
Fast Local Mapping For Mobile Robots

Erik Govers

March 6, 2007

II

Concluding thesis for Cognitive Artificial Intelligence

Utrecht University

Philips Applied Technologies

1st Supervisor: Dr. M. Wiering
2nd Supervisor: Ir. B. Verhaar
3d Supervisor: Prof. Dr. J.-J.Ch. Meyer

III

IV

Abstract

The focus of academic research to map building for mobile robots lies most often
on the algorithms that use accurate sensor data, obtained by e.g. a laser scanner,
to reduce uncertainty about movement, thereby facilitating the construction of
large consistent maps. This thesis describes the research that is done to the
possibilities concerning fast, local map building using inaccurate sensors.

The characteristics of several sensors are analysed, both individually and
together in a reconstructed setup and algorithms are evaluated to study their
potential for dealing with noisy sensors in real time. A simulator is written in
C++ to integrate these matters and a robot platform is constructed to test the
sensors in combination with the algorithm in a real life application.

V

VI

Acknowledgements

First of all, I would like to thank Philips Applied Technologies in general for
giving me the opportunity to graduate on the fascinating subject of robotics.
More specifically I would like to thank Boudewijn, my supervisor at Philips,
for the patience that is often required when supervising a student of philosophy.
Bart Dirkx and Thom Warmerdam, thanks for the useful input at our meetings.
Also, I would like to thank Dr. Marco Wiering, my supervisor at Utrecht
University, for all the help and for forcing me sometimes to take perspective and
Prof. Dr. J.-J.Ch. Meyer for his time to review my thesis. Harry Broers, thank
you for helping me out, and Sander Maas for getting me in. Further I would like
to thank my parents, of course, for all the support not only during my graduation
period but during my whole career as a student. A lot of thanks go out to my
friends who kept asking me when I would finally finish this assignment. And
last but not least, Renske, thank you for your patience and kindness especially
during the last months.

VII

VIII

Contents

1 Introduction 1
1.1 Problem Description . 1
1.2 Relevance to AI . 2
1.3 Project Description . 3
1.4 Approach . 4

2 Sensors 5
2.1 Introduction . 5
2.2 Infrared . 6

2.2.1 Operation & Use . 6
2.2.2 Performance . 8

2.3 Ultrasound . 15
2.3.1 Operation & Use . 15
2.3.2 Performance . 16

3 Algorithms 26
3.1 Basics . 26

3.1.1 Introduction . 26
3.1.2 Bayes . 27
3.1.3 Particle Filtering . 28

3.2 Map Building . 31
3.2.1 Introduction . 31
3.2.2 FastSLAM . 34
3.2.3 DP-SLAM . 35

4 DP-SLAM 37
4.1 Overview . 37
4.2 Occupancy Grid . 37
4.3 Ancestry Tree . 38
4.4 Weighing the particles . 40

4.4.1 Laser . 40
4.4.2 Conversion to Ultrasound 41

IX

5 Robot 43
5.1 Introduction . 43
5.2 Hardware - Platform . 43
5.3 Hardware - Electronics . 46

5.3.1 Microcontroller . 46
5.3.2 Motors and Motor controllers 46
5.3.3 Sensor Polling . 47

5.4 Software - PIC . 48
5.5 Software - Laptop . 48

6 Results 52
6.1 Assault Course . 52
6.2 Error Compensation . 64

7 Conclusion 66
7.1 Conclusion . 66
7.2 Recommendations . 67

A Application Manual 69
A.1 Robot . 69
A.2 Laptop . 70

B Robot Hardware 71

C Software 85
C.1 GUI . 85
C.2 defs.h . 85

X

XI

XII

Chapter 1

Introduction

When autonomous mobile robots are to be used to perform certain tasks in
domestic environments, the least they should be able to do is navigate through
it. Moreover, performing a task usually involves planning for which the robot
needs a map; to navigate from A to B, the robot should know where A and B are.
And if the locations are known, it needs information about the objects between
them to avoid bumping in to things. In other words, it would help a robot a
great deal if it would know more about its environment. This conclusion brings
us to one of the major subjects in the field of mobile robotics: map building.

1.1 Problem Description

Problem - Intuitive Constructing a map from scratch is not as trivial as
one might think. Humans tend to underestimate the difficulty of tasks they are
really good at. And without any effort at all we are capable of moving through
both small and large open spaces using the information from our senses, the
most important of which (at least for navigation) are the eyes. The ’task’ of
realizing where you are given a known environment - like for example your house
- is especially easy; one quick look around will tell you your location.

This last task though, which for mobile robotics is called self-localization, has
provided researchers with food for thought for many years. Even when (a map
of) the environment is known, finding your own position is a difficult task indeed
for a robot; If the ”eyes” of a robot are a 180◦ laser scanner, measurements can
be noisy. If less accurate sensors are used the noise is worse. Maps are often
ambiguous. Wheels can skid. People move through the environment. In other
words, a robot has to deal with the uncertainty that arises when moving through
a noisy environment doing measurements using noisy sensors. Studies to both
algorithms and sensors were part of the research conducted in fulfilment of this
graduation thesis.

1

Algorithms For decades now a lot of progress is made in the inspiring research
field of robotics. The problem known as localization in which a robot has to find
and/or track its own location is practically solved, e.g. [11] [2], at least under
certain conditions. Mapping, or map building, is the more difficult problem
of building a map of the surroundings and is often mentioned together with
localization since in practice both problems have to be solved together; to build
a map, the robot needs to know where it is within this map. Simultaneous
Localization and Mapbuilding is often abbreviated as SLAM.

Several techniques have been unleashed onto the problem of robotic map-
ping. One of the leading researchers in the field, Sebastian Thrun, has made
an excellent survey [10] in which a lot of these techniques are discussed, several
of which have proven to be useful. Some algorithms work better under specific
conditions and others are useful under more circumstances but are too slow to
work online. There’s one thing however all algorithms have in common: They
try to filter out as much uncertainty as possible from the continuous stream of
data that comes from the sensors, which makes them dependent on the accuracy
of the sensors.

Sensors There are several common sensors that are used in robotics today.
From [10] it is clear that it’s already possible to build quite accurate maps
with expensive hardware like a SICK laserscanner or (stereo) vision. It is even
possible to build maps on the fly, enabling the robot to detect objects at the
moment they get close, and simultaneously adjust the map. However, map
building gets challenging when less accurate sensors are used. Using inaccurate
sensors such as ultrasound or infrared range sensors is interesting from two
points of view; a Sharp infrared range sensor is typically 100 or more times
cheaper than a 180◦ laser scanner, and then of course there’s the scientific
challenge to create better algorithms to deal with the increase in the amount of
noise.

Research This graduation thesis is a report of the research, conducted by the
author, to the possibilities concerning fast and local map building in mobile,
autonomous robots using cheap hardware. Research is conducted to the nature
of several sensors and to map building algorithms with potential to be versatile
and potential to be fast. The results of this research are combined to study
the possibilities of constructing local maps using existing algorithms adapted
for use with inaccurate sensors.

1.2 Relevance to AI

Artificial Intelligence is a very broad field of research. Anything remotely re-
lated to human intelligence, including logical reasoning, speech recognition and
synthesis, but also the biology of the brain and autonomous robotics in general,
can be said to belong to AI.

2

The reason why a non-autonomous robot (e.g. a welding robot in a car
factory) doesn’t have to be intelligent might be obvious, but for the sake of
clarity it’s stated here anyway: Since the robot’s working environment is known
with a high degree of certainty, there’s no need for the robot to respond to this
environment. It is possible to make it perform its job using time as the only
variable. To continue our example, the robot knows the location of the object
it needs to weld at any point in time and uses this information to determine
where and when it should start. In other words, it has no need to extract and use
information from the environment. In contrast to an autonomous mobile robot,
that is supposed to perform tasks in a completely undefined and dynamical
environment.

From the advent of robotic research until not such a long time ago, a lot
of effort was being put in studying only the theoretical reasoning behavior of
a robot. Several kinds of modal logic and agent technology for example are
not only applied for software entities; (Academic) research is conducted to use
these techniques in real mobile robots. Intensive pondering about the usage
of information however is of no use if the information concerned is not readily
available. To enable high level reasoning about a noisy, unpredictable world,
some gaps have to be closed. And this is why research about the use and
integration of sensors is so useful. It is a major challenge to clean up the noisy
data gathered by sensors, and to provide the (high level software of the) robot
with accurate and clean information about its surroundings. It’s inherent to
measuring in the real world that sensor data is noisy, even when the sensor itself
is quite accurate. Skidding of wheels can be enough to send a robot completely
astray. The only way to deal with this uncertainty is to analyze large amounts
of raw sensor data. Smart algorithms are obviously necessary to do this in
realtime. In this thesis a description of several of such algorithms is given.
Both sensors and algorithms are tested to discover the best combination(s).

So in fact, the relevance of this graduation thesis to the field of artificial
intelligence is twofold: First of all, the algorithms that deal with real world
data have to be ’intelligent’ by themselves in order to be able to extract the
useful information. This is what the algorithms discussed in this thesis do: They
implicitly remove unwanted data and incorporate what they ’think’ is good data
in their world model. Second, because of these algorithms and the information
they can provide, more high level reasoning becomes possible; accurate data
about the real world is of great use to a mobile robot.

1.3 Project Description

This graduation assignment consists of three tasks that are to be performed in
parallel: The first assignment is to do a literature study about Simultaneous
Localization And Mapping (SLAM) by mobile robots. The focus of the liter-
ature study will be on algorithms suitable for fast and local map building in
domestic environments, and on sensors suitable for this task. The second as-
signment will elaborate on the subject of sensors; several (infrared, ultrasonic

3

and perhaps other) sensors are to be tested in practice using a simple setup,
evaluating them on their potential for use in mobile robots for domestic envi-
ronments. Requirements: A typical refresh rate of 1 Hz, with an accuracy of
0.1 m. The third assignment is building a simulator for a standard PC, paying
special attention to accurately mimicking the behavior of the tested sensors.
When these three assignments are (at least partially) completed, the algorithm
used in the simulator is implemented in a real-life application for testing pur-
poses. Both simulator and real-life platform can assume a global, top level map
is available; The platform should be able to map unexpected objects within the
global map.

1.4 Approach

Ultrasound and infrared range sensors are tested in a simplified environment.
The infrared sensor was tested using both rectangular and round objects at
varying distances to find out at what distance the sensor is useful. The ultra-
sound sensor was tested in a different way; due to the expected sensitivity to
reflections, care had to be taken to place the robot in the right setting. The
shape and reach of the ultrasonic beam is investigated, as well as the influence
of reflections on measurement results. Results of this research can be found in
chapter 2. Different algorithms are studied and discussed in chapter 3. From
the potential candidate algorithms one was chosen to be adapted to match the
needs of fast and local map building. The algorithm in question, DP-SLAM,
and its adjustments are explained more elaborately in chapter 4. When the sen-
sors and algorithms were selected, construction of the simulator and the robot
could commence. In practice, work on the latter started even earlier in order to
finish this project in time. The software was written in such a way that it could
be used for both the simulator and the robot. In chapter 5 a full description of
both hardware and software of the mobile robot platform is given. The results
section shows both maps produced by the simulator as well as maps built with
the real robot. The outcomes of the simulator are compared to those of the
robot to gain more knowledge about the capabilities of the robot as a whole.
Also, DP-SLAM is applied to the raw sensor data acquired by the robot in an
attempt to improve the accuracy of the resulting map. Results are given in
chapter 6 and the conclusion can be found in chapter 7.

4

Chapter 2

Sensors

2.1 Introduction

Many different sensors can be used for dealing with all sorts of (localization and
mapping) problems by researchers with all kinds of needs. There are infrared
sensors, ultrasonic sensors, cameras, inductive sensors, capacitive sensors, laser
scanners, and so on and so on. The choice of the right sensor is important
since it strongly influences the choice of the mapping algorithm. It is not within
the scope of this assignment to test every possible sensor using several kinds of
algorithms. Choices had to be made, and since the main interest of this article
is a fast local map building robot, accurate expensive sensors like laser scanners
were not considered.

In literature, a sensor that is often used for robotic map building is the SICK
laser scanner, see for example [13] [4] [1]. For academic purposes, this is indeed
a plausible choice. A lot of accurate range information can be obtained by the
laser scanner so the map building algorithms can focus on compensating for
motion error, the subject of interest of most map building algorithms. See [10]
for a summation and examples. A major disadvantage of this sensor is that it
is too expensive for use in a commercial product; the exact price depends on
the model, but such a device costs several thousands of euros at the time of
writing [18]. To process the significant amount of data the scanner generates, a
pc or the like is needed that contributes to the overall costs as well. Moreover,
from a scientific point of view, it is a major challenge to try and overcome the
assumption that measurements need to be as accurate as they are with the laser
scanner, and still be able to build maps.

Years ago researchers, among whom Moravec [6], started doing research to
localization - using ultrasound sensors. Technology has advanced since then and
now most often the laser scanner is used in combination with a fast computer.
During this graduation project, an attempt is made to adjust the current laser
scanner algorithms for use with ultrasound sensors. To do this, a specific ultra-
sound sensor and its behavior in a complex environment is studied. Also, an

5

Figure 2.1: Internal workings of the Sharp GP2D12 infrared sensor. This figure
comes from the datasheet, see appendix

infrared sensor, the Sharp G2DP12, is studied in the same manner to find out if
it is possible to use this sensor for local mapping as well. Below is a description
of the results of these studies1.

2.2 Infrared

2.2.1 Operation & Use

There are several common principles used for infrared distance measurements,
two of which (based on either triangulation or light intensity measurement) are
found in relatively cheap distance sensors. A third method is based on time
of flight of light, used for example in the laser scanners from SICK. Since this
last method works on the principle of measuring the time an infrared burst of
light takes to return an ’echo’, the device’s electronics have to be very accurate
and very fast (certainly compared to the hardware of the sensors we’re about
to review), which makes it a commercially unattractive mobile robot.

An example of a sensor that is commercially attractive is the Hamamatsu [16]
P5587, which is a very simple sensor using a photosensitive IC that measures
infrared light intensity to output a high or low signal to indicate presence of an
object. Sensors like this can be used e.g. for paper detection in printers, or end

1Originally the robot was to be equipped with a pair of Laser Beetles, laser based computer
mice that could be able to replace the conventional wheel encoders. Some time has been put
into getting the mice to work in software, unfortunately without success. The basic framework
is present in the software and the Laser Beetles are physically attached to the robot, so perhaps
in the future it is possible to test the sensors individually and integrate them into the platform
completely.

6

Figure 2.2: The principle of triangulation.
The infrared ray of light falls on an object
and is reflected through the lens to the PSD.

Figure 2.3: Reconstructed example of ana-
log output from the Sharp GP2D12 infrared
sensor. The analog output, which is updated
with 25Hz, suffers from electric noise.

of tape detection in VCR’s. An application in the area of robotics in which this
sensor would be useful is an encoder. However, for measuring distance, we need
something more sophisticated, that is nevertheless cheap enough. Fortunately,
Sharp [17] offers such a sensor. The sensor used in the experiments is the Sharp
GP2D12 infrared distance sensor. The electronics are relatively simple, making
it a cheap and easy-to-use sensor for range sensing. It works by emitting a beam
of infrared light, and uses a position sensitive device (PSD) to do triangulation,
see Schwope [12]. Figure 2.1 depicts a block diagram of the internal workings
of the Sharp sensor.

The PSD is a photosensitive semiconductor device [12]. Light emitted by
an infrared LED that is present in the sensor unit reflects from an object back
on to the PSD, right before which it passes through a lens, see figure 2.2. The
location on which the ray of infrared light hits the PSD depends on the angle of
incidence on the lens, which in turn depends on the distance between the object
and the lens. Altering this distance means a change in the flow of currents in
the PSD which in turn can be translated into a distance to the measured object
using the formula C ∗ (IA − IB)/(IA + IB) where IA is the output current on
one side of the photo sensitive layer, and IB the output on the other side. C is
a scaling factor. The technique of passing a ray of light through a lens on to a
PSD (or sometimes a CCD) is called triangulation.

The analogue output from the GP2D12 is not updated continuously. Instead,
the output value is refreshed at a rate of 25Hz. After each 40ms, the Voutput
line is set to a new value. A (reconstructed) output sample is pictured in figure
2.3. Unfortunately, as the reader can see, there’s some random electric noise on
the output which we try to cancel out by taking the median of three readings.

7

2.2.2 Performance

The GP2D12 should be able to measure a distance from 10cm to 80cm according
to the company’s data sheet (see appendix). This is tested in a simple setup.
Different objects at varying ranges were placed in front of a sensor attached to
the robot. A DLP245PB microcontroller (see chapter 5 and the appendix) polls
the sensor every 8ms as mentioned. The latest three measurements are stored
in the microcontroller’s onboard memory. When a request (from a pc or laptop)
is received, it sends the median of these three values. In the experiment, ten
of these requests were made for every tested distance, using a laptop attached
to the microcontroller. Tests were performed using a flat white surface (copier
paper) measuring 10cm x 10cm. The surface was measured in two ways: One
series of experiments was done with the surface perpendicular to the sensor’s
beam, for another series it was kept at an angle of 45◦. A third series of
experiments was performed using a curved surface, covered with the same white
paper, see also figure 2.4. Figure 2.5 shows the results of the experiments.

In practice, the minimal distance is somewhat better than the 10cm men-
tioned in the company’s specifications. Figure 2.6 depicts the distance estimates
based on the median of 10 requests (i.e. 30 measurements) to the microcon-
troller, which are evidently more accurate than distance estimates based on 1
or 3 requests, see figure 2.8 and 2.7. As one can see in figure 2.5 and 2.6 sensors
readings become consistent from about 8cm - which is good news for robotics.
Readings below 8cm produce ambiguous results, which are potentially disas-
trous for map building, but this problem can be solved by placing the sensors at
least 8cm into the robot. The robot used in the experiments (see chapter 5) has
not been altered to solve this issue. However, no experiments were performed
in which the distance of the sensor to an obstacle became less than 8cm.

The maximum distance is significantly less than 80cm. It’s hard to estimate
what the maximum useful range is, since accuracy gradually declines, but figure
2.6 suggests output is consistent up to about 60cm. Figure 2.8 however indicates
that measurement error can become more than 5cm for distances further than
40cm. This graph is based on medians of 3 measurements, which is the same
information density the robot uses. Taking the median of more measurements
might seem the solution here. More measurements however mean more delay.
As mentioned in the ”Operation & Use” section the sensor updates its value
every 40ms. Taking the median of 9 measurements (figure 2.7) or even 30
measurements (figure 2.6) is bound to produce better results due to the fact that
this simple ’filter’ does not only cancel out the electric noise; 9 measurements
are done in 9 ∗ 8ms = 72ms, which means that they cover two or three sensor
updates. This is not a problem for a static experimental setup, but for a moving
robot it could be, depending on the speed of the robot and the desired spatial
resolution.

From figures 2.6, 2.7 and 2.8 we gather that information is consistent at least
between 8cm and 40cm. Between 40cm and 60cm output seems to decline grad-
ually, but still appears to be (albeit less) consistent. When we look more closely
to the data by calculating the standard deviations (see figure 2.9), output noise

8

Figure 2.4: Measurement setup for the Sharp GP2D12 infrared sensor. The objects were tested at
various distances.

indeed seems to increase rapidly for distances over 400mm. When the object is
more than 60cm from the sensor, output is too much affected by noise to provide
enough information for use in mapbuilding. In short, the sensor appears to be
sufficiently accurate between 8cm and 60cm. The black line in the graph is the
trendline of the blue line (which shows measurements of an object perpendic-
ular to the sensor’s beam). It indicates that standard deviation doubles when
the object distance increases from 400mm to 600mm. After 600mm, standard
deviation increases even faster. Perhaps it is possible, in future research, to
investigate the possibility of using the data originating from distances between
400mm and 600mm by using an accurate lookup table or a better function fit.

All of the above holds for the objects from the experiments. Since the
infrared sensor works on the principle emitting and receiving light, it’s inherent
to this kind of measurement that errors come to bare when the light beam is too
heavily altered or influenced by a measured object. Altered, for example, when
the surface of the object is black. Some experiments were performed with black
objects. An effect noted during experiments is the ’invisibility’ of an object
when it is at a distance of about 30cm. It is the author’s experience that when
a black object is near, output is as consistent as with a white object. Further
away, the amount of reflected light comes below a certain threshold which causes
the sensor to stop detecting the object. The distance threshold for becoming
invisible to the sensor will probably vary with the type and color of the material.
As mentioned, no real data is available at the time, but it is advised to research
this in future experiments.

An object that doesn’t reflect enough light can form a problem. However,
the opposite is true as well; if the object reflects light almost perfectly without
divergence the sensor is only able to detect its presence if the measured surface is
(nearly) perpendicular to the emitted light source. An object having an oblique
angle will reflect the light away from the infrared PSD, thereby creating the
same effect as a black surface would; Again, the sensor will tell us there is no
object.

9

Figure 2.5: Infrared sensor output (using the median of 30 distinct measurements) from distance
0cm to 70cm. The blue line represents data gathered with the flat surface perpendicular to the
sensor beam, the purple line shows the data from the same surface under an angle of 45◦ and the
yellow line is the curved surface data (see figure 2.4).

10

Figure 2.6: ADC values converted to distances using the medians of 10 requests. Raw sensor data
appears to be easily translated to centimeters using the equation Distance = 50000/(V alue− 15),
at least for the distance between about 10 and 40 centimeters.

11

Figure 2.7: ADC values converted to distances using the medians of 3 requests.

12

Figure 2.8: ADC values converted to distances using only 1 request, i.e. the median of 3 outputs.

13

Figure 2.9: Standard deviations of 30 infrared range sensor measurements. This graph suggests
that using e.g. a detailed lookup table instead of the described equation might increase accuracy
for measured distances betweeen 400mm and 600mm.

14

To summarize, the sensor is blind for black and highly reflective objects, and
objects that are further away than 60cm. Curved surfaces as well as surfaces that
are not perpendicular to the sensor’s beam produce . It is therefore advisable to
be very careful when interpreting range information from an IR measurement.
If the sensor outputs its maximum value -indicating that it didn’t measure
anything- it would be obvious though quite unwise to take this information
for granted and update the grid cells of the map that the infrared beam has
passed through as being empty; there are many circumstances in which the
sensor is ’tricked’ by the environment. However, when the sensor does measure
something, it’s relatively certain that an object exists at the concerned location;
since the sensor is relatively ’picky’ about the measurement conditions, an actual
measurement -accurate or not- at least implies that there’s some object within
its line of sight. In short, information from an infrared sensor is only useful when
a measurement indicates a nearby object. Using a maximum range measurement
is not recommended since there’s quite some chance that the sensor has missed
an existing object.

Concerning speed of the robot and the ability to avoid objects using the
Sharp GP2D12: Assuming electrical noise is less important and one is using
only one measurement, object detection speed is limited by the sensor’s refresh
rate of 25Hz. Output is accurate enough for object avoidance from 8cm up to
60cm; a window of about 50cm. A robot with such a sensor attached to its front
measuring straight ahead would therefore be able to drive2 50cm in 40ms, i.e.
12.5 m/s. However, due to the properties mentioned above, using this infrared
sensor alone is not sufficient for mapping.

2.3 Ultrasound

2.3.1 Operation & Use

See also the datasheet in the appendix. For ultrasonic measurement, a Devan-
tech ultrasonic ranging module, model SRF04 was used. Or more specifically,
the 400ST160 (transmitter) / 400SR160 (receiver) combination residing on the
module. The same PIC that was used to communicate with the infrared sensor
is now used to trigger a sound burst on the SRF04 and to receive the echo. For
more information about interfacing the PIC, see section 5.3.

Although the Sharp GP2D12 refreshes its output every 40 msec, it can be
polled much more often. The output of an ultrasonic sensor depends on the time
of flight of the sound burst. The sensor is able to measure up to quite a distance
(see 2.3.2), but the echo that is to be received will take a long time to travel
back to the sensor. To get data from the SRF04 we will need a totally different
approach than with the ir sensor. The same holds for the interpretation of the
data itself; integration into the map is totally different from the infrared sensor.
More about the latter can be found in chapter 4. In this section, an explanation
about the operation of the sensor is given.

2Making the unrealistic assumption a moving robot is able to stand still in .0s

15

Figure 2.10: The SRF04 ul-
trasound sensor

Figure 2.11: SRF04’s back-
side

Figure 2.12: Pin out of the
SRF04

Figure 2.10 shows a picture of the sensor, 2.11 shows the backside and figure
2.12 is a schematic drawing with labels at all the connections. ”Trigger” and
”Echo” are of interest here. The trigger pin is controlled by the microcontroller.
A 5V pulse of at least 10 µs needs to be applied to the pin to start the ranging
module. A burst of ultrasound is sent from the SRF04 and the echo line is
raised. This is the signal for the microcontroller to start counting. If an echo
is received, the echo pin is lowered again. Please see figure 2.13 for a schematic
drawing of the timings.

A timing example: Assuming the speed of sound is 340 m/s, it will take
about (2 ∗ 3)/340 ≈ 0.018 seconds (18 ms) for the sensor to measure an object
at a distance of 3 meters. The sensor has a time out built in, in case the sound
wave is absorbed or deflected completely and there’s no echo at all. That means
in the worst case scenario we have to wait for the timeout to occur, which is
36 ms. The maximum range of the ultrasound sensors is 3.7 m (see 2.3.2). An
object at this distance will return an echo after (2∗3.7)/340 ≈ 0.022 seconds (22
ms). The time out is therefore inconveniently long. And although it is possible
to keep track of time and create a software based time out in the microcontroller,
if the sensor doesn’t receive an echo it does not reset before the 36ms, plus an
extra 10ms, are over. A robot traveling at a speed of 2 m/s, traverses 9.2 cm in
46 ms and can ’miss’ objects of 9.2cm wide completely.

When using multiple sensors, the only way to be reasonably sure a sensor
only receives the echo of its own sound burst, is to not trigger (adjacent) sensors
simultaneously, but to spend at least 22ms on every sensor. This means for an
array of 6 sensors the amount of time needed to poll the entire sensor array
increases to 132ms. Fortunately, the difference between the required time out
of 22ms and the real time out of 36ms plus 10ms is cancelled out by the fact
that polling all sensors often takes more time.

2.3.2 Performance

On the internet, quite some unofficial information about the Devantech SRF04
range sensor can be found, see for example [9]. However, since this information
is unofficial, several things needed to be tested in practice to make sure it was
correct, including the shape of the ultrasonic beam and timing issues.

Tests were done using different objects. The same metal bin that was used

16

Figure 2.13: Timing manual of the SRF04 ultrasound module, from the datasheet, see appendix.

in the assault course (see chapter 6) is held perpendicular to the sensor’s beam,
and at an angle of 45◦ with the sensors’s beam. A round metal bin of 26cm in
diameter, also used in the assault course, is measured while keeping it exactly
aligned with the sensor’s beam.

Because of the wide area the ultrasonic sensor measures, one single measure-
ment contains relatively much information about the environment, especially
when the measured distance to an object is relatively large. If the sensor re-
turns some distance value, it’s relatively safe to assume that there’s nothing
occupying the space between the robot and the measured object. The setup
used for the beam shape measurements is shown in figure 2.16. Figure 2.14 is
a schematic drawing of the shape of the ultrasound beam. The larger the angle
of measurement, the less the range of the sensor.

Since the sensor can measure up to 3.7m, one measurement tells a lot about
empty space. Unfortunately - and perhaps initially a bit counter intuitive - it
tells little about a measured object. The ultrasonic sensor returns a distance, but
doesn’t tell much about the width of the obstacle. An infrared sensor’s beam has
a certain width and an IR measurement result comprises a coordinate prediction
along with some uncertainty about the prediction. However, the ultrasonic
sensors beam is too wide to speak of a single location estimate; a complete line
segment is needed to represent the possible locations of the measured object.
Please look at figure 2.15 which illustrates the difference between the infrared
and ultrasound measurements. A natural reaction to this problem would include
using a Gaussian distribution to still be able to represent the uncertainty, and

17

Figure 2.14: Field of view of an ultrasound sensor as measured in the experiments.

Figure 2.15: On the left is a grid with an object in it (red). The middle figure depicts a standard
discretised ultrasound beam (originating from a sensor below), the rightmost picture is an example
of an infrared beam. The black gridcells represent possible object locations. In the ideal case,
only red gridcells are marked black. Both an ultrasound and an infrared beam have a certain
width however which introduces uncertainty about the location of the measured object. Since an
ultrasound beam is much wider than an infrared beam, more uncertainty is introduced.

18

Figure 2.16: Measurement setup for the beam shape experiments. A rectangular, metal bin of 30cm
wide was used to measure performance at 0◦, 10◦, 25◦ and 40◦ at various distances.

use the center of the line segment as the mean. Moravec and Elfes [6] use
a scheme in which every cell in the occupancy grid contains two values: the
certainty that the cell is occupied and the certainty that the cell is empty. They
use this scheme to do exactly what has just been described; the line segment is
represented by a Gaussian distribution.

There are reasons to doubt whether this is a good choice; First of all - espe-
cially when you assume that most objects are reasonably small - you are very
likely to introduce more noise than real information (see figure 2.15). Second,
it actually makes no sense to assume that one point on the line segment should
be the mean; any point has just as much chance of being the real origin as any
other. It’s a pity to throw away information, but introducing a lot of noise
might be even worse. It would be a better idea to either leave out any object
related information or use a more intelligent scheme to introduce (uncertainty
about) objects. Using particles, one might be able to represent multiple possi-
ble locations, because the particle filter offers the possibility of filtering out the
introduced noise afterwards. This holds for the approach in which a lot of un-
certainty is used to introduce possible object locations, but in combination with
a more advanced scheme to represent the location of objects the particle filter
should perform even better. Please take a look at section 4 for more information
concerning the implementation of the sensormodel into the algorithms.

We’ve seen that due to timing delays, information isn’t very dense; 132ms
for an entire sensor array. The sensors are polled one by one, which means that
every sensor operates at this refresh rate as well. If it is necessary to take the

19

Figure 2.17: The numbers here are fictive.
This is a phenomenon that is actually ob-
served. With little effort a setup of 3 metal
bins is built that can fool the SRF04 in a
very consistent manner: The ultrasound sen-
sor will return a number that is directly pro-
portional to 9+3+6+8.

average or median of several measurements to cancel out noise there’s not much
play for fast mapbuilding.

Figure 2.20 shows us distance estimates based on a single ultrasound mea-
surement. Figure 2.19 depicts the medians of 3 readings. This is the information
density the robot uses. The microcontroller keeps the latest three measurements
in its memory, and sends the median of those three measurements to the laptop
when software indicates it needs information. Figure 2.18 shows the same graph,
only this time one point represents the average of thirty measurements. Data
looks reasonable consistent for figure 2.18. For figure 2.19 consistency seems to
gradually decline. Figure 2.20 shows that consistency is even worse when using
only one measurement.

Figure 2.21 shows the standard deviations in centimeters of the measure-
ments as a function of the distance to the object. This graph is made with
30 measurements per point. Apparently, standard deviation is at a minimum
(indicating consistent measurements) at 160cm.

A phenomenon that should also be noted is the property of a sound beam
that it can reflect of certain surfaces. The metal bin that was used for testing
for example bounces the beam away from the sensor. The angle under which
the sound burst deflects from the smooth surface of the metal bin depends on
the distance to the sensors. The exact circumstances under which this deflec-
tion can occur have been investigated, though measurements were inconsistent.
More thorough investigation is needed to fully understand the reflections of the
SRF04. For an observed example of the sensitivity of the sensor to reflections,
see figure 2.17.

Concerning speed of the robot and the ability to avoid objects using the

20

Figure 2.18: Ultrasound sensor output transformed to distance estimates. Every point is the median
of thirty measurements. The blue line depicts the data gathered with the object right in front of
the robot, the purple line is based on measurements of an object under 20◦ and for the yellow line
the measured object had an angle of 30◦. For an example please see figure 2.16.

21

Figure 2.19: Ultrasound sensor output transformed to distance estimates. Every point is the median
of three measurements.

22

Figure 2.20: Ultrasound sensor output transformed to distance estimates. Every point represents
one measurement.

23

Figure 2.21: Standard deviations of 30 ultrasound range sensor measurements.

24

SRF04: object detection speed is limited by the sensor’s time out of 46ms.
Output is accurate enough for object detection from 0.1m up to 3.7m. A robot
with such a sensor attached to its front measuring straight ahead would therefore
be able to drive 3.6m in 46ms, i.e. 78.3 m/s. Despite from the fact that due to
the Doppler effect the sensor would not be able to detect the echo of its own
sound burst when the robot is driving at this speed, it is very likely that it is
troubled by specular reflections. Moreover, a robot normally implements more
than one ultrasound sensor thereby increasing the delay between consecutive
measurements of the bumper sensor. Determining the maximum speed of a
robot using one ore more ultrasound sensors depends on the amount of sensors
used and the sensitivity of the sensor to reflections in a certain environment.

25

Chapter 3

Algorithms

3.1 Basics

3.1.1 Introduction

Map building research naturally evolved from research to robot localization, in
which the robot has to find and track its location in an already available map.
Localization is not the subject of this thesis. However, the algorithms used in
localization have formed the basis for map building. The mapping algorithms
are therefore understood better if the background about localization is known.
In this paragraph, a very brief introduction is given.

Walking through a familiar room takes no intellectual effort at all for most
people. Doing the same task blindfolded is a bit more difficult. By alternately
taking steps and reaching out to find familiar objects however it is still possible
to move through the room. By repeating this process of walking and ’measur-
ing’ one is able to keep track of the changing location. The problem of keeping
track of your location is called local positioning in the field of mobile robotics.
If a robot using the paradigm described here is equipped with range sensors,
it should be able to maintain an estimation of its position at some degree of
certainty. An algorithm implementing the paradigm is the Extended Kalman
Filter (EKF) [8] for localization. The Kalman Filter however makes an im-
portant assumption: The initial position within a given map should be known
for this solution to work. If the initial position is not known (global position-
ing), or if the robot loses track of its position due to an external influence
(the so called kidnapped robot problem, see [11]), the EKF should be able to
recover the right position by assuming an arbitrary position with a normally
distributed uncertainty. The Kalman filter has several undesirable properties
like a Gaussian noise assumption which caused another algorithm to enter the
field of localization: The particle filter.

When a person is blindfolded and put in the middle of a familiar room with-
out him or her knowing where exactly, that person -from his or her perspective-
could be anywhere in the room. However, by repeating the walking and mea-

26

suring process once again, it is possible for the person to keep eliminating possi-
bilities that are very unlikely, thereby eventually finding the location. Without
an initial position it is necessary for a mobile robot to be able to keep multiple
hypotheses about the current location; when it is, for example, switched on in
a familiar room it needs to be able to ’think’ it could be anywhere in the room
and eliminate hypothesis untill it finds the right one. This is called global posi-
tioning [10]. With a particle filter this is possible. Solving the kidnapped robot
problem is possible as well since it is actually almost the same as the global
positioning problem; if the robot is tracking its location and time after time
the sensor output seems too less correlated with the expected values, it has to
assume the location is unknown again which brings the problem back to global
positioning.

Although the global positioning is obviously harder than local positioning,
the problem is practically solved under most circumstances. Localization how-
ever relies on one very strong assumption: an initially known map. Since this
assumption is only rarely satisfied, an algorithm should actually be capable of
building a map on its own. But before moving on to map building, the statistical
framework of localization and mapping is given in the next few subsections.

3.1.2 Bayes

All discussed algorithms are in fact relying on one concept, the Bayes Filter,
which in turn is based on Bayes’ rule:

p(s|d) = ηp(d|s)p(s) (3.1)

where η is a normalizing constant that ensures the result of the equation is a
valid probability distribution. This section will elaborate on the Bayes Filter.
We will lean on the explanation from [11] but use the currently more common
notation from e.g. [10].

A Bayes Filter is used for estimating the state of a Partially Observable
Markov Decision Process (POMDP). Partially observable means some informa-
tion about the world is available, though not enough to know the entire state.
The classical example of a fully observable process is a game of chess. The
world is of course the chessboard with all the pieces. A player can always see
the position of the pieces on the board, in other words, the player always knows
the state of the world. A pokergame however is only partially observable, since
a cunning participant should be able to deduce at least some information about
the distribution of cards in the game, but does not know the hands of his or her
opponents with absolute certainty. Both the localization problem and the map-
ping problem are partially observable, and since in both cases we’re estimating
a state -localization means we’re estimating position, during mapping position
and the map itself are estimated- Bayes Filter based algorithms can be used.

We’ll start by applying the Bayes Filter to the more intuitive problem of
localization. Later on, it is shown how it forms the basis for map building
algorithms. Localization addresses the problem of estimating your position given

27

(noisy) information about the traversed path and the measurements done during
this movement. In formula:

p(st|zt, ut−1) (3.2)

Here, s is the robot’s pose; its position and rotation around the z-axis. z indi-
cates measurement data and u is either a motor command or -when available-
odometry data. Subscript t and superscript t are used here to indicate data at
time t and all data up to and including time t, respectively. For example, ut−1

is a vector with chunks of movement data {ut−1,ut−2,. . . ,ut0}, whereas zt holds
the measurement data up to and including time t.

Now, the Bayes Filter is used to calculate the desired posterior p(st|zt, ut−1)
from the previously gathered data by applying Bayes’ rule. The resulting for-
mula:

p(st|zt, ut−1) =
p(zt|st, u

t−1, zt−1)p(st|ut−1, zt−1)
p(zt|ut−1, zt−1)

(3.3)

Since the divisor is constant with respect to s, and actually serves the same
function as in equation 3.1, we replace is by η.

p(st|zt, ut−1) = ηp(zt|st, u
t−1, zt−1)p(st|ut−1, zt−1) (3.4)

Now we expand p(st|ut, zt−1) by integrating over st−1, the state from the pre-
vious timestep.

p(st|zt, ut−1) =

ηp(zt|st, u
t−1, zt−1)

∫
p(st|st−1, u

t−1, zt−1)p(st−1|ut−1, zt−1)dst−1 (3.5)

Although this recursive update function enables us to calculate the posterior we
want, using information that is available, it becomes more and more difficult.
As the reader can see, according to this function all data up to time t has to
remain available. This fact would render the Bayes Filter completely useless,
if it wasn’t for the Markov assumption. Bayes Filters assume the environment
has the property of being Markov, which means that past and future data are
conditionally independent given the current state. For our equation, it means
the new posterior no longer depends on all data up to and including t − 1, but
only on the data from the previous timestep t − 1. By applying the Markov
assumption to the resulting equation, we end up with the desired Bayes Filter:

p(st|zt, ut−1) = ηp(zt|st)
∫

p(st|st−1, ut−1)p(st−1|zt−1, ut−2)dst−1 (3.6)

The Bayes Filter forms the basis for several algorithms that are important to
robotic localization and map building.

3.1.3 Particle Filtering

The result of equation 3.6 is a Probability Density Function. Since our state
space is continuous, implementation is not straightforward; due to the continuity

28

there is an infinite number of possible poses, and computing the probability
of being at the right location for an infinite number of locations is obviously
not an option. Particle Filtering solves this issue by using a set of N samples
to represent the posterior [7]. A sample is called a particle and represents
the pose of the robot; a two dimensional coordinate and the heading of the
robot. {si, wi}i=1,...,N denotes a random variable, where {si, i = 1, . . . , N} in
combination with importance factors {wi, i = 1, . . . , N} [11] (also called weights
[7]) represent the posterior we’re looking for. In formula:

p(st|zt, ut−1) ≈
N∑

i=1

wiδ(st − si
t) (3.7)

For an accurate approximation,
∑N

i=1 wi = 1 should hold, so the weights are
normalized. Normalization is not a necessity for the Particle Filter, although it
does keep the weights of the individual particles at a computable level1. Several
versions of the particle filter exist, differing mainly in the way they resample
particles or assign weights. The two most common filters are discussed here.

Sequential Importance Sampling The Sequential Importance Sampling
(SIS) Particle Filter [7] is the most basic of all Particle Filters. It has some
problems which are largely solved by the Sequential Importance Resampling
(SIR) Particle Filter [7] which is discussed in the next paragraph.

To initialize the SIS filter, a predefined number of particles is drawn from
a uniform distribution. To use an example from robot localization: The pose
each particle represents gets random values for (x, y, θ) within the scope of the
known map. Since nothing is known about the competence of each particle,
all weights are initially set to 1/N . During any other iteration but the first,
new poses are sampled for the the set of particles that represents the posterior
distribution.

All particles are sampled according to p(st|st−1, ut−1), the motion model
part of the right hand side of equation 3.6. In robot localization terms, every
particle’s pose (from time t − 1) is updated to predict the actual pose of the
robot at time t, using either movement commands or, when available, odometry
information. In formula, what happens is:

si
t

drawnfrom
= p(st|si,t−1, ut−1) (3.8)

Here, si,t−1 is the pose at time t−1 according to particle i. This step is repeated
for every particle.

1When implementing a particle filter great care should be taken at all steps of the iteration
process that variables containing information important to the filter -especially the particles’
weights- are kept at values that are within the boundaries of the type of the variable. For
example, the C++ data type long double holds a real number with a precision of approximately
18 digits. 18 digits may seem a lot, but when you’re dealing with massive multiplications of
real numbers > 0 and < 1 there’s a good change you run out of precision!

29

Figure 3.1: Sequential Importance Sampling.
The amount of color represents the height of
a particle’s weight. The first column is the
initial set of particles width equal weights. A
few generations later, particle 3 has a weight
of almost 1.

Figure 3.2: Sequential Importance Resam-
pling. At each generation, new particles are
drawn from the weighed set of particles of
the previous timestep. The new particles’
weights are reset. Due to the resampling par-
ticles diversity remains.

Next, the new weights of the particles are updated using the latest measure-
ments, and the measurement model :

wi
t ≈ p(zt|si

t) (3.9)

In other words, for localization, for every particle the discrepancy between the
measured value and the expected value, based on the predicted pose, is calcu-
lated and the resulting set of particles represents the new posterior.

Unfortunately, there’s a problem with SIS, inherent to the sampling process.
Variance of the importance factors can only increase over time [3] which results
in what is commonly known as the degeneracy problem: After several iterations,
one particle will have a weight associated to it that is close to 1, thereby out-
weighing the rest. Apart from the fact that most computational power is being
put into useless samples, particle diversity is completely lost. This, obviously,
is not good for our location estimator. Fortunately, resampling comes to the
rescue.

Sequential Importance Resampling The Sequential Importance Resam-
pling (SIR) algorithm works in a similar fashion as the SIS filter. But instead
of using the same set of particles at every iteration, new particles are sam-
pled from the posterior distribution. Particles with relatively high weights have
a higher chance of being selected2. And as opposed to keeping the weights of
their ”parents”, the ”child particles’” weights are reset to 1/N . Next, new poses
are drawn using p(st|si,t−1, ut−1), just as with the SIS filter. After this, also
similar to what we’ve seen before, the weights of the new particles are adjusted
using the measurement model p(zt|si

t). The difference between the SIS and SIR
particle filter is visualised in figure 3.1 and 3.2.

2Drawing a parallel to the field of evolutionary algorithms, the posterior can be seen as
the gene pool from which new children are selected

30

3.2 Map Building

3.2.1 Introduction

Building maps is all about uncertainty. In the localization examples we could
see that uncertainty was constantly being reduced by comparing measurements
to expected values given a known map. Since in this case we start out with an
empty map we don’t have any point of reference. An error in movement cannot
be compensated by comparing measured and expected values.

Inherent to map building are several major issues. Since robotic mapping
comprises a substantial part of this thesis, it’s important for the reader to un-
derstand its difficulties. Below some of the major problems of mapping are
explained.

Sensor Noise Dependency Statistically independent noise is normally easy
to cancel out by taking a sufficient amount of measurements. Unfortunately, we
are dealing with statistically dependent noise. During map building, all changes
to the world model are related to movement, and movement contains error
as well. Consequently, both errors in movement and errors in measurements
accumulate over time. Even the slightest drift or slip can result in unrecoverable
errors [14].

The most obvious way to cope with this problem is to try and reduce the
chance of introducing motion error by using accurate motion sensors. However,
this is not easy; wheel encoders, the most standard form of motion detection
in mobile robots, are unable to compensate for slip since they only detect ro-
tation of a wheel. However, as opposed to trying to cope with the problem of
dependency of noise in a mechanical way, one can try to tackle it using a smart
algorithm. Actually, tackling this problem is inherent to, for example, a parti-
cle filter based algorithm like DP-SLAM that keeps track of multiple possible
robot paths. This enables us to assume noise independency. DP-SLAM is more
elaborately discussed in chapter 4.

Data Association The problem that is currently known as the data asso-
ciation problem, is one of the most fundamental problems - or perhaps the
most fundamental problem - of robotic localization and mapping. Associating
a measurement with an object is a key feature of any localization and mapping
algorithm. But even with an ideal, noise free range sensor, this association is far
from trivial. Take for example a hypothetical infinitely accurate range sensor
that tells us there’s an object at a distance of exactly 40.0 cm. Then we move
the range sensor 5.0 cm in a direction perpendicular to the sensor’s beam, see
figure 3.3 and 3.4. Again, our sensor returns 40.0 cm. The difficulty here is that
the apparent correlation between these two measurements is not so apparent
at all; the two measurements can be accounted for by several, quite distinct,
explanations. If we assume there’s no noise, we know at least that the two
measurements are correct. What we don’t know is whether they originate from

31

Figure 3.3: At time t and t + 1 the sensor
measures the same distance. Both measure-
ments ought to be associated to one object.

Figure 3.4: At time t and t + 1 the sensor
measures the same distance. Both measure-
ments ought to be associated to two objects.

the same object which happens to be more than 5 cm wide (figure 3.3), or to
two smaller distinct objects (figure 3.4).

If the Euclidian distance between the measured points is less than the desired
resolution of the map, this is not a problem in practice. However, since the
subject of interest of this thesis is cheap (i.e. inaccurate) sensors, it does form a
problem. Data association solely based on Euclidian distance is incorrect under
noisy circumstances. As it happens, if the applied range sensor is somewhat
noisy, the two measurements could very well belong to one single object that
is only a few centimeters wide. Moreover, one (or two) measurement(s) might
also belong to a dynamic object, for example a human being that is passing by.
Matters are even worse, see chapter 2, for the ultrasound range sensor.

As the reader can see, data association is not as straightforward as it might
seem at first glance. Measurements that seem to be correlated may have no
relation at all, so every addition to the reconstructed map should be handled
with care. Different mapping algorithms deal with these problems in different
ways, some implicitly, some explicitly.

Circular Environments A circular environment is an environment in which
you can leave in one direction from a certain location and return to that location
from another direction. The reason that a robot should have an accurate motion
model is that it should know, using only motion data, whether and if so when
it has returned to a location it has already been before. This is where sensor
noise dependency can really manifest itself. In localization, one can compensate
for motion errors using measurements from sensors. In map building however,
you are not only not compensating for noise, you’re actually relying on motion
to be accurate; its own position is the only point of reference the robot has.
When the robot for example has a consistent deviation to the right that has not
been accounted for in the motion model, and it drives through a rectangular

32

Figure 3.5: Motion error can lead to dis-
torted maps. This is an example from the
simulator. The robot moved through a cir-
cular hallway and eventually returned to its
initial position. Due to motion errors how-
ever the robot is unable to connect its ini-
tial position in the map to the final position,
thereby creating two loose ends.

corner clockwise, it will map the corner with a somewhat sloper angle (assuming
zero-error measurements). If this continues for every one of the four corners in
a circular hallway, the robot will not know that it has reached its initial position
when it does. This deviation is of course clearly visible in the resulting map;
The robot will not close the loop but continue mapping what it thinks is a
new hallway, see figure 3.5. As with the data association problem, different
algorithms deal with circular environments in different ways or, in some cases,
not at all.

This subject is less relevant for local mapping due to the fact that for map-
ping at short distances, motion error can be neglected. Moreover, when a global
map -e.g. outline of borders and walls- is already known, it is theoretically pos-
sible to correct for motion errors using measurements. This issue is mentioned
since it is a prominent subject in global mapping literature. See for example
[14] [1].

Dynamical Environments Most algorithms are having enough trouble al-
ready with static environments, so in most cases it is assumed that environments
are always static, i.e. the environment does not change over time. Moving ob-
jects like people are not taken into account. Even chairs and tables, which are
potentially not static are mapped as being constant over time. Some algorithms
can model partially dynamic objects like doors to a certain extent like algo-
rithms based on the Kalman filter and algorithms based on occupancy grids.
The former uses a covariance matrix to represent correlation between measured
objects. Due to the Gaussian noise model that is inherent to the Kalman fil-

33

ter it is possible to model slow migration of objects [10]. Fast moving ob-
jects however cannot be modeled by such an algorithm. About the same holds
for occupancy grid map based algorithms; slow changes can be represented by
changing the assignment of grid cells, but representing fast movement is out of
the question. Montemerlo, Thrun and Whittaker [5] have made an attempt to
combine robotic localization with people tracking using a so-called conditional
particle filter. Combining SLAM and detection and tracking of moving objects
(DATMO) has been studied by [15] in an outdoor environment. The results
of the experiments look promising. However, the sensor they used to get their
outstanding results is again a SICK laser range finder (or actually, several laser
range finders) which is able to accurately measure a distance up to 80 meters.

3.2.2 FastSLAM

Kalman filters are algorithms widely used in map building. This very well
known filtering technique is used in a variety of research fields [8], among
which is robotic self localization. Although Kalman filtering is not used in the
experiments for this thesis, it is an important part of the FastSLAM algorithm
[4] which in turn is an important advancement in map building.

A Kalman filter is a state estimator, and in robotic localization, the state to
be estimated is of course the location of the robot. Given an initial position, the
robot tries to compensate for motion noise using measurement data. Based on
motor commands or odometry measurements, it predicts its next position and
with measurements it compensates for possible motion error. In mapping, the
robot should not only estimate its location within a known world, but the world
itself as well. Kalman filter based mapping algorithms assume that the envi-
ronment can be represented by landmarks. Every time the robot encounters an
unidentified object it stores its position in memory. Uncertainty about the map
i.e. the positions of the landmarks and the robot’s location in it is represented
by a matrix that holds the covariances between the estimated locations that
are represented by normal distributions, the so called covariance matrix. More
about the Kalman filter for localization can be read in [8]. This way of using
the Kalman filter has two problems. First, it is sensitive to failures in data asso-
ciation (see section 3.2.1), which is the process of assigning a measurement to a
certain object. Second, complexity (and thereby computational costs) increase
quadratically with the number of landmarks, due to the covariance matrix that
holds the pose of the robot and the position of all landmarks. In 2002, Monte-
merlo et al. [4] designed an online algorithm for map building, that combined
the power of particle filters and Kalman filters.

In subsection 3.1.3 we saw that a particle represents x and y position, as
well as the angle of the robot’s heading. In FastSLAM, a particle consists of
a hypothesis for the robot pose and Gaussians representing the coordinates of
every landmark that is observed [4]. Thus, every landmark is a separate Kalman
filter. FastSLAM therefore solves at least one problem inherent to any Kalman
filtering technique: Quadratic complexity no longer exists since covariance (and
thereby the covariance matrix) is no longer used. It is assumed here that fewer

34

particles are needed to accurately build the map and keep track of the location
than landmarks are needed to represent the environment, since an increase in
the number of particles has an immediate impact on computational complexity.
Data association is done by every particle separately and possible association
errors are (hopefully) filtered out. Thrun and his colleagues have improved
their algorithm, which they now call FastSLAM 2.0, to use less particles in
certain situations. One disadvantage that is inherent to (any) FastSLAM is the
use of distinguished landmarks. FastSLAM produces satisfying results [4] for a
number of outdoor environments where it is able to accurately map the locations
of e.g. blocks (indoor) or trees (outdoor). Indoor environments however do not
contain either trees or little blocks, but walls and cabinets. FastSLAM evidently
works for environments that can be easily described by a set of landmarks. The
legs of tables and chairs in a domestic environment are expected to be mapped
well with FastSLAM. However, walls, cupboards or couches for example are
not readily converted to landmarks. A large object could be described by a
series of landmarks, but doing this using a wide beam sensor like the ultrasound
sensor used in this research project -as opposed to the commonly used laser
range finder- does not seem wise. That is why DP-SLAM was elected to be
implemented; This algorithm is based on a particle filter as well, but uses a
grid-like approach to incorporate sensor information, which seemed a better
methodology to use in combination with the ultrasonic sensor.

3.2.3 DP-SLAM

The holy grail of map building of course is being able to search, online, in the
infinite space of all possible locations in every possible map. In localization, the
(still infinitely large) search space is all possible locations given one known map.
In a particle filter, a finite set of particles is used to represent a search space. The
more particles used, and the more complex they are, the more computational
power is needed to meet the speed requirements. Since with the problem of
localization a particle only represents a pose, a filter using several thousands of
particles3 can still work in real time. With map building however, a particle is
composed not only of a position vector but needs to represent an entire map. If
we assume that a map is represented by a series of landmarks, computational
costs are therefore relatively low when the number of landmarks is low. A set
of landmarks however is not always sufficient, as mentioned in section 3.2.2.
The most general map representation would be a discrete map. A particle
using this kind of map would need to store a two dimensional array. A naive
implementation of a such a particle filter would require too much computation
for online mapping using a standard desktop PC or notebook.

In 2003, Eliazar & Parr [1] developed an algorithm they called distributed
particle SLAM (DP-SLAM). The idea of DP-SLAM is to use an alternative
methodology to handle large discrete maps, in order to speed up calculations
and reduce the amount of memory needed to store all the particles. For local

3a typical number for a global localization particle filter

35

map building, the subject of interest of this thesis, there is less need to handle
large maps. However, efficiently handling a lot of particles is important in this
case since we’re dealing with noisy sensors; DP-SLAM is designed for use with
a laser range finder, and relies on its accuracy. To use this algorithm for local
mapping, it needs to be adjusted for use with smaller maps but more noise.

36

Chapter 4

DP-SLAM

4.1 Overview

DP-SLAM uses several data structures that are tightly connected in a way that
has not -to the author’s best knowledge- been used before in robotic mapping.
An overview of the algorithm is presented below. In the next sections, the data
structures are discussed separately.

DP-SLAM uses an advanced occupancy grid to store particle additions. In-
stead of associating a grid with every particle, particles are associated to a single
grid by adding an identification number (ID) to a certain particle whenever it
is embedding measurements. The difference between these two methods con-
cerning particle ID storage is illustrated in figure 4.1 and figure 4.2. To prevent
the grid from growing infinitely large over time, Eliazar & Parr devised a strat-
egy that works by keeping the ID of every particle that updates the grid in a
separate tree, called the ancestry tree.

These two data structures, the complex occupancy grid and the ancestry
tree, are discussed more elaborately in the next sections. Subsequently, it is
explained how measurements are processed by DP-SLAM and how the algorithm
-which is originally designed for use with a laser range finder- can be converted
for use with ultrasound sensors.

4.2 Occupancy Grid

A conventional occupancy grid is a two dimensional array of either integers
or floating point values. These values indicate the probability of a location,
i.e. a grid cell, being full or empty. A measurement is integrated into the
grid by updating the values at the grid cells that the ’sensor cast’ presumably
went through. From this short summary it is easily seen that pose uncertainty
is not taken into account. Also, it is not possible to recover from spurious
measurements since information about separate measurements is only stored
implicitly in the grid cell values. The occupancy grid that DP-SLAM uses is

37

Figure 4.1: Implementation in which a par-
ticle holds a complete grid. This is a burden
on memory usage as well as on computational
costs due to the need to copy information
during the resampling process.

Figure 4.2: Occupancy grid using DP-SLAM.
There’s only one grid, in which all updates of
all particles are stored.

able to keep track of distinctive measurements, thereby solving both issues just
mentioned.

With DP-SLAM, every grid cell is actually a balanced tree of nodes holding
the ID of a particle that updated this cell (see figure 4.3), and two values keeping
track of how many times a lasercast1 has passed through or stopped in this cell
for this particular particle. The reason why this is a balanced tree, and not just
e.g. a simple list, is that it is possible to find a node in such a tree in logarithmic
time. The set of particles that is responsible for grid additions at a certain time
t, will generate a new set of particles that update the grid at time t + 1. The
ID’s of the new particles are added to the grid in the same way as before; a new
node is added to the tree of a certain grid cell for every particle that updates it.

Without further processing however the grid would eventually grow infinitely
large. Consequently, there has to be a mechanism that deletes nodes as well.
Preferably, nodes that are least likely to represent correct information should
be deleted. How the weighting is done exactly is explained further on in section
4.4. Roughly it can be said that the weights, representing the probability of a
particle’s map being correct, need (a part of) this map to be calculated. This
yields a need to (partially) reconstruct a map. DP-SLAM uses the information
about a particle’s ancestors, stored in the ancestry tree, to do exactly this.

4.3 Ancestry Tree

In the previous section it is explained that the unique ID’s of particles that ever
updated the grid are explicitly stored in the grid. This means we can recover the
entire grid belonging to a particle by tracing the particle’s lineage and checking
for every grid cell whether the particle or one of its ancestors has updated the
grid cell. To be able to trace all the ancestors for all particles DP-SLAM uses
the ancestry tree. The ancestry tree is used to keep track of which particle

1Eliazar & Parr were using a laser range finder for their experiments.

38

Figure 4.3: A measurement is added to the grid. There are three particles, two of which integrate
the measurement as reaching as far as square 3. The third particle however assumes the laser cast
was stopped at square 2.

’descended’ from which particle by storing a particle and its children as nodes
and subnodes. Eliazar & Parr [1] show that the tree can maintain a bounded
size by pruning away unnecessary nodes. There are two situations in which a
node is seen as unnecessary. First, when a node has no children it can obviously
be removed, with the exception of nodes that are added last, i.e. nodes bearing
particle ID’s. If this means this node’s parent is left without children the parent
can be removed as well and so on. All nodes in the grid bearing the same ID as
the nodes deleted from the ancestry tree are deleted from the grid. The second
situation in which a node is unnecessary is when it has only one child. The
parent in such a case is redundant and can be merged with its only child. In
the ancestry tree, the child’s ID is deleted and its subnodes, if present, become
the parent’s direct subnodes. The grid is updated by changing the ID of all
nodes bearing the child’s ID to that of the parent. Basically, by doing this the
child’s set of updated squares is incorporated in the parent’s set. If there is a
conflict, i.e. both the child and the parent made an update to a certain square,
the parent’s update is replaced with the child’s.

Eliazar & Parr [1] state that independent of the number of iterations, a min-
imal ancestry tree is obtained after pruning, which has three useful properties:
The tree

1. has exactly N leaves

2. has branching factor of at least 2, and

3. has depth no more than N

39

where N stands for the number of particles. From proposition 1 and 2 we also
know that the maximum number of nodes in the tree is N − 1 which in turn is
equal to the maximum number of nodes in every cell in the occupancy grid.

4.4 Weighing the particles

Since the tasks of calculating the weight of the particles in DP-SLAM and in-
corporating the particle ID’s into the grid are so tightly connected, they are
performed simultaneously in practice. Therefore, they are discussed simultane-
ously in the next section.

DP-SLAM was originally designed for use with the SICK laserscanner. Mea-
surement integration into the grid is therefore based on the ”model” of a single
laser cast, which is basically a single straight line from the origin of the sensor
to the endpoint. From the chapters about sensors it is clear that the beam
of an ultrasound sensor cannot be represented in the same way. The particle
weighing mechanism therefore needs to be adjusted to handle ultrasound mea-
surements. In section 4.4.1 the original lasercast method is explained, in 4.4.2
the conversion is made to ultrasound measurements.

4.4.1 Laser

When the robot is assumed to be at location (x, y, θ) by some particle, and
the laserscanner returns a certain distance d at an angle a, the particle puts
this measurement into the grid by updating all gridcells that are crossed by a
straight line between [xa; ya] and [x̂a; ŷa], where x̂a and ŷa are xa + d cos(θ + a)
and ya + d sin(θ + a) respectively. In figure 4.4 and figure 4.5 two examples are
given of such a measurement. At every gridcell in the iteration, a new node
is inserted in the tree at that point containing the particle ID along with two
variables: the distance that is travelled through the square by the lasercast and
a boolean variable keeping track of whether the laser has stopped in that square
or not. Why the second variable is boolean is obvious. However, it might need
some explaining why the first one isn’t. In figure 4.4 it is clear that the laser
traverses an equal distance through every square. Please note however that in
figure 4.5 the lasercast goes straight through some of the squares but bearly
touches others. In this case it is clearly desirable to distinguish between the two
lasercasts.

By tracing back the ancestry, it is possible to produce a single map for each
particle. Eliazar and Parr [1] use the accumulated distance travelled through
the square by the lasercasts originating from the particle and all its ancestors
dτ and the number of times the particle or one of its ancestors had a lasercast
that stopped h in that gridcell to calculate ρ, the opacity of the cell. Formally,
ρ = dτ/h.

The opacity of a gridsquare is used in the construction of a map for the end
user, as well as in the assignment of weights of particles. In the former case, it

40

Figure 4.4: The laser travels an equal dis-
tance through all grid squares.

Figure 4.5: In this case the laser traverses
some grid squares from corner to corner,
while other grid squares are nearly touched.

appears useful to incorporate several ’tweaking variables’ to get a clearer map.
In the latter case, ρ is used in the following way:

Pc(x, ρ) = 1 − e−x/ρ (4.1)

Where Pc(x, ρ) is the cumulative probability that the laser will have been
interrupted after travelling distance x through a medium with opacity ρ. In the
original DP-SLAM (2.0) article [1] several arguments are given for this formula.
The total probability of the measurement is:

n∑
i=1

PL(δi|stop = i)P (stop = i) (4.2)

where P (stop = i) is the probability that the lasercast is interrupted exactly
at square i. The vector δ is a set of (normally distributed) distances to the
endpoint of the lasercast. As Eliazar and Parr put it: ”The probability of the
measurement is then the sum, over all grid squares in the range of the laser, of
the product of the conditional probability of the measurement given that the
beam has stopped, and the probability that the beam stopped in each square.”.

4.4.2 Conversion to Ultrasound

The robot used in the experiments for this thesis uses infrared and ultrasound
sensors. Concerning measurement integration and particle weighting, infrared
sensors can be treated more or less in the same way as the laserscanner since
the shape of an infrared beam can be approximated by a straight line, as is the
case for a laser. Ultrasound sensors however work differently (see chapter 2).
The sensor can be modelled as a set of lines with the length of the measurement
originating from the sensor, like a fan shape. From chapter 2 it is clear that

41

Figure 4.6: A single ultrasound measurement
gives little information about the position of
the measured object.

the fan shape is a correct approximation. However, this model needs some
adjustments to enable the calculation of the probability Pc(x, ρ) in the way we
did before.

If an ultrasound measurement returns distance l we know that all lines should
have length l since that is the distance to the nearest object and nothing is known
yet about the space behind the nearest object. We also know that the endpoint
of one of the lines represents (part of the outline of) an object. What we do not
know is which line this is, see figure 4.6. During the determination of Pc(x, ρ)
it is therefore incorrect to calculate PL(δi|stop = i) for all but one line. The
method used in the experiments to cope with this problem determines Pc(x, ρ)
for every line despite the fact that this is incorrect in most cases. Next, the line
with the highest probability is selected and given the benefit of the doubt; The
endpoint of this line is assumed to represent the location of the measured object
and is therefore assigned a ’full’ tag in the grid. In the experiments, particle
weights are assigned Pc(x, ρ) of this line.

42

Chapter 5

Robot

5.1 Introduction

To test the SLAM algorithms not only in simulation but in real life as well, a
custom built robot was used. Or rather, a custom adapted robot. The robot in
question is a several years old prototype of an autonomous vacuum cleaner. The
base frame, the wheels, and the DC motors with the gearboxes were recycled.
Its electronic guts were removed completely, with the exception of the motor
controller PCBs. Communication with these motor controllers is now done by
a microcontroller. Six infrared and six ultrasound sensors are attached to the
robot, and to interface them a second microcontroller is used. The microcon-
troller is constantly polling the sensors in order to keep the sensor data up to
date. Both microcontrollers are connected to the laptop present on top of the
robot. The software on the laptop running the DP-SLAM algorithm implements
drivers to communicate with the microcontrollers in order to control the robot’s
movements and to obtain sensor data. Constant communication between the
controller and the laptop ensures a tight connection between hardware and soft-
ware. This software was written in Visual C++, as a partial fulfilment of the
graduation assignment. A graphical user interface is provided to control both
the physical robot and the simulator.

More detailed specifications about the individual components i.e. the mo-
tors, the motor controllers, the microcontrollers, and all the sensors can be found
in the Appendix. In the next sections, the interconnectivity between these com-
ponents is discussed, together with a description about how the connections on
the robot were established.

5.2 Hardware - Platform

Figure 5.1 shows a photograph of our robot. As one can see, it has three rela-
tively large (16cm diameter) omni-directional wheels (or omni-wheels for short).
This typical kind of wheel has full grip perpendicular to the drive axis just as

43

Figure 5.1: Photograph of the robot.

any other wheel, but unlike a normal wheel, due to small wheels distributed over
the entire rim of the omni-wheel, it has almost no friction parallel to the drive
axis. Attaching 3 wheels to a robot in the way shown below, results in a robot
that is able to translate and rotate in every possible direction without having to
turn, thereby minimizing the possibility of introducing location uncertainty by
sticking behind an obstacle, as is the case with a robot using 4 normal wheels, or
2 normal wheels and a 3rd caster wheel which are both popular configurations.

By placing the motor controllers (figure 5.2) between the wheels alongside
the rim, a space is formed on the inside of the robot. In this space both the low
level part of the robot’s brain and the battery that powers it reside. There are
two PCBs: one for all the sensors and one for motor control. They are stacked
on top of each other, and this way they are attached vertically to the frame
(figure 5.3), parallel to the 12 Volt led battery. Attached to the cart is a metal
frame (figure 5.4) to support the higher level brains of the robot, i.e. the laptop
running the software. Because of the way the frame is constructed it is possible
to drive around with the robot while keeping the screen of the laptop open. A
USB hub is present to provide the necessary USB ports. The hub is powered
by the DC/DC converter on one of the PCBs.

Our robot wouldn’t be useful if it didn’t contain lots of sensors. Hence,
6 infrared (figure 5.6) and 6 ultrasonic (figure 5.7) sensors are permanently
attached to the base. That is, the ultrasonic sensors are distributed over the

44

Figure 5.2: The motor controllers. Figure 5.3: Circuit boards

Figure 5.4: The frame. Figure 5.5: Motors and tachometers.

Figure 5.6: Infrared sensors. Figure 5.7: Ultrasound sensors.

45

rim at an equal distance from each other, all ’pointing’ away from the center
of the robot. Almost the same holds for the placement of the infrared sensors.
Due to the position of the large omni-wheels however, the infrared sensors are
placed somewhat more pairwise.

In fact, there are 3 other sensors, which are somewhat less relevant but
should be mentioned anyway for the sake of consistency. All 3 motors get their
setpoints from the motor controllers. Every motor has a tachometer (figure 5.5)
attached to it, of which the output is fed back to the motor controller.

5.3 Hardware - Electronics

5.3.1 Microcontroller

The interface between the software part and the hardware part is formed by
the DLP245PB microcontroller. Actually, two of these controllers are used; one
mainly for motor control, the other for sensor control. The main components
of the controller are the PIC16F877, a chip with multiple I/O ports including
6 A/D inputs, and an FTDI chip that is able to handle USB communication.
This is a powerful combination, since we now have access to very elementary
sensor information and control mechanisms by using high level USB communica-
tion. More specifically, communication is done by means of exchanging unsigned
chars using the software libraries belonging to the DLP245PB. A DLP245 USB
microcontroller can be powered by USB as well as by an external power source.
In the former case it is adviced to keep in mind the fact that only 500mA can
be drawn from a USB port.

5.3.2 Motors and Motor controllers

The omni-wheels are driven by 12 volt Maxon DC motors, which in turn are
controlled by Elmo motor controllers. Attached to the motors are tachometers.
Tachometer output is used by the control loop on the controllers, which are
therefore capable of adjusting the rotational speed of the motors. To do this,
the motor controllers use an input voltage of -10.0V to 10.0V (provided by
converting the voltage from the led battery). For dynamical and fast adjustment
of the voltage setpoints, we a use digital potentiometer, the AD7376 by Analog
Devices. The potentiometer provides an SPI communication interface through
which it is able to communicate with the microcontroller. The potentiometer
is 7 bits, meaning that the 20.0V domain is divided in 128 steps, which is
more than enough for our application. These electronic features are fitted onto
one circuit board. In summary, the board holds several DC/DC converters
providing the right voltages for the setpoints and power for the AD7376s and
the microcontroller. These potentiometers provide the motor controllers with
setpoints that can be set by the microcontroller (which in turn gets its commands
from the software).

46

5.3.3 Sensor Polling

As the reader can see in chapter 2 infrared sensors and sonar sensors, albeit it
in a different manner, both need polling. The infrared sensors have an analogue
output that is polled every 8ms. The ultrasonic sensors work in an entirely
different way, but need to be polled as well. More about the workings of both
sensors can be found in chapter 2.

In short, infrared sensor polling is as straightforward as can be; every 8ms
the current sensor output (a voltage level between 0V and 2.5V)is stored in a
variable. The output value can be read by a single A/D port on the microcon-
troller. Internally, the IR sensor updates its value every 40 milliseconds, but
to cancel out some electrical and measurement noise it’s better to perform a
readout more often and use the mean or median of several values. Experiments
pointed out that the mean of 3 measurements is already enough to cancel out
the worst noise. Since the sensors are polled every 8 ms, the delay is never more
than 24 ms.

The SRF04 ultrasonic sensor works quite differently from the infrared sensor.
As the reader can see in chapter 2, one needs to send a trigger signal on one line,
and receive an echo signal on another. In other words, we need two I/O pins
per ultrasonic sensor on the microcontroller. We are using 6 ultrasound sensors,
so in our case, this means that we need a total of 12 I/O pins. This is the
main reason for using multiple microcontrollers; The infrared sensors use the 6
A/D pins so together with the ultrasound sensors they occupy all available I/O
of one single microcontroller which leaves no more room for the motor control
hardware.

Triggering is straightforward; The trigger pin on the sensor needs a short
pulse, which the microcontroller can provide, to get started. After the pulse
is given to the trigger line, we have to wait for the echo of the sound burst to
return on the echo line. The best way to handle this would be using interrupt-
on-change pins on the PIC. The PIC16F877 unfortunately does not provide an
interrupt-on-change on all ports. In fact, the only port that does have this
feature is already in use; the FTDI chip is using it to communicate with the
PIC. Therefore, we need to poll the sensor. In our case, polling happens every
100µs. The DLP microcontroller would have had the ability to use a different
timer(interrupt) for both the ultrasound and infrared sensors, if it hadn’t been
for the fact that two I/O pins are disabled when the second timer is enabled.
Since we need all 18 pins for our 12 sensors, using the second timer is not
an option. However, this issue can be solved easily by using a counter in the
ultrasound timer; 80 times 100µs equals 8ms, so by increasing a variable in the
100µs interrupt function that calls the actual infrared timer function everytime
it reaches 80, it is possible to create a virtual second timer.

47

5.4 Software - PIC

On the DLP245PBs software is running to simultaneously gather information
from the infrared sensors and the ultrasonic sensors, and at the same time com-
municate with the software to exchange information with the higher level soft-
ware without interfering with the sensor readouts. Timer interrupts are used
to constantly poll both kinds of sensors. It’s already mentioned that control
differs per sensor, but one principle remains the same: every fixed number of
microseconds new sensor values are written to the PIC’s limited memory. The
newest values overwrite older values. The reader might want to take a look at
the pseudocode algorithm [2]. When the software on the laptop needs measure-
ment data of a certain sensor, it sends a request to the microcontroller, which
in turn returns the contents of the associated memory. This way, communica-
tion can take place any time, sensors can continuously gather information and
higher level software is sure to always get the latest sensor readings. Please see
algorithm [1] for an explanation with pseudo code. The same principle holds on
the microcontroller that runs the software that can adjust the setpoints for the
motorcontrollers, see algorithm [3].

Algorithm 1: Sensor PIC - Main Loop

while (true) do
if
(usb data available == true)&&
(retrieved data[0] == sensor request) then

switch (retrieved data[1]) do
case 0x01: SendDataToLaptop(latest ir data)
case 0x02: SendDataToLaptop(latest us data)

end
end

5.5 Software - Laptop

Attached on top of this collection of hardware is a laptop; an old 600Mhz Pen-
tium III. Unfortunately, it is too slow to handle the computationally expensive
algorithms that have to deal with the enormous amount of uncertainty. For that
is its original function; the laptop should run the software that uses the infor-
mation gathered by the robot to build a map in real time. In practice however,
the laptop is not fast enough to do both the data acquisition and processing.
Therefore, the laptop is used for gathering data after which it is processed on
a faster desktop PC - a 2.8Ghz Pentium IV. The desktop is running the same
software; the difference is that this software is compiled to process logged data.

Part of the graduation assignment was writing a simulator in C++ for mim-
icking the behavior of the sensors attached to the robot. Eventually, the results

48

Algorithm 2: Sensor PIC - Interrupt

BYTE counter = 1
BYTE us polling stage = 1

OnInterrupt()

// IR sensor polling
if (counter == 80) then

latest ir data = AD ADR
counter = 1

else
counter++

// US sensor polling
switch (us polling stage) do

case 1:
us polling stage++
SetTriggerPinHigh()

end
case 2:

us times polled = 0
us polling stage++
SetTriggerPinLow()

end
case 3 :

if (GetEchoP in() == high) then
us times polled++

else
latest us data = us times polled
us polling stage = 1

end
end

end

49

Algorithm 3: Motor PIC - Main Loop

while (true) do
if (usb data available) then

switch (retrieved data[0]) do
case 0x01:

SetPotentiometer(retrieved data[1], retrieved data[2])
SetPotentiometer(retrieved data[3], retrieved data[4])
SetPotentiometer(retrieved data[5], retrieved data[6])

end
case 0x02:

SetPotentiometer(1, 0x40)
SetPotentiometer(2, 0x40)
SetPotentiometer(3, 0x40)

end
end

end

should be compared to real data to gain better understanding of the deficiencies
of the sensory (with a focus on the ultrasound sensors). It was decided that the
best way to compare results is to use exactly the same software for both simu-
lated and real data. In the software, the several types of I/O can be switched on
and off. By setting a simple parameter the program can be compiled either as
a simulator, taking only simulated data as its input, or as a true robot control
center, thereby being able to control the robot and to use real data to work
with.

Actually, a third option exists. When the robot does a run through the
assault course (see chapter 6), the motor commands and all the gathered sen-
sor data is stored in a data structure that can be saved to a file afterwards.
By toggling another parameter, connection to the real hardware is cut off and
bypassed to obtain data from this file. An apparent advantage of logging and
reusing sensor data is the ability to reproduce real sensor noise. This way, it
is possible to unleash various parameter settings onto the same data, which of
course is a good way to benchmark the arsenal since the same can be done in
simulation.

Figure 5.5 visualizes - in an extremely simplified way - what has just been
explained; As far as the software is concerned, the only difference between simu-
lated data, logged data and real data is the bottom layer1 which can be selected
by switching the right flags on or off.

1In theory. In practice, things are a little bit more complicated since e.g. sometimes it’s
convenient to let the class that provides the simulated data access parts of the graphical user
interface.

50

Figure 5.8: UML Class Diagram. Packages are used to present a general view of the software that
runs on the laptop.

51

Chapter 6

Results

Both the infrared and ultrasound sensors are tested in isolation, see chapter 2.
In chapter 5 the robot used in the experiments was described and in chapter 4
the algorithm running on the robot is explained. This chapter shows the results
of the integration of these matters.

There are several kinds of results we’re intersted in: How well do the sensors
perform in a complex environment? Can the DP-SLAM style integration of
ultrasound and infrared measurements into the grid create a (local) map that
is good enough for the robot to avoid objects with? And is DP-SLAM able
to compensate for motion error thereby facilitating better interaction with the
global map? The first two questions are answered together in the next section.
In the section after, DP-SLAM benchmarks are discussed to see how well the
algorithm performs.

6.1 Assault Course

Experiments were performed using the robot on an ’assault course’; a represen-
tative environment to test its ability to detect (and even map the outlines of)
potentially hard-to-detect obstacles. The testing environment was accurately
measured by hand and this information was used to construct a 2D map for
the simulator and a global map for the robot. Noise free simulation output is
compared to the real life output to visualize the theoretical possibilities and
practical limitations.

Figure 6.1 and figure 6.2 are the 2D and 3D representations of the real life
testing environment. The three similar rectangles are the projections of cabinets
in an office space, with a width and length of 45cm and 240cm respectively, and
a height of about 1.5m. The large square at the top right forms the outlines
of a wall. The distance between the bottom most cabinets is 1.70m. There are
three obstacles: A round metal bin with a diameter of 26cm next to the bottom
right cabinet, a rectangular metal bin measuring 22cm x 30cm next to the wall,
and finally a hatstand of 2.5cm in diameter. This hatstand, which is basically

52

Figure 6.1: The assault
course, 2D.

Figure 6.2: The assault course, 3D.

Figure 6.3: Map of the assault course, output
of the simulation.

Figure 6.4: Map of the assault course, output
of real data, gathered by the robot.

53

Figure 6.5: real ultrasound data, first mea-
surement

Figure 6.6: real data, plausible explanation
for error in sensor A

a metal tube, is invisible in figure 6.1 due to its size but clearly visible in 6.2.
Its location is at the top right of the bottom left cabinet. For the following
experiments one particle is used, unless indicated otherwise.

Figure 6.3 is built by the simulator and figure 6.4 is a map that is created
by the robot using ultrasound sensors. To emphasize the word local in local
mapbuilding, only the three frontmost sensors on the robot are used in the
construction of the maps. Map 6.3 is created without any simulated sensor
or motion noise, and therefore represents the map that would be created by
infinitely accurate ultrasound sensors on a robot without any motion error at
all. Resolution of the maps is 5cm x 5cm. The simulator could be more accurate,
but for the real application this would be overkill; the theoretical minimal error
of the ultrasound sensors used in combination with the microcontroller is a
little bit less than 2cm1, but it appears to be the case that the error is often
closer to 10cm, see chapter 2. In the same chapter it is also noted that the
ultrasound sensor expected to be troubled by specular reflections in a more
complex environment as the one used in the experiments. And indeed several
discrepancies between figure 6.3 and figure 6.4 are visible, indicating errors in
measurement. To see which errors in figure 6.4 can be accounted for by specular
reflections, the output of several real test runs is compared to the simulator
output, figure 6.3, step by step.

First it must be noted that the test run described below is one with as less
1Assuming the speed of sound is 340m/s and the ultrasound sensor polling frequency is

100 µs

54

Figure 6.7: real ultrasound data, robot has
travelled 1.2m.

Figure 6.8: real ultrasound data

Figure 6.9: real ultrasound data Figure 6.10: real ultrasound data

55

Figure 6.11: real ultrasound data Figure 6.12: real ultrasound data

Figure 6.13: real ultrasound data Figure 6.14: simulated ultrasound data, first
measurement

56

Figure 6.15: simulated ultrasound data Figure 6.16: real ultrasound data

Figure 6.17: real ultrasound data Figure 6.18: real ultrasound data

57

Figure 6.19: simulated ultrasound data Figure 6.20: Alternative assault course, 2D.

Figure 6.21: real ultrasound data Figure 6.22: real data, integration of infrared
and ultrasound

58

Figure 6.23: real infrared data, the clutter of
points indicates motion error

Figure 6.24: real infrared data, infrared sen-
sor

Figure 6.25: simulated infrared data, in-
frared sensor

Figure 6.26: Map that is produced without
any prior knowledge about a global map. Ul-
trasound data.

59

Figure 6.27: Here the global map (which
matches with the real environment) was
known to the robot on forehand. Ultrasound
data.

Figure 6.28: The erroneous global map; the
location of the round bin in this map differs
(figure 6.30) from the real location (figure
6.1). The algorithm is able to ’erase’ the false
location of the bin. Ultrasound data.

Figure 6.29: real infrared data without filter Figure 6.30: Erronous assault course given to
the robot as global map.

60

Figure 6.31: A global map is constantly available to the robot so the local map only has to keep
track of the local environment and is therefore allowed to forget parts of the map it has visited.
Here we see an implementation of an ’amnesia filter’; the robot gradually forgets parts of the local
map it hasn’t visited for a certain (adjustable) amount of time.

Figure 6.32: Diversity among particles. A lower spatial resolution than in the assault course exper-
iments is used here in order to speed up the process, but the principle remains the same.

61

motion error as possible in order to focus on the measurements. During testing
however it is almost impossible to avoid all errors. During this run on the
assault course, the pose of the robot was measured by hand at several points.
Whenever motion error interferes with the measurements, this is mentioned in
the explanation.

Please have a look at figure 6.5 illustrating the measurement the robot takes
at the very first step. We will refer to the leftmost, middle and rightmost sensor
as A, B and C respectively. Figure 6.14 shows the simulated output, i.e. the
expected output when no measurement noise is involved. Figure 6.5 clearly
differs from 6.14. The leftmost sensor, sensor A, has made a measurement as
though it didn’t see the wall at all. Sensor B measured an object that isn’t
there. For the latter case, there is no obvious explanation. The nearest object
to B is further away, so it detected an echo of another sensor that bounced of
a distant object. Where the erroneous sensor reading really came from is hard,
if not impossible, to recover. Sensor A has made an erroneous measurement as
well. This measurement however can be explained. Apparently, it indeed failed
to detect the wall. We’ve seen however in chapter 2 that it is quite possible for
the sensor to detect an echo that has bounced of several objects. A plausible
explanation for the measurement error is that it bounced of the wall, to the
round metal bin and back via the wall to the sensor (figure 6.6). The robot
however doesn’t know anything about the map yet so it cannot correct the
error, at least not without further information.

Fortunately, this first round of measurements does not seem to represent the
overall correctness of the measurements. After driving about 1.2 meters the
robot has made a small local map that is consistent with the surroundings, see
figure 6.7. The very first measurement of sensor A is even partially compen-
sated for by correct readings of sensor A; the wall that was undetected in the
first measurement(s) was detected in following measurements. In the successive
addition of correct information in the manner described in chapter 4, the wall
has become clearly visible in the map.

From figure 6.8 it is clear that only a few centimeters further the robot
detects the rectangular bin -which at that point is about 2.7 meters away. That
this is not a one time event is evident from figure 6.9. The apparent variance
in the measurements of sensor B is likely to originate from motion error; right
after figure 6.8 the robot was paused for a moment to measure its pose by hand.
At the moment the robot was stopped the robot swung around a bit, as was the
case at the moment of continuing. Motion continued in the correct direction.
Unfortunately, in contrast to the accurate measurements at 2.7m, figure 6.10
brings bad news for the accuracy of the ultrasound sensor. In figure 6.9 it
appears to be the case that the ultrasound echo of sensor A bounces of either
the wall or the hatstand. If the hatstand is mapped here we can conclude that
the robot (i.e. the ultrasound sensor) is able to detect such a relatively small
object in a complex environment. Figure 6.10 however shows us a map in which
A failed to see the hatstand. So, whether we see a mapping of the hatstand or
the wall in figure 6.9, the ability to detect an object like the hatstand in this
environment is questionable at best. As a reference, figure 6.15 shows what the

62

robot should have mapped at this point.
The robot continues its course almost in a straight line. At about 2.6m of

travelling, when the robot has just passed the hatstand, its orientation is altered
by −15◦ due to another pause-and-continue manoeuvre. Fortunately it recovers
from this error, but not without updating the map with an incorrect measure-
ment. In figure 6.11 the new update looks to be a correct one, measuring the
distance to the corner of the cabinet that is standing to the wall. However, since
the robot just had an error in its orientation clockwise, the echo cannot origi-
nate from the cabinet. Specular reflections inhibit the robot’s ability to build
an accurate map once more. In figures 6.12 and 6.13 we can see the evidence
of consistent specular reflections; sensor A returns contradictive measurements
and seems to ’doubt’ between 2.0m and 2.6m. Sensor B also seems to return in-
correct measurements. However, it is possible that the echos detected by sensor
B originated from the door (frame) in the wall (not present in the hand drawn
map) so no judgement is made about these measurements.

The sensors in combination with the DP-SLAM style measurement integra-
tion perform reasonably well; there are specular reflections that have an influ-
ence on the resulting map, but this map resembles the ideal map of figure 6.14
especially concerning the locations of the (larger) obstacles. Unfortunately, not
all generated maps are as accurate as figure 6.13. Apart from possible motion
errors, some maps generated on the same assault course show inexplicable and
inconsistent errors in measurement. Moreover, some maps show very remark-
ably consistent errors; figure 6.16 and 6.17 are generated by two different test
runs. Figure 6.21 is another example. This map is generated using the same
environment, except that the only obstacle is the round metal bin which was
placed in the middle 6.30. Although this kind of errors are likely to originate
from echos that reflected of the same obstacles every run, which can even be re-
produced under the right circumstances, it is impossible to predict the occurence
of such a reroute of the soundburst in an initially unknown environment. Since
no test run is the same, it is hard to reproduce errors. Based on these results,
ultrasound sensors seem to perform well in most cases. Sometimes however
maps are built that do not resemble the expected map.

The infrared sensor behaves according to expectations. Results from chapter
2 indicate that the reach is limited, from 8cm to maybe 60cm at most, but within
this range it is accurate. Figure 6.20 depicts a short alternative assault course.
Figure 6.20 is accompanied by the noise free simulation of a robot equipped with
4 infrared sensors (at 30◦, 90◦, 270◦ and 330◦) driving from south to north on
this track (figure 6.25). Figure 6.24 shows the real measurement results. Figure
6.22 shows the integration of infrared and ultrasound measurements applied to
this short assault course.

It seems that the sensor indeed lives up to expectations; the round bin is
mapped, as is the wall to the right. Looking at figure 6.24 one would predict
that the robot had an error in movement: towards the top, the robot maps the
wall too far to the left which indicates a translational error to the right. The
small clutter of points (figure 6.23) indicates a rotational error clockwise. Both
predictions are correct according to the measurements that were done by hand.

63

The robot drifted 19cm to the right with a rotational error of −15◦.
One filter is applied though to the map in figure 6.24: relying on the data

collected in the individual sensor experiments from chapter 2, measurements
indicating a distance of more than 60cm are removed from the process. Figure
6.29 is the resulting map if this filter is not applied. One can see that the cabinet
on the left is noticed by the infrared sensor. The distance however is too great
to accurately map the outlines.

Error in motion is a major problem in map building. Please take a look at
figure 6.18. Sensor C has mapped the wall-cabinet combination almost exactly
as in the ideal map. The location however is obviously wrong. In the middle
part of the map one can see the robot drifted a bit to the left, since the map is
somewhat skew to the right. At the end however, manual measurements indicate
a small rotational error clockwise, meaning the robot drove in a slight curve.
In the next section it is discussed whether DP-SLAM is able to compensate for
the motion error using range measurements.

6.2 Error Compensation

DP-SLAM should be able to (i) compensate for motion noise and (ii) alter the
global map if previously unknown obstacles are detected.

Figure 6.26 is the map that is based on the assumption that there’s no motion
error at all. However, as mentioned in the previous paragraph, by looking at
the map it becomes clear an error in motion certainly occurred. The adjusted
DP-SLAM algorithm used in this research has the advantage that it is allowed
to use a global map which should make localization easier. However, the global
map may contain errors.

Figure 6.27 shows basically the same map as figure 6.26. Or rather, they
are based on the same data. The exception is that for figure 6.27 the algorithm
knew the map on forehand. That is, the locations of the cabinets but also those
of all the obstacles are known to the robot. For the first obstacle, the round
bin, it is clear that robot indeed sees it, and maps around it when it goes by.
The real question of these experiments however is whether the robot can also
map the objects if the initial map is erronous; a phenomenon that could occur
for example if someone would reallocate a bin. Figure 6.28 shows the result
of this test. In the initial map available to the robot the round bin is at the
wrong location (see figure 6.30). As the reader can see, the algorithm succeeds
in ’erasing’ the misplaced ’global’ bin at one location, and adding an obstacle
at the right location.

To compensate for motion error DP-SLAM relies on particles. Figure 6.32
shows a selection of 4 maps from 50 distinct particles. Evidently diversity
exists. The particle filter is apparently capable of maintaining multiple maps.
Unfortunately some problems arise when dealing with the algorithm in practice.
The weights assigned to the particles have too little variance; no particle ever
has more than 1 child. This can be an error in programming, it could be
that the algorithm is sensitive to certain parameters and that weights will vary

64

perfectly under other conditions and it is even possible that it is inherent to
the combination of the ultrasound sensor and the algorithm; More research is
needed to make a sound judgement.

Another issue is that the algorithm appears to be quite slow. The PC run-
ning the software is an Athlon 2500+ at 1.83GHz with 256Mb of memory. Using
a grid with a spatial resolution of 5cm x 5cm, the algorithms needs 5 seconds
for every iteration with 10 particles. A spatial resolution of 4cm x 4cm requires
about 8 seconds for the same number of particles, and a resolution of 10cm x
10cm requires only 1.5 seconds, suggesting processing time scales up quadrati-
cally with a linear increase in spatial resolution. The amount of time needed for
one iteration for the last spatial resolution increases by a factor 4, to 6 seconds
when the number of particles is doubled. By doubling the amount of particles
for the 5cm x 5cm resolution the result is as the reader might have guessed: time
increases by a factor 4, indicating that the amount of time increases quadrati-
cally with the amount of particles. Admittedly, it is hard to say without testing
how many particles are needed exactly to produce a map, but bearing in mind
that ’normal’ DP-SLAM, using the laser range scanner, needs several thousands
of particles, it is safe to say that the algorithm presented here will not run in
real time, at least not in its current form.

Another way to deal with motion noise is to get around it by forgetting the
past and rely on localization capabilities alone. A ’fade factor’ in combination
with time stamped particles can be used to eliminate information from the past.
An example of this method is shown in figure 6.31.

65

Chapter 7

Conclusion

7.1 Conclusion

Sensors The accuracy and speed of sensors was tested in a simple setup. The
range of the Sharp GP2D12 infrared sensor was put to the test and results indi-
cate good performance from 8cm to 40cm, and reasonable performance between
40cm and 60cm. The sensor is robust within this range; even when the angle
of the measured object is 45◦ performance does not decrease, see section 2.2.2.
When the angle is too large however, the sensor will fail to see the object. Black
objects can become invisible at a certain distance; the threshold depends on the
material and the exact color. Summarized: The Sharp GP2D12 gives false neg-
atives when measuring reflective materials or objects under a large angle, but
rarely gives false positives.

The SRF04 ultrasound sensor has a much wider range: From 10cm to more
than 300cm the sensor returns consistent measurements. Also, the SRF04’s
beam is much wider. Operating the ultrasound sensor is more complicated
than operating the infrared sensor. Using several ultrasound sensors at once
almost certainly gives rise to measurement errors due to the fact that a sensor
can receive a signal that originated from another sensor. Since the sensor’s
microphone is sensitive enough to pick up an ultrasound signal that has bounced
of several objects before returning, an individual sensor can even pick up an
erroneous echo from itself. Summarized: The SRF04 is able to detect objects
at a wider range than the Sharp GP2D12 infrared sensor, but is sensitive to
reflections when the sensor is triggered at a fast pace, or when multiple sensors
are used. In these cases, the SRF04 gives false positives.

Algorithms A promising mapping algorithm, Montemerlo’s FastSLAM [4], is
a hybrid algorithm; a combination of a particle filter and a Kalman filter makes
FastSLAM fast and reliable. It is only suited for environments that can easily
be represented by a collection of coordinate points, like a room full of small
blocks or a park with trees. Also, to be able to distinguish between separate

66

landmarks, FastSLAM relies on the accurate laser scanner to provide data in the
form of a coordinate. Based on literature study it is illogical to try and convert
FastSLAM to an algorithm that builds small, local maps with the use of inaccu-
rate sensors. In contrast, DP-SLAM is a good candidate for local map building;
DP-SLAM is entirely particle filter based and makes no assumptions about the
environment. Normally this would imply unrealistically high processing times,
but Eliazar and Parr [1] claim their DP-SLAM can operate in real-time. Al-
though originally designed to use for large maps using the accurate laser range
finder, it is relatively easy converted for use with local maps using inaccurate
sensors. Summarized: FastSLAM relies on accurate sensors and cannot be used
for mapping domestic environments. Based on literature study, DP-SLAM is
the best candidate algorithm for this graduation project.

Mapping Using the infrared and ultrasound sensors on a moving mobile robot
platform has given insight in the use and reliability of both sensors. Ultrasound
sensor data seems to be reasonably consistent. It sometimes ’misses’ objects
either due to reflections or the size of the object; small obstacles go by unnoticed.
It is possible to use the ultrasound sensor for detecting obstacles with a diameter
/ width larger than 25cm. The sensor is less suitable for mapping obstacles due
to the width of the ultrasound beam. In chapter 6 it is shown that a global map
can be successfully overwritten by new data that is gathered by the SRF04 and
integrated into the map using the DP-SLAM style grid update functions. The
Sharp GP2D12 infrared sensor performs well within its range of 8cm to 60cm; it
is possible to map objects using this sensor and the DP grid update functions.
If a filter is applied that removes all >60cm measurements the sensor doesn’t
seem to have any false positives.

Unfortunately, the DP-SLAM implementation used in the experiments is
impractically slow with only a few dozen particles. For actual real time perfor-
mance -i.e. at most 1.0 second for every iteration of the algorithm- one would
need an improvement factor in the order of thousands. Results of measurements
with only a few dozen particles however do indicate that particle diversity can
theoretically compensate for motion error under the right circumstances. Sum-
marized: It is possible to build local maps using both the tested ultrasound
sensor and the infrared sensor in combination with DP-SLAM. Due to compu-
tational limitations it is not possible to use the amount of particles required for
compensation of motion errors in a real life application.

7.2 Recommendations

Improvements are recommended to both sensors and algorithms to improve the
overall map building performance. The sensors used in these experiments are
much less accurate than the sensors for which the algorithm were originally
designed. Inaccurate sensors indirectly require more computational effort, so
improvements in the performance of sensors will result in an improvement as a
whole.

67

A possible improvement to the measurements of the infrared sensor is to
simply use more sensors on a robot; The sensors don’t easily interfere with each
other, so it is a matter of having the right hardware that can poll more than 6
sensors and handle the communication between sensors and computer. Another
beneficial alteration would be using a better function fit to convert infrared
sensor output to real distances.

A way to improve the ultrasound sensors is to use different frequencies for
every sensor on a platform to rule out false detections. Perhaps the hardware
of the SRF04 can be altered to work with different frequencies. To the author’s
best knowledge no off-the-shelf sensors are available of which the frequency can
be adjusted without changing the hardware, but further research to this matter
is recommended. Another improvement would be to use an ultrasound sensor
with variable frequencies to prevent it from interfering with itself. An obvious
improvement concerning sensors would be to start using encoders on the omni-
wheels. Perhaps it is possible to still use the Laser Beetles.

Improvements to DP-SLAM are needed to transform it into a genuine real-
time algorithm. Speed improvements to the sensors are of no use if the algorithm
using their data already has a significantly lower bandwidth. A better (imple-
mentation of the) model of the ultrasound sensor could result in more efficient
updates to the complex occupancy grid, thereby increasing performance. Also,
the current software implements the balanced trees in the occupancy grid as
simple lists, due to the fact that the overhead, that is inherent to the use of
a balanced tree, is only worth the computational payload for large trees, i.e.
trees with a lot of particle ID’s. Therefore, if the overall bandwidth of the
implemented algorithm is improved and more particles are used, it could be
interesting to start using balanced trees; When using balanced trees, the com-
putational complexity scales up not quadratically, which is now the case, but
logarithmically.

68

Appendix A

Application Manual

For anyone interested in getting the robot up and running again, or compiling
the software, here’s the application manual. In the following section, an expla-
nation is given about which software you need to install on the laptop that is
placed on top of the robot, how to apply the bluetooth connection, but also how
to charge the battery, etc. In the section after that, just enough information is
provided to be able to change important parameters and to learn how to com-
pile the software for use on the robot or the computer, for simulation or logged
data.

Appendix A.1 Robot

Starting from the bottom up, the first thing you need to do is check the battery.
It needs to be fully charged! Driving time is limited, in the order of 15 minutes
to half an hour with a new battery. Normally, the power to the USB hub should
already be connected. The USB cables from the hub to the DLP’s may remain
connected at all times. The cable going from the hub to the laptop however
should be disconnected before powering up the robot. Make sure the switch
attached to the largest PCB is set to ”laden” (”charge”). This feature is not
used, it is just to make sure that the robot doesn’t start moving when you’re
connecting the battery; when the digital potentiometers that provide setpoints
to the motor controllers are powered, they are reset not to 0, but to the minimum
output of -10V, which make the omniwheels turn at full speed in one direction.

Next, attach the wires to the battery. Connection has always been a bit
provisionary. The blue wire connects to −, the brown wire to +. These wires
power the motors and motor controllers. The easiest way to attach them is
using the (somewhat less provisional) connectors that are attached to the wires
that power the PCB’s, thereby attaching them altogether. Attach the single
black wire to −, the pair of black wires should connect to the +. The hardware
should now be fully functional.

69

Appendix A.2 Laptop

To be able to communicate with the DLP245PB, some drivers need to be in-
stalled. These can be downloaded for free from the company’s website1. An
installation guide is available2. Included in the zip file are also the .h and .lib
files used for programming. A programmer’s guide can be downloaded3. An
extremely basic but very useful test application is available, also for free4. If
you are asked to, choose the DLL drivers, not the VCP (Virtual Com Port)
drivers.

After installing the drivers, it is a good idea to first check the connection to
both DLP245PB’s with the test application. Run the application. Select ”DLL”
and hit the ”search” button and make sure it finds 2 devices. If this is not the
case, shut the robot down (i.e. pull the wires) and start over again. Choose
one and click the ”open” button. Now you are ready to send and receive chars
to and from the robot. To check communication with the DLP controlling the
sensors use for example ”02 EE 00 00 00 00 00 00 — 02”. Press the concerning
”send” button and if everything is fine you will receive the number of seconds
the device is up and running (or actually the number of seconds mod 60). To
check communication with the motor PCB, send the command ”02 90 00 00
00 00 00 00 — 02”, which is the command that sets all potmeters to 0. As an
acknowledgement, the device will send you ”90”.

The software, written for this graduation assignment, to control the robot
can be copied to any directory on the laptop. How to exactly compile the
software is explained in Appendix C. Important to know is that a very basic
cursorcontrol is implemented; with the arrow buttons on the keyboard the robot
can be sent to the left, right etc. The reason that this is so important is that
the same functionality is used to control the robot via the bluetooth connection.
Plug the bluetooth stick in the hub of the robot and let the laptop install
the drivers. Do the same for the computer you want to use for steering the
robot. By clicking on the Bluetooth icon in the Windows XP system tray at the
bottom right of the screen, you can setup a Personal Area Network (PAN) by
letting the two devices find each other. Now you can use your favorite Remote
Desktop software. This functionality comes with Windows XP, but with this
application for the combination of laptop and desktop used in the experiments
it was impossible to get a connection. A program that did work was Remote
Desktop Control5. This software is not free, but you are able to download an
evaluation copy. With such software, you are able to take control of the laptop
from your desktop. Key strokes are passed on from the desktop to the laptop.
As mentioned, the same buttons, arrow left, arrow right, etc. can be used to
steer the robot. Pressing any other key than the arrow keys will stop the robot.

1http://www.dlpdesign.com/D30104.zip
2http://www.dlpdesign.com/winxp install guide.pdf
3 http://www.dlpdesign.com/drivers/D2XXPG21.pdf
4http://www.dlpdesign.com/usb/images/dlptest10c.zip
5http://www.remote-desktop-control.com/

70

Appendix B

Robot Hardware

In the following pages parts of data sheets and specifications are shown that
could be useful to a person continuing work on the robot. Although the pages
displayed here are -according to the author- the most useful pages for this thesis,
they do not reflect or summarize the full content of the original articles. Someone
interested in a certain device is therefore encouraged to download the original ar-
ticle.

PIC16F877 http://www.alldatasheet.com
DLP245PB http://www.dlpdesign.com
AD7376 http://www.alldatasheet.com
Elmo Motor Controller http://www.elmomc.com
Motor PCB -
Sharp GP2D12 From http://www.alldatasheet.com
SRF04 From http://www.datasheetarchive.com

71

 2001 Microchip Technology Inc. DS30292C-page 1

PIC16F87X

Devices Included in this Data Sheet:

Microcontroller Core Features:

• High performance RISC CPU
• Only 35 single word instructions to learn

• All single cycle instructions except for program
branches which are two cycle

• Operating speed: DC - 20 MHz clock input
DC - 200 ns instruction cycle

• Up to 8K x 14 words of FLASH Program Memory,
Up to 368 x 8 bytes of Data Memory (RAM)
Up to 256 x 8 bytes of EEPROM Data Memory

• Pinout compatible to the PIC16C73B/74B/76/77

• Interrupt capability (up to 14 sources)
• Eight level deep hardware stack
• Direct, indirect and relative addressing modes

• Power-on Reset (POR)
• Power-up Timer (PWRT) and

Oscillator Start-up Timer (OST)
• Watchdog Timer (WDT) with its own on-chip RC

oscillator for reliable operation
• Programmable code protection
• Power saving SLEEP mode

• Selectable oscillator options
• Low power, high speed CMOS FLASH/EEPROM

technology
• Fully static design
• In-Circuit Serial Programming (ICSP) via two

pins
• Single 5V In-Circuit Serial Programming capability

• In-Circuit Debugging via two pins
• Processor read/write access to program memory
• Wide operating voltage range: 2.0V to 5.5V

• High Sink/Source Current: 25 mA
• Commercial, Industrial and Extended temperature

ranges
• Low-power consumption:

- < 0.6 mA typical @ 3V, 4 MHz

- 20 µA typical @ 3V, 32 kHz
- < 1 µA typical standby current

Pin Diagram

Peripheral Features:

• Timer0: 8-bit timer/counter with 8-bit prescaler
• Timer1: 16-bit timer/counter with prescaler,

can be incremented during SLEEP via external
crystal/clock

• Timer2: 8-bit timer/counter with 8-bit period
register, prescaler and postscaler

• Two Capture, Compare, PWM modules
- Capture is 16-bit, max. resolution is 12.5 ns
- Compare is 16-bit, max. resolution is 200 ns

- PWM max. resolution is 10-bit
• 10-bit multi-channel Analog-to-Digital converter
• Synchronous Serial Port (SSP) with SPI (Master

mode) and I2C (Master/Slave)
• Universal Synchronous Asynchronous Receiver

Transmitter (USART/SCI) with 9-bit address
detection

• Parallel Slave Port (PSP) 8-bits wide, with
external RD, WR and CS controls (40/44-pin only)

• Brown-out detection circuitry for
Brown-out Reset (BOR)

• PIC16F873
• PIC16F874

• PIC16F876
• PIC16F877

RB7/PGD
RB6/PGC

RB5

RB4
RB3/PGM

RB2

RB1

RB0/INT

VDD

VSS

RD7/PSP7

RD6/PSP6
RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA
RD3/PSP3

RD2/PSP2

MCLR/VPP

RA0/AN0

RA1/AN1
RA2/AN2/VREF-

RA3/AN3/VREF+

RA4/T0CKI

RA5/AN4/SS

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7
VDD

VSS

OSC1/CLKIN

OSC2/CLKOUT

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL
RD0/PSP0

RD1/PSP1

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19
20

40

39

38

37

36

35

34

33

32
31

30

29
28

27

26

25

24

23

22
21

P
IC

16
F

87
7/

87
4

PDIP

28/40-Pin 8-Bit CMOS FLASH Microcontrollers

PIC16F87X

DS30292C-page 6 2001 Microchip Technology Inc.

FIGURE 1-2: PIC16F874 AND PIC16F877 BLOCK DIAGRAM

FLASH

Program
Memory

13 Data Bus 8

14Program
Bus

Instruction reg

Program Counter

8 Level Stack
(13-bit)

RAM
File

Registers

Direct Addr 7

RAM Addr(1) 9

Addr MUX

Indirect
Addr

FSR reg

STATUS reg

MUX

ALU

W reg

Power-up
Timer

Oscillator
Start-up Timer

Power-on
Reset

Watchdog
Timer

Instruction
Decode &

Control

Timing
Generation

OSC1/CLKIN
OSC2/CLKOUT

MCLR VDD, VSS

PORTA

PORTB

PORTC

PORTD

PORTE

RA4/T0CKI
RA5/AN4/SS

RC0/T1OSO/T1CKI
RC1/T1OSI/CCP2
RC2/CCP1
RC3/SCK/SCL
RC4/SDI/SDA
RC5/SDO
RC6/TX/CK
RC7/RX/DT

RE0/AN5/RD

RE1/AN6/WR

RE2/AN7/CS

8

8

Brown-out
Reset

Note 1: Higher order bits are from the STATUS register.

USARTCCP1,2
Synchronous

10-bit A/DTimer0 Timer1 Timer2

Serial Port

RA3/AN3/VREF+
RA2/AN2/VREF-
RA1/AN1
RA0/AN0

Parallel Slave Port

8

3

Data EEPROM

RB0/INT
RB1
RB2
RB3/PGM
RB4
RB5
RB6/PGC
RB7/PGD

Device
Program
FLASH

Data Memory
Data

EEPROM

PIC16F874 4K 192 Bytes 128 Bytes

PIC16F877 8K 368 Bytes 256 Bytes

In-Circuit
Debugger

Low-Voltage
Programming

RD0/PSP0
RD1/PSP1
RD2/PSP2
RD3/PSP3
RD4/PSP4
RD5/PSP5
RD6/PSP6
RD7/PSP7

V1.1 Page 12 of 14 August 2003

TABLE 1: DLP-245PB PINOUT DESCRIPTION

Pin # Description

1 GROUND

2 E0 (I/O) Port Pin E0 connected to the 16F877 microcontroller. A/D Channel 5.

3 A0 (I/O) Port Pin A0 connected to the 16F877 microcontroller. A/D Channel 0.

4 A1 (I/O) Port Pin A1 connected to the 16F877 microcontroller. A/D Channel 1.

5 A2 (I/O) Port Pin A2 connected to the 16F877 microcontroller. A/D Channel 2.

6 A3 (I/O) Port Pin A3 connected to the 16F877 microcontroller. A/D Channel 3.

7 A4 (I/O) Port Pin A4 connected to the 16F877 microcontroller. Open drain output.

8 A5 (I/O) Port Pin A5 connected to the 16F877 microcontroller. A/D Channel 4.

9 UPRST (In) 16F877 Reset input. Can be left disconnected if not used.

10 GROUND

11 RESET# (In) Can be used by an external device to reset the FT245BM. Can be left disconnected if

not used.

12 RESETO# (Out) Output of the FT245BM’s internal Reset Generator. Stays high impedance for ~

2ms after VCC>3.5v and the internal clock starts up, then clamps its output to the 3.3v

output of the internal regulator. Taking RESET# low will also force RESETO# to

go high impedance. RESET0# is NOT affected by a USB Bus Reset.

13 GROUND

14 3V3OUT (Out) Output from the integrated L.D.O. regulator. Its primary purpose is to provide the

1

2120

40

V1.1 Page 13 of 14 August 2003

internal 3.3v supply to the USB transceiver cell and the RSTOUT# pin. A small amount of current

(<=5mA) can be drawn from this pin to power external 3.3v logic if required.

15 GROUND

16 SWVCC (Out) Power from EXTVCC (Pin 19) controlled via Pin 10 (POWERN#) of the FT245BM

and Q1 MOSFET power switch. R5 and C3 control the power-up rate to help limit inrush current.

17 GROUND

18 VCC-IO (In) 4.4 volt to +5.25 volt VCC to the FT245BM’s interface pins 10-12, 14-16, and 18-25.

This pin must be connected to VCC from the target electronics or EXTVCC.

19 EXTVCC (In) Use for applying main power (4.4 to 5.25 volts) to the module. Connect to

PORTVCC if the module is to be powered by the USB port (typical configuration).

20 PORTVCC (Out) Power from USB port. Connect to EXTVCC if module is to be powered by the

USB port (typical configuration). 500mA is the maximum current available to the DLP-245PB and

target electronics if the USB device is configured for high power.

21 DB7 (I/O) Line 7 of the data bus between the 16F877 and the FT245BM USB-FIFO.

22 DB6 (I/O) Line 6 of the data bus between the 16F877 and the FT245BM USB-FIFO.

23 DB5 (I/O) Line 5 of the data bus between the 16F877 and the FT245BM USB-FIFO.

24 DB4 (I/O) Line 4 of the data bus between the 16F877 and the FT245BM USB-FIFO.

25 DB3 (I/O) Line 3 of the data bus between the 16F877 and the FT245BM USB-FIFO.

26 DB2 (I/O) Line 2 of the data bus between the 16F877 and the FT245BM USB-FIFO.

27 DB1 (I/O) Line 1 of the data bus between the 16F877 and the FT245BM USB-FIFO.

28 DB0 (I/O) Line 0 of the data bus between the 16F877 and the FT245BM USB-FIFO.

29 B5 (I/O) Port Pin B5 connected to the 16F877 microcontroller.

30 B4 (I/O) Port Pin B4 connected to the 16F877 microcontroller.

31 B0 (I/O) Port Pin B0 connected to the 16F877 microcontroller.

32 C0 (I/O) Port Pin C0 connected to the 16F877 microcontroller.

33 C1 (I/O) Port Pin C1 connected to the 16F877 microcontroller.

34 C2 (I/O) Port Pin C2 connected to the 16F877 microcontroller.

35 C3 (I/O) Port Pin C3 connected to the 16F877 microcontroller.

36 C4 (I/O) Port Pin C4 connected to the 16F877 microcontroller.

37 C5 (I/O) Port Pin C5 connected to the 16F877 microcontroller.

38 C6 (I/O) Port Pin C6 connected to the 16F877 microcontroller.

39 C7 (I/O) Port Pin C7 connected to the 16F877 microcontroller.

40 GROUND

REV. 0

Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.

a
AD7376*

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700 World Wide Web Site: http://www.analog.com

Fax: 781/326-8703 © Analog Devices, Inc., 1997

*Patent Number: 5495245

615 V Operation
Digital Potentiometer

FUNCTIONAL BLOCK DIAGRAM

GND

VDD

SDO

AD7376

7-BIT
SERIAL

REGISTER

Q

D CK

7 7-BIT
LATCH

R

7

SDI

CLK

A

W

B

VSS

SHDN

CS

RS

SHDN

FEATURES

128 Position

Potentiometer Replacement

10 kV, 50 kV, 100 kV, 1 MV
Power Shutdown: Less than 1 mA

3-Wire SPI Compatible Serial Data Input

+5 V to +30 V Single Supply Operation

65 V to 615 V Dual Supply Operation

Midscale Preset

APPLICATIONS

Mechanical Potentiometer Replacement

Instrumentation: Gain, Offset Adjustment

Programmable Voltage-to-Current Conversion

Programmable Filters, Delays, Time Constants

Line Impedance Matching

Power Supply Adjustment

GENERAL DESCRIPTION
The AD7376 provides a single channel, 128-position digitally-
controlled variable resistor (VR) device. This device performs the
same electronic adjustment function as a potentiometer or vari-
able resistor. These products were optimized for instrument and
test equipment applications where a combination of high voltage
with a choice between bandwidth or power dissipation are avail-
able as a result of the wide selection of end-to-end terminal resis-
tance values. The AD7376 contains a fixed resistor with a wiper
contact that taps the fixed resistor value at a point determined by
a digital code loaded into the SPI-compatible serial-input regis-
ter. The resistance between the wiper and either endpoint of the
fixed resistor varies linearly with respect to the digital code trans-
ferred into the VR latch. The variable resistor offers a completely
programmable value of resistance between the A terminal and the
wiper or the B terminal and the wiper. The fixed A to B terminal
resistance of 10 kΩ, 50 kΩ, 100 kΩ or 1 MΩ has a nominal tem-
perature coefficient of –300 ppm/°C.

The VR has its own VR latch which holds its programmed resis-
tance value. The VR latch is updated from an internal serial-to-
parallel shift register which is loaded from a standard 3-wire
serial-input digital interface. Seven data bits make up the data
word clocked into the serial data input register (SDI). Only the
last seven bits of the data word loaded are transferred into the
7-bit VR latch when the CS strobe is returned to logic high. A
serial data output pin (SDO) at the opposite end of the serial
register allows simple daisy-chaining in multiple VR applications
without additional external decoding logic.

The reset (RS) pin forces the wiper to the midscale position by
loading 40H into the VR latch. The SHDN pin forces the resistor

to an end-to-end open circuit condition on the A terminal and
shorts the wiper to the B terminal, achieving a microwatt power
shutdown state. When shutdown is returned to logic high, the
previous latch settings put the wiper in the same resistance
setting prior to shutdown as long as power to VDD is not re-
moved. The digital interface is still active in shutdown so that
code changes can be made that will produce a new wiper posi-
tion when the device is taken out of shutdown.

The AD7376 is available in both surface mount (SOL-16) and
the 14-lead plastic DIP package. For ultracompact solutions
selected models are available in the thin TSSOP package. All
parts are guaranteed to operate over the extended industrial
temperature range of –40°C to +85°C. For operation at lower
supply voltages (+3 V to +5 V), see the AD8400/AD8402/
AD8403 products.

61 LSB ERROR BAND

61 LSB

SDI
(DATA IN)

SDO
(DATA OUT)

CLK

CS

VDD
VOUT

0V

0

1

0

1

0

1

0

1
DX DX

tPD_MAX

D'X D'X

 t DS

 t DH

 t CH

t CSH0

t CSS

 t CL

 t CS1

 t CSW

 t S

 t CSH

Figure 1. Detail Timing Diagram

The last seven data bits clocked into the serial input register will
be transferred to the VR 7-bit latch when CS returns to logic
high. Extra data bits are ignored.

AD7376

–8– REV. 0

0.1V

CODE = OOH

ISW

VSS TO VDD

W

B

DUT

0.1V
ISW

RSW =

Figure 38. Incremental ON Resistance Test Circuit

ICM

VCM

W

B

DUT
VDD

VSS

NC

A

NC

GND

Figure 39. Common-Mode Leakage Current Test Circuit

OPERATION
The AD7376 provides a 128-position digitally-controlled vari-
able resistor (VR) device. Changing the programmed VR set-
tings is accomplished by clocking in a 7-bit serial data word into
the SDI (Serial Data Input) pin, while CS is active low. When
CS returns high the last seven bits are transferred into the RDAC
latch setting the new wiper position. The exact timing require-
ments are shown in Figure 1.

The AD7376 resets to a midscale by asserting the RS pin, sim-
plifying initial conditions at power-up. Both parts have a power
shutdown SHDN pin which places the RDAC in a zero power
consumption state where terminal A is open circuited and the
wiper W is connected to B, resulting in only leakage currents
being consumed in the VR structure. In shutdown mode the
VR latch settings are maintained so that, returning to opera-
tional mode from power shutdown, the VR settings return to
their previous resistance values.

D 6
D 5
D 4
D 3
D 2
D 1
D 0

RDAC

LATCH
&

DECODER

RS

RS

RS

RS

SHDN

A

W

B

RS = RNOMINAL /128

Figure 40. AD7376 Equivalent RDAC Circuit

PROGRAMMING THE VARIABLE RESISTOR
Rheostat Operation
The nominal resistance of the RDAC between terminals A and
B are available with values of 10 kΩ, 50 kΩ, 100 kΩ and 1 MΩ.
The final three characters of the part number determine the
nominal resistance value, e.g., 10 kΩ = 10; 50 kΩ = 50; 100 kΩ
= 100; 1 MΩ = 1M. The nominal resistance (RAB) of the VR
has 128 contact points accessed by the wiper terminal, plus the
B terminal contact. The 7-bit data word in the RDAC latch is
decoded to select one of the 128 possible settings. The wiper’s first
connection starts at the B terminal for data 00H. This B–termi-
nal connection has a wiper contact resistance of 120 Ω. The
second connection (10 kΩ part) is the first tap point located
at 198 Ω (= RBA [nominal resistance]/128 + RW = 78 Ω + 120 Ω)
for data 01H. The third connection is the next tap point repre-
senting 156 + 120 = 276 Ω for data 02H. Each LSB data value
increase moves the wiper up the resistor ladder until the last tap
point is reached at 10041 Ω. The wiper does not directly con-
nect to the B terminal. See Figure 40 for a simplified diagram of
the equivalent RDAC circuit.

The general transfer equation that determines the digitally pro-
grammed output resistance between W and B is:

RWB(D) = (D)/128 × RBA + RW (1)

where D is the data contained in the 7-bit VR latch, and RBA is
the nominal end-to-end resistance.

For example, when VB = 0 V and A–terminal is open circuit, the
following output resistance values will be set for the following
VR latch codes (applies to the 10 kΩ potentiometer).

Table I.

D RWB
(DEC) (V) Output State

127 10041 Full-Scale
64 5120 Midscale (RS = 0 Condition)
1 276 1 LSB
0 198 Zero-Scale (Wiper Contact Resistance)

Note that in the zero-scale condition a finite wiper resistance of
120 Ω is present. Care should be taken to limit the current flow
between W and B in this state to a maximum value of 5 mA to
avoid degradation or possible destruction of the internal switch
contact.

Like the mechanical potentiometer the RDAC replaces, it is
totally symmetrical. The resistance between the wiper W and
terminal A also produces a digitally controlled resistance RWA.
When these terminals are used the B–terminal should be tied to
the wiper. Setting the resistance value for RWA starts at a maxi-
mum value of resistance and decreases as the data loaded in the
latch is increased in value. The general transfer equation for this
operation is:

RWA(D) = (128-D)/128 × RBA + RW (2)

where D is the data contained in the 7-bit RDAC latch, and RBA

is the nominal end-to-end resistance. For example, when VA = 0 V
and B–terminal is tied to the wiper W the following output
resistance values will be set for the following RDAC latch codes.

18

SSA - Rev 6/98

555...222 TTTeeerrrmmmiiinnnaaalllsss fffooorrr SSSIIIBBB---SSSSSSAAA

The numbering of the SIB-SSA terminals (1-16) is identical to the numbering of

the SSA control board connector.

SSA WITH SIB-SSA CARD
CONNECTORS

VSM1M2G

16 1

25

SSA - Rev 6/98

SSA CONTROL CONNECTIONS

TACHOGENERATOR FEEDBACK

External continuous current limit

External peak current limit

Motor command

A

-13V

CW disable

Twisted and shielded pair

1

3

+
_

4

14

13

+13V

12 Inhibit output

7 Current monitor

10

5

11

2

8

Tacho

6

9

Inhibit input

CCW disable

USB /

PIC16877

DLP-245PB

13

VCC-IO

15

17

40

GND

GND

GND

GND

1

10
GND

GND

18

EXTVCC
19

32
C0

33
C1

39
C7

+5V

+5V

100nF100nF
C4 C5

H

G

F

E

D

C

B

A

8 7 6 5 4 3 2 1

H

G

F

E

D

C

B

A

8 7 6 5 4 3 2 1

Home Robotics

DLP-245PB Controller

Cor van der Klooster

2007-02-08

3_Axes_Omnidrive_Controller.vsd

+15V

+5V

+Vo

-Vo

+Vi

-Gi

100nF

Input 8.4 -- 36V

Output +/-15V

4W

DC-DC-Converter

22

14

16

113
2

23
100nF

100nF

+15V

-15V

µA7805 +5V

100nF 100nF

20 IMX 4-1515-9

2722 012 00544

Voltage

Regulator 5V

Go

24p-DIL

1

2

Supply circuit

Multi Fuse

MF-R040 OPA2277UA

7

4

100nF

100nF

2

4

+15V

-15V

100nF

REF01CS

+15V

A
D
7
3
7
6
A
N
1
0

SDO11

SDI9

CLK7

CS/N5

RS/N6

W 14

A 1

B 2

SHDN/N 10

GND VDD

4 12

VSS

3

+
1
5
V

-1
5
V

-

+

OPA2277

2

3

1

-

+

OPA2277

6

5

7

10K

10K

10K01

+10V

-10V

10µF

10V
REF01CS

6

+10V

-10V

Voltage Reference

R3

+10V

-10V

A
D
7
3
7
6
A
N
1
0

SDO11

SDI9

CLK7

CS/N5

RS/N6

W 14

A 1

B 2

SHDN/N 10

GND VDD

4 12

VSS

3

+
1
5
V

-1
5
V

+10V

-10V

A
D
7
3
7
6
A
N
1
0

SDO11

SDI9

CLK7

CS/N5

RS/N6

W 14

A 1

B 2

SHDN/N 10

GND VDD

4 12

VSS

3

+
1
5
V

-1
5
V

+10V

-10V

1

2

C6

37
C5

36
C4

35
C3

4

3

6

5

220uF 220uF

100uF

100uF

+

+
+ +

100uF

SPI Clock

Data In

Data Out

34
C2

38

X1

X2

11K 11K 11K 11K 11K 11K 11K 11K

Supply

8 - 30V

Setpoint 1

Setpoint 2

Setpoint 3

For schematics and source:

www.dlpdesign.com/dnlda

40

21

1

20

FTDI

FT245BM

Microchip

PIC16F877

U
2
 U
p
p
e
r v
ie
w

DLP-245PB

USB

CN1

JP3

5 1

JP3

Programming

Header

1 MCLR/n

2 RB6

3 SWVCC

4 GND

5 RB7

CN1

USB Conn.

1 PORTVCC

2 USBDM

3 USBDP

4 GND

GP2D12/GP2D15

GP2D12/GP2D15

■ Absolute Maximum Ratings

■ Outline Dimensions (Unit : mm)

General Purpose Type Distance
Measuring Sensors

1. TVs

2. Personal computers

3. Cars

4. Copiers

■ Features

■ Applications

1. Less influence on the color of reflective objects, reflectivity

2. Line-up of distance output/distance judgement type

Distance output type (analog voltage) : GP2D12

Detecting distance : 10 to 80cm

Distance judgement type : GP2D15

Judgement distance : 24cm

 (Adjustable within the range of 10 to 80cm)

3. External control circuit is unnecessary

4. Low cost

Parameter Symbol Rating Unit

VCC −0.3 to +7 V

VO −0.3 to Vcc +0.3 V

°C
Topr −10 to +60

−40 to +70
°C

Tstg

Supply voltage

Output terminal voltage
Operating temperature
Storage temperature

(Ta=25°C, Vcc=5V)

R3.75

R3.75
3.75

10.1
14.75

16.34.157.5

φ3.2 hole

φ3.2 hole

6.3
2

8.
4

7.
2

13

2-
1.

5
13

.5

18
.9

+0
.5

−0
.3

37
29.5

★20±0.1★4.5

Light detector side

PWB

Lens case

1.2
3.3

Connector
Made by
J.S.T. MFG,
CO., LTD.
S3B-PH

Light emitter side

1

1 3

2

3

VO
GND
VCC

❈ The dimensions marked ★ are
described the dimensions of
lens center position.

❈ Unspecified tolerance : ±0.3mm

Terminal connection

Notice In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

Internet Internet address for Electronic Components Group http://www.sharp.co.jp/ecg/

GP2D12/GP2D15

Fig.1 Internal Block Diagram Fig.2 Internal Block Diagram

■ Electro-optical Characteristics
Parameter Symbol Conditions MIN. TYP. MAX. Unit

Distance measuring range

Output terminal voltage

Difference of output voltage

∆L
0.4

−
−

2.0

33

Vcc −0.3

−

−

10

0.25
− cm

mA

Distance characteristics of output

VO

VOH

∆VO

VOL

VO

ICC

L=80cm

Output voltage at High

Output voltage at Low

Output change at L=80cm to 10cm

L=80cm

0.55

−
0.6

80

V

V

Average Dissipation current

1.75 2.25

2421 27

50

V

V

cm

(Ta=25°C, VCC=5V)

GP2D12

GP2D15

GP2D12
GP2D15

*1 Using reflective object : White paper (Made by Kodak Co. Ltd. gray cards R-27 ⋅ white face, reflective ratio ; 90%).
*2 We ship the device after the following adjustment : Output switching distance L=24cm±3cm must be measured by the sensor.
*3 Distance measuring range of the optical sensor system.
*4 Output switching has a hysteresis width. The distance specified by Vo should be the one with which the output L switches to the output H.

*1 *3

*1

*1

*1

*1

*4*2*1

*1

Note) L : Distance to reflective object.

Signal
processing
circuit

Voltage
regulator

Output
circuit

Oscillation
circuit

LED drive
circuit

VCC 5V

Vo
Analog output

GND

PSD

LED
Distance measuring IC

GP2D12

Signal
processing
circuit

LED drive
circuit

VCC 5V

Vo
Digital output

GND

PSD

LED

GP2D15

VCC

12kΩ
Voltage
regulator

Output
circuit

Oscillation
circuit

Distance measuring IC

Fig.3 Timing Chart

5.0msMAX.(GP2D12)

7.6ms±1.9msTYP.(GP2D15)

38.3ms±9.6ms

VO (Output)

Distance
measuring
operation

First measurment Second
measurment

nth
measurment

Unstable output First output Second output nth output

VCC
(Power supply)

■ Recommended Operating Conditions

Parameter Symbol Rating Unit

VCC 4.5 to +5.5 VOperating supply voltage

SRF04 - Ultra-Sonic Ranger
Technical Specification

This project started after I looked at the Polaroid Ultrasonic Ranging module. It has a number of
disadvantages for use in small robots etc.

1. The maximum range of 10.7 metre is far more than is normally required, and as a result
2. The current consumption, at 2.5 Amps during the sonic burst is truly horrendous.
3. The 150mA quiescent current is also far too high.
4. The minimum range of 26cm is useless. 1-2cm is more like it.
5. The module is quite large to fit into small systems, and
6. It’s EXPENSIVE.

The SRF04 was designed to be just as easy to use as the Polaroid sonar, requiring a short trigger
pulse and providing an echo pulse. Your controller only has to time the length of this pulse to find
the range. The connections to the SRF04 are shown below:

The SRF04 Timing diagram is shown below. You only need to supply a short 10uS pulse to the
trigger input to start the ranging. The SRF04 will send out an 8 cycle burst of ultrasound at 40khz
and raise its echo line high. It then listens for an echo, and as soon as it detects one it lowers the echo
line again. The echo line is therefore a pulse whose width is proportional to the distance to the
object. By timing the pulse it is possible to calculate the range in inches/centimeters or anything else.

If nothing is detected then the SRF04 will lower its echo line anyway after about 36mS.

Here is the schematic, You can download a better quality pdf (161k) version srf1.pdf

The circuit is designed to be low cost. It uses a PIC12C508 to perform the control functions and

Appendix C

Software

Appendix C.1 GUI

Software was written to control both the simulator and the real robot. In the
section below it is explained how to compile the software in simulator, real life
or logdata mode. In this section, the most important features are explained.
Figure C.1 shows the basic Graphical User Interface (GUI). Figure C.2 is built
in simulator mode and is, as the reader can see, almost the same, except for the
window in the bottom left corner. This is the simulator map, which is actually
just a bitmap file of 1500x1500 pixels. By pressing the ”Print Grid” button
after a few iterations of the algorithm, the map belonging to one particle will
be printed on the large window on the right. To select which particle should be
printed, click the drop down menu next to the print button, see figure C.4.

Figure C.3 shows the control center. To control the robot, click one of the
arrow buttons. In simulator, a button click stands for 1 iteration. If the software
is compiled for the robot, the robot keeps going in the chosen direction until the
middle button, the stop button, is pressed. This also holds for the rotate left
”L” and rotate right ”R” buttons. The robot can follow a trail: when clicking
in the large map at several locations the robot will go to those locations if the
user presses the ”Go To Target” button.

In real mode, all sensordata is logged. By pressing the ”Save Log” button,
this log is saved to file to the application directory. The ”Toggle RT” but
especially the ”Toggle Graph” buttons will show interesting windows for testing
the complete sensor array. They work in both real life mode and logdata mode.

Appendix C.2 defs.h

A lot of parameters have to be hardcoded, for example parameters defining the
size of static arrays. All the hardcoded parameters can be found in one file:
defs.h. The most interesting and important ones are listed here:

////////////////////////////////////

85

Figure C.1: Complete GUI.

Figure C.2: GUI for simulator.
86

Figure C.3: Control of the robot or simula-
tor.

Figure C.4: Selecting the particle to print the
map from.

// Flags
//

#de f i n e USELOGDATA // These d e f i n e s speak f o r
//#de f i n e SIMULATOR // themse lves . To a c t i v a t e
//#de f i n e REALTIME // one , comment the o the r s .

////////////////////////////////////
// Low l e v e l c on t r o l
//

const unsigned char MOTORDEVICE[9] = ”DPBQMCX1” ;
const unsigned char SENSORDEVICE[9] = ”DPCUMKY4” ;

////////////////////////////////////
// Bas i c s
//

#de f i n e PARTICLES 20 // The t o t a l no o f p a r t i c l e s

#de f i n e TMR MOVE INTRV 300 // No . o f ms between 2 motion commands
#de f i n e TMR MEAS INTRV 100 // No . o f ms between 2 measurements

#de f i n e IR VIEW ANGLE 0.08 // Angle o f the beam in rad .
#de f i n e IR MIN DIST 8 // Min and max measurement d i s t ance
#de f i n e IR MAX DIST 60 // Note : In sim th i s i s a c tua l maximum.

// In rea l , a > MAX i s INF
// These v a r i a b l e s a l s o e x i s t f o r US

////////////////////////////////////
// Grid r e l a t e d
//

87

#de f i n e RESOLUTION 5 // Reso lut ion in cm per g r id square
#de f i n e GRIDCELLSX 300 // 1500/RESOLUTION // Note : S t a t i c ’ cause
#de f i n e GRIDCELLSY 300 // 1500/RESOLUTION // they are array s i z e s

#de f i n e TWEAK h 1 // For tweaking the opac i ty o f g r i d c e l l s .
#de f i n e TWEAK d 3 // opac i ty = (TWEAK d+d)/(TWEAK h+h) ;

#de f i n e EMPTYCELL 1 .0 // These 4 d e f i n e s are f o r US. In de f s . h
#de f i n e FULLCELL 1 .0 // the re are a l s o d e f i n e s f o r IR .
#de f i n e EMPTYCELLINF 0 .2 // Used f o r tweaking r e l evance o f c e r t a i n
#de f i n e FULLCELLINF 0 .2 // measurements . INF i s l e s s r e l e van t .

#de f i n e GLOBALMAPFULL 7 .0 // Relevance o f the g l oba l map . A FULL
#de f i n e GLOBALMAPEMPTY 3.0 // c e l l in the g l oba l map equa l s 7 meas .

#de f i n e FADEFACTORFULL 0.98 // The amount o f f ad ing that takes p lace
#de f i n e FADEFACTOREMPTY 0.98 // every i t e r a t i o n o f the a lgor i thm .

////////////////////////////////////
// Noise r e l a t e d
//

const f l o a t ROBOT US DEV EST = (f l o a t) 0 ; // Pa r t i c l e ’ s est imated no i s e
const f l o a t ROBOT TURN DEV EST = (f l o a t) 0 ; // Pa r t i c l e ’ s est imated no i s e
const f l o a t ROBOT MOVE DEV EST = (f l o a t) 0 ; // Pa r t i c l e ’ s est imated no i s e

const f l o a t ROBOT US DEV SIM = (f l o a t) 0 ; // % of US no i s e in sim
const f l o a t ROBOT TURN DEV SIM = (f l o a t) 5 ; // % of turn ing no i s e in sim
const f l o a t ROBOT MOVE DEV SIM = (f l o a t) 5 ; // % of motion no i s e in sim
const f l o a t ROBOT US BULL FREQ = (f l o a t) 10 ; // 1/random measurements

88

Bibliography

[1] A. Eliazar and R. Parr, DP-SLAM: Fast, robust Simultaneous Localiza-
tion And Mapping without predetermined landmarks, Proceedings of the
18th International Joint Conference on Artificial Intelligence (IJCAI-03),
Morgan Kaufmann, 2003, pp. 1135–1142.

[2] D. Fox, Markov localization: A probabilistic framework for mobile robot
localization and navigation, Ph.D. thesis, University of Bonn, 1998.

[3] J.S. Liu and R. Chen, Sequential Monte Carlo methods for dynamic sys-
tems, Journal of the American Statistical Association 93 (1998), no. 443,
1032–1044.

[4] D. Koller M. Montemerlo, S. Thrun and B. Wegbreit, FastSLAM: A fac-
tored solution to the Simultaneous Localization and Mapping problem, Pro-
ceedings of the AAAI National Conference on Artificial Intelligence (Ed-
monton, Canada), 2002, pp. 593–598.

[5] W. Whittaker M. Montemerlo and S. Thrun, Conditional particle filters
for simultaneous mobile robot localization and people-tracking, IEEE Inter-
national Conference on Robotics and Automation (ICRA) (Washington,
DC), 2002, pp. 695–701.

[6] H.P. Moravec and A. Elfes, High resolution maps from wide angle sonar,
Proceedings of the IEEE International Conference on Robotics and Au-
tomation, 1985, pp. 116–121.

[7] N. Gordon M.S. Arulampalam, S. Maskell and T. Clapp, A tutorial on
particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE
Transactions on Acoustics, Speech, and Signal Processing 50 (2002), no. 2,
174–188.

[8] R. Negenborn, Kalman filters and robot localization, Master’s thesis,
Utrecht University, Utrecht, Netherlands, 2003.

[9] SRF04 technical specification Robot Electronics website, http://www.robot-
electronics.co.uk/htm/srf04tech.htm.

89

[10] Thrun S, Robotic mapping: A survey, Exploring Artificial Intelligence in
the New Millenium (G. Lakemeyer and B. Nebel, eds.), Morgan Kaufmann,
2002.

[11] W. Burgard S. Thrun, D. Fox and F. Dellaert, Robust Monte Carlo local-
ization for mobile robots, Artificial Intelligence 128 (2000), no. 1-2, 99–141.

[12] S. Schwope, Determination of limits and development of different sen-
sors and algorithms for autonomous navigation, Master’s thesis, RWTH,
Aachen, 2004.

[13] C. Stachniss and W. Burgard, Mobile robot mapping and localization in
non-static environments, Proceedings of the AAAI National Conference on
Artificial Intelligence (Pittsburgh, USA), 2005, pp. 1324–1329.

[14] H. Jans C. Matenar W. Burgard, D. Fox and S. Thrun, Sonar-based map-
ping of large-scale mobile robot environments using EM, Proceedings of
the 16th International Conference on Machine Learning (ICML ’99), 1999,
pp. 67–76.

[15] C. Wang, C. Thorpe, and S. Thrun, Online Simultaneous Localization And
Mapping with detection and tracking of moving objects: Theory and results
from a ground vehicle in crowded urban areas, Proceedings of the IEEE
International Conference on Robotics and Automation, 2003, pp. 842–849.

[16] Hamamatsu Website, http://www.hamamatsu.com.

[17] Sharp Website, http://sharp-world.com/index.html.

[18] SICK Website, http://www.sickusa.com.

90

	Introduction
	Problem Description
	Relevance to AI
	Project Description
	Approach

	Sensors
	Introduction
	Infrared
	Operation & Use
	Performance

	Ultrasound
	Operation & Use
	Performance

	Algorithms
	Basics
	Introduction
	Bayes
	Particle Filtering

	Map Building
	Introduction
	FastSLAM
	DP-SLAM

	DP-SLAM
	Overview
	Occupancy Grid
	Ancestry Tree
	Weighing the particles
	Laser
	Conversion to Ultrasound

	Robot
	Introduction
	Hardware - Platform
	Hardware - Electronics
	Microcontroller
	Motors and Motor controllers
	Sensor Polling

	Software - PIC
	Software - Laptop

	Results
	Assault Course
	Error Compensation

	Conclusion
	Conclusion
	Recommendations

	Application Manual
	Robot
	Laptop

	Robot Hardware
	Software
	GUI
	defs.h

