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Abstract

In this master’s thesis a software library will be presented to be used in con-
junction with a robotic simulation platform. This library enables roboticists to
conduct research without the usual constraints imposed by a simulator. It en-
ables fast-prototyping of models with Matlab and the use of distributed models.

A model of the cerebellum is used to showcase this library. First a simple
demonstration will be given showing the general working of the model and its
stability when faced with noise. A second demonstration will be given showing
the ability of the model to cope with and use complicated inputs. These in-
puts are obtained through the processing of camera images gathered from the
simulation.

The theory behind the cerebellar model and the visual processing techniques
will be discussed in-depth as well as the design decisions leading to the software
library. Doing so will facilitate future extensions to both the cerebellar model
and the software library.
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Chapter 1

Introduction

Our world is filled with challenges, we decide what to have for lunch and we evade
onrushing cars. Beside these obvious examples we need to navigate innumerable
challenges we are not even conscious of. We walk without a moments thought,
we recognise a friend in a crowded bar in an instant. On closer inspection these
seemingly trivial problems are tremendously difficult. Robots have barely began
walking [Geng et al., 2006] and the recognition of your friend in real time is still
some time away.

The brain, with which we solve these problems, is an excellent generic prob-
lem solver. It is therefore no surprise that the brain has been subject to intense
study through most of the modern time. In past research a lot of questions have
been answered but even more have been raised. Many different brain areas have
been identified, categorised and described. But the function or the behavioural
consequences of these regions are not always entirely clear. The basal ganglia
[Prescott et al., 2006], for example, are speculated to play a role in action se-
lection but how this is done remains unclear. Researchers have identified many
different neurotransmitters but the role of each has not been conclusively deter-
mined. The fact that our visual system is able to abstract from simple features
is clear, how exactly this is done remains largely a question.

All the questions we currently entertain might not be solvable by looking
at just the one brain region involved. A broader approach is called for. In
this approach a holistic view on the brain is taken. Instead of looking at the
individual components, one takes a look a certain functional properties of the
brain and tries to determine which system or subsystem in the brain is involved.
Through modelling of these systems and by putting them to the test we learn
both to understand the brain and how to construct one. The functional direction
of this approach would be a leading aspect. We know how neurons respond and
what they are supposed to compute, there is no reason to model the neuron in
every single detail. As long as the neuron operates on a biologically functional
level we can abstract from the actual biological implementation.

1.1 Motivation

This thesis will strive to facilitate research in this functional but biologically
inspired brain research. There are several constraints which need to be met if
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1.2. Consequences 5

this is to succeed.

1.1.1 Coping with reality

The brain is this wonderful structure not because it is just that, wonderful.
There needs to be a reason for it to be like this. The world in which we live
as humans is incredibly complex. For all the tasks we perform in order to keep
alive we need a brain as complex as it is was called for. Evolutionary pressure
made sure of that. That means if we are to study the brain it needs to be
set in a challenging enough environment. The real world would of course be
ideally suited with regard to complexity was it not for the fact that even the
most sophisticated systems nowadays have huge problems coping with the real
world. Most systems are set in a laboratory environment to alleviate the strain
of the real world. And while this laboratory environment is a simplification of
the real world it, in our case, should still be rich enough to provide the challenge
necessary to develop meaningful systems.

1.1.2 Sharing the load

The brain is an incredibly complex system which no computer available now or
in the near future can beat in terms of computational power. Vast amounts of
data from a multitude of sensory systems is processed in parallel. And while
many of the systems in the brain interact there are also a good many number
of systems that hardly interact at all. Think for example about the system
responsible for walking and the one responsible for talking. These have nothing
to do with each other and can be logically separated. This property can be
exploited in a sense that it would now be possible to run parts of the final
model on different computing units thus distributing the work load.

1.1.3 Type of research

The very nature of this type of research calls for a flexible environment in which
to do this research. The environment should be as free from distracting tasks
as possible and should support the needs of the researcher active in this field.
Modelling is an essential part of brain research and as such should be as easy
as possible.

1.2 Consequences

These requirements call for either a lab environment in which a physical robot
can be situated, or a simulated robot in a sufficiently complex simulated world.
The sensors and actuators of this robot need to be accessible by more than one
process for it needs to be usable in a distributed environment.

The simulator option is preferred because this has three distinct advantages
over a physical robot. A simulator could be instantiated by multiple people at
the same time and as more people are working on the project of building an
actual brain this is clearly desirable. A simulator would also remove the need
for a dedicated ’playing’ field for the robot to live in. Clearly this eliminates the
required space and besides that the simulated environment is easier controlled
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Figure 1.1: The environment and the modelled robot.

to provide a complex enough world but not too complex to overwhelm the sys-
tem. Last, choosing a simulated environment reduces the need for maintenance
allowing people to concentrate on the things that actually matter.

For these reasons we choose Webots [Michel, 2004] as our simulator because
is supports both Java and C++ programming language and it sports a realistic
physics environment. Moreover robots and the worlds in which they operate can
be easily designed. An additional advantage is the wide spread use of Webots
throughout the roboticists community, this ensures a broad support for the
product and a potentially exchange possibilities.

This thesis will present a mean to facilitate the requirements given above.
This will take form as a library written in Java which allows communication
between Webots and Matlab over a TCP/IP connection. The choice for Matlab
was obvious given the computational requirements, Matlab is masterfully opti-
mised for the mathematical computations predicted to be required for this work.
Moreover Matlab is well suited for the fast prototyping this kind of research calls
for. This library will be put to the test in a couple of different situations. These
situations are meant to demonstrate the usefulness of the library and to provide
a future stepping stone to continue research in building a brain.

More specifically a robot is modelled in Webots, see Figure 1.1, which is
inherently unstable. It’s task is to learn to balance itself in various situations.
For this a model of the cerebellum is used which is implemented in Matlab.

The remainder of the text is organised in six chapters. First a set of theoret-
ically inclined chapters is presented, introducing the cerebellar model followed
by a detailed description of several preprocessing techniques which the cere-
bellar model needs. The self-organising map and k-means clustering will be
discussed and closing that chapter the theory of principal component analysis
is explained. The fourth chapter demonstrates the cerebellar model and pre-
processing techniques with a set of experiments. Chapter five shows the work
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done on the communications library, this is where the design decisions and pro-
gramming techniques are explained. The last two chapters contain the usual
discussion and conclusion.



Chapter 2

The cerebellum

First and foremost in these experiments was the use of a model of the cerebellum.
Below first an elaboration on the supposed functions of the cerebellum and next
on the derived model.

2.1 Why look at the cerebellum?

When looking to build an artificial system which has the same properties as
exhibited by the brain, smooth motor control is one of the most basic tasks.
Without it not many other functions can practically be implemented or con-
ceived. For a system to have smooth motor control it is easy to see that some
form of prediction should be incorporated. It is generally impossible to act in
a smooth fashion without some knowledge of things to come. For example if
walking down a staircase would be based only on information currently avail-
able every minute movement would require intensive processing of, for example,
touch sensory information. Am I already at the bottom of the steps? Is there
another step or am I already on ground level? Having additional visual infor-
mation providing us with the ability to anticipate enables us to just run down
the stairs without a seconds thought. And even when we would lack the ability
to predict from the current information and it would be possible to use some
kind of intense sensory processing on the instantaneous data, the information
required usually is available only after an inherent delay. Our neurons just are
not instantaneous. A limp takes time to execute a movement due to inertia. A
feedback loop of action, result, measurements, decision and action again takes
time in all steps. It is therefore imperative to predict the outcome of certain
actions and incorporate this knowledge into the action being taken.

The cerebellum is generally supposed to play an important role in predictive
motor control [Smith, 1998], [Albus, 1971]. This predictive control exercised by
the cerebellum is very important in everyday tasks. While learning to ride a
unicycle or to juggle one first has to concentrate hard on the task at hand. But
after a while one can perform these tasks without conscious concentration. The
cerebellum learnt to perform these tasks. Given a certain input, in the case of
juggling the position of the hands and the visual input concerning the ball, the
cerebellum is able to ’automatically’ execute the correct movements. This has
the great advantage that you can now focus on other tasks, leaving the seem-
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2.2. Inner workings of the cerebellum 9

ingly trivial ones to the cerebellum. In relation to an artificial system this has
the advantage that you can forfeit the difficulty of selecting relevant inputs. An
artificial system with these properties would pick up the correct and relevant
inputs to perform a certain task without predetermining the relevant inputs.
More important the cerebellum now understands the system which it is con-
trolling, in a way learning an internal model of the system, see [Kawato, 1999].
Using this internal model it is now able to anticipate the reaction of the system
and thus exert smooth motor control.

2.2 Inner workings of the cerebellum

As mentioned in the previous section the most important function of the cere-
bellum is predictive control. Given a certain set of inputs it predicts a future
reflexive response and based on this determines the appropriate response to
avoid this. As the observant reader might have noticed in the examples the
cerebellum is (amongst others) provided with processed data. It is explicitly
not the task of the cerebellum to recognise a ball or to tell whether or not this
sound is made by a gunshot or a jar falling. It is supposed to process these
signals and determine their relevance to the tasks at hand. Seeing a ball is not
important for balancing on your bike but it is important when juggling them.
When we will be using the cerebellum we will provide it with different ’finger-
prints’ of textures but we will not classify them for it. It is up to the cerebellum
to determine what is important.

So the cerebellum should obviously learn the model of the system (or plant as
it is called in control theory) it is controlling. Various studies have shown that
the cerebellum is learning through reflexes, see [Grethe and Thompson, 2003]
and [Anastasio, 2003]. A reflex can be seen as an error signal, whenever a
reflex occurs something clearly went wrong, you might have been falling or you
might have touched something hot. Using these reflexes provides the cerebellum
with a teaching signal. Depending on pure reflexes to control the system would
amount to designing exact reflexes for the situation, taking into account the
inherent delays and inertia in the system and its complex dynamics. This task
is daunting at best and very labour intensive. Most of the time it is not even
possible to design these reflexes because of the fact that reflexes are supposed
to be hard-wired and in the case of our body the mechanical properties of it
change radically during our life time. So the best a reflex can do is give a rough
estimate of the correct action. The task of the cerebellum is now to predict
when a reflex is going to happen and take action to prevent it. Thus learning
to control the plant.

We can identify four different components from which we can build a model
(of the cerebellum) which is able to generate smooth motor control. We have
the plant or the system which needs to be controlled, the environment the plant
is situated in, the adaptive controller and the teaching signal in the form of a
reflex. Next we will formalise these four components thus arriving at a working
model of the cerebellum.
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2.3 Cerebellar model

The model of the cerebellum is a derivative of the Feedback Error Learning
Model(FELM) first suggested by [Kawato and Gomi, 1992]. This suggestion
has been put forward in several of their studies to biologically inspired motor
control solutions. In a study by [Barto et al., 1999] the model was used to
approximate the functionality of the cerebellar cortex further strengthening the
biological plausibility of the model. Last in [Joensuu, 2006] the model was used
for a pole balancing task and the model presented here is almost identical to
that one. Figure 2.1 depicts the schematic overview of the model as we will use
it.

Figure 2.1: Schematic view of the cerebellar model. e denotes the error signal,
dn the possible points of delay and In the inputs to the controller with n ∈ N

+,
y represents the output of the system. Figure adapted from [Joensuu, 2006]

Strictly speaking the plant and the environment are not part of the model
of the cerebellum, however it is useful to include them in our discussion of the
model in light of their explanatory properties and to provide a useful context in
which the reader should place the theory. The plant, as previously explained,
is the dynamic system which needs to be controlled. It accepts input from
the controller and is influenced by and influences the surrounding environment.
Furthermore it outputs information to the teacher and to the adaptive controller.
This can be seen as proprioceptive feedback. Based on this information the
teacher initiates a reflex and the controller incorporates knowledge in future
actions.

The teacher is a relatively easy part of the model. It only receives input from
the plant and according to some hardwired rules it initiates a reflex. Depending
on the desired complexity this reflex can be very simple, for example move to
the left, or more complex as the situation requires. The reflex signal acts both
on the plant and the controller. Acting on the plant provides the adaptive
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controller with useful contextual information through the sensors of the plant
and environment. The reflex arriving at the controller functions as the error
signal and provides the basis of learning.

The last part, the adaptive controller, would be the actual model of the
cerebellum in combination with the teacher. The adaptive controller accepts a
multitude of inputs and generates an output signal in an arbitrary range. The
output signal would, in cerebellar endowed creatures, be analogous to motor
commands. The inputs to the controller are fed to a single logistic neuron after
being weighted, it is these weights which are changed by the learning rule which
makes the controller adaptive.

The adaptive controller receives four distinctly different inputs. As men-
tioned earlier it also takes the reflex as an input, this serves as the teaching
signal. This is a very rough signal which more or less does the right thing. The
reflex is explicitly not involved in the generation of the output of the controller
in any direct sense of the word though it does act on the plant. It only serves
to support learning in the model.

Beside the reflex it takes the output it generated earlier, thus creating a
direct feedback loop. However this is not strictly necessary when there are no
transmission delays, see [Joensuu, 2006]. Next it takes information from the
environment, this could be anything. And last it takes ’proprioceptional’ input
from the to be controlled plant, think in this case of tactile or visual information
from the plant itself. The last three inputs can be delayed, artificially or not,
any number of milliseconds. This is not necessary for the correct operation but
proves to show that the cerebellar model is able to handle these kind of delays.
The fact that the reflex is not delayed stems from the fact that in the real
cerebellum the generation of the reflex happens in the cerebellum alongside the
controller thus imposing a negligible delay. Hence forth we will refer to inputs
when meaning all inputs except the reflex.

The output ok of the cerebellar model is generated using a simple hyperbolic
tangent

ok(t) = fk(
∑

ik(t)wjk) (2.1)

where ik(t) is the input to the cerebellum at time step t and fk(x) is defined as

fk(x) =
1

1 + e−ax
(2.2)

where a defines the slope of the function. The learning rule used by the cere-
bellum is a variant of the common Delta rule.

∆wjk(t) = ηrk(t)lj (2.3)

In this η stands for a small positive number representing the learning rate, lj
stands for the leaky integrator on which will be returned shortly, k stands for
the neuron, rk(t) stands for the reflex acting on the model. The reflex r replaces
the expression giving the difference between actual and desired output which is
usually found in the Delta rule.

In order to handle transmission delays and inertia so called ’eligibility traces’
are introduced, see [Raymond and Lisberger, 1998] for a more detailed descrip-
tion along with a biological motivation. These traces try to tackle the problem
of delayed transmissions and inertia. They do so by spreading inputs to the
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Figure 2.2: The effects of leaky integrators after a single pulsed input. The
highest and steepest declining (in blue) a single integrator, second highest (in
green) two integrators in series, lowest (in red) three in series. Adapted from
[Joensuu, 2006].
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cerebellum of time. These traces are implemented as, possibly cascaded, leaky
integrators with the equation:

lk(t + 1) = (1− α)xk(t) + αlk(t) (2.4)

in which lk(t) stands for the value of the leaky integrator k at time step t, xk(t)
stands for the activation arriving at the integrator k at time step n and α is a
constant governing the behaviour of the integrator. The higher this constant
the more the integrator’s activity is defined by past activations. In Figure 2.2
one can see the effect of one, two and three leaky integrators in cascade. For
learning to converge there must still be some activation left in the relevant leaky
integrators at the time the error signal arrives. To see this it is important to
note that the learning rule is designed to enhance correlations between the error
signal and the inputs relevant to it. This ensures that when there is still some
activation left in the integrators the learning rule will make sure that if there
is a correlation it will be found. When the signals are severely out of sync with
the reflex conversion can take a long time.

Summarising the section the procedural calls involved in the model are
shown. The following pseudo code shows how the model operates during run-
time. For the teacher:

Data: Proprioceptive inputs
Result: Determined reflex
initialisation;
while true do

receive inputs;
generate reflex rk(t);
apply reflex to plant;
sent reflex to controller;

end

Algorithm 1: Algorithm for the teacher.

And for the controller:
Data: Proprioceptive inputs, reflex
Result: Converged controller
initialisation;
while true do

receive inputs;
receive reflex rk(t);
if reflex != null then

update weights wk;
end

calculate force ok(x);
apply force to plant;

end

Algorithm 2: Algorithm for the controller.

As can be seen the whole process is simple and easy to understand. This
model has been shown in [Joensuu, 2006] to learn to balance a simple robot
quite fast.



Chapter 3

Preprocessing techniques

This chapter is dedicated to several techniques which are used to process some
of the input data which the cerebellar model uses.

3.1 k-Means Clustering

Often it is necessary or desirable to categorise data in discrete groups. The cere-
bellum is an excellent example as it needs processed inputs. k-means clustering
does exactly that. It creates k non overlapping groups or clusters from the ele-
ments in an arbitrary data set. Intuitively one can say that the algorithm tries
to minimise the distance of the elements inside the cluster and tries to maximise
the distance to the other clusters. It does so in an iterative way.

What follows is a batch version of the k-means algorithm. First the algorithm
constructs k random clusters by random division of the data samples. From
these clusters the centroids are calculated. A centroid is the mean of a cluster’s
elements. Usually for cluster k a simple mean is used like

ck =
1

N

N∑

i=1

xi (3.1)

where N stands for the number of elements in the cluster. For multi dimensional
vectors an element-wise mean can be used. There are, however, many different
methods to calculate a centroid of a data set and it depends on the data which
type of mean is most useful.

The next step entails the calculation of the distance of each element in the
data collection with each centroid. The distance is simply the difference between
the centroid and the data element. If an element is not in the cluster which
minimises the distance the element is reassigned to the cluster which does.

Then update the centroids of the clusters by recalculating the mean. Repeat
this process until convergence or till an arbitrary stopping condition is reached,
for example, after n runs or a minimal distance is obtained.

The end result is a situation in which each element in the data set is cate-
gorised in one of the k clusters, each cluster contains data elements which are
in some way more similar to each other than to every other element not in that
particular cluster. Categorisations for a new data sample can be obtained by

14



3.2. Self-Organising Map 15

comparing the new data sample with the k different centroids and categorising
the new sample to the category with which the distance to the relevant centroid
is smallest. From this it is easy to imagine an online version of k-means clus-
tering. After classifying the new sample to a certain class and thus a certain
cluster, the relevant centroid of that cluster can be updated based on the old
cluster elements and the newly added sample.

One of the great disadvantages of the k-means algorithm is its sensitivity to
outliers in the data. The resulting centroids with an simple averaging calculation
can differ vastly if only one outlier is present. To better explain this consider
the following two dimensional data set, Table 3.1. This data is shown in Figure

n x y
1 1 1
2 5 5
3 5 7
4 6 7
5 7 6
6 2 9
7 2 11
8 3 10

Table 3.1: Example data

3.1. As one can see element 1 is obviously a statistical anomaly but the resulting
clusters shown as convex shapes in the figure do radically alter shape. The best
categorisation, or description if you will, of the data is not achieved. We will
address this problem in the following section.

3.2 Self-Organising Map

A common problem with learning or the representation of data is its dimen-
sionality. More often than not this is too high to properly deal with. Take
for example a power plant. At any given time there are innumerable sensor
readings. You can capture this data at a given moment ending up with a vec-
tor the size of all sensors and parameters combined. If you take measurements
at regular intervals(and why would you not do so if you are to use it?) the
amount of data collected is potentially huge. Huge data collections is some-
thing we, in principle, can handle, think of large databases. But this particular
data has a problem. It is unstructured to the naked eye and thus makes it very
hard to perform basic operations on this data. For example picking the most
relevant(important) element, discerning relations between values or determine
whether or not an entry is a statistical anomaly or outlier, is difficult.

In unstructured data there is no easy way for either human or algorithm to
determine which entry is relevant or related, to either the problem at hand or
other entries. Self-organising maps(SOMs) [Kohonen, 1998] help to solve the
problem of high dimensionality by assigning a lower dimensional mapping to a
high dimensional data sample and revealing relevant data. The self-organising
map is also known as a self-organising feature map(SOFM).
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Figure 3.1: Data plotted from Table 3.1 plus centroids. The cluster which results
from the inclusion of the outlier is obviously a bad representation of the data.

A SOM is a collection of neurons organised in an ordered topological fashion.
The number of neurons can range from a few dozen to thousands. Because of
the topological ordering each neuron has a fixed ’distance’ to each other neuron.
This becomes important in the learning and visualisation process which will be
described in a moment. Every neuron has a weight vector (also known as pro-
totype vector, model or codebook vector) equal in length as the input(training)
vectors denoted mi = [mi1, . . . , mid] where d is the length of the input vector.
These are initialised randomly, in the more sophisticated SOM implementations
the weight vectors are initialised as a regular array of vectorial values that lie
in the subspace spanned by the two largest principal components of the train-
ing data, see [Kohonen, 2001]. This makes the computations far faster since an
ordering is already imposed on the map and a smaller neighbourhood function
and learning rate can be chosen. In essence each neuron performs a mapping
from a high dimensional input to a low dimensional output without losing any
relevant information.

The most common topological ordering of the output vectors is in a grid-like
manner, if this is the case this specific variant is called a Kohonen Map after
its Finnish inventor Teuvo Kohonen. Figure 3.2 shows a square and hexagonal
example. Three dimensional cubes or other shapes can also be used but are
less common. Because of this topological ordering it is possible to define a
neighbourhood for each neuron. The neighbourhood influences which weight
vectors are changed during learning.

During training a winner-takes-all approach is followed. Each iteration a
random training sample is selected from all available data. The selected sample
is compared to each weight vector of each neuron on the SOM. The comparison
can be, and is often, as simple as calculating an Eucledian distance. Other
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Figure 3.2: A square and hexoganal map together with a discrete neighbour-
hood. The numbering denotes the distance to the centre node.

distance measures can also be used depending on the data. From these com-
parisons the closest match is selected, called the Best Matching Unit(BMU).
Determining the BMU using Euclidean distance is expressed in the following
equation in which the BMU is denoted as weight vector m with the subscript c.

‖x−mc‖ = min
i
{‖x−mi‖}

Here i stands for the number of neurons and x is the selected sample. In the
remainder of the equations of this section the following notation will be used to
lighten the reading

c(x) = arg min
i
{‖x−mi‖} (3.2)

The weights of the BMU and its neighbourhood are then adjusted to better
match the input vector according to

mi(t + 1) = mi(t) + α(t)hc(x)i(t)(x(t) −mi(t)) (3.3)

Here an important aspect of the SOM is introduced, note the function hc(x)i(t)
which stands for the neighbourhood function of neuron i with respect to the
BMU c of sample x and which takes time t as argument to implement a possible
decrease in the width of the function h. This decrease in width has been shown
to obtain better convergence results [Kohonen, 2001]. This function defines
the topological neighbourhood of the BMU. It ensures that similar vectors are
grouped together thus making visualisations and discovering of relationships in
data easier by structuring the output data. The neighbourhood function can
come in many shapes, although the most common function is a Gaussian.

hc(x)i(t) = e

„

−
‖ri−rc‖2

2σ(t)2

«

(3.4)

In which σ(t) decreases monotonically in time and ri−rc is the distance between
the current neuron and the BMU on the topological map. Figure 3.3 shows
several other neighbourhood functions commonly used.

After training the resulting map can be used to visually inspect the data to
infer relations between the data. The map can also be used to cast an input to
a lower dimension and be used to classify new inputs by presenting them to the
map and see where they are placed on in the output space.
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Figure 3.3: Four different neighbourhood functions.

It is important to note that the SOM algorithm presented above is online.
Each time a new element is presented to the SOM which results in a slight change
in the weights of the BMU and its neighbours. A SOM can also be implemented
as a batch algorithm [Kohonen, 1992]. In this case the prototype vectors are
initialised in the usual way, either randomly or based on the eigenvectors. Then
for each and every sample the neighbourhood function and thus the BMU is
determined as before in 3.2. This yields for each neuron i on the map a distance
hc(j) to the BMU of each sample. After that instead of using 3.3 the following
is used for each sample xj where j is the number of samples available

mi =

∑
j hc(j)i(t)xj∑

j hc(j)i(t)
(3.5)

In words, each prototype or weight vector has associated with it a collection
distances. In fact it has j of these values, one for each data sample as defined
in 3.4. Multiplying these values with the associated sample xj and summing
this yields the total ’strength’ of the weight vector. This now only needs to
be normalised by dividing it by the total value of the neighbourhood function.
Normalising each vector this way makes sure that the relative strengths between
weight vectors are equal. This way of looking at it departs from each weight
vector instead of working from a presented data sample to each weight vector.
This process can be repeated until convergence or until a preset condition. This
definition will prove useful in the next section.

In summary the SOM is most commonly used for visual inspection of data
sets and to provide the necessary dimensionality reduction. An additional ad-
vantage is the property that the SOM constructs prototype vectors of the input
data. This averaging mechanism is useful to filter out noise in the original data
and to again reduce the number of elements to describe the data set.
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Figure 3.4: A schematic overview of the merger between a SOM and k-means

3.2.1 Merging SOM and k-means

One can imagine using a k-means algorithm on a raw data set. And in fact a
SOM is a k-means clustering with k equal to the number of neurons on the map
and a neighbourhood function which is one on the BMU and zero elsewhere.
This can easily be seen when showing the centroid update rule of the batch
version of k-means 3.1 next to the weight update rule of the batch version of
the SOM 3.5.

mi =

∑
j hc(j)i(t)xj∑

j hc(j)i(t)

ck =
1

N

N∑

i=1

xi

When obeying the previously stated restrictions on the neighbourhood function
and number of neurons, these two functions amount to the same thing.

Clustering on an already converged SOM has several advantages. Most im-
portant is noise reduction. The SOM’s neurons act like local averages. Using
these averages makes the clustering less sensitive to random variances in the
original data. In Section 3.1 we saw the great adverse effect of outliers on the
performance of the clustering. Moreover the computational load is shown to be
significantly reduced by the use of a two-layered approach. A clustering algo-
rithm needs only to cluster the prototype vectors instead of the raw data points,
see[Vesanto and Alhoniemi, 2000] and [Lampinen, 1992].

In Figure 3.4 the two-layered system is schematically shown which utilises
the converged SOM for clustering.

3.3 Principal Component Analysis

This section describes principal component analysis(PCA) [Smith, 2002],
[Hyvärinen et al., 2001], [Jackson, 1991]. Also known as Karhunen-Loève trans-
form or Hotelling transform [Hotelling, 1933]. PCA is a statistical technique
often used for analysing high dimensional data, pattern analysis or data com-
pression. It identifies patterns in data in a way which highlights the differences
and similarities. Strictly speaking PCA is a linear transformation to a new
coordinate system where the axis are perpendicular to each other and ordered
in such a way that the greatest variance in the data set is projected on the
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first axis, the second greatest variance on the second axis and so on. In other
words it decomposes the original random variables in a set variables which are
uncorrelated, this maximises variance per variable.

The procedure is divided in several steps and will be describe here. The
last couple of steps are not required but serve to complete the picture as PCA
describes it. Accompanying the following steps is an example which will demon-
strate the procedures in order to make the explanation more concrete and in-
sightful.

Data collection This is a straightforward step and serves more to bootstrap
our example. In principle data can be n dimensional. For the example, however,
is chosen for two dimensional data to facilitate its easy display, see Table 3.2. In
this table the generated data is shown along side the same data with the means
removed. Why this is important is shown in the next step.

x y
0.2853 0.2089
0.4314 0.1756
0.5271 0.2479
0.7727 0.2661
0.5234 0.4493
0.9154 0.4674
1.0253 0.4966
0.9714 0.4996
1.0989 0.4517
1.385 0.515
1.3844 0.7252
1.5299 0.7454
1.6059 0.6575
1.5432 0.7984
1.8715 0.9319

x y
-0.7728 -0.3002
-0.6267 -0.3335
-0.531 -0.2612
-0.2854 -0.243
-0.5346 -0.0598
-0.1427 -0.0418
-0.0328 -0.0125
-0.0866 -0.0096
0.0408 -0.0574
0.3269 0.0059
0.3264 0.2161
0.4719 0.2363
0.5479 0.1484
0.4852 0.2893
0.8135 0.4228

x y
0.3018 0.1718
0.4113 0.2207
0.518 0.2683
0.7296 0.3626
0.5899 0.3003
0.9235 0.4491
1.0261 0.4948
0.9822 0.4753
1.0708 0.5148
1.3329 0.6317
1.4107 0.6664
1.5395 0.7238
1.5702 0.7375
1.5704 0.7376
1.8939 0.8819

Table 3.2: Left random generated data, in the middle the same data with the
mean subtracted and on the right the reconstructed data leaving out the least
significant variable.

Calculate the covariance matrix Variance defines the amount of spread
in the data. It is a measure telling something about the average deviation from
the mean of the data and is closely related to the standard deviation. Variance
is defined as

var(X) =

∑n
i=1(Xi − X̂)2

(n− 1)
(3.6)

In which n is the number of data samples, X the random variable in question
and X̂ the mean of that variable. And although this measure proves to be
very useful in PCA we are more interested in how variables vary (linearly) with
respect to each other. So the natural extension of variance is the covariance
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Figure 3.5: The generated data plotted

which looks how two different variables behave together.

cov(X, Y ) =

∑n

i=1(Xi − X̂)(Yi − Ŷ )

(n− 1)
(3.7)

As can easily be seen cov(X, X) equals var(X). The sign of the covariance tells
us something about how the variables behave. If the covariance is positive then
if one variable increases the other does so too. And the other way around is true
as well. If the covariance is negative then when one variable decreases the other
increases. In other words whenever there is covariance between two variables
there is a linear relationship between the two. The size of the covariance tells
how strong this relation is. When the covariance is zero between two variables
they exert no influence on each other and thus there exists no linear relation
between the two. This is exactly the situation for which PCA works. Linear
dependant variables contain information about each other, when one moves
the other does. There is an inherent redundancy between those variables which
could be removed in order to discern ’true’ patterns in the data and not the ones
induced by a linear relationship. Moreover, whenever this is the case variables
can be omitted without influencing the remaining variables.

It is often the case that while inspecting data it is not immediately clear
what to look for. Inspecting the covariance matrix gives in a glance all covari-
ances(and thus variances) of all variables in the data set. A covariance matrix
of n variables is constructed as follows:

Σ =





cov(X1, X1) cov(X1, X2) . . . cov(X1, Xn)
cov(X2, X1) cov(X2, X2) . . . cov(X2, Xn)

...
...

. . .
...

cov(Xn, X1) cov(Xn, X2) . . . cov(Xn, Xn)
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The matrix Σ is symmetric in the diagonal and on this diagonal are the
variances of individual variables.

Going back to the example the covariance matrix looks like:

Σ =

(
0.2359 0.1025
0.1025 0.0518

)
(3.8)

A note of caution, while reading PCA literature [Smith, 2002] one often runs
in to another step preceding the computation of the covariance matrix. In this
additional step the empirical mean is removed from the data and only then
the covariance matrix is computed. However in 3.7 the means are already sub-
tracted from the data set. The confusion is caused by an alternative definition
of covariance matrix.

Σ =
XXT

n− 1
(3.9)

This does yield the same result obtained by 3.7 but only if the empirical
means is subtracted.

Calculate the Eigenvectors and Eigenvalues The next step in the deter-
mination of the principal components is the calculation of the eigenvector and
eigenvalue pairs of the covariance matrix. The covariance matrix is then used as
a transformation matrix. Eigenvector and eigenvalue pairs tell something about
the dynamics of a given matrix transformation. Almost all vectors change di-
rection when that given transformation is applied on them. Eigenvectors do not
change direction. The corresponding eigenvalue gives the change in scale the
eigenvector undergoes given the transformation.

In short the eigenvectors define the principal directions of variation and
the corresponding eigenvalues tell something on how strong the variance is in
each new dimension. The higher the eigenvalue the more variance of the data
is explained with the corresponding eigenvector. These eigenvectors are then
taken to be the new axes. The remainder of this paragraph will explain why
these results hold and how to obtain them.

Finding eigenvalues and eigenvectors is done by solving

Avλ = λvλ (3.10)

In which A is the transformation matrix, vλ the eigenvector and λ the cor-
responding eigenvalue. Solving this equation analytically is relatively easy for
a small, and most notably square singular matrix. In this case dimensionality
should not be larger than three. Solving this involves finding the determinant of
the transformation matrix A minus the eigenvalues λ times the identity matrix
and equating this to zero.

det(A− λI) = 0 (3.11)

These eigenvalues λ can then be used to find the eigenvectors by solving

(A− λI)vλ = 0 (3.12)

which is equal to 3.10, see [Strang, 1998]. If the dimensionality of the ma-
trix is larger or nonsingular, then an iterative approach can be taken which
will not be described here. Mathematical environments like Matlab1, Octave2

1http://www.mathworks.com
2http://www.octave.org

http://www.mathworks.com
http://www.octave.org
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and Mathematica3 all include functions to iteratively calculate eigenvectors and
eigenvalues.

This process of finding the eigenvalues and eigenvectors will be demonstrated
through the example presented earlier. Using the covariance matrix 3.8 as cal-
culated in the previous section as transformation matrix and equation 3.11, first
subtract the eigenvalues times the identity matrix

A− λI =

(
0.2359− λ 0.1025

0.1025 0.0518− λ

)
(3.13)

then take the determinant of this matrix with ad− bc.
(

0.2359− λ 0.1025
0.1025 0.0518− λ

)
= (0.2359− λ)(0.0518− λ)− (0.1025)(0.1025)

= 0.0017− 0.2877λ + λ2

solving this equation yields two eigenvalues λ1 = 0.2817 and λ2 = 0.006. Then,
using Equation 3.12, we obtain the eigenvectors vλn

for each of the n eigenvalues.
These eigenvectors are congregated in matrix V containing all eigenvectors as
columns

V =

(
−0.9133 0.4073
−0.4073 −0.9133

)
(3.14)

here λ1 is associated with the first column and λ2 with the second. This can
be demonstrated as follows. A matrix can be composed from a multiplication
of its eigenvectors and eigenvalues

A = VΛV−1

Because V is an orthonormal matrix this equation can be rewritten as

A = VΛVT (3.15)

in which Λ stands for the diagonal matrix containing the eigenvalues. This
notation is convention when considering eigenvalues and eigenvectors and this
thesis will follow that convention. Equation 3.15 comes from the following.
From 3.10

AV = A



 vλ1 · · · vλn



 =



 λ1vλ1 · · · λnvλn



 (3.16)

The trick is to split the matrix AV into V times Λ



 λ1vλ1 · · · λnvλn



 =



 vλ1 · · · vλn








λ1

. . .

λn



 = VΛ

(3.17)
Now AV = VΛ holds which can be rewritten as shown in 3.15. This shows the
relation between the eigenvalues and eigenvectors.

To see what the calculation of the eigenvectors actually means Figure 3.6
shows the sample data with its means subtracted with the two eigenvectors over-
lain on top. What can be clearly seen in this figure is that the two eigenvectors

3http://www.wolfram.com/products/mathematica

http://www.wolfram.com/products/mathematica
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Figure 3.6: The mean generated data plotted together with the two eigenvectors.

define a new system of axis in which the greatest variance is along the principal
axis. The principal axis is the one with the greatest eigenvalue, which is in this
case the first one and thus corresponds to column one in 3.14.

To understand why the first axis is the one with the greatest variance con-
sider some n dimensional data collection D with zero means and the covariance
matrix ΣD. The data can be projected on an arbitrary (column) vector z yield-
ing the transformed collection D′ via D′ = z

T D. The covariance matrix of that
new collection is then given by

ΣD′ = z
TΣDz (3.18)

This result follows from the definition of the covariance 3.9 without the means

cov(zTDi, z
TDj) =

z
TDi(z

TDj)
T

n− 1
= z

T
DiD

T
j

n− 1
z

Note that the right hand side of the equation includes the original covariance
matrix. Now take z to be the eigenvector matrix and 3.15 it follows that
VT ΣV = Λ. This shows that when rotating the data with the eigenvectors
as rotation matrix the new covariance matrix is equal to the eigenvalue matrix
of the original data.

The remainder of the steps all involve the use of these results in terms of
data compression and reconstruction and are not required but serve to complete
the full view of PCA.
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Figure 3.7: The reconstruction of the original data without the least significant
component together with the original data.

Reducing the dimensionality On inspection of the eigenvalues in the pre-
vious section it can be observed that the values differ quite a lot. In fact by far
the most variance is explained by the eigenvectors with the largest eigenvalue
(that is the first). This is the most important relation in the example data.
So if the other component is dropped the original data can still be explained
in a sufficiently high degree(this of course depends on what ’significant’ exactly
means). This results in a data set which has a lower dimensionality than the
original data. To demonstrate consider again the example. From 3.14 only the
first column will be used to construct an approximation of the original data.

Y = Xvλ1 (3.19)

In which X stands for the initial data set and Y for the lower dimensional
form. In other words the initial data set is now expressed with only one new
variable but which still contains much of the information. The result is shown
on the right in Table 3.2. Checking the reconstruction is easy by calculating the
covariance matrix of Y computed with the full eigenvector matrix, this should
yield a matrix with all zeros off the diagonal. Each new variable is uncorrelated
with the others.

When reconstructing the data to the original coordinate system another
transform is required (note this is for the example, for the full reconstruction
one needs to use the full eigenvector matrix)

Xreconstructed = v
T
λ1

Y (3.20)

The result is plotted in Figure 3.7.



Chapter 4

Proofs of principle

This chapter will be dedicated to experiments showing the usefulness of GATE,
Chapter 5, and showcasing the versatility of the cerebellar model as it is de-
scribed in Chapter 2. The following experiments are all performed with a system
combining GATE and the cerebellar model. Some additional preprocessing steps
will be added using the techniques described earlier. Every experiment is based
on the work of [Joensuu, 2006] and thus entails the balancing of an unstable
robot, specifically the experiments without transmission delays.

4.1 General inputs, reflex and robotic shape

This section will set the stage for the experiments to come. First the basic
shape of the used robot is shown followed by a description of the common
inputs used in both experiments. Finally the construction of the teacher reflex
will be explained.

4.1.1 Robotic shape

The general body plan of the robot is consistent throughout the experiments
and is shown schematically in Figure 4.1. The task of the robot is always the
same, it has to keep itself from falling over. As can be seen from the picture
the robot has an elongated form making it inherently unstable. The robot has
to move back and forth in order to keep its balance much in the same way a
unicycler would do. The experiments in this chapter all extend on this theme.

In the first experiment the general shape of the balancing robot is preserved
as it was presented in [Joensuu, 2006]. In the second experiment there are some
significant changes. Foremost is the addition of a camera to the body plan. This
camera added to the robot enables the robot to receive images from the front
of the robot. This has also direct consequences for the environment the robot
is situated in. For the system to develop in reasonable fashion a sufficiently
challenging environment is required. This explains the presence of the plane
with the forest texture as seen in Figure 4.8.

26
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Figure 4.1: A schematic representation of the robot. On the horizontal axis the
negative and positive direction is depicted. The same is done for the angle. The
dashed silhouette indicates a robot out of balance.

4.1.2 Inputs

As in the earlier incarnation of the pole balancing experiment the cerebellum was
provided with information on the location, the speed and the angle of the robot.
Additional to these there are now also inputs coding for angular velocity. All
four are, after scaling between minus one and one, encoded in a series of Gaussian
functions. Angle and angular speed are encoded in 31 functions, location and
speed both in 11. This decision was made out of conviction that the latter two
variables were less important.

A set of these Gaussian functions are shown in Figure 4.2 in which, as an
example, the angle is displayed on the horizontal axis and each response on the
vertical axis. As one can see different input units respond different to different
angles. This form of encoding is chosen to give the model an adequate range of
inputs. For example, a small deviation in angle can be catastrophic when trying
to maintain one’s balance. When coding that information in one unit with a
range between zero and one the value for which balance can be maintained might
be in the range 0.49 and 0.51 making it unnecessary hard for the model. This
encoding departs slightly from the encoding used in the original experiments in
which only the angle was encoded in a series of Gaussian functions. In these
experiments the other inputs might hold relevant information as well. Each
function has a standard deviation of a constant 0.005 whether it is coding for
angle, speed or any other type of input.

4.1.3 Reflex

The teacher or reflex part of the controller is a hierarchical system, see Figure
4.3. This hierarchical setup incorporates different aspects in the reflex allowing
for an inherent guidance toward, for example, a certain position or speed of the
robot. The particular reflex hierarchy used here did not incorporate the position
as part of the system. When desired, however, adding location would come on
top of the hierarchy.

Bottom up the hierarchy is explained as follows. Take Am to be equal to
zero. This means that the reflex is a scaled result from the desired angle Ad
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Figure 4.2: Each curve’s maximum is associated with a different input value.

Sd − Sa = S

βS=Am

��
(Ad −Am)−Aa = A

αA

��
R

Figure 4.3: The reflex hierarchy. Sd denotes the desired speed, Sa the actual
speed. The same naming convention holds for Ad and Aa denoting desired and
actual angle. Am is the modifier applied to the desired angle.
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minus the actual angle Aa. The desired angle, given the task, should be zero.
Whenever the robot is leaning forward, shown in Figure 4.1 as the dotted silhou-
ette, the reflex should be directed in the positive direction. This is accomplished
whenever coefficient α is smaller than zero. For the next layer take Ad and Aa to
be zero, the robot is in balance. Further take the actual speed Sa to be smaller
than the desired speed Sd, so the result of Sd − Sa is positive. The question
one should ask is how this situation translates into a modification of the desired
angle. If, as is the case here, the robot is moving too slow the desired angle
should be more positive. In other words the term Am should be negative. This
can only be achieved if coefficient β is negative. The range in which α and β

still yield a feasible reflex is very wide. Experiments have shown that α can be
as small as -0.1 and as large as -55. At very low values convergence was not
guaranteed in reasonable time and at very large values oscillations started to
occur. The best results were obtained when using a value of -1. This makes
sense as the value for α has a direct connection with the learning rate as this
value scales the reflex and the reflex is responsible for the weight adjustments,
as shown in 2.3. For β the range of tested values are smaller, -1 is the lowest
tested value in which case convergence was not a problem albeit slow. Values
as large as -15 still led to convergence however the resulting system was slightly
unstable as the reflex is quite aggressive in obtaining the desired speed.

4.2 Irrelevant inputs

In this experiment it is shown that the cerebellar model is tolerant to noise and
able to ignore disruptive inputs. Besides the normal inputs to the cerebellum
a large number of inputs is added which will relay only noise. The cerebellum
should learn to ignore these inputs and as a result the weights associated with
these inputs should be (close to) zero. The experiment will take place in a
simplified environment as already shown in Figure 1.1 for there is no need for
the additional features in Figure 4.8. The learning rate used in this experiment
is held at a constant 0.001, the length of the eligibility trace cascade was set at
3 with a slope parameter a = 0.1, one iteration is a 5 millisecond large step in
the simulator.

4.2.1 The disruptive inputs

Besides the regular inputs, twenty additional inputs are added. Where twenty is
an arbitrary number chosen because it is sufficiently large in comparison to the
other inputs. These inputs will receive the noise. The noise fed to the cerebellum
comes in two variants. In the first variant the noise is uniformly distributed
between minus one and one and changed every iteration. In the second variant
the input to the noise receiving units is one every iteration. This is done in
order to investigate how the cerebellum holds in face of a large increase in the
input energy. The simulation is run till convergence. Convergence is defined
as being achieved when the weights have changed only very little (smaller than
5×10−5) the last 1000 iterations and the robot has not fallen down during these
iterations. The value of α in the reflex was set to -1 and the value of β was set
to zero in effect turning this layer of the reflex off. In this particular experiment
only the act of balancing is important not how this is achieved.
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Figure 4.4: The resulting weights after convergence(5000 iterations) in a typical
experiment run. Weight numbers 85 to 104 represent the weights associated with
the noise inputs. In this variant of the experiment the weights were initialised
randomly between 0 and 0.1 and the noise applied to the noise receiving units
was constantly one.
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Figure 4.5: As Figure 4.4 but input is continuously random for the last input
units.

4.2.2 Results

As can be seen from Figure 4.4 and 4.5 the weights associated with the disruptive
inputs (units 85 to 104) indeed remain close to zero. Would the learning rate
approach zero in the limit the weights would converge to zero. All the while
the robot does learn to balance. Table 4.1 shows ten runs for each type of
experiment together with the number of iterations needed for convergence and
the number of times the robot fell over. For reference purposes ten runs without
the twenty noise inputs are presented along side.

Figure 4.6 shows a typical example of how the changes in the weights progress
during training, from a similar figure the convergence criteria were inferred.
Along side this figure the output and reflex are shown. As can be seen from this
figure the reflex is relatively small compared to the cerebellar output making
the weight changes relatively small as well (see Equation 2.3). When choosing a
higher value for α the reflex becomes stronger which might be desirable in cases
where the speed of convergence is more important, however in these experiments
fast convergence was not required and this approach leads to more stable results.

Initial results shown in Table 4.1 prompted further investigation as the re-
sults were not statistically significant but hinted at a performance increase for
the experiment in which random noise was applied. In order to do so 30 addi-
tional runs were performed for each experiment and the benchmark without the
noise. In doing so increasing the sample size fourfold. These results are shown
in Table 4.2.

The extended results from the two variants of the experiment show that the
model has no difficulty with the additional noise, but that random noise does
not improve performance. Only in the experiment in which the cerebellum is
pounded with a constant noise of one performance is significantly deteriorated
(with a p-value of 0.0064 for the iterations and 0.0002 for the number of resets).
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Constant noise
Iterations Resets

4000 7
3600 5
2600 5
3400 7
2600 5
2400 5
3200 5
3200 6
3200 6
2400 5

Averages
3060 5.6

Random noise
Iterations Resets

2400 5
2200 4
3000 5
2000 4
3200 6
2200 4
2400 5
4000 7
2400 5
2400 5

Averages
2620 5.0

No noise
Iterations Resets

3400 6
4400 7
2400 5
3800 6
3000 5
3000 5
2400 5
2800 5
2000 4
2800 5

Averages
3000 5.3

Table 4.1: Convergence results for, left, constant input of one to the noise
receiving inputs and, middle, for random input to these units. To the right the
results for ten noiseless runs.

Constant noise
Averages

Iterations Resets
2990 5.45

Random noise
Averages

Iterations Resets
2630 4.6

No noise
Averages

Iterations Resets
2570 4.3

Table 4.2: Average convergence results for the original results with the results
30 additional runs.
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Figure 4.6: In this graph typical weight changes are plotted against time (the
number of iterations). A vertical dashed bar(red) shows where the robot fell
triggering a revert. Twenty additional inputs received random input, α was set
to -1.
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Figure 4.7: From the same experiment as in Figure 4.6. The dashed line(red)
shows the output of the reflex, the other the output of the cerebellar model.



4.3. An uneven world 33

Figure 4.8: The robot in the environment as it is used in the texture experiment.
The arrows on the ground (in red) depict the possible movements of the robot.
The lines protruding from the small cylinder on the front of the robot is the
viewing field of the camera.

In this case the model receives, on average, a higher amount of input. Especially
when the weights have not yet converged to zero the output is thus significantly
stronger and leads to more resets as to robot falls over more often. Naturally,
from the definition of convergence, this leads to a higher required number of
iterations to converge. As with random noise the average additional input is
zero and thus does not lead to significant degradation of performance if any at
all.

From the structure of the weight matrix the importance of certain inputs
can be inferred. The units 12 to 42 from the inputs encode the angle from most
negative(12) to most positive(42), for example, from Figure 4.4 one can see
clearly where the angle turns positive (unit 27) and thus the cerebellar output
should inverse its direction. In units 54 to 84 angular speed is encoded. Here
it is clearly visible that when the angular velocity is high the cerebellum reacts
strongly to that. When angular velocity is high something is amiss and strong
intervention is deemed necessary.

In conclusion the cerebellar model handles noise very well. Even when a
large proportion of the inputs are irrelevant the model quickly figures this out
and reduces the associate weights to near zero. The energy added by the noise
signal does have influence on the performance but this comes as no surprise.

4.3 An uneven world

The goal of this experiment is to demonstrate the capabilities of the cerebellum
beyond the near trivial and perfect data supplied in the experiments done in
[Joensuu, 2006]. In those experiments the inputs to the cerebellum were abso-
lute and correct measures of, for example, the speed and angle of the robot.

4.3.1 Adaptations to the world and robot

In this experiment the robot is placed on an uneven terrain and is equipped with
a camera. This robot is depicted in Figure 4.8 in which the direction of motion
as well as the camera and camera frustum is shown. The task of the robot
remains the same, the maintenance of balance. In this case however the robot
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Figure 4.9: In this uneven world the robot needs to anticipate the bumps in
order to remain balanced.

Figure 4.10: In this simulation the robot is induced to advance forward(to the
left in the figure) thus making the robot traverse the different textures. One of
the textures imposes an artificial drag on the robot.

is forced to move forward in order to have it traverse the uneven terrain. The
camera is mounted on the front of the robot tilted slightly down so it can observe
the terrain just in front of the robot. The robot will need the information from
the camera in order to keep itself balanced.

After building the uneven terrain as depicted in Figure 4.9 the physics engine
of the simulator proved unable to cope with the round wheels of the robot and
a terrain build from triangular tiles. Appendix B elaborates on this problem.
This forced the rethinking of the experiment. Eventually it was decided that
the world would be rebuilt to simulate an uneven terrain with different textures.
This world is shown in Figure 4.10. The light coloured texture induces an
amount of drag on the robot. This drag is completely artificial and is calculated
based on the robot’s position. The drag is then subtracted from the motor
actuation. Note that the robot starts on the right of the track where no drag
inducing textures are present. This is done in order to give the robot a chance
to reach the desired velocity before hitting the zones where drag is induced.
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Figure 4.11: The subsumption reflex. I0 is the inhibition exerted by layer 0.
The function f(x) is a hyper tangent used to squash the results.

4.3.2 Changes in the reflex

During preliminary tests the reflex as used in the previous experiments seemed
to yield unstable results in this particular Webots world. It was therefore de-
cided that the original reflex would be replaced by an entirely different variant.
This variant would be based on the so called subsumption architecture first put
forward in [Brooks, 1985]. The reflex is still layered and each layer is respon-
sible for a part of the robot’s behaviour, much in the same way the original
reflex was. The layers are ordered from high priority to low priority. The low
priority layers inhibit the high priority layers when they are active. In Figure
4.11 the layers of the new reflex are shown. The inhibition ranges from 0 (total
inhibition) to 1 (no inhibition) and is dependant on the output of the layer.

4.3.3 Controller elements

The controller of the robot has two distinct parts which each require further
elaboration. First the additional input will be discussed, second the construction
of the detectors will be explained together with the actual real-time use of the
detectors.

Inputs Still assuming a scale between minus one and one in the latest version
of the balancing experiment visual information is provided to the cerebellum in
the form of 2 additional inputs. Each output of a detector for a specific texture is
rescaled to lay between minus one and one. The drag inducing texture detector
is the second of the two. The construction of the actual detectors is not the task
of the cerebellum. As pointed out in the introduction the human cerebellum
often does use pre-processed information, the task (amongst many others) of
the cerebellum is to determine what is relevant for the present issue. However
it is relevant to explain the nature of these texture detectors.

Texture detectors Texture detectors can be build in many ways. Histogram
approaches are among the frequently used methods, for example using co-
occurrence matrices [Ohanian and Dubes, 1992]. Here, however, a different ap-
proach is taken. In order to construct the detectors, two pictures on which the
two different textures are clearly visible are manually selected, see Figure 4.12
and 4.13 for the to be detected textures and the images taken during runtime
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(a) lightwood (b) stone

Figure 4.12: The textures which need to be detected. Both are 128x128 pixels
large.

(a) Lightwood prevailing texture (b) Stone prevailing texture

Figure 4.13: The images taken during runtime with either one of the textures
prominently present.
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Figure 4.14: The ’retina’ as it is used when taking samples. Only the gray cells
are selected.

with which the detectors are constructed. The construction is then done as
follows.

Collect samples: From two real time images in which one of the two textures
was prominently present one thousand samples were taken. The samples
are taken at random locations on the texture and are 7x7 pixels large. In
addition not every pixel in that patch is processed but a mask as shown in
Figure 4.14 is applied to the patch. Only a ’retina’ like area is eventually
selected from the patch. This is done in order to further reduce the number
of pixels which need processing.

Whitening: The next step entails the so called whitening of the data collected.
This means that the empirical mean is removed from the data (the data is
centred) and transformed in such a way that the variables (pixels in this
case) are independent from each other. This is of course done with PCA
as discussed in Section 3.3. This yields a collection of whitened samples.
The whitening and unwhitening matrix are saved as they are to be used
in the detection process.

Making a SOM: Constructing a SOM is essentially a preprocessing step for
k-means to work from. This step makes use of the SOM Toolbox1 from
the Helsinki University of Technology(HUT). This toolbox is written for
and in Matlab and uses some advanced features like the initialisation along
the eigenvectors and a fine tuning phase.

Clustering using k-means: The SOM Toolbox also includes a k-means clus-
tering algorithm which can be conveniently used with the resulting map
from the previous step. Clustering of the map with k = 2 yields the two
centroids displayed in Figure 4.15.

The resulting two centroids or codebook vectors are then used in the detection
process.

4.3.4 Runtime detection

The detection process is very similar to the process used to construct the detec-
tors, see Algorithm 3. The robot will transmit images at request back to Matlab
where the image is sampled in much the same way when constructing the de-
tectors only this time 500 samples are taken. These samples are then whitened

1http://www.cis.hut.fi/projects/somtoolbox/

http://www.cis.hut.fi/projects/somtoolbox/
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Figure 4.15: The two cluster centroids describing the two textures best. The
images are constructed by inverting the process when making a sample. The
used mask is used and the blanks are filled in with a weighted value from the
surrounding pixels.
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Figure 4.16: The robot is forced to move forward while its centre of gravity is
placed between the wheels to keep it from falling over. The jagged lines show
the activation of the two detectors, the lowest line shows the transitions between
textures over time.
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but this time with the stored whitening matrix. This is done because otherwise
the rotation done on the sample would be different than for the rotation leading
to the prototype or codebook vector. The result would be meaningless. These
runtime whitened samples are then binned based on the distance between the
sample and the two codebook vectors. The sample is binned in that bin with
which the distance is smallest. This results in two bins which, when normalised,
are the two inputs to the cerebellum. The distance measure is a relatively simple
one

d(a, b) =
√∑

(‖a− b‖)2) (4.1)

in which the raising to the power of two occurs pairwise for each element in the
equal length vectors a and b. To show the effectiveness of these detectors see
Figure 4.16 in which the robot is manually progressed over the textured terrain
all the while processing images. In the figure it is clear that the information
from the detectors can be used to reliably detect a texture transition and thus
a potential induced drag.

Data: Runtime image
Result: Two normalised bins
bins ← 〈0, 0〉;
for 0 to maxNrOfSamples do

sample = getNextSample;
whiten(sample);
if distance(sample,detector1) < distance(sample,detector2) then

bins(0) ← bins(0) + 1
else

bins(1) ← bins(1) + 1
end

normalisedBins ← bins/sum(bins);
end

Algorithm 3: Gathering and processing runtime samples.

4.3.5 Experimental parameters and setup

The experiment was conducted with a reflex in which the desired speed was
set to 10 radians per second which is one fifth of the highest theoretical speed
of the robot. This was done in order to ensure that the robot traversed the
textures at sufficiently high enough speed. The reason for forcing the robot to
drive forward is to keep the problem linear. If the robot is driving backward
the information of the texture detectors are useless. On the other hand when
moving forward this information is relevant. A relation like this is nonlinear and
can not be learned by the cerebellum in its current form. When making sure
the robot moves forward the information is (almost) always relevant and the
problem remains linear. As in the previous experiment the learning rate, length
of the eligibility trace cascade and slope parameter were respectively 0.001, 3
and 0.1.

Again two variants of the experiment are conducted. In both cases the detec-
tors are operative but in one case the result of the computations are overwritten
by a random value between the usual minus one and one. This is done in order
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Detectors enabled
Iterations Resets

9400 10
11900 11
10240 11
11940 11
10380 11
10700 11
10820 11
11160 11
10940 11
10780 11

Averages
10826 10.9

Detectors disabled
Iterations Resets

11020 11
14900 11
11200 11
9100 10
14180 10
11440 11
12940 12
11160 11
10140 11
11880 12

Averages
11796 11.0

Table 4.3: Convergence results for the drag inducing texture experiment. On
the left the results with the texture detectors enabled, on the right without the
texture detectors.

to assess the influence exerted by the texture detectors. Both experiments are
ran several times until convergence. Convergence in this experiment was de-
fined as achieving a location of 6.5 on the z-axis which is on the other end of
the textured track.

4.3.6 Results

Stable performance proved much harder than in the previous experiments. This
is due to the added difficulty of not only the different drag factors on the different
textures but also due to the addition of a desired speed. This makes it much
harder for the robot to balance. Whereas the desired speed had no influence
in the previous experiment, where the output of that part of the reflex was set
to zero, in this case the desired speed has significant influence on the reflex
pushing the robot constantly out of balance. Taken these additional difficulties
in account the cerebellar model still assigns a role for the texture detector inputs
however small. As seen in Figure 4.17 the last two input units play not an overly
large role but are not zero and thus are deemed significant by the cerebellum.
What also can be seen from the figure is that in effect the two detectors are
complementary. If one takes 500 samples and classifies n samples as one class
then the remaining 500−n samples must be classified as the other class. While
this was not made explicit this fact is nicely picked up by the cerebellum. If one
is to interpret the weights of the last input units one can see that when the drag
inducing texture is detected, corresponding to a high value on the very last unit,
a small positive contribution is made to the output of the cerebellum. Because
the detectors are complementary a similar positive contribution is made by the
first detector.

Table 4.3 shows how long it took for convergence to be achieved when the
textured detectors were turned on and turned off. As suggested by the weights
shown in 4.17 when the detectors are on it converges slightly faster as the
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Figure 4.17: The last two of units were used to represent the input from the
texture detectors.

cerebellum incorporates this knowledge in its output. However no statistical
significance can be adhered to these results as the p-value of both the number
of required iteration and resets are respectively 0.2031 and 0.4331.



Chapter 5

GATE

In this chapter explains how GATE came to be. The structure is as follows,
first the choices regarding the programs and programming languages will be
explained and how they fulfil the requirements of this project. Then a sketch of
the actual design of GATE will be presented together with the techniques used.

5.1 Requirements and fulfilments

This section explains why certain languages were chosen for the implementation
of this project and why their choice helped meeting the requirements.

Webots and Java Webots is a robotics simulation platform by Cyberbotics
Ltd 1. The program features realistic physics using the Open Dynamics Engine
(ODE) 2. This was an important consideration when choosing Webots because
this contributes to allowing us to perform realistic simulations. The importance
of this was already shown, to provide a sufficiently challenging environment
and it aides in transferring the results to the real world. Note that while a
non-realistic physics engine could be very challenging, the absence of a physics
engine would prove too simple. The 3D modelling tool as Webots supports
it is sufficient, though not great. More important is the fact that the code
produced complies for the better part with the Virtual Reality Modelling Lan-
guage (VRML)3, this allows one to model environments in third party software
as ArtOfIllusion4 or AC3D5. The next attractive feature of Webots is the abun-
dance of working or workable demonstrations bundled with the software. This
provides for enough examples for novice users to understand the possibilities
of Webots and the ability to forgo trivial though time consuming modelling of
robots and environments. Furthermore a reasonably large user base and a very
active and helpful developer instilled confidence that possible future problems
could be quickly resolved. Last the fact that programming can be done in both
C++ and Java. This increases the chances of the future use of Webots by pro-
viding this amount of flexibility. Moreover the expertise of working with Java

1http://www.cyberbotics.com
2http://www.ode.org
3http://www.web3d.org
4http://www.artofillusion.org
5http://www.ac3d.org
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5.2. General idea 43

was already present with the author expediting the project significantly. Added
to these facts which made Java our prime choice was the platform independence
of both Java and Webots enabling us to use GATE in any setting. Last the
network abstraction is an integral component of Java and while there do exist
numerous C++ libraries which provide similar functionality using such a library
would introduce yet another dependency.

Matlab When choosing a language to implement our models the choice for
using Matlab was an easy one. First of all the very nature of the research done by
engineers is highly experimental. This means that fast prototyping of software
and models is the order of the day. Scripting languages like Matlab provide
the means necessary for quick testing of ideas. Then there is the fact that
Matlab suites the computational needs of working with brain models very well.
Matlab is specifically designed for efficiency in large arithmetical operations.
Last Matlab enjoys wide acceptance within the research community and by
using it the potential user base is greatly improved.

5.2 General idea

Taken Webots and Matlab there is no native interface between them other
than importing Matlab into Java or C++ which can be done but only with
custom-made classes unsupported by Mathworks. Importing Matlab into Java
or C++ would still require a fair amount of knowledge of the mentioned pro-
gramming languages which is exactly what is being tried to avoid. This would
compromise the requirement of easy accessibility. More important this would
also compromise the idea to use a distributed computing environment. Calling
Matlab directly from the Java interface with Webots would limit the users to
computing facilities provided by the platform Webots is running on. No addi-
tional computers could be hooked into the system. These reasons prompted the
development of a library called GATE which is an acronym from Great Access
To Everything enabling the interaction of Webots and Matlab over a TCP/IP
connection. When writing this library usability was considered to be of the
utmost importance. A (very) low threshold for usage is required to enable re-
searchers to focus on the actual modelling of brain areas. This resulted in a
library which tries to stay as close to the original usage of Webots as possible
and as far away as possible from any technical details like complicated library
imports and lengthy initialisations. The choice to implement the integration of
Matlab and Webots with a TCP/IP approach facilitates the requirement of a
distributed environment. Using TCP/IP enables multiple Matlab instances to
connect to Webots. The library is written in Java, but note that this does not
automatically follow from the assumptions in Section 5.1. In that section it was
merely pointed out that programming in Webots could be done in both C++
and Java and the latter one was the preferred option. However for much of the
same reasons pointed out in that section this library is written in Java. Another
and equally significant reason to choose Java over C++ is the native support
for reflection in Java. For the reader to understand the importance of reflection
in this library it is necessary to first delve deeper in the architecture of GATE
and the interaction between Webots and Matlab through GATE.

When using Webots there are two tasks a user must typically perform. One
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is modelling the environment and the robot in the simulator. Although this is
an important and necessary step this is not in the scope of this work to describe
it and is left for the reader to explore would he desire to do so6. The other task
is building a behavioural routine for the robot or, as Webots calls it, a controller.
This will also be the naming convention used hence forward. The controller is
exactly that, a program written in Java of C++ controlling the actions of the
robot. Both languages are more or less interchangeable in functionality within
Webots and what follows is equally true for each. Any relevant deviations will
be made apparent if instructive.

In this thesis only the surface of building Webots controllers will be touched
but a couple of details need mentioning in order to fully comprehend and ap-
preciate the design of GATE. First of all it is always necessary, when writing a
controller, to subclass the Webots provided Controller class. Note the capital
letter used for the Controller class, it is customary and even required in Java
to write class names with capital letters. This tradition is followed whenever it
helps to clarify the text. Subclassing another class means that functionality of
the other class is extended through the new class without touching or altering
the other class, subclassing is also known as inheritance. Usually the relation
between a class and an inheriting class is referred to as a parent child relation. It
is important to note what happens whenever the subclass is instantiated. Only
one object is created which is both an instantiation of the sub- and superclass.
The superclass object never sees the light of day. This is important to realise
when reflection is explained. Subclassing the Controller class provides the
user defined class with the necessary methods to be instantiated and run by
Webots. Inheritance bears the additional advantage that future changes in the
parent class are by definition available in the child classes without the need for
any changes, it is only necessary to recompile the subclass.

Next it is imperative to declare and initialise the sensors in the user class
as they appear in the simulated robot. This ties the controller to the robot in
the simulation. These two steps, subclassing and initialisation of sensors, are
still required when using GATE albeit the subclassing changes slightly and one
additional method call is required.

Summarising, GATE provides the capacity to let Matlab and a Java con-
troller interact with each other over a TCP/IP connection without departing
too much from the usual way in which Webots is used. Further knowledge of
building a controller in Webots and Java is assumed, for more information on
that subject the user manual of Webots is recommended.

5.3 In depth GATE

The interface is constructed from several classes, see Figure 5.1, together imple-
menting a simple client/server architecture which is packaged in several pack-
ages following Java guidelines, see Figure 5.2. The class TCPConListener plays
the role of server which spawns an instantiation of the TCPConHandler class as
soon as it receives a request from the client part MatMain. The fourth class
TCPController takes the place of the superclass Controller in normal use of
Webots. This means that users now extend the TCPController instead of the
usual Controller class, Appendix A elaborates on how exactly GATE should

6see for example http://www.cyberbotics.com/cdrom/common/doc/webots/guide/guide.html

http://www.cyberbotics.com/cdrom/common/doc/webots/guide/guide.html
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Figure 5.1: The class diagram of GATE

gate

controller matlab

TCPController

TCPConListener

TCPConHandler

MatMain

TCPVerbose

Figure 5.2: The package diagram of GATE

be used. As one can see from the class diagram 5.1 the Controller class is not
replaced but merely subclassed. In effect the TCPController class sits between
the ordinary parent Controller class and the user created subclass. The overall
flow of execution as described above is depicted in Figure 5.3.

Requests Earlier in this section it was stated that the server received a re-
quest which it would delegate to another class. A request is simply a string
of undetermined length sent by the client side (the Matlab side) to the server
side. The client sends its request and waits for a response to arrive. This means
that Matlab will halt execution until the call returns. While programming the
Matlab side this is something to consider and a crash in Webots requires a man-
ual abortion of the operation on the Matlab side. The format of the request
string is simple. It must be an existing method call from the controller on the
server or Webots side including the parameters. For example when requesting a
camera image from a camera with DeviceTag cam0 the request string should be
’camera_get_image(cam0)’, just as it would be when programming a regular
controller. If the string is not a valid method call in the controllers API an
exception is thrown.
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Figure 5.3: The sequence diagram of GATE. Invocation starts at the left side
at myMatlab.

Reflection At this point the term reflection can be elucidated. As one can see
from Figure 5.3 the flow of execution occurs solely between the classes defined
in the GATE library. This poses a problem. On one hand the goal of GATE is
not to limit the user in any way. The user should be able to do everything with
GATE which he could normally do from within an ordinary controller. However
at compile time of GATE it is not known what the user might implement in
a user defined controller. As such it is not possible to anticipate what request
strings are going to be received. If GATE is to preserve the user his full control
over the Webots API and the possible user implemented methods it is required
to figure out during runtime what the possible method calls are. This is exactly
what reflection does. Reflection allows an application or object to discover
during runtime information about itself. It can, for example, find out which
methods it has. And although reflection is more than just finding out which
methods one possesses this is the feature GATE will be using. Remember the
procedure for creating a controller for Webots. The user is required to subclass
the Controller class which takes care of the correct integration of the user
class with Webots. Also remember that the GATE defined TCPController class
subclasses the Controller class so nothing of the original functionality is lost. It
is in the TCPController class where the reflection functionality is implemented.
In this way the user defined controller, which inherits from TCPController,
always has the ability to inspect itself and thus can find out which methods it
has. Whatever methods the user adds it is always in his controller and is thus
always available for inspection with reflection. The same goes for the Webots
provided superclass Controller. Whatever methods the Webots developers will
add in the future to the controller API these new methods will be available for
inspection and invocation in the user defined controller through GATE. All this
without needing to change a single line of code in GATE.
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The only requirement for reflection to work is that there must be a runtime
object to be inspected. It is traditional in Webots to place everything in static
methods, but this is by no means required. When using GATE, a definition
of a constructor should always be included in conjunction with a call to that
constructor from the main() method. More on the use of GATE can be found
in Appendix A.



Chapter 6

Discussion

6.1 Improvements on GATE

Implementations are rarely finished as is the case with GATE. In this section
several aspects of the GATE library are discussed which could be subject to
improvement.

6.1.1 Missing byte parsing

In the implementation of GATE the request string received from the client is
parsed in order to find the correct method call. The parse algorithm is a com-
plex entity which at the heart relies on regular expressions to cast the extracted
arguments to the correct corresponding data type. This parsing algorithm does
not, at the moment, accommodate the casting of arguments to bytes. This is
mainly caused by the fact that implementing such an enhancement would com-
plicate the algorithm significantly. Bytes do appear to be integers except that
they are restricted to the range of ones and zeros. Incorporating a mechanism
to recognise bytes from integers would be possible when using, for example, a
hypothesis on the underlying methods. Assuming the extracted argument is a
byte, does Webots have a method which does indeed have byte argument? Based
on this result it would be possible to distinguish between integers and byte, but
the procedure would complicate matters enormously. Moreover it would add
little to the functionality of GATE. There are at the moment of writing only
two functions which have a byte argument or a byte return value, and these
functions are rarely used. These two facts combined caused the neglect of this
feature in favour of more pressing matters.

6.1.2 Reversion with threads

The reversion of the simulation by a supervisor robot in the threaded version
of GATE leads to an apparent lock-up. The revert is only executed when one
final connection is made to the same supervisor robot. This is because of how
the client/server architecture is implemented. Whenever a revert command is
sent from the client side the server spawns a thread which handles this incoming
request. This newly created thread returns a value to the client and terminates.

48
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However meanwhile the main server thread continues to listen to incoming con-
nections. Webots only reverts whenever that thread progresses in execution.
And it only progresses in execution when a connection is made. A possible
solution could be the termination of the main thread by the spawned handler
thread as soon as this handler thread recognises the revert request. Another
solution is the parsing of the request string previous to spawning the actual
handling thread and stop listening to incoming requests. Something similar is
done with the exclamation mark syntax, see Section A.2. The latter solution is
preferred being in line with already implemented functionality, a generalisation
of this implementation would not be too cumbersome.

6.1.3 Automatic reconnection attempts

Another improvement to the scheme used in GATE would be the inclusion of
automatic reconnection attempts from the client to the server. This is espe-
cially useful in case of the threadless version where a previous request has not
been completely processed yet and thus the server is not able to accept new re-
quests. Another case where this feature would be desirable is when reverts are
automatically issued for the client side. The revert may take arbitrary time to
complete and taking care of the reconnection attempts in GATE would improve
user experience.

6.1.4 Far future

Much further in the future may even lay different implementations of the client
side of GATE. It might be desirable to implement a certain model or controller
in a programming or scripting language other then Matlab1. As long as this
implementation complies with the Webots API and implements the construction
of a TCP/IP connection it can communicate with the server side of GATE.

During the time spent on implementing GATE and several experiments it
has become clear that the principal language of Webots is C++. Future exper-
iments might benefit from a reimplementation of GATE in C++. This might
circumvent many problems as described in Appendix B.

6.2 Cerebellar model

This section holds some suggestions to improve the cerebellar model as it is
presented in this thesis. It also highlights some areas in which further research
might be viable.

6.2.1 Reflex construction

As described in the first experiment the reflex is a conceptual complex structure
in which the coefficient signs have to be thought over rigorously in order to arrive
at a correct reflex. It is better to construct the reflex in a subsumption based
architecture as is done in the second experiment, as this is more intuitive and
gives greater control of the contribution of each layer to the eventual reflex.

1for example 3APL
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Moreover incorporating every aspect of desired behaviour in a reflex is not
necessarily the best approach. For example when conducting the experiment
involving textures it was required that the robot would move forward all the
time. In this experiment that requirement was coded in the reflex. It might be
better to use a different system to convey that kind of information to the model.

6.2.2 Nonlinearity

Another major improvement would be the inclusion of a system capable of
learning nonlinear associations instead of the direct input to output coupling.
Take for example the texture experiment. In this experiment only a forward
looking camera was mounted on the robot and the robot was given time to
speed up. This was done in order to prevent ambiguous information being fed
to the model. Information would be ambiguous when the robot the relevance
of the information depends on the presence or absence of other inputs. When
the robot is moving forward the information from the camera, which is pointed
forward, is relevant. It enables the cerebellum to predict possible drag. However
when the robot is moving backward, when it is regaining its balance for example,
the information of the camera is irrelevant. To learn the relation moving forward
→ camera information relevant and moving backward→ camera information is
irrelevant a nonlinear system is required. The inclusion of a, for example liquid
state [Vreeken, 2004], would make it possible to encode this information.

6.2.3 Multi-joints

Another aspect which merits further research are multi-joint problems. This
would require the model to have multiple outputs as opposed to the singular
output used in the experiments described here. In such experiments efferent
copies of the output to the inputs would be imperative in order to give the
model a sense of context in which it is operating. At the moment of writing
such experiments are indeed being performed.

6.2.4 Convergence proof and future experiments

A most natural extension to the textured world experiment is the inclusion of
different and harder to separate textures. The method put forward for detec-
tion textures is ideally suited for this purpose and would require little if any
alteration. This would strain the model to distinguish even small differences.
Another extension would be the calculation of not just two bins but a multitude
of bins. This would eliminate the exact inverse relation which now existed with
the detectors. This would give the model more freedom to choose which inputs
are relevant and performance would probably be better.

Unfortunately outside the scope of this thesis would be the mathematical
proof pertaining to the convergence of the model when using eligibility traces.
While this has been empirically established and is intuitively correct a stringent
proof is at the moment missing.



Chapter 7

Conclusion

In this thesis two major advancements are put forward. One is the creation
of the GATE library. The other the further extension and application of the
cerebellar model.

7.1 GATE

The library GATE fulfils all requirements posed in this thesis. One of the major
goals which needed to be fulfilled by GATE was the ease of usability. This in
order to make it easy for researchers to start using a viable robotics simulation.
Implementing the library in Java made it portable across as many platforms as
Webots supports, thus placing no additional restrictions upon its usage. The
current implementation is very future-proof as it uses reflexion to translate the
incoming requests to actual method calls. In doing so any changes which are in-
troduced in Webots can immediately be exploited without the need for changes
in GATE. This further increases its usability because it requires no expertise on
the part of the end user. The architecture of GATE makes it even more resilient
against future changes because it extends upon the existing Controller class.
Any changes in this class are, through inheritance, incorporated in the con-
troller the user writes. The ability of GATE to use regular TCP/IP connections
further enhances the range in which it can be deployed. It enables researchers
to distribute models or use multiple models for robotic control, or use different
computing resources to control a robot simulation. Moreover TCP/IP intro-
duces an abstraction from the actual implementation. This can easily be used
to have GATE send results to a receiving end which is not necessarily a Matlab
session, as long as they both comply to the Webots API.

7.2 Cerebellar model

In the experiments pertaining to the cerebellar model several aspects are ex-
plored. It has been shown that the model is very tolerant toward noise in the
input, even when a large part of its inputs consists of noise. Performance only
deteriorates when a large portion of the noise relaying inputs are highly active
resulting in a disproportioned activation of the cerebellar model.
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On part of the second experiment much more can be concluded. In this
experiment several weaknesses are exposed which merit further research. The
inclusion of nonlinearity in the model should be considered as this greatly im-
proves the range of problems for which the model can be deployed. Also the
reflex as used in the first experiment has been enhanced which in turn improved
performance dramatically. What the second experiment did not show was that
the model was able to efficiently pick up the information regarding the textures.
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Appendix A

Using GATE

In this appendix a detailed description will be given on how to use GATE. The
library can be downloaded from http://www.lce.hut.fi/∼harm or it can be
found on the original Webots installation CD. When using GATE there are two
things a user needs to do. One is the creation of a GATE ’enabled’ controller.
The other is the creation of a Matlab script sending commands or requests to
Webots. First the creation of a GATE enabled controller will be explained.

A.1 Creating a GATE enabled Java controller

In the following description basic knowledge of creating a Java controller for
Webots is assumed. There are really few things which need adjusting when
compared to a regular Java controller. Starting at the top the imports need to
change. Remember that GATE resides between the Webots provided packages
and classes and the user controller. All required imports for Webots are done
in the GATE package and can thus be omitted. The user only needs to import
the GATE packages:

import gate.*;

No further imports are required although the user may import other packages
as he sees fit. Be sure that the JAR files containing the GATE packages can
be found by the Java compiler and the Java Virtual Machine (JVM), in other
words it needs to be in the classpath.

Next the usual class to extend (or subclass) is not the Controller class but
the TCPController class. A typical class definition looks as follows

public class MyTCPController extends TCPController {

The two changes required alterations on the original procedure. Next a cou-
ple of lines need to be added to the controller in order to get to a working
implementation.

When writing a normal Java controller for Webots an endless control loop
is used to keep the robot running. Usually, that is in a Webots Java controller,
this loop is located in the main() method of the class. This is quite unusual for
normally a Java class instantiation is started from the main(String[] args)

method. It is possible to place the loop in the regular main method but staying
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as close to the original intend of Webots is deemed best. However with GATE
the goal is to determine the actions of the robot from outside Webots. That
is in a Matlab script. There is therefore no need for an endless loop because
this will (should) be handled in the Matlab script. Instead of this control loop
a call from the main(String[ args]) method to the constructor of the class is
required. In Section 5.2 it was shown that for reflection to work an instance of
the object is required. This is exactly what a call to the constructor does. It
creates an object which in turn can be inspected. In the constructor a single call
to the method init() needs to be placed. This is necessary for constructing
a mapping from strings declared in the user defined controller containing the
DeviceTags to integers representing the DeviceTags. It is in the constructor
where the user can determine the server port on which to listen. This is done
by overwriting the _port variable. It would be wise to select a sufficiently
high port (over 5000) in order to avoid collisions with other programs. The
default port is set to 7890. In that same constructor the default verbosity can
be set with the boolean _verbose variable. Again this variable can simply be
overwritten, default it is false. This increased verbosity will show the handling of
the incoming connections and spawning of handling threads. This functionality
is very much oriented at developers of the GATE library and regular users would
probably want to leave this boolean alone. A typical constructor would look like
this:

public MyTCPController(){

_port = 9999;

_verbose = true;

init();

robot_console_print("New MyTCPController controller created,

listening on port: "+ _port);

}

Security policy There is one last detail which needs to be taken care of. In
principle this has nothing to do with the creation of a GATE enabled controller.
It has to do with the fact that Webots shields Java controllers from incoming
TCP/IP connections, this is done to prevent cheating during a robotic contest
(the Roboka contest) organised by Cyberbotics. This can easily be changed in
the java.policy file found in the Webots install directory. The line:

permission java.net.SocketPermission "localhost:1024-","listen";

should be changed to accept incoming connections. This is done by applying
the following change:

permission java.net.SocketPermission "*:1024-","listen,accept";

Now incoming connections are accepted from any IP address.

A.2 Creating a GATE enabled Matlab script

The creation of Matlab scripts is fairly straightforward as well. First Matlab
needs to know where it can find the JAR archive, from the Matlab commandline:

javaaddpath(’path_to/gate.jar’);
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This command only works with Matlab 7 or higher but in principle lower versions
are able to handle Java classes and thus should be able to include the JAR file.
Next is the most crucial and last part. The initiation of the Java class

m = gate.matlab.MatMain(port_to_connect_to,

’name_or_ip_of_remote_server’);

In the variable m the reference to the newly created Java object is stored. The
rest really speaks for itself. The first argument should be an integer and the
second a string. The string argument can be an IP address or a hostname.

The sending of requests is done with the only public method the MatMain

class has. Namely sendCommand(String cmd). This method takes a string as
argument in the form explained in Section 5.3. For example if the user wants to
find out what the name of his robot is (useful when controlling multiple robots)
he does

name = m.sendCommand(’robot_get_name()’);

Note the return value being stored in the variable name which has immediately
the correct type. Several other examples can be found in the readme file which
is included with the GATE library.

One other remark is necessary at this point. When in a Webots simula-
tion multiple robots are present and the simulation is running in synchronous
mode (which is default), Webots does not progress time for the simulation if
a robot_step(n) command is given to only one of the robots and as a conse-
quence that call made from Matlab will not return. Because Matlab does not
support proper threads GATE implements a special syntax to tell the server
side to return immediately. Whenever a command is prefixed with an exclama-
tion mark ’ !’ the command will return immediately after being received on the
server side. For example

m.sendCommand(’!robot_step(32)’);

The return value is not captured here because it will be ’nil’.

A.3 Special commands

GATE sports two different special commands which can be sent in the usual
fashion. The most important of the two controls the verbosity of the parsing
algorithm. These are a simple ’true’ and ’false’, the first turning on the verbosity
and the second turning it off. When verbosity is turned on a command from the
client side like m.sendCommand(’differential_wheels_set_speed(10,12)’)

will show up in the terminal in which Webots is started as:

differential_wheels_set_speed(10,12)

Element to be tested:’10’

Element to be tested:’12’

Extracted types:

Element 0 = int

Element 1 = int

Extracted values:

Element 0 = 10

Element 1 = 12
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This shows the several steps in the parsing algorithm. First is the extracted
command. Then the arguments are displayed, at that point still strings. Then
the types of the arguments are determined and last the actual value is associated
with the initially extracted type.

The second special command is more a courtesy to the Java Virtual Machine.
Before a revert command is given to a supervisor robot the command ’die’ can
be sent to the other robots. This terminates the server on these robots leading
to a clearer termination of these controllers. A note of caution, this command
has not been fully tested and its use is probably not even necessary.



Appendix B

Problems and solutions

when building GATE

In this appendix an elaboration on the many problems encountered when imple-
menting, testing and using GATE will be given. This in the hope that possible
future users and developers find it useful when doing the same.

First an overview of the used software will be presented with which GATE
plays nice in order to frame the following discussion in the right context.

• JDK 1.5.0 03 and 1.5.0 06

• Webots 5.0.6, 5.1.4, 5.1.7 and 5.1.9

• Matlab 7.1.0.183(R14) SP 3 and Matlab 7.0.0.19901(R14)

• Redhat 6.2 and 7.2

• Mandriva 10.0

• Ubuntu 6.06 and 6.10

B.1 Limited connections

After using GATE for a while new connections where mysteriously refused. Ev-
erything seemed to be in working order but the new connection initiated from
Matlab did not connect. A generic connection refused error was returned.
After increasing verbosity on the server side it appeared that the Java Virtual
Machine ran out of so called ’file descriptors’. These descriptors are low level
pointers toward files. And, as the Unix system does, file descriptors can be any-
thing from real files to virtual devices but also network connections. The virtual
machine used at that time did not seem to release these descriptors properly and
ran out of them leading to connection errors. Increasing the number of available
descriptors postponed the problem but did not solve it. Closer inspection of the
running ’java’ instance revealed that the command was in fact aliased to the
’kaffe’ binary. Kaffe is an implementation of the JVM specifications intended
for education. It is written as clean as possible but only implements a subset of
features. Perhaps more problematic was the version implemented in this specific
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binary which was version 1.1 dating back to 1997. Installing the most recent
version of Sun’s JDK and using that java binary solved the problem, it now
properly released the file descriptors allowing more than the initial thousand
connections.

B.2 Transmitting images with threads

There were actually two obstacles to overcome when trying to transmit cam-
era images from Webots to Matlab. First a request to send an image with
m.sendCommand(’camera_get_image(cam0)’) crashed Webots and hung Mat-
lab due to non responsiveness from the simulator. An error message

GLX: cannot make current.

was observed on the server, thus the Webots, side. This problem only occurred
when using a JVM from Sun Microsystems R©. The problem was eventually
traced to the use of the subsystem called X on Linux which is responsible for all
the graphics. Both types (X.org1 and XFree862) were tested and affected by the
problem. This subsystem in combination with Webots, the JVM from Sun and
the use of threads within the Java controller caused this problem. If and only
if this combination of programs and techniques was used it yielded this error.
From Section B.1 it is clear that another JVM could not be used. The Linux
operating system was at that moment the only OS available and the general
functioning was far preferred over the other alternative. Both alternatives of X
caused problems closing that avenue as a solution. The only alternative left was
the removal of the additional threads in GATE. This let to the incarnation of
the non-threaded version of GATE. This does work but the threaded version is
preferred for its ability to process concurrent requests which fits the requirement
of a distributed environment better.

There was one additional problem when transmitting the images to Matlab.
The call camera_get_image returned an array of positive and negative integers
and by no means a usable image. After adjusting for the number of colours
possible by adding to every element in this array the number 224 ≈ 16.7×106 it
turned out to be bits describing a colour image. Each eight bits defined a colour
in the order red, green, blue. After shifting the colour adjusted array by the
appropriate number of bits for each colour and merging the resulting three mono
colour images into one image. The final step entailed translating the obtained
image 90 degrees clockwise in order to correct to the original orientation as the
intermediate image was rotated 90 degrees counter-clockwise.

B.3 Timely connections

Creating reliable connections seemed to be a persistent problem. With the
problem of file descriptors solved several other problems emerged. One of which
was that sometimes (not deterministic) Webots did not seem to respond to
robot_step(n) request. This problem could be solved by sending the same
request again or, more puzzling, with n = 0. This could be worked around

1http://x.org/
2http://xfree86.org/

http://x.org/
http://xfree86.org/
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from within Matlab by checking whether or not the request was processed or by
just sending a couple of requests with n = 0 but this was clearly undesirable.
The solution lay equalising the size of the timesteps taken in both Matlab and
Webots. A Webots world has a node called ’WorldInfo’. Typically the name
of the world is designated here as well as the strength of gravity among other
things. Also the ’basicTimeStep’ is defined here. The trick is to take timesteps,
with robot_step(n), that are multiples of the ’basicTimeStep’ as defined in
that particular world file. Doing so eliminates the problem of ignored requests.

Another problem occurred when there were multiple robots (either regular
or supervisors) in the world. Sometimes (again non-deterministic) one of the
robots failed to initialise after a simulation_reset request from a supervisor.
The failing robot just never returned from the constructor method call. This
was and is very odd and made it impossible to run long experiments. It appears
that Webots does not always wait for all robots to finish initialising and just
starts the simulation. It does, however, not start when not a single robot is
done initialising. This fact was exploited to circumvent the problem. What can
be done if this problem occurs is to hold further execution of the controllers by
one second (arbitrary) after they are done initialising. In code terms place a

try {

Thread.currentThread().sleep(1000);

}

catch(Exception e){}

block after the init() call. There exists one more timing problem which will
be discussed in the last paragraph.

B.4 Java support

The creators of Webots tout their product as being compatible with both Java
and C++. Partly based on this statement the choice was made to acquire
Webots as it appeared to support Java as well. Unfortunately this was not
exactly the case. When implementing a Java controller for a supervisor some
methods were absent which were available in the C++ API. It was impossible
to fix this without the help of the developers. Turning toward them, however,
did help in a relatively short period of time and most of the missing methods
are now added to the new releases of Webots.

B.5 Physics

Another reason for choosing Webots was the support for intricate and realis-
tic physics. This worked well up till the point where a world was designed in
which the robot needed to balance in an uneven terrain, see Figure 4.9. During
preliminary tests the robot displayed very strange behaviour. It seemed that it
was bouncing off the IndexedFaceSets (IFS) which made up the uneven terrain.
This problem seemed only to occur when an IndexedFaceSet was used in con-
junction with a cylinder or sphere. It was of these objects our robot’s wheels
were made. Eventually the problem was traced to the physics engine used in



B.6. Loose ends 62

Webots namely the Open Dynamics Engine or ODE3 for short. The collision
detection between cylinders or spheres with IFS seemed faulty. The problem
seems to persevere and usage of IFS in combination with cylinders or spheres is
not recommended.

B.6 Loose ends

This paragraph will be dedicated to the several problems which remain and are
not properly addressed or investigated.

At the moment version 1.4.1 of GATE does not support the transference of
bytes. Arguments concerning bytes are not properly parsed and are cast to the
default float array. This is not a big problem because only two methods require
bytes as either an argument or return value.

Another more vital problem is the fact that after a large number(5000+) of
reverts initiated by a supervisor none of the controllers get re-initialised which
result in failures to connect from the client side. This problem seems unrelated
to the problem described in the paragraph on timely connections and as it
stands there is no solution other than manually reverting or restarting. This is
a nuisance and could possibly be dealt with from within Matlab. Matlab could
detect failures to connect and restart Webots. And although Matlab possesses
the ability to call lower level system calls there is no guarantee this will work.
Nor is it trivial to write such a procedure.

3http://www.ode.org

http://www.ode.org
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