in areas where a huge amount of states are possible.
Some of the advantages and disadvantages of neural networks as described in [Vel99] are:

15



CHAPTER 3. NEUROEVOLUTION

Advantages:

1. Neural networks are able to learn any complex non-linear mapping / approximate any
continuous function.

2. As non-parametric methods, neural networks do not make a priori assumptions about
the distribution of the data / input-output mapping function.

3. Neural networks are very flexible with respect to incomplete, missing and noisy data
/ neural networks are fault tolerant.

4. Neural network models can be easily updated / are suitable for dynamic environments.

5. Neural networks overcome some limitations of other statistical methods, while gener-
alizing them.

6. Hidden nodes, in feed-forward supervised neural network models can be regarded as
latent / unobservable variables.

7. Neural networks can be implemented in parallel hardware, increasing their accuracy
and learning speed.

8. Neural networks performance can be highly automated, minimizing human involve-
ment.

9. Neural networks are specially suited to tackle problems in non-conservative domains.

Disadvantages:

1. Neural networks lack theoretical background concerning explanatory capabilities /
neural networks as black boxes.

2. The selection of the Network topology and its parameters lacks theoretical background
/ It is still a trial and error matter.

3. Neural networks learning process can be very time consuming.

4. Neural networks can overfit the training data, becoming useless in terms of general-
ization.

5. There is no explicit set of rules to select a suitable neural network paradigm / learning
algorithm.

6. Neural networks are too dependent on the quality / amount of data available.

7. Neural networks can get stuck in local minima / narrow valleys during the training
process.

8. Neural network techniques are still rapidly evolving and they are not reliable / robust
enough yet.

9. Neural networks lack classical statistical properties. Confidence intervals and hypoth-
esis testing are not available.

For the disadvantages 2, 3, 7 a solution was found in the development of neuroevolution
techniques.
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3.2 Genetic algorithms

Genetic Algorithms (GA’s), also known as Evolutionary Computing, is a population-based
stochastic search algorithm based on the mechanics of natural evolution. GA’s are a subset
of Evolutionary Computing and are used to find approximate or exact solutions to op-
timization and search problems. Such applications are commonly presented by research
fields such as biogenetics, physics, computer science, economics, engineering, chemistry and
mathematics. For this research GA’s will be used to find solutions for playing Othello.
GA’s are based on, but not limited to the characteristics of natural evolutionary systems.
GA evolution has 5 distinct characteristics:

1. Structures, which are a genetic representation of the solution domain

2. Structures are combined to form new, better solutions

3. Structures compete for a limited resource

4. Fitness function to evaluate a solution

5. Relative production success depends on the environment

Structures are complete individuals and can act in a given environment in order to determine
their ability to execute the given task. The value given for this ability is called the fitness.
Fitness is a single number given to each structure as a performance measure. The fitness is
determined by doing 1 trial per structure in the environment if both the structure and the
environment are deterministic, or multiple trials if randomness is involved.
A structure consists of genes to describe its characteristics. These genes combined are called
chromosome or genotype. The structure of these chromosomes is manually designed. Figure
3.2 shows a representation of a simple binary chromosome. Chromosomes can be merged
to create offspring which has characteristics of 2 parents (or more). This way important
characteristics of successful parents can be passed on to offspring to create better solutions.
In addition to merging the genes of parents, mutation is also used to maintain genetic
diversity.

Figure 3.2: Representation of a binary chromosome

As a genotype, it is in most cases not possible to determine the fitness of the structure. Just
like in nature, a genome itself is mere data, but with the data a creature can be created.
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This is called a phenotype. The phenotype is used to determine the fitness of the genotype.
According to this fitness a sorted list is created and individuals are selected for reproduction.
Parents can be selected any way one chooses, although some selection techniques are more
popular than others. Examples are Fitness Proportionate Selection, Tournament Selection
and Ranked Based Selection.
Figure 3.3 shows a general genetic algorithm flow. First an initial population(P(0)) is gen-
erated; often with random values but predetermined topology. Secondly P(0) is evaluated
to be able to select parents. Next the while loop is started to compute new generations. In
this loop the parents(P’(t)) are selected for recombination which produce offspring(P”(t)).
Now we have too many individuals, and so in this example, P’(t) ∪ P”(t) need to be sorted
on fitness after which the best are kept as a new generation P(t+1).

P(0) ← Generate initial population()
P(0) ← Evaluate population(P(0))
t ← 0
While Not-Terminated P(t)
do

P’(t) ← Select mates(P(t))
P”(t) ← Generate offspring(P’(t))
P”(t) ← Evaluate population(P”(t))
P(t+1) ← Select fittest(P”(t) ∪ P’(t))
t ← t + 1

return P(t)

Figure 3.3: Genetic Algorithm Pseudo-Code

3.3 Neuroevolution

Neuroevolution is a technique where GA’s are used to improve neural networks. There
are many neuroevolution techniques, which can be classified in techniques which evolve the
neural network weights versus techniques which evolve both the weights and the topology
of the neural network. GA’s which evolve both the neural networks weights and topology
are also called TWEANNs (Topology & Weight Evolving Artificial Neural Networks).
When GA’s are used to evolve neural networks, the network (which is a phenotype) has
to be converted to a genotype to be able to reproduce. Weight values can be stored in a
chromosome in different ways; direct encoding and indirect encoding. Direct encoding means
having floating point values in the chromosome representing all weights. Indirect encoding
can be determined by the developer.
Several neuroevolution techniques exist and for this research SANE, ESP and NEAT are
compared.

3.3.1 SANE

Symbiotic, Adaptive Neuroevolution (SANE) [Mor96], [Mor97], is a reinforcement learning
method which evolves a population of neurons through genetic algorithms to form a neural
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network. Evolving a population of neurons instead of full neural networks makes it possible
to develop partial solutions to the posed problem. Figure 3.4 shows the basic steps for
computing one generation in SANE.
The goal of SANE is to have each individual develop a solution which can be combined
with others to form a complete and effective solution to the problem. Because individuals
alone can not make an effective solution, symbiotic relations must be maintained with other
individuals. When creating a full neural network, neurons are chosen from the population
pool and combined to form a complete neural network. Figure 3.5 shows the conversion
between a genotype and its phenotype.

1. Clear all fitness values from each neuron.
2. Select ζ neurons randomly from the population.
3. Create a neural network from the selected neurons.
4. Evaluate the network in the given task.
5. Add the network’s score to each selected neuron’s fitness variable.
6. Repeat steps 2-5 a sufficient number of times.
7. Get each neuron’s average fitness score by dividing its total fitness value

by the number of networks in which it was implemented.
8. Perform crossover operations on the population based on

the average fitness value of each neuron.

Figure 3.4: One generation in SANE

Figure 3.5: SANE, Genotype to Phenotype

Fitness can easily be determined for all individual neurons after having determined the
fitness for the formed neural network. When an individual participates in a neural network,
the fitness of the neural network is equally assigned to all participating neurons. This way
an individual can take part in any number of neural networks. In theory all neurons should
participate in neural networks with all other neurons to get an optimal weighed fitness for
each neuron. Obviously this is not feasible and fitness will remain an approximation.
Specialization is an important aspect of SANE and is possible due to the individual neurons
being evolved. Instead of solving the entire problem, individual neurons aim to solve a
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particular aspect of the problem. Specialization is enforced knowing individual neurons
cannot form a complete solution and the fitness of the neurons is based on the effectiveness
of symbiotic relations it has with other neurons. Specialization prevents converging to
suboptimal solutions because of the diversity in the population.

3.3.2 ESP

Enforced Sub-Populations (ESP) [Gom99], is a reinforcement learning method very similar
to SANE. ESP evolves a population of neurons through genetic algorithms to form a neural
network. Like SANE, ESP evolves a population of neurons, but unlike SANE, the special-
izations are not kept in a single parent pool. A drawback with SANE is the interbreeding
of different specializations which result in a lot of individuals with similar characteristics as
well as very few to no protection of new (still weak) species. ESP enforces a subpopulation
for each hidden neuron of the neural network as can be seen in figure 3.6. Neurons in a sub-
population can only recombine with neurons from its own subpopulation. These enforced
subpopulations allow a much faster specialization than is the case with SANE (where all
specializations have to emerge from one large pool). Having subpopulations protects weaker
species from dominant ones taking over the population. Also having neurons being placed
at the same location in the neural network, and being linked to the same neurons increases
learning speed and allows better learning for recurrent networks.

Figure 3.6: ESP, Genotype to Phenotype

3.3.3 NEAT

Neuro-Evolution of Augmenting Topologies (NEAT) [Sta02], is a reinforcement learning
method, although not like SANE or ESP. NEAT is a TWEANN, a GA which evolves both
weights and topology of neural networks. Like SANE and ESP weights are evolved through
generations allowing a better solution to be reached. In addition, changes can be made
to the topology in terms of links and nodes. This allows NEAT not only to search the
search-space but also to minimize it during evolution.
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The initial topology in NEAT can be setup by humans to fit the problem to be solved.
Initial topologies more closely matching the optimal topology are recommended as it reduces
the time required to evolve to the optimal topology. NEAT’s topologies often become
increasingly more complex as they become more optimal, strengthening the analogy between
GA’s and natural evolution.
NEAT uses direct encoding to describe network structures as indirect encoding would limit
the topological search to the class of structures which would be designed for the indirect
encoding. As NEAT evolves topologies, this is clearly an unwanted characteristic. Figure 3.7
shows the genotype and phenotype of NEAT. The genotype consists of two types; node genes
and connect genes. Node genes come in three types; sensor, hidden and output. Hidden
nodes are removed or added through evolution. Connect genes represent the links/weights
between nodes. A connect gene defines one link/weight between two specified nodes and
can be enabled or disabled through mutation and crossover operators.
Specialization is also allowed by NEAT due to the historical markings assigned to each
individual in the population.

Figure 3.7: NEAT, Genotype to Phenotype

3.3.4 Other Neuroevolution Techniques

Besides SANE [Mor96], [Mor97], ESP [Gom99] and NEAT [Sta02] other neuroevolution
techniques have been developed like TEAM [Ald02] and CoSyNe [Gom06]. The Eugenic
Algorithm with Modeling (TEAM) is an extension of the evolution technique The Eugenic
Algorithm (EuA [Pri98]). TEAM is a technique for evolving a population not only by stan-
dard crossover and mutation, but also by directing evolution. This is done by maintaining
historical information on correlations between allele and fitness. The available software
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contains code for evolving binary genes only. TEAM was not part of the experiments due
to time constraints and remains an interesting technique to experiment with for creating
Othello players.
Cooperative Synapse Neuro Evolution (CoSyNe) [Gom06] is another neuroevolution tech-
nique. CoSyNe searches at the level of individual network weights instead of neurons. Like
ESP and NEAT, CoSyNe has n subpopulations, equal to the amount of network weights
to be evolved. All subpopulations have an equal predetermined size. Phenotypes are cre-
ated by selecting one individual from each subpopulation and inserting it at its position.
Each subpopulation has individuals specifically for one position in the neural network. As
CoSyNe was released after the choice of techniques, it was left out.

3.3.5 Neuroevolution and Games

There has not been much research in learning games like Othello with neuroevolution tech-
niques. The three techniques discussed here have been used in control tasks like pole-
balancing problems and similar tasks, but not in playing games.

As stated before NEAT has been used to learn a mobility strategy in Othello ([And02]).
Although not like an expert player, it was able to learn mobility. The game Go has been
studied using SANE and ESP in [Lub01] and in [Per01], but only for small Go boards (up
to 7x7 positions). These examples show that there is still a lot of interesting research that
can be done on neuroevolution and board games.

22



Chapter 4

Experiments

4.1 Implementation

To test the three neuroevolution techniques a Java implementation of Othello was used,
along with Java implementations of the three techniques.
Java was used because of previous work on Othello [Jac05] was also done in Java, so an
Othello framework ready for experiments already existed.
The three techniques were originally written in C or C++ but they all have a Java imple-
mentation as well.

4.1.1 Othello

The implementation has been divided into two main groups, Environment classes and Player
classes. Environment classes contain code for the game itself, while Player classes contain
(any form of) intelligence for playing a game of Othello using the Environment classes.
An abstract view of the environment implemented in Java is given in figure 4.1.

Figure 4.1: Othello Java classes

The environment has several features so it can be used for experiments, like keeping track
of the scores, playing multiple games and several others.
The player classes are a collection of all implemented players and the Player interface. Each
game consists of two players chosen from the available implemented players.
A collection of players used in previous work ([Jac05]) can be used as opponents for the
neuroevolution techniques. There is a human player, which is in fact a user interface so a
real human player can play Othello. There is also a random player who plays random moves.
Also used are the Positional player and the Mobility player as explained in chapter 2. The
last player used in this research is the player using the neural network that was learned in
this previous research, the Temporal Difference player (TD player). It plays a good game
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against novice players and can beat random players 83% of the time without looking ahead.
During this research look-ahead was implemented for this TD-player, using first a min-max
algorithm, and later on an alpha-beta search algorithm. When the TD-player looks ahead
3 moves or more it beats a random player 99% of the time.
Because the Othello environment is separated from the players, it is easy to add all kinds
of different players. With this approach it was not difficult to add neuroevolution players
using the code from other authors.
The neural networks used in the different techniques always consist of 64 input neurons and
1 output neuron. The number of hidden neurons and the way the neurons are connected
varies.
The 64 input neurons represent the 64 board positions. The input is 1 if a board position
contains a piece of the player, -1 if the position contains a piece of the opponent and 0 if
the position is empty.
The output neuron is a sigmoid activation function and represents the evaluation value of
the given board state.
The fitness function used in the genetic algorithms is a win percentage after playing 50
games. At the end of each generation, the best neural network is allowed to play 1000
games to set the fitness off the champion of that generation.

4.1.2 SANE

The JavaSANE package contains the source code for the Hierarchical SANE system, based
on SANE-C by Moriarty, [Mor96], but rewritten in Java. This package is designed to be an
easy starting point for applying JavaSANE to a new domain.
For this research it was just a matter of rewriting the fitness function so that it plays Othello
to evaluate the neural network. Of course some parameters had to be tuned so the correct
topology for the neural network was used.
Several features have been added to this package to make it easier to analyze the results
and to monitor evolutionary progress.

4.1.3 ESP

The Java ESP package contains the source code for the Enforced Sup-Populations system
which is nearly a direct port of the ESP C++ package that was used for research in [Gom99].
It supports different kinds of neural networks like Simple Recurrent Networks, Second Order
Recurrent Networks and Fully Recurrent Networks, but for this research only simple feed
forward networks are used.
With Java ESP it was also not difficult to add an Othello configuration and fitness function
and integrate it in the Othello environment.

4.1.4 NEAT (JNeat and Anji)

In this research two Java implementation of NEAT have been tried, JNeat and Anji.
First JNeat was used for this research. JNEAT was written by Ugo Vierucci based on the
original C++ package by Kenneth Stanley which was used in the NEAT research [Sta02].
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JNeat is an extensive package with a user interface to monitor progress and it uses a complex
object model. It was not that hard to integrate it with the Othello environment and create
the right fitness function, but it was difficult to add and change the code to make it easier
for this research to monitor progress and analyze results. In fact this package was not really
well-written and the Italian comments did not make things easier.
On top of all this it did not turn out to work that good. It never really learned anything
despite all different approaches and configurations.
So JNeat was put aside and Anji was used instead. Anji did learn and was easy to implement.
Anji was written by Derek James and Philip Tucker based on descriptions of NEAT in papers
published by Kenneth Stanley and Risto Miikkulainen ([Sta02]). It was not directly based
on the NEAT C++ package, so it probably differs in some aspects.
Anji is very well written and is easy to configure and adjust to make it ready for the Othello
experiments.

4.2 Initial experiments

Before running the final large experiments several initial experiments have been performed
to fine tune the different techniques. All three techniques have several parameters to tune
like selection mechanisms for the genetic algorithm, the different mutation rates and several
others. Also the knowledge representation of the Othello player, the neural network, had
to be tuned to see what (initial) topology would work best.
To compare three different techniques, several parameters were set the same for all tech-
niques, so it was possible to compare the outcome. These parameters include population
size and number of games each individual can play. This way, the three techniques have
the same number of evaluations.
Each experiment was allowed 500.000 evaluations. An evaluation is one game of Othello
against a random playing opponent. A random opponent was selected as most skilled players
require a lot of time per game. Also when playing against a skilled player, which is often
deterministic, the evolutionary technique only learns a limited amount of states. Every
generation consists of 100 individual neural networks and they all play 50 games of Othello
each generation. This means each experiment took 100 generations. Each experiment was
repeated 3 times. This should be enough to tune the parameters.

4.2.1 Tuning SANE

To tune SANE several experiments have been performed. The main focus for tuning SANE
was finding out what neural network works best for SANE. To test this a fully connected
network was tested with different numbers of hidden neurons to find out what network size
would work best. Also different mutation rates were tested.

Testing network sizes: 20, 40 and 60 hidden neurons.
These networks have been tested with fully connected neurons with the default SANE
parameter for the mutation rate which is 20%. Although the final results did not differ that
much, except for the obvious difference in learning speed, it seemed that 40 hidden neurons
had a better result in the long run. The number of hidden neurons, 40, may look a bit
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arbitrary, but it was not only chosen because of the outcome of this experiment, but also
because of past experiences with Othello and neural networks and the expectations that 20
would be too few to learn and 60 too many to learn fast enough. The fact that the results
showed not much difference between the network size, justifies an arbitrary choice.

Testing mutation rate: 20%, 40% and 60%
The mutation rate is the chance that the weight of a neuron is mutated every generation.
The default SANE value is 20%. This value was tested against 40% and 60% with a fully
connected network. The results of these experiments did not differ that much. It looks like
40% performs slightly better than the other two in the long run. At least it has a better
average fitness in the top 10 in every generation in the end. The overall average fitness of
the population is about the same in every generation for the different mutation rates.
Several other parameters were not tuned because they did not seem to matter that much
or appeared fine with pre-initial experiments.

4.2.2 Tuning ESP

For ESP both the network size and the mutation rate have been tested. The first goal was
to find out what size neural network works best with Othello. The second goal was to find
out which mutation rate offers a good learning rate.

Testing network sizes: 20, 40 and 60 hidden neurons.
Fully connected networks were tested with default ESP parameter for mutation rate which
is 40%. After 100 generations it was clear that a network with 20 hidden neurons does
not perform as good as the ones with 40 and 60 hidden neurons. The ones with 40 and 60
hidden neurons do not differ that much. Both show a learning curve and have the same
fitness in the end.
Because of SANE and other past experiments with Othello the 40 hidden neurons seems a
good network size.

Testing mutation rate: 20%, 40% and 60%
With a fully connected neural network with 40 hidden neurons the different mutation rates
were tested. After 100 generations it was clear that a mutation rate of 40% is the best. It
has a fast learning rate and is still learning at the end of the experiment. Both 20% and
60% have a lower fitness in the end.
Several other parameter were not tuned because they did not seem to matter that much or
appeared fine with pre-initial experiments.

4.2.3 Tuning NEAT

Tuning NEAT (with the Anji implementation in this research) took some more time. Pre-
initial experiments made it clear that several parameters had to be tuned. For NEAT the
parameters weight mutation rate, connection mutation rate, neuron mutation rate and the
speciation threshold were tested.
The initial topology at the start of each experiment is a fully connected neural network
with 10 hidden neurons.
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Testing weight mutation rate: 0.005, 0.01, 0.1, 0.25, 0.5
The weight mutation rate is the probability of existing connection weights being mutated.
Very low values were tested here. Because pre-initial tests showed that a low value for this
was good, several tests had to be performed to see how low this value should be. In the end
0.01 turned out to be a good value.

Testing add connection mutation rate: 0.03, 0.06, 0.2, 0.3, 0.5
The add connection mutation rate is the probability of new connections being added with
an initial weight with a random value from a normal distribution.
First the values 0.03, 0.06 and 0.2 were tested, but it turned out that 0.2 performed much
better than 0.03 and 0.06. So apparently a higher value was needed. Therefore 0.2 was
tested against even higher values, 0.3 and 0.5. The results of these tests did not differ that
much. It seemed that 0.2 performed just a little better than the other two. At least it is
still learning at a higher rate than the other two after 100 generations.

Testing add neuron mutation rate: 0.1, 0.02, 0.005, 0.001, 0.0005
The add neuron mutation rate is the probability of new nodes being added to an existing
node in the neural network.
After the first tests with 0.1, 0.02 and 0.005 it turned out that 0.005 performed better than
the other two, so 0.005 was tested against 0.001 and 0.0005. The mutation rate of 0.005
turned out to be the best because the other two values did not seem to learn anymore after
100 generations.

Testing speciation threshold: 0.1, 0.2, 0.4, 0.5, 0.6
The speciation threshold is the compatibility threshold used to determine whether two
individuals belong to the same species.
After the first tests with values 0.1, 0.2 and 0.4 showed that 0.4 was the best value another
test was done with 0.4 against 0.5 and 0.6. The results are close, so it is probably not
necessary to do more test. The value 0.6 turned out to be the best value for the speciation
threshold.
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4.3 Final experiments

Final experiments were conducted once the tuning of the different neuroevolution algorithms
was completed. Tuning was needed to assure maximum performance of all three techniques
when comparing them in the Othello environment. The final experiments were done allowing
a lot more evaluations per experiment than was the case with the initial experiments.
Obviously this was done due to time constraints and shorter tuning experiments did set a
trend to allow proper variable tuning. Each experiment was allowed 2.000.000 evaluations,
and each experiment was repeated 10 times. One evaluation means one game of Othello.
Each fitness measure counts as one evaluation and for each generation every individual was
measured, even if the individual was already measured. Because individuals were trained
against an opponent which makes random moves, the extra fitness measures means the
assigned fitness will be more accurate.
It should be noted that the size of neural networks and thus the computation time was not
taken into account.

4.3.1 Time

Running experiments takes time. All experiments are repeated 10 times and each individual
experiment of each technique against the random opponent takes about 8 hours to complete.
This means that repeating this 10 times will take 80 hours for each experiment against the
random players.
The experiments against the deterministic opponent, as described in the last paragraphs of
this chapter, take even more time, up to 10 hours for each individual experiment.

Because of the amount of time it takes to perform an experiment choices had to be made
for which experiments are done and which are left out. Probably more and better results
were possible if there was more time available. More on this in the last chapters.

4.4 SANE - Final experiments

4.4.1 Properties

As said before SANE was trained up to 2.000.000 evaluations per experiment. From the
initial experiments the following parameters were found to be most optimal for learning
Othello against a random moving opponent:

• Mutation rate = 0.4
• Neural network = Fully connected feed forward
• Networks created per generation = 100
• Number of hidden neurons = 40

4.4.2 Running Experiments

After running each SANE experiment ten times, it was clear SANE was performing on
par with standard reinforcement learning techniques such as Temporal Difference learning;
scoring 83% [Jac05].
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As a performance measure for every generation the champion of the generation was allowed
to play 1000 games in order to get a more accurate fitness. This can be seen in figure 4.2.

Figure 4.2: SANE, experimental results - 2000 neurons

SANE certainly learns properly, but not more than any default reinforcement learning
technique (83%). Sane also ends up with a 82% - 83% score.
When comparing the champion to the win percentage of all the evaluated networks (average
all in figure 4.2), it is clear the champion performs better than all the evaluated networks.
Of course this was to be expected but seeing a gap of 6% wins suggests a large spread
in fitness. Unfortunately this is a characteristic of SANE having all neurons in one large
pool and thus allowing very bad networks to be formed as well. This might also be the
reason for all of the ten experiments to have a rather large spread in win percentage of the
champion at the end of each experiment (win percentages between 77% and 86%). The
initial populationsize (2000) might also have been too large, resulting in new neurons being
selected every trial and thus preventing proper learning.
There also is a difference of 8% - 9% between the champion percentage and the average top
10 percentage. This is because the top 10 consists of the individuals with the 10 highest
fitness scores and this fitness is determined after playing only 50 games. The best individual
plays 1000 games and its fitness will be the champion fitness. This champion fitness is bound
to be lower than the average top 10 fitness because of the inaccuracy of playing only 50
games compared to playing 1000 games.

Two more settings have been tested; 400 neurons (Figure 4.3) and 800 neurons (Figure
4.4) as populationsize to have each neuron participate in a network 10 times and 5 times on
average respectively. As can be seen both population sizes of 400 and 800 performed slightly
better than the initial populationsize of 2000. Unfortunately this is no real improvement to
make SANE perform significantly better than it did with a population of 2000. Only the
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experiment with 400 neurons results in a score higher (about 85%) than the original which
suggests that maybe the neuron pool can be made even smaller for better results, although
a score of 85% might be the top for SANE. No more experiments using SANE have been
performed due to time constraints.
Although mutationrate might be high (40%), tuning tests showed this to not influence the
evolution significantly.
Alternative selection and replacement methods could improve SANE’s performance.

Figure 4.3: SANE, experimental results - 400 neurons

Figure 4.4: SANE, experimental results - 800 neurons
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4.5 ESP - Final experiments

4.5.1 Properties

ESP was also trained up to 2.000.000 evaluations per experiment. The following parameters
were considered most effective for ESP:

• Mutation rate = 0.4
• Delta coding = true & false
• Networks created per generation = 100
• Neural network = Fully connected feed forward
• Number of games per network = 50
• Number of hidden neurons = 40

4.5.2 Running Experiments

For ESP two different settings were used; delta coding and no delta coding. At first ten
experiments were performed with delta coding enabled. Delta coding allows ESP to create
more diversity when no new champion had been discovered for a while.

Figure 4.5: ESP with delta coding, experimental results

ESP with delta coding performs almost as good as the earlier experiments done with SANE.
The first experiment was done using a subpopulation size of 100. Figure 4.5 shows the results
for ESP with delta coding. The champ in ESP reached 80%. The humps in the graph are
times when delta coding is done. Unfortunately this prevented ESP from getting a score
above 82%. More tests with setting the delta coding parameters might result in better
performance. ESP with delta coding reached its maximum at generation 100.
Before a set of delta coding parameters was tried, delta coding was disabled. This resulted
in much better performance which can be seen in figure 4.6. With delta coding disabled
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ESP was allowed to continue evolving without the continuous setbacks resulting from delta
coding. Without delta coding ESP learns much more smoothly and reaches the maximum
obtained by ESP with delta coding at generation 70. Now this is nothing new, but without
delta coding ESP continues evolving and has converged at generation 200 having a winning
percentage of 87%.

Figure 4.6: ESP without delta coding, experimental results

These first two experiments are performed with a subpopulation size of 100 and with 40
subpopulations (one for each hidden neuron). Which means that when creating a network
in the population each neuron will be selected only once each generation.
In [Gom99] the neurons in de the subpopulations are tested in different neural networks for
a good evaluation of the neuron. That is why two extra experiments have been done with
smaller subpopulation sizes. A subpopulation size of 10 and 20 were tested, so each neuron
is evaluated 10 and 5 times respectively. No delta coding is used in these experiments.
The results are shown in figure 4.7 and figure 4.8.
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Figure 4.7: ESP subpopulation size of 10 without delta coding

Figure 4.8: ESP subpopulation size of 20 without delta coding

33



CHAPTER 4. EXPERIMENTS

The results show that when using smaller subpopulation sizes and thus evaluating a neu-
ron more than once each generation, does not give better results. The endresults of the
experiment with the subpopulation size of 100 are better.
However the learning speed is significantly higher in these last experiments. A maximum
is reached around generation 50 instead of generation 150 with the larger subpopulation
size. Perhaps there is some potential using smaller subpopulations which can be exploited
by using delta coding to create more diversity after a stagnation of the learning speeds.
So several new experiments have been performed using the two different subpopulation size
10 and 20 and using two different stagnation values 40 and 100. This stagnation value
is the number of generations in the experiments without improvements. So a stagnation
value of 40 means that when there has not been a significant improvement over the last 40
generation, delta coding is used on the current population.
The results of these four new experiments are shown in figure 4.9, figure 4.10, figure 4.11
and figure 4.12.

Figure 4.9: ESP, subpopulation size of 10, delta coding stagnation value 40
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Figure 4.10: ESP, subpopulation size of 20, delta coding stagnation value 40

Figure 4.11: ESP, subpopulation size of 10, delta coding stagnation value 100
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Figure 4.12: ESP, subpopulation size of 20, delta coding stagnation value 100

Comparing these results with the results without the delta coding show no real difference.
In the end it does not seem to make a difference when delta coding is used or not for the
smaller subpopulations. So ESP shows the best results when no delta coding is used and
large subpopulation pools are used.

When comparing the champion percentage with the average top 10 in the different graphs,
the average top 10 score is higher than the score of the generation champ. This difference of
9 - 10% can be explained by the fact that the individuals are given fitness values based on 50
matches. After assigning the fitness there is a certain inaccuracy in the fitnesses assigned.
After sorting the individuals, the ones with the highest (and also the most inaccurate)
fitness make up the top 10. When having the best individual play 1000 matches as a more
accurate fitness measure of that generation the champion’s fitness is bound to be lower than
the fitness of the average top 10.

The champion and average all show both graphs are closely together. The champion scoring
better than the average of all evaluated individuals was something to be expected. The fact
that both are close in win percentage shows that all evaluated individuals are not much
spread out in win percentage. At the end of the ten experiments done with ESP without
delta coding shows champions win percentage being close to one another. This, in contrary
to SANE, shows ESP is much more reliable and stable in evolving.

ESP clearly performs better at Othello against a random opponent than SANE does. When
using a subpopulatation size of 100 and no delta coding there is a difference between SANE
and ESP of about 5%.
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4.6 NEAT - Final experiments

4.6.1 Properties

As both other techniques, NEAT was also allowed to perform up to 2.000.000 evaluations
per experiment. For NEAT the following parameters were used for the final experiments:

• Population size = 100 networks
• Add connection mutation rate = 0.2
• Add neuron mutation rate = 0.005
• Weight mutation rate = 0.01
• Speciation threshold = 0.6

4.6.2 Running Experiments

For NEAT ten experiments were done as well. Figure 4.13 shows the results of these
experiments.

Figure 4.13: NEAT vs random, experimental results

NEAT reaches a win percentage of 90% at generation 200. NEAT does continue to improve
to 92% in the end, and longer test runs might be needed to see how well NEAT can perform
in the long run. Analysing the three graphs shows the average top 10 to be at 98% wins,
and the champion’s win percentage to be slightly above the average all graph as is the case
with ESP. Also at around generation 150 there is a dip in win percentage. This is the result
of one of the ten experiments performing badly at that time.
Clearly NEAT performs better than both ESP and SANE.
Interesting to see were the amount of hidden units being evolved for the NEAT networks.
The top 10 of individuals were started at 10 hidden units by default. The amount of hidden
units was reduced to 2 and the amount of connections was reduced to 40-50 by the end of
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the experiment while the win percentage kept rising. Apparently playing against a random
playing opponent requires very few knowledge to be able to successfully beat it. This was
confirmed when looking into the neural networks of the champions formed at the end of the
experiments. Most champion networks had only two corner input nodes connected which
suggests that a simple strategy that focuses on capturing some corners is enough to defeat
a random opponent.
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4.7 Deterministic opponents

Because of the small amount of hidden neurons and connections remaining in NEAT, some
additional experiments were done to test if this was indeed the result of training against a
random moving opponent. How will NEAT behave and learn when it plays against a player
that uses a certain strategy?
Several experiments were performed to test this. The NEAT player plays against three
different deterministic opponents who all play at a novice level. These players are explained
in chapter 2.
Because NEAT is able to defeat the random player with a small neural network, it can
probably also defeat the deterministic players, but it will probably take longer and will
result in larger neural networks.

For these experiments the same parameters for NEAT were used as in the previous expe-
riments against the random player.
Both the NEAT player and its opponent are deterministic players, so they will play the
same games over and over. To avoid this, the first four moves of each player were made
randomly. The number of different board states that may result from four random moves
at the beginning of an Othello game is 244.

4.7.1 TD-Greedy opponent

The first opponent is the TD-Greedy player. This player uses a learned strategy which is
not all clear. This strategy was learned by playing against random players and using off-line
batch learning from worldclass tournament games.

Figure 4.14: NEAT vs TD-Greedy

Figure 4.14 shows the results of this experiment. The graphs shows that NEAT is able to
learn to defeat this opponent. Resulting in a 80% win and not even fully converged after
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400 generations, NEAT is able to exploit the opponent’s weakness.
The final neural networks all contained about 6 hidden hidden neurons which shows that
a more sophisticated network is needed to defeat this player, than defeating a random
opponent. Still only 6 hidden neurons can be seen as a small network.

4.7.2 Positional opponent

The second deterministic opponent is the Positional opponent. This player uses a simple
but strong board evaluation to determine its moves. It can be beaten easily by using a
mobility strategy to exploit the greediness of the player.
The results of this experiment are show in Figure 4.15.

Figure 4.15: NEAT vs Positional

The graphs shows a slowly converging learning curve with a 70% win percentage after 400
generations. The curve has not converged yet, so it probably can learn to play even better
over time.
It shows that NEAT is able to learn against the positional opponent, but it takes time. It
learns slower against the positional opponent than against the TD-Greedy opponent. It is
probably harder to find and exploit a weakness in the positional player.

The number of hidden neurons the neural networks have at the end of the last generation
although is around 6, varying from 5 to 7.

4.7.3 Mobility opponent

The last deterministic opponent NEAT plays against is the Mobility player. Using a simple
form of a mobility strategy this opponent is not hard to beat by an experienced player.
In Figure 4.16 the results of this experiment are shown.
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Figure 4.16: NEAT vs Mobility

The graphs is similar to the graph showing the positional opponent, although it seems to
learn a little faster resulting in a 77% win percentage. NEAT is not converged yet at the
end of the experiment, showing that it probably can learn to play even better.

At the end of the last generation the number of hidden neurons in the resulting neural
networks is around 6, varying from 5 to 7.

The positional player seems to be the hardest player to learn against, although NEAT seems
to be able to learn a very good game against each of the three deterministic players.
And because NEAT also is able to learn a good game against the random player, it is a
potentially good neuroevolution technique to learn to play Othello.

41





Part II

Neuroevolution and Temporal
Difference Learning

43





Chapter 5

TD Learning

In chapter 3 and chapter 4 genetic algorithms and Neuro-evolution techniques were used
to learn to play Othello. In this chapter the reinforcement learning technique temporal
difference learning will be explained and it will be used to learn Othello in the following
chapters.
The temporal difference learning method has proven to be successful at learning to play
Othello ([Jac05]). So this is an interesting technique to try and to combine with the suc-
cessful neuroevolution technique NEAT. But because of a bug in the players used in [Jac05]
(as explained in the next chapter) and for the sake of comparable results, several new
experiments have been performed using reinforcement learning to learn Othello.

5.1 Reinforcement learning

Reinforcement learning ([Sut98]) is learning from interaction using a trial and error search,
or more formal, mapping situations to actions to maximize the total reward when interacting
in the environment.
The best way to understand reinforcement learning is to compare it with supervised learn-
ing. Where in supervised learning an agent is taught to respond to a given situation, in
reinforcement learning the agent is not taught how to behave but it will find the best way
to behave by using trial and error.
When interacting in an environment the reinforcement learning agent receives rewards for
its behaviour. Normally a positive reward indicates good behaviour and a negative reward
indicates bad behaviour. Using the rewards the agents can change its behaviour, its policy,
to maximize its rewards in the long run.
One problem is that the agent rarely receives a reward after each action. It is more usual
for the agent to take several actions before receiving rewards. Like in playing Othello, the
player does not receive a reward after each move, because it will only know at the end of
the game whether its sequence of actions was good. This is known as the temporal credit
assignment problem: how can the actions the agent performed be rewarded if the reward
only comes at the end of a sequence of actions?

Four main elements can be identified in a reinforcement learning system: a policy, a reward
function, a value function and (optionally) a model of the environment.
The policy is the way the actor, or agent, behaves at a given time. It is a mapping from the
states in the environment the agent perceives to the actions the agent can perform in the
environment. In playing Othello the optimal policy is defined as selecting the right move
in each state of the board.
The reward function defines the reward the agent gets in each state in the environment. It
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is a mapping from a perceived state to a number, the reward. The objective of the agent
is to maximize the total reward it receives in the long run. The reward is received by the
agent from the environment. It is like experiencing pleasure and pain (positive and negative
rewards) in a biological system.

The reward is used to alter the policy. When a low reward is received in a certain state
after a certain action, then the policy might be altered so that the agent will avoid that
action in the future.

The reward in playing Othello is win, draw or lose the game. So in Othello there is a delayed
reward; the reward is given at the end of the game and has to be distributed over all moves
the player did. How this is solved is explained in paragraph 5.2.

The value function defines what is good in the long run. The value function in a certain
state is the total amount of reward an agent can expect to accumulate starting from that
state. So it is a prediction of rewards and the purpose of estimating values is to achieve
more reward.
In playing Othello the value function is used to determine which move to make given a
certain state of the game. When several moves are possible, the value function estimates
which move will have the highest total reward in the end of the game. The value function
for each state is what the agent has to learn. But because Othello has a huge statespace,
it is nearly impossible to visit all states and learn the value function for each state. So to
generalize the state values a function approximator is used. In this case a Neural Network
(see paragraph 3.1) is used as a function approximator. Using the current state of the board
as input, it gives a value for that state. Similar boardstates will have similar values.
Another problem with learning the value function for all states is the trade-off between
exploration and exploitation. When selecting a move, the player can always play greedily
and select the move with the highest estimate (exploitation), but because the player may
not be optimal, it could be not the best move after all. So once in a while the player has to
select a different move to find out if that move is maybe better (exploration).
The solution used here is an ε-greedy method which means that with a probability 1 - ε
a greedy move is performed and with probability ε a random move is performed. With a
value of around 0.1 for ε and slowly decreasing this value to 0 over time, the player will
explore new moves and in the end play a greedy strategy.

The fourth optional element of the reinforcement learning system is the model. The model
mimics the behaviour of the environment so that a good prediction of the consequences of
each action can be predicted. For playing Othello a model is not needed, because the game
is fully observable and deterministic: it is exactly known what the next state is after each
action. So a model is not used in this research.

5.2 TD(λ)

If one had to identify one idea as central and novel to reinforcement learning, it would be
temporal difference (TD) learning ([Sut88]).
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Temporal difference learning is a prediction method and as a prediction method, TD learning
takes into account the fact that subsequent predictions are often correlated in some sense.
In standard supervised predictive learning, an agent only learns from actually observed val-
ues: a prediction is made, and when the observation is available, the prediction is adjusted
to better match the observation. The basic idea of TD learning is that it adjusts its predic-
tions to match other, more accurate predictions. This procedure is a form of bootstrapping.
So the goal is to make the current prediction for the current state more closely match the
next prediction in the following time step.

When playing Othello, the player wants to predict the outcome of the game at every game
state. Of course this is nearly impossible at the beginning of the games, but can be done
pretty accurate towards the end. Using TD learning, the player has to learn to predict the
outcome by matching the prediction more closely to the next prediction in the next state.
The last gamestate contains the final reward when the game ends.
So how can the predictions for all gamestates (up to about 30) be adjusted when there is
only 1 final reward in the last gamestate?
This is accomplished by using eligibility traces. When using a simple TD method, only
the immediately preceding gamestate is updated and not all earlier predictions. But for
playing Othello it is necessary that all predictions are updated. Eligibility traces do this by
providing a short-term memory of the previous gamestates. They are usually implemented
by an exponentially-decaying memory trace, with decay parameter λ. The TD methods
that uses these eligibility traces with the decay parameter are called TD(λ) methods.
TD(λ) and λ = 0 corresponds to updating only the immediately preceding prediction, and
λ = 1 corresponds to equally updating all the preceding predictions.
But for Othello, the early predictions in the game are probably not that accurate while the
predictions towards the end can be very accurate. That is why a value of λ between 0 and
1 is probably the best value. This way the predictions in the end of the game are updated
stronger than the predictions in the beginning of the game.

The formulae in figure 5.1 are used in the Othello implementation.

V ′(s>) = R>
V ′(St) = γV (st+1) + rt + γλ(V ′(st+1)− V (st+1))

Figure 5.1: Calculation of TD(λ) statevalues

Definitions used in these formulae:

> : Terminal state, i.e. last state of the episode
R> : Final reward at the end of the episode
st : state s at timestep t in episode
V ′(st) : The new calculated statevalue of state s at timestep t
rt : the reward at timestep t (always zero in this research)
γ : discount factor which in this research is 1
λ : decay factor of weight distribution of the final reward
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In this definition, based on definitions in [Sut98], the value for rt = 0 and γ = 1. The value
0 for rt is used because there is no reward during the game. Only at the end of the game,
the player receives a reward: 1 for a win, 0.5 for a draw and 0 for a loss. The value for γ =
1 because no discounting is necessary for Othello

5.3 TD(λ) and Othello

To learn to play Othello using TD(λ) it is necessary to define episodes and states in the
gameplay and how rewards are given.
To compare TD(λ) with the other learning techniques also 2.000.000 evaluations are allowed,
which means that a sequence of 2.000.000 games of Othello can be used to learn a good
strategy. For this research each game of Othello is one episode and each game, or episode,
consists of several states. A reward is given at the end of each game, which can be 1 for
winning, 0 for losing and 0.5 for a draw.
As a function approximator for the value function a neural network is used. To learn the
value function the formulae in figure 5.1 are used.

Because the game is fully observable it is possible to learn from the opponent’s moves as
well as from the player’s own moves.
An off-line learning method is used, which means that during one episode all states plus
their statevalues are stored and after the episode the learning process starts.
Figure 5.2 shows the pseudocode for the algorithm used to play a game and store all
statevalues.

Initialize s← initial boardstate
do:

if player’s turn:
with probability 1− ε
a← action given by NN for s

else:
a← random legal action

s′ ← state after performing action a
Vp(s′)← statevalue of s′ given by NN
PerformAction(a)

if opponent’s turn:
a← action opponent performed
s′ ← state after performing action a
Vo(s′)← statevalue of s’ given by NN

s← s′

until end of game is reached
V ′p(s)← final statevalue is the final reward for player
V ′o(s)← final statevalue is the final reward for opponent

Figure 5.2: TD(λ) Othello episode pseudocode

The algorithm starts with the initial board. Then for each turn the resulting state of the
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chosen move is stored with its state-value. So when it is the player’s turn, the player selects
an action a based on the ε-greedy method, so it can be a greedy move or an exploration
move, and it determines the state s′ the board will be in after performing the action a.
Then using the neural network, the state-value of that state s′ is calculated and stored in
Vp(s′).
For the opponent’s move the resulting state s′ is evaluated using the neural network to
determine the state-value of that state and stored in Vo(s′).
After the episode ends the rewards are set to the final state-values of both the player and
the opponent. If the player wins, it receives 1 and the opponent receives 0. If the opponent
wins the player receives 0 and the opponent receives 1. In case of a draw, both players
receive 0.5 as a final reward.

To really learn from the stored episode the algorithm as shown in figure 5.3 is used. This
algorithm uses a sequence of 2.000.000 episodes to learn to play Othello learning from both
the player and the opponent.

ε← 0.1
ε-decrease ← ε/2.000.000
for i← 1 to 2.000.000:

PlayEpisode()
sp ← s>p
so ← s>o
BackpropNN(sp, V ′p(sp))
BackpropNN(so, V ′o(so)
do:
sp ← previous state of player
so ← previous state of opponent
V ′p(sp)← γVp(sp) + γλ(V ′p(sp)− Vp(sp))
V ′o(so)← γVo(so) + γλ(V ′o(so)− Vo(so))
BackpropNN(sp, V ′p(sp))
BackpropNN(so, V ′o(so)

until reached first state of episode
ε← ε− ε-decrease
if i modulo 2000 = 0:
Play1000Games()
playerstrength← percentage of games won

Figure 5.3: TD(λ) from episodes pseudocode

The algorithm starts with initializing the ε value to 0.1 and the ε-decrease to ε / 2.000.000.
So the value of ε decreases from 0.1 to 0 over 2.000.000 games. This means every new
episode the chance of exploration decreases and the player will get more greedy towards the
end of the 2.000.000 games.
After initialisation the sequence of games starts with first playing the game and storing
state-values of each state for both player and opponent and determining the final reward
using the algorithm in figure 5.2.
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Then after the end of the game the last states of both players, the terminal states s>p
with their state-value (which is equal to the final reward of the game) are learned using the
backpropagation function in the neural network.
After that, all previous states are learned using the same backpropagation method and
using the formulae showed in figure 5.1.
This will go on for 2000 games and then the player will use its current neural network to
play 1000 games against its opponent without learning and with a greedy action selection
to determine the strength of the player at that moment. The percentage of games won
determines the strength of the player and can be compared with other learning techniques.
Because every 2000 games the strength of the player is determined, a graph can be produced
with 1000 points of the strength of the player over a sequence of 2.000.000 games.

The next chapter describes the implementation of the experiments performed using these
algorithms.
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TD(λ) Experiments

6.1 Implementation

In [Jac05] several experiments using TD(λ) have been performed. One big problem with
the results in that research is that the random player that was used, contained a bug. This
bug resulted in random selection from all possible moves minus 1. So if in a state there
were 5 possible moves, it picked a move from the first 4 possible moves. This resulted in
a random player that was not capable of using all possible moves, and thus covered less
possible gamestates and in the end this player was easier to defeat.
Therefore new experiments against both random and deterministic players were performed
in this research using correct working randomness where needed.
The basic implementation from [Jac05] was used for the TD(λ) player with minor changes
and fixes.
The TD(λ) player uses a fully connected feedforward neural network with a sigmoid ac-
tivation function to return a value between 0 and 1. It keeps track of both own moves
and the opponent moves. At the end of each game, the neural network is updated for both
own gamestates and opponent’s gamestates using the correct rewards and backpropagation.
This way the player can learn from both its own gameplay and the opponent’s gameplay.

For all experiments in this chapter 2.000.000 evaluations are allowed, which means that the
TD(λ) player can play 2.000.000 games against its opponent to learn a good strategy. To
keep track of the learning progression after each 2000 games the TD(λ) player plays 1000
games against the opponent using a greedy policy without learning. The win percentage of
these 1000 games is used as the strength, or fitness of the player at that moment. Using
the win percentage of 1000 games the score can be compared with the neuroevolution
experiments and the experiments in the next chapters. An ε-greedy method is used for the
trade-off between exploration and exploitation as explained in the previous chapter.
Each experiment was repeated 10 times to make a good average.

6.2 Random opponents

To find out how well a TD(λ) can learn against a random player, several experiments were
performed with varying parameters. First several values for λ are tested against the random
player. Then the neural network learning rate, α, is tested and in the end different sizes
of the neural network are tested. Because NEAT showed that it can learn a good strategy
with a very small neural network, it is interesting to find out whether TD(λ) is also able to
learn a good strategy with a minimal size network.
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6.2.1 λ experiments

The results in [Jac05] showed a good value of λ is 0.9. But because of the bug in this
research, as explained in the first paragraph, new experiments are necessary.
This time the values for λ 0.6, 0.8, 0.9 and 1.0 are tested against the random player. The
results are shown in Figure 6.1.
The value for λ, the learning rate of the neural network, is set ot 0.01 for these experiments.
The neural network contains 20 hidden units.

Figure 6.1: TD(λ) vs Random with different values for λ

As expected the lower values for λ do not produce the best results. The λ of 0.9 and
1.0 produce the best results, where 1.0 seems to perform even a little bit better than 0.9,
although the difference is minimal. So the value of 0.9 for λ seems a good value. The value
1.0 is not chosen, because 1.0 and 0.9 show minimal difference and a value of 0.9 is a good
example of TD(λ) where a value of 1.0 is in fact an (improved) Monte Carlo method, a
method not covered in this research ([Sut98]).
So a λ value of 0.9 will be used in the following experiments.

The best values for λ have a final score around 87%, which is a good score. All values for
λ seem to converge after around 1.500.000 evaluations.
Compared to NEAT, the TD(λ) scores a little less in the end. NEAT reaches a score of
about 92% after 2.000.000 evaluations. Both are able to learn pretty well against a random
opponent.

6.2.2 α experiments

The α is the learning rate of the neural network. A small learning rate needs more learning
for a good solution, but a high learning rate may result in sub-optimal results. In this
experiment α values of 0.1, 0.01 and 0.001 are tested. The λ used is 0.9.
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In [Jac05] a value of 0.35 for α was used which seems very high. The good results in that
research may be caused by the fact that the random player did not cover all gamestates, so
the neural network had to learn from less different gamestates.
The results are shown in Figure 6.2.

Figure 6.2: TD(λ) vs Random with different values for α

The graph shows that a value 0.1 or 0.01 for α works best. Both showing the same learning
speed and the same results in the end: a win percentage around 87%.
As expected the value of 0.001 for α learns slower, but after the 2.000.000 games it looks like
it has not even converged all yet, where the 0.1 and 0.01 converged after around 1.500.000
games. The final results of 0.001 is a little lower, but all seem to converge to the same value
in the long run. The big difference is the speed of learning. An α with value 0.001 learns
slower than 0.1 and 0.01.
The fact that all values for α result in almost the same outcome is probably because of
the many different states the players evaluates. Because a random opponent does not use a
strategy but random moves, there are no states that are visited that often. So no overfitting
of the neural network takes place.
The results of different values for α when playing against a deterministic player will probably
differ more, because a lot of gamestates are visited more than once so a bigger α will probably
result in a sub-optimal result, as where low values will learn slower, but better in the end.
Experiments with deterministic opponents are performed in paragraphs 6.3.2 and 6.3.2.

6.2.3 Network size experiments

In chapter 4 it was shown that a very small neural network was able to play a good strategy
against a random player. This was shown using NEAT to evolve the neural networks. To
find out whether TD(λ) is able to learn using a small neural network, different network sizes
are tested against the random player using the best α and λ from the previous experiment,
0.01 for α and 0.9 for λ.
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The number of hidden units tested in this experiments are 2, 5, 10 and 20, where the results
for 20 are taken from previous experiments.
The results are shown in Figure 6.3.

Figure 6.3: TD(λ) vs Random with different NN sizes

All networks are able to learn pretty well. All end up with a final score from 84% to about
88%. The network with 10 hidden units seems to be the best. It has the highest learning
speed and ends up with the highest score.
The very small networks perform worse. Both a size of 2 and 4 end up around 85%.

Although a bigger neural network can do a better approximation, against a random player
a small network is enough to win. This means that combining TD(λ) with NEAT has
potential, because NEAT also ended up with small networks in the end.

6.3 Deterministic opponents

The TD(λ) method was able to learn to play Othello very well against a random opponent.
This was to be expected because it was proven before in [Jac05].
But how well will the TD(λ) method perform when learning against a deterministic player?
Will it learn to exploit the weakness of its opponent?
In this section the TD(λ) is tested against the TD-Greedy opponent, Positional opponent
and the Mobility opponent. All three opponents are explained in chapter 2.

6.3.1 TD-Greedy opponent

The TD-Greedy player uses a learned strategy which is not all clear. This strategy was
learned by playing against random players and using off-line batch learning from worldclass
tournament games. It plays a good game against novice players.
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The TD(λ) is tested using λ = 0.9 and a neural network size of 20 hidden neurons. This large
size of the neural network is chosen because a more sophisticated function approximation
may be needed to learn a good strategy.
An ε-greedy method is used for the trade-off between exploration and exploitation.
Both a value 0.01 and 0.001 for α are tested.
The results are shown in Figure 6.4.

Figure 6.4: TD(λ) vs TD-Greedy with different values for α

First thing to notice is that there is not really a difference between the two values of α.
Both 0.01 and 0.001 show the same learning curve.
The next thing to notice is that the player is able to learn to defeat the TD-Greedy opponent,
resulting in a 70% win percentage after 2.000.000 games. And because the player has not
converged yet, it could be even higher in the long run.
In the very beginning of the sequence of games, the TD-Greedy opponent still is strong,
beating the TD(λ) player most of the time. But after 250.000 games the TD(λ) player has
learned so much, it can defeat the TD-Greedy opponent half of the time. From then the
win percentages keeps increasing.
So like NEAT, TD(λ) is able to learn to defeat the TD-Greedy player, although NEAT
seems to learn faster.
Combining these two techniques might result in even faster learning to defeat this opponent.
In the next chapters this will be tested.

6.3.2 Positional player

The positional opponent uses a simple board evaluation and will focus on short time reward
by trying to capture the corner positions and the edge positions as soon as possible. A
positional player can easily be defeated by a good mobility player, but can a TD(λ) player
learn from the weakness of a positional player and exploit that knowledge?
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The TD(λ) is tested against the positional player using λ = 0.9 and a neural network size
of 20 hidden neurons.
Here also an ε-greedy method is used for the trade-off between exploration and exploitation.
Both a value 0.01 and 0.001 for α are tested.
The results are shown in Figure 6.5.

Figure 6.5: TD(λ) vs Positional with different values for α

The first thing to notice is that TD(λ) is not even able to win more than half of the games
after learning for 2.000.000 episodes.
As expected the α of 0.001 learns slower than 0.01, but after 500.000 games the learning
curves are the same. Both are not able to learn to defeat the positional opponent sufficiently
after 2.000.000 games.
However, both 0.01 and 0.001 are not yet converged so in the long run they both might
win more than half of the games. But apparently, 2.000.000 games is not enough to learn
against a positional opponent.
Maybe it is because of too few exploration moves. There is too little time to do more
research on this opponent.

As seen in chapter 4 NEAT was able to learn to defeat the positional opponent reaching a
score of 70%. And after playing 2.000.000 games NEAT still has not converged.
So what will happen when NEAT and TD(λ) are combined and learning against the posi-
tional opponent?
Probably the results will not be better than NEAT alone and maybe the TD(λ) will even
have a negative influence on the final results. In the next two chapters this will be tested.

6.3.3 Mobility player

The mobility opponent uses a simple form of the mobility strategy. The way this player
works is explained in chapter 2.
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How well will the TD(λ) perform against this opponent?
The results against the positional opponent were a little disappointing, but maybe the TD(λ)
can exploit the weakness of this opponent better. The weakness is that this opponent does
not really use a good mobility strategy. It does not look ahead more than one move so it is
hard to really use a mobility strategy. The TD(λ) player might be able to use a relatively
simple strategy to exploit that weakness.

Here the same value of λ, 0.9 and the same neural network size of 20 hidden units are used
as with the experiment against the positional opponent.
Also both 0.01 and 0.001 are used as values for α.
An ε-greedy method is used for the trade-off between exploration and exploitation.
The results of the experiments are shown in Figure 6.6.

Figure 6.6: TD(λ) vs Mobility with different values for α

The first thing to notice is that both α 0.01 and 0.001 are able to defeat the mobility player
more than half of the time in the end.
The α of 0.01 seems to learn better, but both are still not converged after 2.000.000 games,
so they might end up with the same results in the end.
However, for these 2.000.000 games, the value of 0.01 seems to outperform the other. After
250.000 games it defeats the mobility opponent more than half of the time, and in the end
it is about 65%.

When compared to NEAT in chapter 4 it does not perform that good. NEAT has a score
of 76%, which is significantly better than TD(λ).
So also for this mobility opponent the question rises: how will NEAT combined with TD(λ)
perform against this mobility player?
Probably the same as against the positional opponent: no positive influence, and maybe
even a negative influence on the end results.
In the next two chapters this will be tested.
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Chapter 7

NEAT-TD(λ)

7.1 Combining NEAT and TD(λ)

As can been seen in the previous chapters, both NEAT and TD(λ) are able to learn to
play Othello. NEAT seems to learn faster and ends up with better results after 2.000.000
evaluations, but both techniques are able to learn.
The way NEAT and TD(λ) learn are completely different. TD(λ) starts with a neural
network and from there changes it slightly after every new game, thus taking small steps in
the search space in the search for an optimum. NEAT starts a generation with several (100
in this research) individual neural networks all spread out over the search space and uses
genetic algorithms to create new networks which are not necessary close to earlier networks
in the search space. So the NEAT method uses a more or less global search, where TD(λ)
uses a kind of local search in the search space.
As NEAT uses an intelligent random global search in the search space, thus taking large
steps in the search space, this search method may very well be improved by using a local
search after every global move in the search space. A big step in the search space can end
up close to an optimum, so with a local search starting from there, it can be taken closer
to that optimum.

So combining a global search, NEAT, with a local search, TD(λ), seems to have potential
theoretically. The question is: how can it be achieved?
In this chapter a method to combine NEAT and TD(λ) to a method called NEAT-TD(λ)
is described and in the next chapter several experiments are performed to test this combi-
nation.
What NEAT-TD(λ) basically does is using NEAT to evolve the neural networks by evolving
the topology and weights as described in earlier chapters and then extend this method by
also updating the weights of the connections in the neural network using TD(λ). This is
described in detail in paragraph 7.3.
To achieve this the used implementation of NEAT, Anji, had to be improved and extended,
because it was not capable of including TD(λ). This is described in detail in paragraph 7.2.

It is obvious that it is not desirable to use TD(λ) to learn from 2.000.000 evaluations for
every individual in every generation. Because of time constraints, TD(λ) can only learn
from a limited amount of games. To create comparable results, it is necessary to use a total
of 2.000.000 evaluations for the whole experiment. This means that TD(λ) will have to use
the 50 games that NEAT uses for each individual to learn. This can be extended by using
a form of batch learning using games from other individuals as well. How this is done is
explained in paragraph 7.3. The big question is: is this limited amount of games for TD(λ)
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enough to improve the results of NEAT?

There is not that much research done in combining NEAT with reinforcement learning. In
[Whi06] a research combining NEAT and Q-learning, a TD-method, is described. This new
technique, which they call NEAT-Q, evolves individuals that are better able to learn. This
method is tested in two domains: a mountain car task and a server job scheduling. The
authors conclude that their method is better than the two individual techniques.

Q-Learning is not used here to play Othello, so their claim cannot easily be extended to this
research. Therefore experiments using Othello have to be performed. Looking at the results
of earlier experiments, a small improvement can be expected. Maybe not all experiments
will show better results. For example, the results of TD(λ) against the Positional opponent
were not good, so combining NEAT and TD(λ) may result in a lower win percentage than
NEAT alone. Individual expectations for each experiment are described in the next chapter.

7.2 Backpropagation

For this research the Anji implementation of NEAT is used as described in chapter 4.
It uses a neural network for the function approximation, but the problem is that this
implementation of the neural network does not support backpropagation. To use TD(λ),
backpropagation is necessary.
Because of the complexity of the implementation of Anji, it is not possible to add back-
propagation to this implementation. So a whole new implementation of the neural network
had to be created that is able to handle all the unusual topologies that NEAT can produce,
and is able to perform backpropagation to update the weights of the connections.
One of the problems with the Anji implementation was the way the feedforward activation
works. The activation uses several activation sweeps through the network until all neurons
have been activated. With each sweep, all neurons, starting with the input neurons, are
activated, and with every sweep more neurons are activated. This is done because of the
unusual topologies that allow neural networks to have connections skipping layers. So a
neuron in layer 1 can connect to a neuron in layer 5. This makes a feedforward activation
difficult, because there are no real layers, so it cannot activate layer by layer. And using
several activation sweeps made the Anji implementation relatively slow.

When designing a new implementation for the neural network, this problem was solved by
creating an order of neurons in which the neurons have to be activated. When using a
correct order, all neurons can be activated in one sweep.
In figure 7.1 a small neural network is shown with 2 input neurons and 1 output neuron
and several hidden neurons. This is an unusual topology which can be created by NEAT.
The neurons 1 and 2 are the input neurons and neuron 6 is the output neuron. The
feedforward activation of Anji will in its first sweep activate neuron 1 and 2, because these
are the only neurons with a value. This results in an activation value for neuron 3 and
a part of the activation for neuron 4 and 6. So in the next sweep neuron 1, 2 and 3 are
activated, resulting in an activation value for neuron 4. In the following sweep neuron 5 will
have a value and in the last sweep the output neuron will have a value. So it takes 4 sweeps
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Figure 7.1: A simple neural network with an unusual topology

to produce an output value for this simple neural network. This is very time consuming,
because in Othello for every board evaluation a feedforward of the network is needed.

So the new neural network creates an order of neurons by looking how the neurons are
connected. Assuming no cycles are possible and a neuron never connects to a neuron
in a lower layer, an order can be created. These assumptions are justified by the Anji
implementation.

The new neural network creates a list which starts with all the input neurons. Then for
each neuron it will look at its incoming connections and then place the neuron in the correct
position in the list, resulting in an ordered list. This order can be used for a one-sweep
activation of the network.

The order of the given network will be 1 2 3 4 5 6 or 2 1 3 4 5 6.

With the use of this ordered list, the problem of backpropagation for these kind of topologies
can also be solved. The hard part of backpropagation with these types of topologies is the
order in which the neurons should be updated. This can be done with several sweeps as
Anji does with the feedforward, but by using the inverse order of the feedforward list, it
can be done in one sweep.

The feedforward of this new neural network has been tested against the Anji neural network
with playing Othello to ensure it behaves exactly the same as the Anji implementation of
the neural network. After playing millions of games there were no differences in the board
evaluations.

The backpropagation was tested by creating several different topologies and then learning
the XOR function which worked correctly.

Because this neural network used only one sweep for the feedforward, playing Othello is
now significantly faster. With the new neural network, learning NEAT is about 400% faster
which is a huge improvement.
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7.3 Evaluation function

To combine the two techniques the implementation of NEAT as described in chapter 4 is
used and is extended with the TD(λ) implementation as described in chapter 5. So there
still are 100 individual neural networks that are evolved, but before evolving to the next
generation, all individuals use TD(λ) to improve themselves.
The global algorithm for NEAT-TD(λ) is shown in figure 7.2.

Initialize generation
for i ← 1 to 400:

for each individual:
Store50Games()

for each individual:
LearnFromGamedatabase()

for each individual:
Play50Games()
p← percentage games won
fitness← p+δrms∗100

2
Play1000GamesWithChampion()
playerstrength← percentage of games won
EvolveGeneration()

Figure 7.2: NEAT-TD(λ) algorithm pseudocode

The algorithm starts off with initializing a random population of networks. The same
parameters of NEAT are used as in earlier experiments.
This algorithm is explained in detail in the next paragraphs.
In short this algorithm works as follows: first 50 games are played by each individual and
all gamestates of these games are stored in a gamedatabase.
Then each individual can learn a certain number of games from this gamedatabase using
the TD(λ) method.
After that, the improved neural networks are used to play another 50 games for each indi-
vidual to determine its fitness. The fitness is now a combination of the win percentage and
the TD-error which will be explained in the next paragraphs.
Then the champion of the generation, ie the neural network with the highest fitness, can
play a 1000 games to determine its strength.
Then at the end of the generation, the genetic operations are used to generate new offspring,
and then the whole algorithm starts from the beginning.
This will go on for 400 generations, the same as in earlier NEAT experiments, giving NEAT-
TD(λ) 2.000.000 games to play and learn from.

7.3.1 Storing gamestates

In the earlier used implementation 50 games were played by each individual to determine
the fitness. For NEAT-TD(λ) also 50 games are allowed for each individual to determine
the fitness. But 50 games might not be enough for the TD(λ) method to learn. That is why
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all individuals play 50 games, and all those games and their gamestates are stored creating
a database of gamestates to learn from.

Figure 7.3 shows the pseudocode for the algorithm that stores the 50 games of each indi-
vidual.

for i ← 1 to 50:
gp ← empty set of player gamestates
go ← empty set of opponent gamestates
do:

if player’s turn:
a← action given by NN for s
sp ← state after performing action a
StoreP layerGamestate(sp, gp)
PerformAction(a)

if opponent’s turn:
a← action opponent performed
so ← state after performing action a
StoreOpponentGamestate(so)

until end of game is reached
r ← final reward of the game for the player
SaveAllgamestatesToF ile(r, gp, go)

Figure 7.3: NEAT-TD(λ) Store50Games function pseudocode

The algorithm shows that for every of the 50 games an empty set of gamestates for the
player and for the gamestates of the opponent are created. Because the player must be
able to learn from both itself and from its opponent, both the moves of the player and the
opponent are stored by storing all the gamestates they both visit.

During the game the player will use a greedy policy and select the move by using the neural
network for the board evaluation. It will then store the resulting gamestate in the set for
the player.

Whenever the opponent makes a move, the resulting gamestate of that move is stored in
the set of gamestates for the opponent.

After the game ends, the reward is calculated, using 1 for a win for the player, 0 for a loss
and 0.5 for a draw. All gamestates are then stored in a file. All player gamestates are stored
with the reward the player received. Alls opponent gamestates are inverted, by flipping all
black and white pieces, so it is as if the player had performed all the moves instead of the
opponent. The reward is also inverted, so if the player had lost the game, the opponent
won resulting in a reward of 1 for the opponent gamestates.

The result for each game is a set of gamestates with the player’s moves and its final reward
and a set of inverted gamestates of the opponent with the inverted reward. This way the
player can later select any of those sets to learn from as if it were its own gamestates and
reward.
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7.3.2 Learning from gamestates

When all 50 games of each individual are stored, the player can start learning from this
database of games. There are 100 individuals playing 50 games and from each game 2 sets
of gamestates are stored, resulting in 10.000 sets of gamestates to learn from.
As shown in the algorithm in figure 7.2 the fitness is not only determined by the win
percentage of 50 games, but also uses the TD-error, δrms. This is the Root Mean Square
Error and it is calculated during the learning process.
The definition of the δrms is given in figure 7.4.

δrms ←
1
g

g∑
i=0

√√√√ 1
si

si∑
j=1

δ2ij

Figure 7.4: Calculation of the Root Mean Square Error

Where:

g : number of games
si : number of gamestates in game i
δij : error of learning gamestate j of game i (δ ← (V ′ − V ))

It uses the difference between the estimated value of the value function and the real value
based on the reward. For each gamestate in the game this difference is calculated and
squared. For the whole game the error is the square root of the sum of these squares
divided by the number of gamestates.
The total error δrms of the player is the average error of all games.

This error calculated during the learning process as can be seen in figure 7.5 which shows
the algorithm of the learning process.
The algorithm starts with retrieving two sets of gamestates from the stored games of the
current generation. A set with the 5000 player games and a set with the 5000 opponent
games. The TD-error of the player is initialized as 0.
Then a sequence of 500 learning cycles is started, switching between learning from the
player’s gamestates and the opponent’s gamestates.
So every cycle a game is randomly selected from the player games or the opponent games.
The final reward r and the terminal state s are retrieved. Then the V ′(s) is set to r and
the neural network is updated with that state-value.
Then for each previous state s V ′(s) is calculated using the formula in figure 5.1 explained
in chapter 5 until the first state of the game is reached.
During this learning process the TD-error is calculated as well. At the end of the cycle
of 500 games, the player has learned 250 own games and 250 opponent games and it has
calculated its TD-error.
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gp ← set of games with gamestates of player
go ← set of games with gamestates of opponent
δtotal ← 0
for i ← 1 to 500:

δgame ← 0
if i modulo 2 = 0:
g ← random game from gp

else:
g ← random game from go

r ← final reward of the game g for the player
n← number of gamestates in game g
s← terminal state of game g
V ′(s)← r
BackpropNN(s, V ′(s))
for j ← n to 0:
s← previous gamestate
V (s)← FeedForward(s)
V ′(s)← γV (s) + γλ(V ′(s)− V (s))
δ ← V ′(s)− V (s)
δgame ← δgame + δ2

BackpropNN(s, V ′(s))

δtotal ← δtotal +
√

δgame

n

δrms ← δtotal
500

Figure 7.5: NEAT-TD(λ) learning from gamestates database pseudocode
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7.3.3 Determine fitness

After the TD(λ) learning process the neural networks are ready to play another 50 games
to determine the final fitness. During the learning process the TD-error is calculated for
the error, and this will be half of the final fitness. The other half is determined by the win
percentage of the 50 games.
So the player plays 50 games against the opponent using a greedy policy with the newly
learned neural networks. Then the final fitness is calculated using the formula in figure 7.6

fitness← p+ δrms ∗ 100
2

Figure 7.6: Calculation final fitness

Where:

fitness : the final fitness of the player. A value between 0 and 100
p : win percentage after playing 50 games
δrms : The root mean square TD-error of the player

The δrms is a value between 0 and 1 so the final fitness is a value between 0 and 100.
This fitness value is used to sort the individuals for the genetic reproduction in the NEAT
algorithm. The player with the highest fitness also plays 1000 games against the opponent
to determine the strength of the generation champion. The win percentage of the player
after these games is the strength of the player and is shown in the graphs in the next
chapter.

The next chapter covers the experiments performed using the NEAT-TD(λ) combination.

7.4 Number of evaluations

When looking at the used algorithm here for NEAT-TD(λ) one can say that there are 100
games played for each individual, resulting in 4.000.000 evaluations after 400 generations,
instead of 2.000.000 in previous chapters.
It is true that each individual plays 100 games, but only 50 games are used to determine
the fitness. The first 50 games are only used to create a gamedatabase. A solution to really
use 50 games for each individual could be by using the games from the previous generation
to learn from with the TD(λ) method, instead of playing them each generation. This will
result in really 50 games in each generation, and no TD-learning in generation 1, because
of the lack of a gamedatabase at the start.
The results of learning from games of the previous generation would have the same results,
because the games are only used as training data, and training data from 1 generation back
will not differ that much from the data in the current generation.
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This solution will end up with the same results and will probably be quicker because less
games are played. The problem is that this solution was found after performing the expe-
riments and there was no time left for new experiments. So the experiments in the next
chapter use 4.000.000 evaluations, but have the same results as when 2.000.000 evaluations
had been used.
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NEAT-TD(λ) Experiments

8.1 Experiment parameters

To compare the experiments of NEAT-TD(λ) with previous results, the player is also al-
lowed 2.000.000 evaluations. Using 100 individuals each generation and 50 games for each
individual, the player can play 400 generations, the same amount as in earlier neuroevolution
experiments.
For these experiments the Anji implementation of NEAT, as used in chapter chapter 4, is
combined with the TD(λ) implementation of chapter 6.
The implementation of Anji was extended so it had support for backpropagation and was
able to include the TD(λ) method. This is described in the previous chapter.
As stated in the previous chapter, a form of batch learning is used. Each generation all
gamestates of all games played are stored in a file so the TD(λ) algorithm can randomly
choose games to learn.
All games are played with a greedy policy using the neural network as a function ap-
proximator to determine the next move. After all 50 games are played, the TD-learning
algorithm chooses 500 different games randomly for each individual to learn. Exploration
is not needed, because it learns from other games than its own games.

The NEAT-TD(λ) method is tested against the random opponent and against the three
deterministic opponents. Both NEAT and TD(λ) have learned against these opponent, so
this way the techniques can be compared.

8.1.1 Time

As explained in chapter 4 the experiments with NEAT take a long time, from 8 to 10 hours
for each run.
In the previous chapter an optimization was made resulting in a performance boost for
NEAT so it takes about 2 - 4 hours for each experiment.
But because for NEAT-TD(λ) the TD(λ) technique has to be included and the number of
actual games played is doubled (100 instead of 50 for each individual; see previous chapter)
NEAT-TD(λ) also takes 8 hours for each experiment against a random opponent. The
experiments against the deterministic opponents take even longer, up to 18 hours for each
experiment against the mobility player. The mobility player is slow, because for every
possible move it has to determine what moves are possible after making that move. So in
fact it looks 1 step further than all other opponents.

Because these experiments take so much time, the number of different experiments are
limited. More on this in the next chapters.
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8.2 Random opponents

The Random opponent is the first opponent for NEAT-TD(λ). Both NEAT and TD(λ)
were able to learn to defeat the random opponent. NEAT had a score of 92% in the end
where TD(λ) scored 88% with a neural network of 10 hidden neurons and a value for λ 0.9
and for α 0.01.
As can be seen in Figure 6.3 TD(λ) is able to learn a lot with a small amount of games
reaching a score of 70% in maybe a few thousand games for all network sizes. That is a
good thing, because to use TD(λ) with NEAT it cannot learn from 100.000 games or more;
only a small amount of games is available for the TD(λ) in NEAT-TD(λ).
Because TD(λ) has a good score and is able to learn pretty quick the results of the next
experiment will probably be at least as good as the results of the experiment with only
NEAT and hopefully even slightly better.

First the amount of games needed for TD(λ) is tested. The TD(λ) part of NEAT-TD(λ)
uses the 5000 games played each generation as a gamedatabase to learn from as described
in the previous chapter. In this first experiment a number of 500 games and a number of
2000 games to learn from is tested. In this experiment the value for λ is 0.9 and the value
for α is 0.01.

All experiments are repeated 10 times to ensure a good average.

The results of this experiment are shown in figure 8.1.

Figure 8.1: NEAT-TD(λ) vs Random with different number of games

First thing to notice is that there are not much differences between the results of 500 and
2000 games. Also, the score at the end of the 400 generations is around 92%, the same as
NEAT itself.
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So apparently the number of games the TD(λ) can learn from does not seem to matter that
much. Worse, the TD(λ) does not seem to improve NEAT at all.
As for now, the number of 500 games is chosen over 2000 for the next experiments, because
the experiments will cost less time this way.

When the results of NEAT, TD(λ) and NEAT-TD(λ) are joined together in one graph it is
clear that NEAT and NEAT-TD(λ) do not really differ. This graph is shown in figure 8.2.

Figure 8.2: NEAT, TD(λ) and NEAT-TD(λ) vs Random

TD(λ) seems to learn quicker than NEAT and NEAT-TD(λ), but converges too early to a
local optimum resulting in a 5% lower end score. NEAT and NEAT-TD(λ) have the same
learning curve and end up with the same result, so for the random opponent, NEAT-TD(λ)
does not seem to be better than just NEAT. Trying different parameters and performing
other experiments might show if and how this can be improved. See also the following
chapters.

8.3 Deterministic opponents

To see how well the NEAT-TD(λ) player performs against deterministic players, the player
is tested against the TD-Greedy player, the Positional player and the Mobility player. These
players are the same as used in previous experiments.
Different learning rates of the neural network are tested, because initial experiments showed
that maybe a value of 0.01 for α is too high. Therefore also 0.001 is tested.
Because the NEAT-TD(λ) player and its opponent are both deterministic in these expe-
riments, the first four moves in each game are played randomly resulting in 244 different
initial states to ensure that different gamestates are visited during the game.

The TD(λ) part of these experiments use a selection of 500 games to learn from for each
individual. A value of 0.9 for λ is used and 0.01 for α.
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All experiments are repeated 10 times.

8.3.1 TD-Greedy opponent

First the NEAT-TD(λ) is tested against the TD-Greedy opponent, the deterministic player
from the research in [Jac05].
NEAT was able to defeat this player 80% of the time after 400 generations and won half of
the games after only 40 generations as shown in figure 4.14.
TD(λ) ended up with a 70% win percentage after 2.000.000 games with a very steep learning
curve for the first 10.000 games. So TD(λ) might very well improve the NEAT method when
the two techniques are combined or at least have the same result.

Both a learning rate α of 0.01 and 0.001 are tested. The outcome of this experiment is
shown in figure 8.3.

Figure 8.3: NEAT-TD(λ) vs TD-Greedy with different values for α

This graph shows that there is not much difference between the two values of α. Both
showing a proper learning curve resulting in a win percentage of 80% after 400 generations.
This is the same as NEAT alone. So it seems that NEAT-TD(λ) does not perform better
than NEAT against the TD-Greedy opponent. This can clearly be seen in the graph in
figure 8.4 which shows the best results for NEAT, TD(λ) and NEAT-TD(λ).
Although it looks like the curve of NEAT-TD(λ) is just a little above the curve of NEAT,
this is not a significant improvement. From generation 100 to generation 200, the curve of
NEAT-TD(λ) is above the curve of NEAT, but this can be some bias and the difference in
percentage is not significant.

In the next chapters more conclusions are drawn from these experiments.
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Figure 8.4: NEAT, TD(λ) and NEAT-TD(λ) vs TD-Greedy

8.3.2 Positional opponent

The next opponent is the Positional opponent. NEAT was able to defeat this player easily
ending up with a 70% win percentage while still not converged.
TD(λ) on the other hand ended up with very poor results against the Positional opponent.
It scored just over 40% and because of this low end result and the not very steep learning
curve, the prognosis for the NEAT-TD(λ) experiment against the Positional player is not
good. It is very well possible that TD(λ) will have a negative effect on the results of NEAT.
It is not very likely that NEAT-TD(λ) will do better than NEAT alone.

Both a learning rate α of 0.01 and 0.001 are tested and the results are shown in figure 8.5.
The graph shows a poor performance of NEAT-TD(λ) where α is 0.01 resulting in just a
50% win percentage. A value of 0.001 for α performs significantly better ending up with
just about 62% after 400 generations.
But 62% is not nearly as good as the score of NEAT alone, 70%. TD(λ) itself had a low
score and adding this technique to NEAT has a negative effect when learning against the
Positional opponent. It is able to learn and it does win more than half of the games in the
end, but the graph is almost converged so the results are worse than NEAT alone.
This can clearly be seen in the graph where all results of NEAT, TD(λ) and NEAT-TD(λ)
are combined in figure 8.6.
NEAT has the best learning curve here and is still learning in the end.
More about this in the next chapters.
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Figure 8.5: NEAT-TD(λ) vs Positional with different values for α

Figure 8.6: NEAT, TD(λ) and NEAT-TD(λ) vs Positional
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8.3.3 Mobility opponent

The last deterministic opponent is the Mobility opponent. Both NEAT and TD(λ) were
able to learn a good game against this opponent. NEAT had a very smooth learning curve
and ended with a score of 77% while still not being converged after 400 generations.
TD(λ) had also not completely converged after 2.000.000 games and ended up with a score
of 65%. It had a pretty steep learning curve in the beginning, which may have a positive
influence on the combination of the two techniques.

To test NEAT-TD(λ) against the Mobility player, two values of α have been used, 0.01 and
0.001. The results of this experiment are shown in figure 8.7.

Figure 8.7: NEAT-TD(λ) vs Mobility with different values for α

It is clear that a value of 0.01 for α is significantly better than 0.001 resulting in a final score
of 79%. This is even slightly better than NEAT itself. So the NEAT-TD(λ) combination
does a good job against the Mobility opponent.
It shows a smooth learning curve and in figure 8.8 where the graphs of NEAT, TD(λ)
and NEAT-TD(λ) are joined together can be seen that NEAT-TD(λ) performs just a little
better than NEAT.
This is not a significant improvement, but in almost all 400 generations the NEAT-TD(λ)
scores about 2% higher than NEAT alone.

In the end, the results of NEAT-TD(λ) in the random experiments and all deterministic
experiments are a little disappointing. The next chapters will go deeper into these results
and draw conclusions from them.
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Figure 8.8: NEAT, TD(λ) and NEAT-TD(λ) vs Mobility
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Chapter 9

Conclusion

9.1 Part I - Neuroevolution and Othello

Find the neuroevolution technique that is best at learning to play Othello.

Three neuroevolution techniques, SANE, ESP and NEAT, have been tested and compared
in terms of learning potential and speed.
Looking at the results in chapter 4 the first conclusion is that both ESP and NEAT perform
much better than SANE. SANE ended with a 83% win percentage against the random
opponent. That is not a bad score and several other researches with reinforcement learning
and Othello show percentages like that. Probably with some optimizations SANE can
perform even better. But it is expected that in the long run it will never be as good as ESP
and NEAT.
ESP is a technique partly based on SANE, but more sophisticated in terms of specialization.
ESP uses subpopulations to choose its neurons from which leads to faster specialization than
SANE.
The results of ESP show a much better performance than SANE. There is a difference
between ESP with and without delta coding, where the experiments without delta coding
show better results. Maybe delta coding can be used to increase the end result, but fur-
ther experiments are needed to find out. Without delta coding, ESP reaches a 88% win
percentage against a random opponent which is significantly higher than SANE.
ESP shows good gaming potential. It has smooth learning curves and shows good pro-
gression over the generations. And because of its 40 hidden neurons it probably has good
potential against different opponents because the last technique, NEAT, only uses a few
hidden neurons to perform even better than ESP.
NEAT differs from SANE and ESP, because it evolves both weights and topology of the
neural network. The results of NEAT are very promising. A steep learning curve in the
beginning and a high win percentage at the end of the experiment. After 400 generations
it had reached a win percentage of 92% against the random opponent and is still (slowly)
learning. This is a better result than ESP and SANE, which gives NEAT good potential.
One remarkable observation was that the best networks only used 2 hidden neurons. The
strategy includes a focus on only 2 corners of the board instead of 4. So apparently very
few knowledge and a simple strategy is all that it takes to beat a random opponent.
To find out whether NEAT can perform against other opponents NEAT was tested against
deterministic opponents. NEAT was able to learn a good game against all three determi-
nistic opponents with scores varying from 70% to 80% and in all cases NEAT still had not
converged after 400 generation. So NEAT shows very good potential as a method to learn
to play Othello.
The final neural networks that NEAT had evolved against the deterministic opponents are
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still very small. All networks had about 6 hidden neurons, varying from 4 to 8. This means
that all these deterministic players can be defeated with a relatively simple strategy.

It is clear that NEAT has the best results. This is probably due to the fact that NEAT
evolves the topology instead of only the weights, resulting in much more different neural
networks. This makes NEAT a very powerful method because it can minimize the number
of neurons needed resulting in a faster learning process. Both SANE and ESP use a fixed
topology that has to be designed before the experiments. This results in bigger neural
networks and they take much longer to learn.
Both ESP and SANE use a fixed topology and ESP is based on SANE, but is more sophis-
ticated. So it is not a big surprise that it performs better.
NEAT and ESP are completely different, but both show smooth learning curves and good
results. So which one has the best potential to learn an overall good strategy for Othello?
Both have their strength and their weaknesses.
ESP uses a fixed topology which needs a good decision of the researcher before starting the
experiments, but with a large network it is able to learn a good strategy. NEAT shows that
a very small network is capable of defeating a random opponent, so ESP can probably get
better and faster results with a smaller network against a random opponent, but that does
not make it a good Othello player.
NEAT does not need a decision on its topology, but to be able to learn a good topology
and strategy, it needs several different opponents, and who knows how big the networks will
become when learning against several different opponents at the same time?
Because of time constraints it was not possible to do more experiments to find out how
ESP and NEAT perform when learning against different opponents at the same time. New
experiments are needed for that.

9.2 Part II - Neuroevolution and TD Learning

How can the neuroevolution technique NEAT be combined with TD(λ) to perform even better
than the techniques on their own?

Because NEAT showed the best results in Part I, NEAT was chosen to be combined with
the reinforcement technique TD(λ).
Before combining the two techniques TD(λ) was tested against all the available opponents.
This is done because the research in [Jac05] was not sufficient to compare to. The im-
plementation used in that research contained a bug, so the end results could not be used
for this research. Also the new TD(λ) are better to compare to, because they also use
2.000.000 evaluations and uses the exact same opponents as the other experiments. The
results of the TD(λ) experiments showed that TD(λ) is able to learn to defeat most of
the opponents. Against the Random opponent it scores a 87% in the end, 70% was scored
against the TD-Greedy deterministic opponent and a score of 62% was reached against the
Mobility opponent. TD(λ) was not able to learn to defeat the Positional opponent. This
is remarkable, because the Positional opponent uses the most simple strategy and can be
defeated by a simple form of mobility strategy. Apparently the TD(λ) player did not visit
enough different gamestates to learn a good strategy. Maybe more exploration is needed
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to learn to defeat this player. Overall TD(λ) was able to learn to defeat its opponents,
although the results are not as good as the results from NEAT.

NEAT and TD(λ) are combined in chapter 7 to form a new technique NEAT-TD(λ). This
technique should take advantage of both strong global search of NEAT and the high learning
speed of TD(λ). NEAT extended with TD(λ) should perform better than NEAT itself. To
test that, several experiments have been performed in chapter 8.

The results of these experiments are a little disappointing. NEAT-TD(λ) does not seem to
be better than NEAT itself and sometimes performs even worse.
The combination of NEAT and TD(λ) uses the optimal parameters of both techniques.
This means for TD(λ) it uses the parameters that are tested for a neural network size of 20
hidden neurons. And because NEAT starts with neural networks with 10 hidden neurons
and ends up with small neural networks of 2 - 6 hidden neurons, TD(λ) should have been
optimized for very small neural networks. Maybe this is one of the causes of these results.
Another problem is the number of games TD(λ) uses to learn from. Each individual could
use 500 games to learn from, and maybe this is not enough to learn and improve the
individual. A larger number of games, like 5000 or even more, is maybe better. The
drawback of this is that there are only 5000 games available each generation. Another
drawback is the time. More games take more time.
Because of time constraints the influence of the number of games could not be tested.

The most remarkable result was the result of the experiments against the Positional oppo-
nent. Earlier experiments showed that TD(λ) was not able to learn against this opponent
and that NEAT was able to learn to defeat it. It is remarkable that the TD(λ) part of
NEAT-TD(λ) has such a negative influence resulting in a significantly lower score than
NEAT.
Apparently TD(λ) is not able to improve NEAT against some opponents, ending up with
the same score as NEAT, and at the same time it can have a devastating influence on NEAT
as well against a different opponent.
What is so different about the Positional opponent that NEAT-TD(λ) scores so much lower
than NEAT against this opponent?

The biggest problem is that TD(λ) is not able to learn against this opponent. NEAT
is able to learn against this opponent using a sophisticated global random search in the
search space, as where TD(λ) cannot find a good solution at all and gets probably stuck
in a local optimum very easily. Maybe different parameters for TD(λ) will solve this. A
different exploration-exploitation ratio might help, or different values for λ. Because of time
constraints this could not be tested.

In the end the results of NEAT-TD(λ) are a bit disappointing because they did not show
an improvement compared to NEAT alone. Still it can be promising, but future research
has to be done to find out how NEAT and TD(λ) can be combined better.

What can be said about learning Othello and learning board games in general?
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NEAT and also NEAT-TD(λ) are able to learn to play a good game against several different
opponents. But because all experiments used only one opponent at a time there is no
information about how well these techniques will perform when learning against different
opponents at the same time. Learning to defeat several opponents is learning a sophisticated
strategy and that will probably need a larger neural network. And a larger neural network
means that it takes longer to learn, so that is a whole new kind of problem. Another
element of a good Othello player is looking ahead. In all experiments the player and its
opponent only looked 1 step ahead. So only the next move was taken into account in making
a decision. Learning to look ahead and learning against players who look ahead is also a
whole new set of problems.

So in the end only a small part of the problem of learning to play Othello has been re-
searched. The research shows potential, but because it is only a small part of the Othello
problem, it cannot be used to say much about playing boardgames in general.
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Chapter 10

Recommendations

10.1 Part I - Neuroevolution and Othello

Several improvements on the experiments could lead to an even better comparison of the
three techniques.

To measure the performance of a technique 50 games of Othello were played by each neural
network in the population each generation. At the end of the generation, the best neural
network was allowed to play 1000 games to measure the champion’s fitness of that genera-
tion. The problem here is that 50 games might be too few. There can be a lot of inaccurate
results resulting in unjust champions, especially against a random opponent. So maybe
more games are needed, or a different way of measuring the performance.

More interesting future research is learning against several different opponents. This way
the result should be an overall good Othello player. Therefore more sophisticated Othello
players are needed. The big disadvantage of this is that good opponents are slow which will
slow down experiments dramatically.

Another interesting possibility is learning against itself. Have one technique play tourna-
ments where neural networks play against each other every generation, and evolve the good
ones. The advantage is that it is much faster than learning against slow sophisticated op-
ponents, but the disadvantage is that no result is guaranteed because of the lack of known
good opponents.

ESP showed good potential and can be optimized by experimenting with different popula-
tion and subpopulation sizes and different delta coding values.

Other interesting areas are combining a good neuroevolution technique with other reinforce-
ment learning methods.

Also optimizing the knowledge representation is an interesting area of research. Maybe put
some more focus on learning strategies and use a priori knowledge of good strategies to
speed up the learning process.

In this research only three techniques have been compared, while other techniques like
TEAM or CoSyNe might have good gaming potential. It can be interesting to test these
techniques as well.
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10.2 Part II - Neuroevolution and TD Learning

The biggest problem in this research was the time it took to perform the experiments.
Because of the time constraints not all possible parameters and situations were tested
resulting in sub-optimal and maybe even bad results.

NEAT-TD(λ) performed badly against the Positional player. To improve results TD(λ)
could be optimized to learn using small networks. This might also improve the results of
the other experiments.

Also the number of games TD(λ) used to learn from may be too low. This can be part of
new research as well. Probably a higher number of games to learn from will bring better
results.
To optimize the speed, the implementation of NEAT-TD(λ) should be changed so that the
TD(λ) part uses the games from the previous generation to learn from, instead of playing
50 games twice each generation. This will be a huge performance boost.

Overall several new experiments can be performed to tune the parameters of NEAT-TD(λ)
so it will outperform NEAT. It still must be possible to use the power of TD(λ) to improve
NEAT.

To find out how well NEAT and NEAT-TD(λ) perform against different opponents, the
NEAT and NEAT-TD(λ) can be extended to learn against several different opponents at
the same time, probably resulting in an overall better player.
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