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PREFACE

In 2004, after having just finished my bachelor of computing sciences at the Hogeschool van
Utrecht, I started my master Agents and Computational Intelligence at Utrecht University.
From early age I was always fascinated by what computers were capable of doing. During
the study computing sciences a course was given called Artificial Intelligence, which inspired
me into continuing my studies at Utrecht University. During this course it was clear this was
the right choice for me, and machine learning in combination with games was my favorite
subject. After finishing my last course in November 2006, I started solicitations at various
companies like Getronics, TNO and ING. Unfortunately none had the perfect assignment
for me. This assignment preferably being one in machine learning. During this time I had
also spoken with Dr. Marco Wiering about possibilities on doing research at the university.
Exploring the possibilities of doing a research topic on Evolutionary Algorithms and Rein-
forcement Learning. During this time it came to my attention Michiel Vuurboom was also
in search of a suitable research topic. In the past Michiel Vuurboom and I have successfully
done courses and projects in both reinforcement learning and other related courses. After
talking to Dr. Wiering we decided to do our master thesis together on the subject neu-
roevolution. Earlier on, in the course Reinforcement Learning, Michiel Vuurboom, Wouter
Tinus, Tina Mioch and myself had done research on using reinforcement learning in the
environment of Othello. Realizing Othello is a very good learning environment we decided
to use this research as a starting point for our master thesis. After starting research at
April 2007 on several learning techniques using Othello, my research for my master thesis
has finished at February 2008.

During this time a lot of people have been of great help and support and I would like to
take the opportunity to thank those wonderful people. First of all I would like to thank
Michiel Vuurboom for being my classmate, friend and research partner during my time at
the university. His inputs, knowledge and motivation have helped this research to what it
is now. I would like to thank Dr. Marco Wiering for being an inspiring teacher, for his
creative input and feedback during the project, and for him being ever supportive during
the course of the project.






ABSTRACT

From early days in computing, making computers play games like chess and Othello with a
high level of skill has been a challenging and, lately, rewarding task. As computing power
becomes increasingly more powerful, more and more complex learning techniques are em-
ployed to allow computers to learn different tasks. Games, however, remain a challenging
and exciting domain for testing new techniques and comparing existing ones due to the
clearly defined and easily enforced rules, complexity of games and often being fully observ-
able and deterministic. In this thesis we will focus on the game Othello. Othello (also
known as Reversi) is an old boardgame being played all over the world by new players and
grandmasters alike. Othello is known for being a game which is very easy to learn but hard
to master. Due to this nature of the game it is excellent for comparing existing techniques
and testing new ones. Nowadays software exists which plays better Othello than the current
human world champion. This software is capable of providing such a high level of play by
using hard coded knowledge of the game (opening book), look ahead (mid game) and brute
force calculations (end game). The goal of this research is to compare techniques in creat-
ing a player without the use of any such a priori knowledge. We intend to compare several
neuroevolution techniques to random moving players and the more common reinforcement
learning techniques of temporal difference learning.

Research done for this thesis can be divided into two sections: Comparison between the
three neuroevolution techniques, and a comparison between cooperative and competitive
learning. For part I three different neuroevolution techniques are compared: SANE, ESP
and NEAT. All three use a neural network as function approximator, which is evolved using
one of the three techniques. A comparison is done against random moving opponents as well
as deterministic (and more skilled) opponents. NEAT emerged as best at learning how to
play Othello. Part II is research done to explore the usability of different tournament types
for evolving in a competitive way rather than cooperative. Using competitive learning
rather than cooperative results in less games needed for evaluation of the same number
of players, however information is lost as players pair against other, possibly unskilled,
players. ESP is used as neuroevolution-technique. First a standard group tournament is
used to test the capabilities of basic tournament training in Othello. Training is done using
only learning players in the tournament as well as random moving players and deterministic
players. The latter two are added to provide more knowledge into the tournaments. As basic
tournaments resulted in less skillful players than was the case with cooperative learning, a
more sophisticated tournament type was used: Swiss pairing. Swiss pairing does result in
better learning, although still less than with cooperative. Tournament training results in
less skilled players than is the case with cooperative learning.
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CHAPTER 1

INTRODUCTION

1.1 Research motivation

Game playing has always been an interesting part in the field of Artificial Intelligence.
Games like chess and Othello have been subjects of research for many years. These games
are interesting because of their complexity and their many possible game states while they
are also fully observable and deterministic. And because of a well defined set of rules they
are easy to implement.

There are many human players who play these games at an excellent level, although since
a few years the computer beats man in these games. In 1997 the chess program Deep Blue
defeated the world champion for the first time [Hsu02]. In 1980 an Othello program called
The Moor won a game against the reigning world champion and after 1997 world class
Othello players are no match for Othello computer players [Bur97].

The current techniques to create a great computer player for chess or Othello use a priori
knowledge of good strategies and use advanced search techniques to look ahead as many
moves as possible. Of course a computer can look ahead much further than a human being
and as computer power increases, this gap between computers and humans will also increase.
Although computers can beat man playing chess and Othello, that does not mean these
computer players are intelligent. They are fast, they have a very large memory, but they
use strategies that they did not invent themselves; they use human knowledge combined
with computation power.

What if we can create a computer player that can learn playing games like Othello and
chess without a priori knowledge about good strategies? Will they be able to learn to play
a good competing level? Will they be able to learn the same good strategies as humans?
In 2005 we, Michiel Vuurboom and I, made a start with research on learning to play the
game Othello without a priori knowledge using reinforcement learning and neural networks
resulting in a player who plays at a decent level. Based on this result we do further research
on the game Othello and this time using neuroevolution techniques.

1.2 Problem statement

Neuroevolution techniques seem promising, although at this moment there has not been
that much research done on game playing such as Go and Othello using these techniques.
Games like Othello with large state spaces and simple rules are interesting subjects for
research on neuroevolution techniques.

With a good neuroevolution technique as a start we think it must be possible to learn to
play Othello at a good level without any a priori knowledge. But to be sure of that, we
first need a good neuroevolution technique.
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Therefore our shared research goal for this research is:
Find the neuroevolution technique that is best at learning to play Othello.

For this we research some of the known neuroevolution techniques and find out which
techniques have potential and then compare them to find out which one is best at learning
to play Othello. We will compare the techniques in terms of learning potential and learning
speed.

As became apparent during the running of experiments for part I, the learning time needed
to create a skilled player capable of defeating the random and deterministic temporal dif-
ference player was still high and only good against the type of player it trained against.
This is why for part 2 I want to do research on different learning approaches in combination
with neuroevolution. More precise I would like to determine if competitive learning, rather
than cooperative, increases the speed at which the same level of play can be reached.

In addition to our shared research which is found in chapters 2, 3 and 4 an additional part
is added covering the research done into competitive neuroevolution using the Othello do-
main. This can be formulated as:

Can learning speed in neuroevolution be increased by using a different learning method while
maintaining the same level of play?

For part I we expect all the techniques we compare to perform at least as good as the player
created in 2005 at playing against a random opponent. One problem with the research in
2005 is that there is a bug in the software (explained in chapter 6), so the results of that
research are not that good to compare to.

Expectations for part II are that competitive learning results in a shorter learning time
required than cooperative learning.

1.3 Structure of the thesis

This thesis is split into two parts. The first part is a collective research about the comparison
of the three neuroevolution techniques. In this part the game Othello is explained as well
as the different strategies and the different opponents used in the experiments in chapter
2. The three neuroevolution techniques are explained in detail in chapter & including their
implementations used for the experiments. The experiments are described in chapter 4
including all results and first conclusion.

Part II of this thesis covers the research done into competitive neuroevolution which is
done by myself. First different competitive learning methods are explained in chapter
5. Following is chapter 6 showing results of players learning against a randomly moving
opponent using a limited round-robin and a Swiss pairing tournament. In the chapter 7
experiments are shown where players learn to play Othello against a deterministic opponent
using the same limited round-robin and swiss pairing tournament method.

Chapter 8 and chapter 9 contain the conclusions and recommendations of both Part I and
Part II.
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1.4 Division of tasks

This thesis is divided into two separate parts. Part I is research done by both Michiel
Vuurboom and me. The experiments done, implementations made, conclusions and recom-

mendations made are done together.
Part II is research done by Bas Jacobs, and as such all implementations, experiments and

written report are my own work.

Bas Jacobs

29 Februari 2008
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Neuroevolution and Othello






CHAPTER 2

OTHELLO

Othello is a derivative of the the Go family of games, and existed since the nineteenth
century under the name Reversi. In 1974 the game Othello was formalized in Japan. Like
Go, the game Othello is about capturing territory of your opponent. It is a two-player game
on an 8x8 board with black and whites pieces. The initial board setup is shown in figure
2.1.

o’

Figure 2.1: Initial board state

Each player takes turns placing pieces on the board. A player may only move to an open
space that causes an opponent’s piece or pieces to be flanked by the new piece and another
one of the player’s own pieces. The opponent’s pieces are then captured. Pieces may be
captured vertically, horizontally and diagonally. Figure 2.2 shows the legal moves for black
for the given board pattern.

Y

Figure 2.2: Legal moves for black
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Once a move is made the captured pieces are flipped. Figure 2.3 shows the board layout
resulting from a move by black in the second row of the sixth column. The game is continued
until there are no legal moves available for either player. If a player has no legal move he
has to pass. The winner is the player with most pieces in the final board configuration.

Figure 2.3: After black’s turn

2.1 Playing Othello

There are different strategies for playing Othello. A player can focus on capturing the
corners and edges, or he can use a strategy where capturing corners is only a sub-goal. The
best human players use very sophisticated strategies and they try to look as many moves
ahead as possible.

An Othello game can be divided in an opening-game, a mid-game and an end-game. Of
course the end-game (approximately the last 20 moves) is the final battle in which each
player tries to capture as many stones as possible. The foundation for that end-game is
the mid-game. The first moves in the opening-game are important for a good mid-game.
Two general classes of mid-game strategies exist in Othello: the positional strategy and the
mobility strategy.

The positional strategy is simpler than the mobility strategy, but also inferior. Using a
positional strategy the player has the immediate goal to capture as many stones as possible.
To accomplish that, he will try to capture the edges to ring the opponent and he will try
to capture the corner places at any given time because a piece in a corner can never be
captured. A game with two players using a positional strategy will end up in an arms race
with both players trying to get the upper hand.

The positional strategy is an easy strategy to understand and to learn and it is also easy to
implement in a computer player. Most new and novice players use this strategy.

The mobility strategy on the other hand is much more complicated, but also superior. It
is based on the notion of mobility: forcing the opponent to give up available moves until
the player is in a position to decide exactly where the opponent will have to move. To

10
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accomplish this the player attempts to control the center of the board, forcing the opponent
to surround the player’s pieces. The opponent will be forced to surrender corners and edges
in the end game because of what the player does in the mid-game. A mobility strategy can
be characterized by a low piece count and a large number of available moves for the player
during the mid-game. Then the opponent will have many pieces and only a few available
moves.

The mobility strategy is difficult to learn. Not only for a human player is this hard to
master, but it is also difficult to make a computer learn this technique [Bil90].

2.2 Computer players

Human players can only look a few moves ahead. Computer programs can compute many
steps ahead, only limited by their memory capacity and speed (or the amount of time one
is willing to wait for the calculations to complete). It should be stated that expert human
players do not scan any more moves ahead than novice players [Gro65]. Most Othello
programs use a priori knowledge for playing the game. They use an opening-book for the
first few moves and use complex search algorithms in combination with different strategies
to decide the next move.

By now computers are fast enough to compute many steps ahead and beat the best human
players in playing Othello. But they can beat human players only because of their computing
power. Search-algorithms have been developed and evolved to very fast algorithms and
many strategies for playing Othello have been developed in the last 40 years [Rus95].

Current expert computers players, like WZebra [And04] and Edax [Del04], can beat all
human players. They use sophisticated pattern recognition and a notion of mobility to
play a mobility strategy. An opening book (a large database with opening moves and their
desirability) is used for the opening-game. Then an advanced search tree is used to play
the mid-game using mobility strategy. The end-game is usually played by calculating the
last moves (up to the last 20 moves). By calculating the end-game, the computer already
knows at the end of the mid-game whether it can win the game or not. It will then try to
maximize its score, or minimize its losses using look ahead to the last move of the game.
Players like WZebra, which is one of the best computer players at the moment (and free to
download and use), use advanced a priori knowledge and well defined strategies combined
with brute force computation to play the game. They are optimized to play Othello with
the mobility strategy. All knowledge was implemented and nothing was learned.

It would be interesting to find out whether it is possible to have a computer learn the
mobility strategy. Some research has been done on this subject.

In [And02] the authors claim to have developed an Othello learning player that is capable
of learning a mobility strategy using the neuroevolution technique NEAT. Although the
player does not play at an expert level, it was able to learn the mobility strategy.

2.3 Othello opponents

For this research several two different opponents have been created to test against. They
consist of a non-deterministic and a deterministic player.

11
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2.3.1 Random opponent

The Random opponent is a very simple player. It does not use any strategy or board
evaluation at all and just picks a random move from the possible legal moves.

In chapter 6 it is explained that the Random opponent used in earlier research ([Jac05]),
where this research is based upon, contained a bug that has been fixed for this research.

2.3.2 TD-Greedy opponent

The TD-Greedy opponent is the final result of the research in [Jac05]. This opponent has
learned to play Othello using random opponents combined with batch-learning using sample
data from world class tournament games.

In the end it scored 83% against a random opponent and is a good opponent for novice
Othello players.

This player is deterministic and it uses a neural network with 20 hidden neurons for the
board evaluation. Details of this research and the player can be found in [Jac05].

12
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NEUROEVOLUTION

Creating a computer based Othello player can be done in quite a few different ways, although
creating an expert one requires a priori knowledge and a lot of raw computing power. Many
leaps have been made in the development of techniques capable of learning to play Othello.
One of the more recent ones is the development of neuroevolution. Neuroevolution is a
technique which uses genetic algorithms to train artificial neural networks.

3.1 Neural networks

An Artificial Neural Network, also known as Neural Network, is a processing unit based
upon the principles of biological information processing performed by the brain [Ste96].
Key components are the neurons and the connections between them. These neurons are
linked in a specific manner depending on the task a neural network is assigned to. A neural
network is designed to learn by example and through examples its connections are updated
in order to generate better solutions to the problem presented. A typical neural network
can be seen in figure 3.1. The Input Layer is where information is fed to the neural network;
the Output Layer gives the outcome of the neural network based upon the inputs given;
The Hidden Layer allows for more complicated tasks to be learned. More hidden units and
layers allow for more complicated tasks to be learned at the expense of computation time.

Output Layer

Hidden Layer

Input Layer

Figure 3.1: Simple feedforward neural network

Neural networks have been used in many fields such as sales forecasting, industrial process
control, customer research, data validation, risk management, target marketing and more
recently the gaming industry. Neural networks allow a system to map a domain state to a
desired action and they are capable of generalizing over states easily which is most welcome
in areas where a huge amount of states are possible.

Some of the advantages and disadvantages of neural networks as described in [Vel99] are:

13
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Advantages:

1.

9.

Neural networks are able to learn any complex non-linear mapping / approximate any
continuous function.

. As non-parametric methods, neural networks do not make a priori assumptions about

the distribution of the data / input-output mapping function.

. Neural networks are very flexible with respect to incomplete, missing and noisy data

/ neural networks are fault tolerant.

. Neural network models can be easily updated / are suitable for dynamic environments.

. Neural networks overcome some limitations of other statistical methods, while gener-

alizing them.

. Hidden nodes, in feed-forward supervised neural network models can be regarded as

latent / unobservable variables.

. Neural networks can be implemented in parallel hardware, increasing their accuracy

and learning speed.

. Neural networks performance can be highly automated, minimizing human involve-

ment.

Neural networks are specially suited to tackle problems in non-conservative domains.

Disadvantages:

1.

Neural networks lack theoretical background concerning explanatory capabilities /
neural networks as black boxes.

. The selection of the Network topology and its parameters lacks theoretical background

/ It is still a trial and error matter.

. Neural networks learning process can be very time consuming.

. Neural networks can overfit the training data, becoming useless in terms of general-

ization.

. There is no explicit set of rules to select a suitable neural network paradigm / learning

algorithm.

. Neural networks are too dependent on the quality / amount of data available.

Neural networks can get stuck in local minima / narrow valleys during the training
process.

. Neural network techniques are still rapidly evolving and they are not reliable / robust

enough yet.

. Neural networks lack classical statistical properties. Confidence intervals and hypoth-

esis testing are not available.

For the disadvantages 2, 3, 7 a solution was found in the development of neuroevolution
techniques.

14
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3.2 Genetic algorithms

Genetic Algorithms (GA’s) is a population-based stochastic search algorithm based on the
mechanics of natural evolution. GA’s are a subset of Evolutionary Computing and are used
to find approximate or exact solutions to optimization and search problems. Such appli-
cations are commonly presented by research fields such as biogenetics, physics, computer
science, economics, engineering, chemistry and mathematics. For this research GA’s will be
used to find solutions for playing Othello.

GA’s are based on, but not limited to the characteristics of natural evolutionary systems.
GA evolution has 5 distinct characteristics:

1. Structures, which are a genetic representation of the solution domain
2. Structures are combined to form new, better solutions

3. Structures compete for a limited resource

4. Fitness function to evaluate a solution

5. Relative production success depends on the environment

Structures are complete individuals and can act in a given environment in order to determine
their ability to execute the given task. The value given for this ability is called the fitness.
Fitness is a single number given to each structure as a performance measure. The fitness is
determined by doing 1 trial per structure in the environment if both the structure and the
environment are deterministic, or multiple trials if randomness is involved.

A structure consists of genes to describe its characteristics. These genes combined are called
chromosome or genotype. The structure of these chromosomes is manually designed. Figure
3.2 shows a representation of a simple binary chromosome. Chromosomes can be merged
to create offspring which has characteristics of 2 parents (or more). This way important
characteristics of successful parents can be passed on to offspring to create better solutions.
In addition to merging the genes of parents, mutation is also used to maintain genetic
diversity.

Chromosome

Gene

Figure 3.2: Representation of a binary chromosome

As a genotype, it is in most cases not possible to determine the fitness of the structure. Just
like in nature, a genome itself is mere data, but with the data a creature can be created.

15



CHAPTER 3. NEUROEVOLUTION

This is called a phenotype. The phenotype is used to determine the fitness of the genotype.
According to this fitness a sorted list is created and individuals are selected for reproduction.
Parents can be selected any way one chooses, although some selection techniques are more
popular than others. Examples are Fitness Proportionate Selection, Tournament Selection
and Ranked Based Selection.

Figure 3.3 shows a general genetic algorithm flow. First an initial population(P(0)) is gen-
erated; often with random values but predetermined topology. Secondly P(0) is evaluated
to be able to select parents. Next the while loop is started to compute new generations. In
this loop the parents(P’(t)) are selected for recombination which produce offspring(P”(1)).
Now we have too many individuals, and so in this example, P’(t) U P”(t) need to be sorted
on fitness after which the best are kept as a new generation P(t+1).

P(0) — Generate initial population()
P(0) — Evaluate population(P(0))
t ~— 0
While Not-Terminated P(t)
do
P’(t) — Select mates(P(t))
P (t) —  Generate offspring(P’(t))
P (t) — Evaluate population(P” (t))
P(t+1) —  Select fittest(P”(t) U P’(t))
t — t+1
return P(t)

Figure 3.3: Genetic Algorithm Pseudo-Code

3.3 Neuroevolution

Neuroevolution is a technique where GA’s are used to improve neural networks. There
are many neuroevolution techniques, which can be classified in techniques which evolve the
neural network weights versus techniques which evolve both the weights and the topology
of the neural network. GA’s which evolve both the neural networks weights and topology
are also called TWEANNSs (Topology & Weight Evolving Artificial Neural Networks).
When GA’s are used to evolve neural networks, the network (which is a phenotype) has
to be converted to a genotype to be able to reproduce. Weight values can be stored in a
chromosome in different ways; direct encoding and indirect encoding. Direct encoding means
having floating point values in the chromosome representing all weights. Indirect encoding
can be determined by the developer.

Several neuroevolution techniques exist and for this research SANE, ESP and NEAT are
compared.

3.3.1 SANE

Symbiotic, Adaptive Neuroevolution (SANE) [Mor96], [Mor97], is a reinforcement learning
method which evolves a population of neurons through genetic algorithms to form a neural

16
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network. Evolving a population of neurons instead of full neural networks makes it possible
to develop partial solutions to the posed problem. Figure 3.4 shows the basic steps for
computing one generation in SANE.

The goal of SANE is to have each individual develop a solution which can be combined
with others to form a complete and effective solution to the problem. Because individuals
alone can not make an effective solution, symbiotic relations must be maintained with other
individuals. When creating a full neural network, neurons are chosen from the population
pool and combined to form a complete neural network. Figure 3.5 shows the conversion
between a genotype and its phenotype.

Clear all fitness values from each neuron.

Select ¢ neurons randomly from the population.

Create a neural network from the selected neurons.

Evaluate the network in the given task.

Add the network’s score to each selected neuron’s fitness variable.
Repeat steps 2-5 a sufficient number of times.

Get each neuron’s average fitness score by dividing its total fitness value
by the number of networks in which it was implemented.

8. Perform crossover operations on the population based on

the average fitness value of each neuron.

N U W

Figure 3.4: One generation in SANE

. | Output Layer |
o O
O _ @
. Task
— O O _— Ermvironment
O o
® O </
nput Layer
O e

Figure 3.5: SANE, Genotype to Phenotype

Fitness can easily be determined for all individual neurons after having determined the
fitness for the formed neural network. When an individual participates in a neural network,
the fitness of the neural network is equally assigned to all participating neurons. This way
an individual can take part in any number of neural networks. In theory all neurons should
participate in neural networks with all other neurons to get an optimal weighed fitness for
each neuron. Obviously this is not feasible and fitness will remain an approximation.

Specialization is an important aspect of SANE and is possible due to the individual neurons
being evolved. Instead of solving the entire problem, individual neurons aim to solve a

17
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particular aspect of the problem. Specialization is enforced knowing individual neurons
cannot form a complete solution and the fitness of the neurons is based on the effectiveness
of symbiotic relations it has with other neurons. Specialization prevents converging to
suboptimal solutions because of the diversity in the population.

3.3.2 ESP

Enforced Sub-Populations (ESP) [Gom99], is a reinforcement learning method very similar
to SANE. ESP evolves a population of neurons through genetic algorithms to form a neural
network. Like SANE, ESP evolves a population of neurons, but unlike SANE, the special-
izations are not kept in a single parent pool. A drawback with SANE is the interbreeding
of different specializations which result in a lot of individuals with similar characteristics as
well as very few to no protection of new (still weak) species. ESP enforces a subpopulation
for each hidden neuron of the neural network as can be seen in figure 3.6. Neurons in a sub-
population can only recombine with neurons from its own subpopulation. These enforced
subpopulations allow a much faster specialization than is the case with SANE (where all
specializations have to emerge from one large pool). Having subpopulations protects weaker
species from dominant ones taking over the population. Also having neurons being placed
at the same location in the neural network, and being linked to the same neurons increases
learning speed and allows better learning for recurrent networks.

O. OO | Output Layer
Q00O 00O

OO ® O

OO OO

O0® OO

OO OO | Input Layer

Task
Ervironment

Figure 3.6: ESP, Genotype to Phenotype

3.3.3 NEAT

Neuro-Evolution of Augmenting Topologies (NEAT) [Sta02], is a reinforcement learning
method, although not like SANE or ESP. NEAT is a TWEANN, a GA which evolves both
weights and topology of neural networks. Like SANE and ESP weights are evolved through
generations allowing a better solution to be reached. In addition, changes can be made
to the topology in terms of links and nodes. This allows NEAT not only to search the
search-space but also to minimize it during evolution.

18
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The initial topology in NEAT can be setup by humans to fit the problem to be solved.
Initial topologies more closely matching the optimal topology are recommended as it reduces
the time required to evolve to the optimal topology. NEAT’s topologies often become
increasingly more complex as they become more optimal, strengthening the analogy between
GA’s and natural evolution.

NEAT uses direct encoding to describe network structures as indirect encoding would limit
the topological search to the class of structures which would be designed for the indirect
encoding. As NEAT evolves topologies, this is clearly an unwanted characteristic. Figure 3.7
shows the genotype and phenotype of NEAT. The genotype consists of two types; node genes
and connect genes. Node genes come in three types; sensor, hidden and output. Hidden
nodes are removed or added through evolution. Connect genes represent the links/weights
between nodes. A connect gene defines one link/weight between two specified nodes and
can be enabled or disabled through mutation and crossover operators.

Specialization is also allowed by NEAT due to the historical markings assigned to each
individual in the population.

MNode 1 Naode 2 MNode 3 Node 4 MNode 5
Sensor Sensor Sensor Cutput Hidden

In 1 In2 In3 InS In 1 Im 4

Cut 4 Qut 4 Qut 4 Qut 4 Qut 5 Qut 5
Weight 0.7 | Weight -0.5 | Weight 0.5 Welght 0.4 | Welght 0.6 | Welght 0.6
Enabled Disabled Enabled Enabled Enabled Enabled
Innow 1 Innoy 2 Innow 3 Innow 5 Innow 6 Iy 11

Phenotype

Figure 3.7: NEAT, Genotype to Phenotype

3.3.4 Other Neuroevolution Techniques

Besides SANE [Mor96], [Mor97], ESP [Gom99] and NEAT [Sta02] other neuroevolution
techniques have been developed like TEAM [Ald02] and CoSyNe [Gom06]. The Eugenic
Algorithm with Modeling (TEAM) is an extension of the evolution technique The Eugenic
Algorithm (EuA [Pri98]). TEAM is a technique for evolving a population not only by stan-
dard crossover and mutation, but also by directing evolution. This is done by maintaining
historical information on correlations between allele and fitness. The available software
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contains code for evolving binary genes only. TEAM was not part of the experiments due
to time constraints and remains an interesting technique to experiment with for creating
Othello players.

Cooperative Synapse Neuro Evolution (CoSyNe) [Gom06] is another neuroevolution tech-
nique. CoSyNe searches at the level of individual network weights instead of neurons. Like
ESP and NEAT, CoSyNe has n subpopulations, equal to the amount of network weights
to be evolved. All subpopulations have an equal predetermined size. Phenotypes are cre-
ated by selecting one individual from each subpopulation and inserting it at its position.
Each subpopulation has individuals specifically for one position in the neural network. As
CoSyNe was released after the choice of techniques, it was left out.

3.3.5 Neuroevolution and Games

There has not been much research in learning games like Othello with neuroevolution tech-
niques. The three techniques discussed here have been used in control tasks like pole-
balancing problems and similar tasks, but not in playing games.

As stated before NEAT has been used to learn a mobility strategy in Othello ([And02]).
Although not like an expert player, it was able to learn mobility. The game Go has been
studied using SANE and ESP in [Lub01] and in [Per01], but only for small Go boards (up
to 7x7 positions). These examples show that there is still a lot of interesting research that
can be done on neuroevolution and board games.
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EXPERIMENTS

4.1 Implementation

To test the three neuroevolution techniques a Java implementation of Othello was used,
along with Java implementations of the three techniques.

Java was used because of previous work on Othello [Jac05] was also done in Java, so an
Othello framework ready for experiments already existed.

The three techniques were originally written in C or C++ but they all have a Java imple-
mentation as well.

4.1.1 Othello

The implementation has been divided into two main groups, Environment classes and Player
classes. Environment classes contain code for the game itself, while Player classes contain
(any form of) intelligence for playing a game of Othello using the Environment classes.
An abstract view of the environment implemented in Java is given in figure 4.1.

Flayer |‘_.‘ Board |,_,| Player

Figure 4.1: Othello Java classes

The environment has several features so it can be used for experiments, like keeping track
of the scores, playing multiple games and several others.

The player classes are a collection of all implemented players and the Player interface. Each
game consists of two players chosen from the available implemented players.

A collection of players used in previous work ([Jac05]) can be used as opponents for the
neuroevolution techniques. There is a human player, which is in fact a user interface so a
real human player can play Othello. There is also a random player who plays random moves.
The last player used in this research is the player using the neural network that was learned
in this previous research, the Temporal Difference player (TD player). It plays a good game
against novice players and can beat random players 83% of the time without looking ahead.
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During this research look-ahead was implemented for this TD-player, using first a min-max
algorithm, and later on an alpha-beta search algorithm. When the TD-player looks ahead
3 moves or more it beats a random player 99% of the time.

Because the Othello environment is separated from the players, it is easy to add all kinds
of different players. With this approach it was not difficult to add neuroevolution players
using the code from other authors.

The neural networks used in the different techniques always consist of 64 input neurons and
1 output neuron. The number of hidden neurons and the way the neurons are connected
varies.

The 64 input neurons represent the 64 board positions. The input is 1 if a board position
contains a piece of the player, -1 if the position contains a piece of the opponent and 0 if
the position is empty.

The output neuron is a sigmoid activation function and represents the evaluation value of
the given board state.

The fitness function used in the genetic algorithms is a win percentage after playing 50
games. At the end of each generation, the best neural network is allowed to play 1000
games to set the fitness off the champion of that generation.

4.1.2 SANE

The JavaSANE package contains the source code for the Hierarchical SANE system, based
on SANE-C by Moriarty, [Mor96], but rewritten in Java. This package is designed to be an
easy starting point for applying JavaSANE to a new domain.

For this research it was just a matter of rewriting the fitness function so that it plays Othello
to evaluate the neural network. Of course some parameters had to be tuned so the correct
topology for the neural network was used.

Several features have been added to this package to make it easier to analyze the results
and to monitor evolutionary progress.

4.1.3 ESP

The Java ESP package contains the source code for the Enforced Sup-Populations system
which is nearly a direct port of the ESP C++ package that was used for research in [Gom99).
It supports different kinds of neural networks like Simple Recurrent Networks, Second Order
Recurrent Networks and Fully Recurrent Networks, but for this research only simple feed
forward networks are used.

With Java ESP it was also not difficult to add an Othello configuration and fitness function
and integrate it in the Othello environment.

4.1.4 NEAT (JNeat and Anji)

In this research two Java implementation of NEAT have been tried, JNeat and Anji.

First JNeat was used for this research. JNEAT was written by Ugo Vierucci based on the
original C++ package by Kenneth Stanley which was used in the NEAT research [Sta02].
JNeat is an extensive package with a user interface to monitor progress and it uses a complex
object model. It was not that hard to integrate it with the Othello environment and create
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the right fitness function, but it was difficult to add and change the code to make it easier
for this research to monitor progress and analyze results. In fact this package was not really
well-written and the Italian comments did not make things easier.

On top of all this it did not turn out to work that good. It never really learned anything
despite all different approaches and configurations.

So JNeat was put aside and Anji was used instead. Anji did learn and was easy to implement.
Anji was written by Derek James and Philip Tucker based on descriptions of NEAT in papers
published by Kenneth Stanley and Risto Miikkulainen ([Sta02]). It was not directly based
on the NEAT C++ package, so it probably differs in some aspects.

Anji is very well written and is easy to configure and adjust to make it ready for the Othello
experiments.

4.2 Initial experiments

Before running the final large experiments several initial experiments have been performed
to fine tune the different techniques. All three techniques have several parameters to tune
like selection mechanisms for the genetic algorithm, the different mutation rates and several
others. Also the knowledge representation of the Othello player, the neural network, had
to be tuned to see what (initial) topology would work best.

To compare three different techniques, several parameters were set the same for all tech-
niques, so it was possible to compare the outcome. These parameters include population
size and number of games each individual can play. This way, the three techniques have
the same number of evaluations.

Each experiment was allowed 500.000 evaluations. An evaluation is one game of Othello
against a random playing opponent. A random opponent was selected as most skilled players
require a lot of time per game. Also when playing against a skilled player, which is often
deterministic, the evolutionary technique only learns a limited amount of states. Every
generation consists of 100 individual neural networks and they all play 50 games of Othello
each generation. This means each experiment took 100 generations. Each experiment was
repeated 3 times. This should be enough to tune the parameters.

4.2.1 Tuning SANE

To tune SANE several experiments have been performed. The main focus for tuning SANE
was finding out what neural network works best for SANE. To test this a fully connected
network was tested with different numbers of hidden neurons to find out what network size
would work best. Also different mutation rates were tested.

Testing network sizes: 20, 40 and 60 hidden neurons.

These networks have been tested with fully connected neurons with the default SANE
parameter for the mutation rate which is 20%. Although the final results did not differ that
much, except for the obvious difference in learning speed, it seemed that 40 hidden neurons
had a better result in the long run. The number of hidden neurons, 40, may look a bit
arbitrary, but it was not only chosen because of the outcome of this experiment, but also
because of past experiences with Othello and neural networks and the expectations that 20
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would be too few to learn and 60 too many to learn fast enough. The fact that the results
showed not much difference between the network size, justifies an arbitrary choice.

Testing mutation rate: 20%, 40% and 60%

The mutation rate is the chance that the weight of a neuron is mutated every generation.
The default SANE value is 20%. This value was tested against 40% and 60% with a fully
connected network. The results of these experiments did not differ that much. It looks like
40% performs slightly better than the other two in the long run. At least it has a better
average fitness in the top 10 in every generation in the end. The overall average fitness of
the population is about the same in every generation for the different mutation rates.
Several other parameters were not tuned because they did not seem to matter that much
or appeared fine with pre-initial experiments.

4.2.2 Tuning ESP

For ESP both the network size and the mutation rate have been tested. The first goal was
to find out what size neural network works best with Othello. The second goal was to find
out which mutation rate offers a good learning rate.

Testing network sizes: 20, 40 and 60 hidden neurons.

Fully connected networks were tested with default ESP parameter for mutation rate which
is 40%. After 100 generations it was clear that a network with 20 hidden neurons does
not perform as good as the ones with 40 and 60 hidden neurons. The ones with 40 and 60
hidden neurons do not differ that much. Both show a learning curve and have the same
fitness in the end.

Because of SANE and other past experiments with Othello the 40 hidden neurons seems a
good network size.

Testing mutation rate: 20%, 40% and 60%

With a fully connected neural network with 40 hidden neurons the different mutation rates
were tested. After 100 generations it was clear that a mutation rate of 40% is the best. It
has a fast learning rate and is still learning at the end of the experiment. Both 20% and
60% have a lower fitness in the end.

Several other parameter were not tuned because they did not seem to matter that much or
appeared fine with pre-initial experiments.

4.2.3 Tuning NEAT

Tuning NEAT (with the Anji implementation in this research) took some more time. Pre-
initial experiments made it clear that several parameters had to be tuned. For NEAT the
parameters weight mutation rate, connection mutation rate, neuron mutation rate and the
speciation threshold were tested.

The initial topology at the start of each experiment is a fully connected neural network
with 10 hidden neurons.

Testing weight mutation rate: 0.005, 0.01, 0.1, 0.25, 0.5
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The weight mutation rate is the probability of existing connection weights being mutated.
Very low values were tested here. Because pre-initial tests showed that a low value for this
was good, several tests had to be performed to see how low this value should be. In the end
0.01 turned out to be a good value.

Testing add connection mutation rate: 0.03, 0.06, 0.2, 0.3, 0.5

The add connection mutation rate is the probability of new connections being added with
an initial weight with a random value from a normal distribution.

First the values 0.03, 0.06 and 0.2 were tested, but it turned out that 0.2 performed much
better than 0.03 and 0.06. So apparently a higher value was needed. Therefore 0.2 was
tested against even higher values, 0.3 and 0.5. The results of these tests did not differ that
much. It seemed that 0.2 performed just a little better than the other two. At least it is
still learning at a higher rate than the other two after 100 generations.

Testing add neuron mutation rate: 0.1, 0.02, 0.005, 0.001, 0.0005

The add neuron mutation rate is the probability of new nodes being added to an existing
node in the neural network.

After the first tests with 0.1, 0.02 and 0.005 it turned out that 0.005 performed better than
the other two, so 0.005 was tested against 0.001 and 0.0005. The mutation rate of 0.005
turned out to be the best because the other two values did not seem to learn anymore after
100 generations.

Testing speciation threshold: 0.1, 0.2, 0.4, 0.5, 0.6

The speciation threshold is the compatibility threshold used to determine whether two
individuals belong to the same species.

After the first tests with values 0.1, 0.2 and 0.4 showed that 0.4 was the best value another
test was done with 0.4 against 0.5 and 0.6. The results are close, so it is probably not
necessary to do more test. The value 0.6 turned out to be the best value for the speciation
threshold.
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4.3 Final experiments

Final experiments were conducted once the tuning of the different neuroevolution algorithms
was completed. Tuning was needed to assure maximum performance of all three techniques
when comparing them in the Othello environment. The final experiments were done allowing
a lot more evaluations per experiment than was the case with the initial experiments.
Obviously this was done due to time constraints and shorter tuning experiments did set a
trend to allow proper variable tuning. Each experiment was allowed 2.000.000 evaluations,
and each experiment was repeated 10 times. One evaluation means one game of Othello.
Fach fitness measure counts as one evaluation and for each generation every individual was
measured, even if the individual was already measured. Because individuals were trained
against an opponent which makes random moves, the extra fitness measures means the
assigned fitness will be more accurate.

It should be noted that the size of neural networks and thus the computation time was not
taken into account.

4.3.1 Time

Running experiments takes time. All experiments are repeated 10 times and each individual
experiment of each technique against the random opponent takes about 8 hours to complete.
This means that repeating this 10 times will take 80 hours for each experiment against the
random players.

The experiments against the deterministic opponent, as described in the last paragraphs of
this chapter, take even more time, up to 10 hours for each individual experiment.

Because of the amount of time it takes to perform an experiment choices had to be made
for which experiments are done and which are left out. Probably more and better results
were possible if there was more time available. More on this in the last chapters.

4.4 SANE - Final experiments

4.4.1 Properties

As said before SANE was trained up to 2.000.000 evaluations per experiment. From the
initial experiments the following parameters were found to be most optimal for learning
Othello against a random moving opponent:

e Mutation rate = 0.4

e Neural network = Fully connected feed forward
e Networks created per generation = 100

e Number of hidden neurons = 40

4.4.2 Running Experiments

After running each SANE experiment ten times, it was clear SANE was performing on
par with standard reinforcement learning techniques such as Temporal Difference learning;
scoring 83% [Jac05].
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As a performance measure for every generation the champion of the generation was allowed
to play 1000 games in order to get a more accurate fitness. This can be seen in figure 4.2.
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Figure 4.2: SANE, experimental results - 2000 neurons

SANE certainly learns properly, but not more than any default reinforcement learning
technique (83%). Sane also ends up with a 82% - 83% score.

When comparing the champion to the win percentage of all the evaluated networks (average
all in figure 4.2), it is clear the champion performs better than all the evaluated networks.
Of course this was to be expected but seeing a gap of 6% wins suggests a large spread
in fitness. Unfortunately this is a characteristic of SANE having all neurons in one large
pool and thus allowing very bad networks to be formed as well. This might also be the
reason for all of the ten experiments to have a rather large spread in win percentage of the
champion at the end of each experiment (win percentages between 77% and 86%). The
initial population size (2000) might also have been too large, resulting in new neurons being
selected every trial and thus preventing proper learning.

There also is a difference of 8% - 9% between the champion percentage and the average top
10 percentage. This is because the top 10 consists of the individuals with the 10 highest
fitness scores and this fitness is determined after playing only 50 games. The best individual
plays 1000 games and its fitness will be the champion fitness. This champion fitness is bound
to be lower than the average top 10 fitness because of the inaccuracy of playing only 50
games compared to playing 1000 games.

Two more settings have been tested; 400 neurons (Figure 4.3) and 800 neurons (Figure 4.4)
as population size to have each neuron participate in a network 10 times and 5 times on
average respectively. As can be seen both population sizes of 400 and 800 performed slightly
better than the initial population size of 2000. Unfortunately this is no real improvement
to make SANE perform significantly better than it did with a population of 2000. Only the
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experiment with 400 neurons results in a score higher (about 85%) than the original which
suggests that maybe the neuron pool can be made even smaller for better results, although
a score of 85% might be the top for SANE. No more experiments using SANE have been
performed due to time constraints.

Although mutation rate might be high (40%), tuning tests showed this to not influence the
evolution significantly.

Alternative selection and replacement methods could improve SANE’s performance.

Sane vs Random
400 neurons

100

90

70j,,n

60

— Average top 10
50 Average all
— Generation champ

% won

40

30

20

0 50 100 150 200 250 300 350 400
generation

Figure 4.3: SANE, experimental results - 400 neurons
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Figure 4.4: SANE, experimental results - 800 neurons
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4.5 ESP - Final experiments

4.5.1 Properties

ESP was also trained up to 2.000.000 evaluations per experiment. The following parameters
were considered most effective for ESP:

e Mutation rate = 0.4
Delta coding = true & false

Networks created per generation = 100

Neural network = Fully connected feed forward

Number of games per network = 50

e Number of hidden neurons = 40

4.5.2 Running Experiments

For ESP two different settings were used; delta coding and no delta coding. At first ten
experiments were performed with delta coding enabled. Delta coding allows ESP to create
more diversity when no new champion had been discovered for a while.
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Figure 4.5: ESP with delta coding, experimental results

ESP with delta coding performs almost as good as the earlier experiments done with SANE.
The first experiment was done using a subpopulation size of 100. Figure 4.5 shows the results
for ESP with delta coding. The champ in ESP reached 80%. The humps in the graph are
times when delta coding is done. Unfortunately this prevented ESP from getting a score
above 82%. More tests with setting the delta coding parameters might result in better
performance. ESP with delta coding reached its maximum at generation 100.

Before a set of delta coding parameters was tried, delta coding was disabled. This resulted
in much better performance which can be seen in figure 4.6. With delta coding disabled
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ESP was allowed to continue evolving without the continuous setbacks resulting from delta
coding. Without delta coding ESP learns much more smoothly and reaches the maximum
obtained by ESP with delta coding at generation 70. Now this is nothing new, but without
delta coding ESP continues evolving and has converged at generation 200 having a winning
percentage of 87%.
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Figure 4.6: ESP without delta coding, experimental results

These first two experiments are performed with a subpopulation size of 100 and with 40
subpopulations (one for each hidden neuron). Which means that when creating a network
in the population each neuron will be selected only once each generation.

In [Gom99] the neurons in the subpopulations are tested in different neural networks for a
good evaluation of the neuron. That is why two extra experiments have been done with
smaller subpopulation sizes. A subpopulation size of 10 and 20 were tested, so each neuron
is evaluated 10 and 5 times respectively. No delta coding is used in these experiments.
The results are shown in figure 4.7 and figure 4.8.
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ESP (no delta coding) vs Random
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Figure 4.7: ESP subpopulation size of 10 without delta coding
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Figure 4.8: ESP subpopulation size of 20 without delta coding
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The results show that when using smaller subpopulation sizes and thus evaluating a neu-
ron more than once each generation, does not give better results. The endresults of the
experiment with the subpopulation size of 100 are better.

However the learning speed is significantly higher in these last experiments. A maximum
is reached around generation 50 instead of generation 150 with the larger subpopulation
size. Perhaps there is some potential using smaller subpopulations which can be exploited
by using delta coding to create more diversity after a stagnation of the learning speeds.
So several new experiments have been performed using the two different subpopulation size
10 and 20 and using two different stagnation values 40 and 100. This stagnation value
is the number of generations in the experiments without improvements. So a stagnation
value of 40 means that when there has not been a significant improvement over the last 40
generation, delta coding is used on the current population.

The results of these four new experiments are shown in figure 4.9, figure 4.10, figure 4.11
and figure 4.12.

ESP (delta 40) vs Random
Subpopulationsize: 10

100

90 — — S ]
80 - - ;

I
70

60

— Average top 10
50 Average all
— Generation champ

% won

40

30

20

0 50 100 150 200 250 300 350 400

generation

Figure 4.9: ESP, subpopulation size of 10, delta coding stagnation value 40
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ESP (delta 40) vs Random
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Figure 4.10: ESP, subpopulation size of 20, delta coding stagnation value 40
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Figure 4.11: ESP, subpopulation size of 10, delta coding stagnation value 100
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ESP (delta 100) vs Random
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Figure 4.12: ESP, subpopulation size of 20, delta coding stagnation value 100

Comparing these results with the results without the delta coding show no real difference.
In the end it does not seem to make a difference when delta coding is used or not for the
smaller subpopulations. So ESP shows the best results when no delta coding is used and
large subpopulation pools are used.

When comparing the champion percentage with the average top 10 in the different graphs,
the average top 10 score is higher than the score of the generation champ. This difference of
9 - 10% can be explained by the fact that the individuals are given fitness values based on 50
matches. After assigning the fitness there is a certain inaccuracy in the fitnesses assigned.
After sorting the individuals, the ones with the highest (and also the most inaccurate)
fitness make up the top 10. When having the best individual play 1000 matches as a more
accurate fitness measure of that generation the champion’s fitness is bound to be lower than
the fitness of the average top 10.

The champion and average all show both graphs are closely together. The champion scoring
better than the average of all evaluated individuals was something to be expected. The fact
that both are close in win percentage shows that all evaluated individuals are not much
spread out in win percentage. At the end of the ten experiments done with ESP without
delta coding shows champions win percentage being close to one another. This, in contrary
to SANE, shows ESP is much more reliable and stable in evolving.

ESP clearly performs better at Othello against a random opponent than SANE does. When
using a subpopulatation size of 100 and no delta coding there is a difference between SANE
and ESP of about 5%.
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4.6 NEAT - Final experiments

4.6.1 Properties

As both other techniques, NEAT was also allowed to perform up to 2.000.000 evaluations
per experiment. For NEAT the following parameters were used for the final experiments:

e Population size = 100 networks

e Add connection mutation rate = 0.2
e Add neuron mutation rate = 0.005
e Weight mutation rate = 0.01
Speciation threshold = 0.6

4.6.2 Running Experiments

For NEAT ten experiments were done as well. Figure 4.13 shows the results of these
experiments.
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Figure 4.13: NEAT vs random, experimental results

NEAT reaches a win percentage of 90% at generation 200. NEAT does continue to improve
t0 92% in the end, and longer test runs might be needed to see how well NEAT can perform
in the long run. Analysing the three graphs shows the average top 10 to be at 98% wins,
and the champion’s win percentage to be slightly above the average all graph as is the case
with ESP. Also at around generation 150 there is a dip in win percentage. This is the result
of one of the ten experiments performing badly at that time.

Clearly NEAT performs better than both ESP and SANE.

Interesting to see were the amount of hidden units being evolved for the NEAT networks.
The top 10 of individuals were started at 10 hidden units by default. The amount of hidden
units was reduced to 2 and the amount of connections was reduced to 40-50 by the end of
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the experiment while the win percentage kept rising. Apparently playing against a random
playing opponent requires very few knowledge to be able to successfully beat it. This was
confirmed when looking into the neural networks of the champions formed at the end of the
experiments. Most champion networks had only two corner input nodes connected which
suggests that a simple strategy that focuses on capturing some corners is enough to defeat
a random opponent.
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4.7 Deterministic opponents

Because of the few amount of hidden nodes and connections remaining in NEAT, two more
additional experiments were done to test if this was indeed the result of training against
a random moving opponent. Both NEAT and ESP were trained against the Temporal
Difference (TD) Othello player which was created in [Jac05]. Because the goal of this
experiment was to test NEAT, one other technique was needed (ESP) to verify the results
from NEAT. ESP was chosen over SANE as ESP performed much better. The TD player
was trained using a database of world class games and scored 83% against a random moving
opponent.

The parameters for NEAT and ESP were the same as were used when training against a
random moving opponent. For ESP delta coding was disabled for these tests. When having
two deterministic players play multiple games of Othello, they will play the same games over
and over. To avoid this, the first four moves of each player were made randomly resulting
in 244 possible initial states.

Figure 4.14 shows the ESP results against the non-learning temporal difference opponent.
The thing to notice is the more gentle learning curve than was the case when learning
against a random moving opponent (figure 4.6).
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Figure 4.14: ESP vs TD, experimental results

Figure 4.15 shows NEAT’s performance when training against the non-learning temporal
difference opponent. When training against a more skilled opponent such as a TD opponent,
6 hidden neurons are needed along with 200 connections.

Also NEAT is more capable of learning against a TD opponent as can be seen in both figures.
ESP has its champion and average all close together suggesting many similar individuals.
NEAT has its champion and average all not close together suggesting a much higher degree
of diversity present in the population.
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CHAPTER 5

TOURNAMENTS

A tournament is an organized competition held between a large number of competitors.
Many tournament types aim at providing a very reliable ranking of participants, while
others aim at determining the best participant out of all competitors. This competition is
often a sport or game where clearly defined rules apply.

Tournaments can be distinguished into two types: tournaments with a short time interval,
and tournaments with a long time interval. Tournaments with a short time interval are
generally held at a single venue. Many matches are played in this short time span. These
types of matches are often used by chess, card games and ice skating.

Tournaments with a long time span are often held at different locations and more often last
for months. Typical applications of this tournament type are soccer leagues and basketball
leagues.

With both time spans, a large variety of ways to determine opponents (also called pairing)
can be used. In the past many types of pairing have been used. All having their advantages
and disadvantages. Here some of the more known tournament types are listed:

e Knockout
e Group
e Multi-Stage

e Promotion and Relegation

These types of tournaments all have their advantages as well as disadvantages and so they
are explained in the following chapters.

5.1 Knockout tournaments

A well known tournament system such as the knockout tournament is often used in tourna-
ments. A typical application of a knockout tournament is Wimbledon(www.wimbledon.org).
Figure 5.1 is a typical knockout tournament roster.

In a knockout tournament players play one opponent in a fixture they’ve been seeded in.
Winning players proceed to the next round, while losing players are removed from the tour-
nament. This results in less players and fixtures remaining until only one fixture is left.
The winner of this fixture is considered to be the tournament winner.

Knockout tournaments are commonly used in two versions: single-elimination and double-
elimination tournaments.

In single-elimination, players who lose a match, even after an excellent streak thus far, are
removed from the tournament. Only Single-elimination is used when there are more than
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Figure 5.1: Typical knockout tournament

two competitors per fixture.

Double-elimination, can be used when fixtures consist of two competitors. Double-elimination
allows a player a loss without being removed from the tournament.

A drawback from knockout is the fact players who meet a player who is exceptionally strong
against their style of play can be removed from the tournament even though the player per-
forms very well against all other players in the tournament. A typical tournament size of
16 players would require 4 rounds to be played, and 5 rounds would be needed to handle 32
players. In addition, players who did not pass the current round, are out of the tournament.
The knockout tournament aims at determining the best player of the tournament, but fails
to give a proper rank to the other players.

5.2 Group tournaments

A group tournament involves all participants to play a fixed number of matches, defined
prior to the tournament. The tournament itself is divided into rounds, in which every
participant plays its assigned match. During each round all matches are played and often
the next round is only started once all matches have been finished. After each match,
points are awarded to the participants of the match. These points are in this research 1
point for winning, 0.5 for drawing and 0 points for losing the match. A ranking is created
after each round based upon the total number of points a participant has or the average
points a participant has received over the course of the tournament. A ranking is created
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not only for the purpose of knowing leading participants, but it is also often used to create
new pairings for the next round. With group tournaments some common types can be
identified:

e Round-robin

e Swiss

5.2.1 Round-robin

A round-robin tournament is a tournament requiring each competitor playing all partici-
pants (excluding itself) at least once. Round-robin tournaments have been used since old
times to create a very reliable ranking or participants. Unfortunately with a large number of
participants the required number of rounds and matches becomes huge and thus unfeasible.

For example, if 50 players would participate in the tournament, it would require 1225 games
to be played in 49 rounds.

A variation that can be made to the standard round-robin tournament is having all partic-
ipants play each other two or four times instead of the standard one. This is particularly
useful when used in matches where participants can pick sides, e.g. black or white in a
chess game. These types of round-robin are commonly used in soccer leagues such as the
FIFA World Cup (www.fifa.com/worldcup) or chess tournaments such as the World Chess
Championship 2007 (www.chessmexico.com).

5.2.2 Swiss

A Swiss tournament uses a special pairing method to pair players or teams that need to
play each other. It was first used in 1985 at a chess tournament in Zurich - Switzerland,
giving the algorithm its name. Since then it has been widely used in a large number of
different tournaments such as chess, Othello, scrabble and bridge. Swiss pairing, used in a
Swiss tournament, is based on the principle of pairing players with opponents of roughly
the same strength. Like the round-robin and knockout tournaments, a Swiss tournament is
divided into rounds in which players play their assigned opponent. Players who win their
match are given 1 point, draws result in 0.5 point and a loss means 0 points. All players
proceed to the next round of the tournament no matter if they lost or made a draw. The
first round players are paired based upon knowledge of the strength of the players; this can
be performance in previous tournaments or a guess based upon rating maintained in many
application areas of Swiss pairing.

First, all players having the same score are grouped together in what is commonly called
a scoregroup. When pairing the second round this could be three groups (1 point, 0.5
points and 0 points). In subsequent rounds the number of possible scoregroups increases
with two. The second and subsequent rounds are determined based primarily upon the
score of players. Pairing the scoregroups proceeds following a simple sequence. First a
median scoregroup is determined. The median scoregroup is the scoregroup which consists
of players having a score equal to half the number of rounds played. When there is no such
scoregroup, the group with a score equal to half the number of rounds played with an offset
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of 0.5 is used. Rounds/2 - offset or Rounds/2 + offset. Incrementing the offset with 0.5 if
no matching scoregroup is found.

First the scoregroup with the highest score will be paired, pairing downwards until just
before the median scoregroup is reached. Next the scoregroup with the lowest score will
be paired pairing upwards until just before the median scoregroup. Finally the median
scoregroup will be paired. Before the actual pairing starts, players are tested for available
opponents in their scoregroups. Players who do not have a suitable opponent will be placed
in their alternative scoregroup. This being the scoregroup below when pairing proceeds
downwards, or above when pairing proceeds upwards. A number of requirements exist
when testing for suitable opponents. These requirements can differ per application Swiss
pairing is used for, but commonly include the rules:

e Competitors cannot play the same opponent twice
e It is not allowed to have a scoregroup with an odd number of players.

Once scoregroups have been made and necessary transfers have been done, players inside
the scoregroups are sorted according to rating. Then the top half is paired with the bottom
half of the group, called the proposed pairing. If the players in a scoregroup are numbered:
1, 2, 3 ... n, then the proposed pairings are:
1v(n/2+1),2v(1n/2+2),3v(n/2+3)..n/2vn.
For a scoregroup with six players this would result in the proposed pairing of

1 v 4

2 v 5

3 v 6

Once proposed pairings are done the pairs undergo another batch of tests. These will
be the same tests as performed earlier, but performed on the proposed pairs. If a pair is
found violating the set rules, the weaker player is exchanged with a different player until a
valid pair is formed. These tests are done according to the rules:

e When pairing downwards the pair with the highest ranking player is tested first. If
the pair violates the defined rules, the lower ranked played is exchanged until a valid
pair is formed.

e When pairing upwards the pair with the lowest ranking player is tested first. If the
pair violates the defined rules, the higher ranked player is exchanged until a valid pair
is formed.

When we have a scoregroup containing six players [1...6] proposed pairing would be

1 v 4

2 v 5

3 v 6
Should 1v4 be invalid because player 1 already played against player 4, the following pro-
posed pairing would be considered
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1 v 5
2 v 4
3 v 6

Here player 1 would meet a player from its own scoregroup (player 5 being slightly weaker
than player 4)), though still having the advantage of pairing a player from the bottom half
of the scoregroup. Should the pairing 1v5 also be invalid, the next player is considered and
so on. The complete sequence of proposed pairings for player 1 would be from left to right;

1 v 4 1 v 5 1 v 6 1 v 3 1 v 2

2 v b 2 v 4 2 v 4 2 v b 3 v b

3 v 6 3 v 6 3 v b5 4 v 6 4 v 6
When a player can play different sides in a game, for instance play black or white in an
Othello game, often special rules concerning color preferences are enforced. These rules
usually forbid players from playing the same color three games in a row, or have a differ-
ence in played colors of three or more.
Advantages of the Swiss tournament system are:

e All players play all rounds (except for the bye some players may receive when having
an odd number of players)

e The final ranking gives a relative ranking for all contestants of the tournament, not
just the winner

e Less matches need to be played than in a round-robin tournament to determine a
clear winner.

5.3 Multi-Stage tournaments

Multi-Stage tournaments are a tournament type much like knockout tournaments. Multi-
Stage tournaments are divided into several stages, where each participant or team can
progress to the next stage when performing well. Often there are many multi-stage tourna-
ments held simultaneously serving as a qualifying tournament for access to the final tourna-
ment. During a stage of a multi-stage tournament the top team(s) progress to the next stage,
and any type of tournament can be used for each stage. Common applications are the FIFA
World Cup (www.fifa.com/worldcup), where first there are several qualifying stages before
the final tournament starts with often 32 remaining teams. Other applications include the
cricket world cup (http://icc-cricket.yahoo.com/icc-events/cricket-world-cup.html).

5.4 Promotion and relegation tournaments

Should a tournament have more competitors than a tournament format permits, it is of-
ten required to split the competitors into several sub-tournaments being held in parallel.
Promotion and relegation tournaments are commonly used in sports throughout the world.
Most soccer leagues use this kind of tournament where teams are promoted or relegated
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once a year.
Players are grouped together into these sub-tournaments based upon ranking or playing
strength. As a result tournaments with high skilled competitors or teams are formed as
well as sub-tournaments with lower skilled competitors or teams. Each sub-tournament
can have a different type of tournament, but usually these are the same for all. After
all sub-tournaments have finished, top ranking competitors are moved from their current
sub-tournament group to a higher group and are as such promoted. The lowest ranking
competitors are relegated and are moved to a lower group. Once all competitors have been
moved, each sub-tournament is started again.

Advantages of this type of tournaments are the multiple tournaments being held at the same
time, reliable sorting of competitors throughout the groups, and maintaining importance of
matches between lower ranking competitors near the end of the season. A disadvantage is
the time required to sort all competitors.

5.5 Used tournament methods

Many types of tournaments exist for determining playing strength of players or teams, and
all have their strengths and weaknesses. Obviously not all methods are suitable for learning
a game such as Othello with neuroevolution. The goal of using tournament type learn-
ing is to test if competitive learning has an advantage over cooperative learning. Using
competitive learning allows a different and possibly superior way of creating the ranking of
individuals. An important requirement is to have every individual receive a reliable fitness
measurement. This implies having all learning players play a sufficient amount of games. In
Part I players were allowed to play 50 games against predesignated opponents in order to
receive a reliable fitness. It is clear all players in the competitive learning environment need
to have an equal amount of measurements in order to make a good comparison between the
cooperative and competitive learning methods.

Tournament types such as knockout have the characteristic of removing players from the
tournament after having lost a set number of matches. This results in only the highest
players receiving a reliable fitness, and a lot of the lower players all being assigned the same
fitness value. This may be desirable for determining what player or team is the most skilled,
but this clearly is not wanted when measuring fitness.

Multi-stage tournaments are, like knockout tournaments, a good way to determine the best
player of the competitors, but fails to assign proper ranking and fitness to the players who
are knocked out of the tournament in early stages.

Promotion and relegation tournaments are among the best types of tournaments for assign-
ing a reliable fitness to individuals or teams. However, a large number of matches would
still be required in order to sort a division and this means having another tournament for
each division. Often a round-robin tournament is used in order to sort each division. When
using round-robin tournaments it is more advantageous to have multiple divisions using
round-robin than having one large pool of players. Although this results in less matches
being played it means having a fixed playerbase during the experiments as players move
upwards and downwards through the divisions. Obviously one could also choose to hold
a complete promotion and relegation tournament between each generation in which the
neuroevolution technique learns, but this will again result in a large amount of matches
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required in order to reach a reliable ranking. Hence promotion and relegation is unsuitable
for these tournaments.

First a simple tournament type is used in order to test whether basic tournament play
is advantageous in comparison to cooperative play. Basic tournament play means having
a fixed number of rounds in which each competitor plays one assigned opponent. These
assigned opponents are chosen at random. By playing sufficient opponents a reliable fitness
should be created for each participant in the tournament.

The second type of tournament used will be the Swiss tournament type. Swiss tournaments
have the advantage of having one large pool of competitors rather than divisions. But the
main advantages of Swiss pairing are, as described in section 5.2, having each participant
playing an equal amount of matches and requiring less matches to be played in total in
order to reach a reliable fitness.

Both the random and Swiss tournament types will be held while training against a random
moving player (subsection 2.5.1) as well as a deterministic player (subsection 2.3.2) created
during the experiments in ([Jac05]). The next chapter describes the experiments performed
using tournaments.
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CHAPTER 6

RANDOM PAIRING EXPERIMENTS

6.1 Experiment setup

In order to test the capabilities of learning by using tournaments several different expe-
riments need to be performed. For these experiments two different opponents were chosen
to measure performance of competitive learning: a random moving player (chapter 2.3.1)
and a deterministic player (chapter 2.3.2). These two opponents are the same as were used
in chapter 4.5 and chapter 4.7 and so a clear comparison can be made between cooperative
learning as was done in those two chapters, and the competitive learning as is done for this
chapter.

In [Jac05] several experiments using TD(\), the deterministic player used for these expe-
riments, have been performed. One big problem with the results in that research is that
the random player that was used, contained a bug. This bug resulted in random selection
from all possible moves minus 1. So if in a state there were 5 possible moves, it picked
a move from the first 4 possible moves. This resulted in a random player that was not
capable of using all possible moves, and thus covered less possible game states and in the
end this player was easier to defeat. Therefore new experiments against both random and
deterministic players were performed in this research using correct working randomness.

All experiments done use Enforced SubPopulation as neuroevolution technique as described
in chapter 8.3.2. For this research ESP is used rather than NEAT. In tests done in chapter
4.6.2 NEAT loses complexity when training against a random moving opponent, reducing
its number of hidden neurons to as little as two. This may be a problem when learning
in a tournament against oneself as the few skills required to defeat a new ESP player are
low. This will most likely cause NEAT to evolve its networks into small topologies as were
present in chapter 4.6.2. Secondly ESP was a lot easier to implement and monitor. When
making changes to ESP or NEAT to make them work with tournaments rather than the
standard cooperative learning method, a large change is needed in the software.

All experiments done use tournament play as a way of obtaining fitness for neurons. Af-
ter each tournament all neurons should have a fitness assigned, and the neuroevolution is
allowed to learn from the last tournament, calculating the next generation. Once the next
generation is calculated a set amount of Othello players is generated from the population
of neurons and another tournament is played. By default 200 tournaments are played, and
thus 200 generations are calculated. After each tournament two measuring matches are
played to monitor progress during the evolution process. For chapter 6.2 this match is
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done versus a random moving opponent, and for chapter 6.3 done versus the deterministic
player created during the research done in [Jac05]. In both matches a percentage of wins
is calculated over a total of 1000 games played, 500 playing white and 500 playing black.
These percentages give a good progress indication and can also be used as comparison with
other researches into learning methods for playing Othello.

Tournaments in this research are either random pairing tournament or Swiss tournament
types. A random pairing tournament is used in this chapter for experiments. A random
pairing tournament is chosen over a round-robin tournament as a full round-robin would
require too many evaluations to be performed to finish a tournament. An evaluation is in
this case playing a game of Othello. This means two players can get an evaluation at the
cost of only one game played as they are paired against each other.

A tournament lasts for a set number of rounds in which all paired players play 2 games
against each other, 1 as white, 1 as black.

In each round a player can earn points. When a player loses the match, he receives 0 points,
a draw yields 0.5 points and a win 1.0 points. Figure 6.1 shows the pseudocode for the score.
These points carry over to the next round. At the end of the tournament all players will
have been assigned a fitness equal to the score they obtained playing matches during the
rounds.

fitness(x) «— 0
fori« 1tor:
if win(x):
fitness(x) «— fitness(x) + 1
if draw(x):
fitness(x) «— fitness(z) + 0.5

Figure 6.1: Game scoring Pseudo-Code for a match of two games

Where:
x : A player in the tournament
r : Number of rounds of the tournament
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Due to the restriction of having 2.000.000 evaluations per experiment it was necessary to
find a proper balance between the number of players in a tournament, the number of rounds
played and the number of generations calculated. More players in a tournament means hav-
ing more evaluations required per generation. All these factors can be balanced using the
formula in figure 6.2

2.000.000 — t 7% p/2x g |

Figure 6.2: Total number of evaluations performed

t : Number of tournaments per experiment: Default 200
r : Number of rounds of a tournament: Default 50

P : Number of players in a tournament: Default 200

g : Number of games played during a match: Default 2

These parameters approach the parameters used in chapter 4.5.2, the parameters not listed
here remain unchanged.

Since each neuron in the population needs to have a reliable fitness assigned, it is required
that all neurons are evaluated at least 5 times during each tournament. Every generation
every ESP player will receive one fitness assignment, the score they received from the tour-
nament they participated in. Meaning for every ESP player, one neuron per subpopulation
will receive one fitness assignment. If there are 10 ESP players in the tournament, and we
have subpopulation sizes of 10, every neuron will receive on average 1 evaluation. In essence
one will need at least five times as many ESP players than subpopulation size. Figure 6.3
shows the equation.

Figure 6.3: Evaluations performed per neuron

Where:

e : Number of evaluations per neuron

P : Number of players in the tournament from this ESP
S : Size of the subpopulations
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6.2 Random opponents

6.2.1 Tuning for Random Moving Opponent

During the random pairing experiments a large number of different parameters were tested
in order to get a better set of parameters for benchmarking. As an initial setup the most
optimal parameters found during research done in chapter 4.5.2 are used, being number
of hidden neurons, subpopulation size and mutation rate. These parameters were com-
plemented with parameters for the number of tournaments, number of rounds for each
tournament, number of players for each tournament and type of tournament.

Number of hidden neurons 40
Subpopulation size 100

Mutation rate 40%

Number of ESP instances 1

Tournament type Random pairing
Percentage random moving players 0

Percentage deterministic players 0

Experiments done with these default parameters are shown in figure 6.4. Along the y-axis
the percentage of games won versus the random player is shown, and along the x-axis the
number of evaluations performed is shown. The number of evaluations is chosen rather than
the number of generations because using tournaments, different settings mean performing
a different amount of evaluations per generation. For instance having more players in a
tournament or playing more rounds per tournament influences the number of evaluations
performed each generation.

Previous experiments done in chapter 4.6 show ESP winning up to 87%, while these default
parameters converge at 82%. This 5% performance loss can be explained due to the use of a
different learning method for which the parameters are not optimized. So will we get better
performance using different parameters for our experiments? First parameters and settings
are tested for feasibility. Parameters to be tested are mutationrate, subpopulationsize,
number of ESP instances and the percentage of random moving players in the tournament.
These last two are not default parameters used by ESP. Multiple ESP instances might very
well yield better results than the single instance supplying all the players. This is expected
as in the standard tournament format for these experiments only ESP players are added,
meaning the players have to evolve against themselves. When using a single ESP instance
it might very well converge to a single strategy and fail to get out of local optima. Multiple
instances of ESP are likely to converge to different optima and force other instances to leave
their reached optima in order to defeat the others.

Adding random moving players to the tournament is a way of allowing ESP players to
play against the same opponent that is used for the actual performance measurement every
generation. This is another way of allowing a single ESP instance to leave its local optimum.

Subpopulation sizes: 5, 20 and 100
The experiments done with a subpopulation size of 5 show a clear decrease in performance,
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Figure 6.4: ESP, competitive learning using Random pairing and learning vs random moving
opponent

scoring up to 73% wins against a random moving opponent. Experiments done with sub-
populations 20 and 100 score 80% and 82% respectively The lower score obtained when
using a subpopulation of 5 can be attributed to the fact there are less neurons available
and thus less diversity in the population. This in turn leads to earlier convergence. The
experiments done with a subpopulationsize of 20 show equally good results as were obtained
with the experiments done with a subpopulationsize of 100. Although the results show the
same performance in the end, the experiments done with a subpopulation of 20 show a faster
convergence. But as convergence with a subpopulationsize of 100 happens fast enough and
shows more learning potential a subpopulationsize of 100 is preferred.

Mutation rates: 1%, 10%, 40% and 50%

The second parameter being tested is the mutation rate of the neurons. Four different
values were tested, 1%, 10%, 40% and 50%. All tested values give roughly the same result
of 79% wins. A mutationrate of 40% seems to be slightly better scoring 80% and as this
was also the optimal value in chapter 4, this will be used.

ESP instances: 1 and 5

All experiments done so far in this chapter result in suboptimal win percentages of 82%.
As the goal of tournament play is to learn while playing oneself learning is more difficult.
This gets increasingly more difficult as the diversity in the population is reduced due to
conversion. When more diversity is maintained throughout the learning process, different
strategies may be evolved. To this end experiments were done using multiple instances of
ESP, each having its own population, and each providing players to the same tournament.
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Each instance of ESP can learn its own strategy and each instance can develop a new
strategy to defeat the dominant one. Experiments are done using one instance of ESP, and
experiments are done using five instances of ESP.

While learning against a random moving player the single instance of ESP scored 81% while
the experiments with five ESP instances scored 79%. It is likely not much skill is required to
defeat a random moving player and as such not a great many strategies need to be explored.
No faster or better convergence is present when using five instances of ESP.

Random players: 0%, 50% and 80%

Another cause of learning sub optimal is the fact tournament play thus far meant playing
only against other learning opponents. These opponents lack any decent strategy at the
start, and although learning like this may lead to successful new and previously unknown
strategies, this has not happened. In fact only suboptimal results have been witnessed. In
order to reach better results random moving players are added to the tournament. This
should give the learning ESP players a target to learn toward and to exploit its weaknesses.
When playing a random moving opponent more states are visited which allow the learning
to be more focused on defeating the random moving player which is used as benchmark.
Experiments are done using a tournament with 0% random moving players, 50% random
moving players and experiments were done using 80% random moving players.

Adding 50% random moving players resulted in a performance of 80%. For the experiment
with 80% random moving players the same results of 80% wins were reached. Having
random moving playing in the tournaments clearly does not add needed skill and diversity
resulting in better learning when using random pairing and a random moving opponent as
benchmark.

6.2.2 Final Experiments versus Random Moving Opponent

After tuning experiments have finished, a final batch of experiments is done using the best
performing parameter values obtained. These final tests will be used to compare random
pairing tournament play using a random moving opponent with the ESP experiments per-
formed in chapter 4.5. These comparisons include; score obtained, speed of convergence
and whether the best players perform well against other opponents rather than only the
ones trained against.

For these experiments the following parameter values are used:

Number of hidden neurons 40
Subpopulation size 100

Mutation rate 40%

Number of ESP instances 1

Tournament type Random pairing
Percentage random moving players 0

Percentage deterministic players 0

The experiments with these parameters are performed ten times to get more reliable results.
During the tuning experiments a benchmark was done using 1000 games against a random
moving opponent, these experiments also include a benchmark of 1000 games against a
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deterministic opponent. This way it can be determined if the best performing ESP player
performs well against only the random moving player it is learning against, or if it performs
good against other players as well. Figure 6.5 shows the results of these experiments.
Using random pairing and a random moving opponent allows ESP to reach a score of 82%
after 1.000.000 evaluations. When placing the same ESP player against a deterministic
opponent it manages to reach a score of 39% after 2.000.000 evaluations. The improvements
have not yet converged onto an optimal solution and better results might be obtained when
allowing more evaluations to be performed. These results can be compared with experiments
done with cooperative ESP as done in chapter 4.5.2. Figure 6.6 shows the same results as
shown in figure 4.6, but has an extra graph plotted. This extra graph is the performance
against a deterministic opponent (TD Greedy from chapter 2.3.2) while learning versus a
random moving opponent. While evolving using cooperative learning, the playing strength
versus the random moving opponent increases rapidly, with a score of 87% obtained after
1.000.000 evaluations. The playing strength versus the deterministic opponent starts at
10% wins, and climbs to a maximum of 24% after 1.500.000 evaluations.

It is clear the cooperative learning method manages to learn a better strategy versus the
random moving opponent, also achieving this in a smaller amount of evaluations. The
players evolved using cooperative learning are only specialized against the random moving
player, exploiting the weaknesses present in this player. The overall playing strength in the
cooperative learning fails to reach the level obtained when using competitive learning.

6.3 Deterministic opponents

As a second type of experiment the same setup and experiments done in chapter 6.2 were
done while using a benchmark against a deterministic opponent. This deterministic oppo-
nent (chapter 2.3.2) was trained during research done in [Jac05] and has proven to be a
much stronger opponent than the random moving opponent. The advantage of the determi-
nistic opponent is the less amount of states needed to be learned by ESP. In chapter 4.7 the
experiments were shown with NEAT and ESP learning against a deterministic opponent.
As all tuning experiments were done simultaneously, the same initial values are used as
default while tuning.

For these experiments the following variables were used as initial values:

Number of hidden neurons 40
Subpopulation size 20

Mutation rate 40%

Number of ESP instances 1

Tournament type Random pairing
Percentage random moving players 0

Percentage deterministic players 0
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Figure 6.5: ESP, competitive learning using random pairing and learning vs random moving
opponent
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Figure 6.6: ESP, cooperative learning vs random opponent
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6.3.1 Tuning for Deterministic Opponents

For learning against a deterministic opponent the same variables were tested; mutation
rate, subpopulation size, ESP instances and adding the same deterministic player used as
benchmark to the tournament in different proportions. The same experiments were done
for the Swiss tournament as were done for the random pairing experiments.

Mutation rates: 1%, 10%, 40% and 50%

First experiments were done using different mutation rates; 1%, 10%, 40% and 50% were
performed. A clear decrease in learning capability is seen when using the competitive
learning method instead of the original cooperative learning method. As the original co-
operative learning method scored 87%, the best performing setting for the competitive
learning method was only 25% using a mutationrate of 10%. When using mutationrates
of 1%, 40% or 50% the population converges faster to a maximum but resulted in a less
winning percentage than was the case when using a 10% mutationrate. For a mutationrate
of 1% a score of 17% was reached. A mutationrate of 40% gives a score of 16% and using a
mutationrate of 50% ESP scores 20% wins. In contrary to experiments done on mutation-
rates in chapter 6.2.1 mutationrates do influence the learning capabilities. When learning
versus a random moving opponent, any strategy or tactic learned gives better scores. When
learning against a deterministic opponent, only a select few strategies are succesful and as
such these need to be learned. When seeding an initial population the information for this
strategy may not be available and mutation is needed to explore. A too low mutationrate
will result in not enough explorations while a high mutationrate will hinder learning due to
its destructive nature.

Subpopulation sizes: 5, 20 and 100

The different subpopulation sizes were tested next. As was the case in chapter 6.2, sub-
population sizes of 5, 20 and 100 were used to determine the best performance. Using
the different subpopulation sizes gave promising results. The smaller subpopulations of 5
and 20 resulted barely any learning at all and managed to get a score of 15% wins against
the deterministic player. The larger subpopulation of 100 neurons resulted in significantly
better learning and reached a score of 33%. As was the case when testing mutationrates, a
higher mutationrate gave more diversity to the population which resulted in better learning.
This is also true with subpopulationsizes; a low size means little diversity where a larger
subpopulations means more diversity.

ESP instances: 1 and 5

With the goal of testing multiple instances of ESP and as such maintaining more diversity
and multiple hill climbing effects, experiments are done using one and five ESP instances.
As was expected an increase could be seen when using five ESP instances rather than one.
Five ESP instances reach a score of 34% whereas one ESP instance scores 16% wins against
the deterministic opponent. Using five instances results in much faster learning than using
a single instance of ESP. No genetic information is passed on between the different ESP
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instances.

As total running time is important, and only evaluations are used as measure of time, the
use of five ESP instances increased experiment times by 20-30% even though the same total
number of 2.000.000 evaluations was allowed. Multiple instances means more memory usage
and computing five new generations everytime instead of the normal one.

Deterministic players: 0%, 50% and 80%

The final setting to be tested is adding multiple deterministic players to the tournament,
where these deterministic opponents are the same as being used as benchmark. Adding
these players to the tournament will give the learning ESP players weaknesses to exploit
and a stronger player to learn against. This in turn should result in better learning. By
default the tournament had 0% deterministic players, but for these experiments this was
increased to 50% and 80% and using 50% and 20% ESP players respectively.

As expected, adding the same deterministic player to the tournament as is used for bench-
marking results in better learning and a significantly higher score. When using 50% ESP
players and 50% deterministic players in the tournaments, a result of 34% wins was reached
in contradiction to the 16% obtained when using 100% ESP players. Using 80% determi-
nistic players resulted in a lower score reached than when using 50% deterministic players.
This is unexpected as more deterministic players in a tournament would mean more matches
would be played between ESP players and deterministic players. The decrease can be at-
tributed to the fact less evaluations are done for the neurons in ESP as less ESP players
are used in the tournaments.

6.3.2 Final Experiments versus Deterministic Opponent

After the tuning experiments in chapter 6.3.1 have been completed, a final set of experiments
has been performed in order to test the techniques using their optimal parameter values.
Parameter values have been tested using default values and experimenting with one of the
parameters. The best performing parameter values are used in these final experiments.
These experiments use the following parameter values:

Number of hidden neurons 40
Subpopulation size 100

Mutation rate 10%

Number of ESP instances 5

Tournament type Random pairing
Percentage random moving players 0

Percentage deterministic players 50

Ten experiments have been performed using these parameter values. Instead of the usual
benchmarks of 1000 games against a deterministic opponent between the generations, two
different benchmarks have been performed; 1000 games against the deterministic oppo-
nents, and 1000 games against a random moving opponent. These two benchmarks will
show, in comparison with the same benchmarks performed upon the cooperative learning
ESP, whether competitive learning learns equally good as the cooperative technique, and
whether competitive learning creates ESP players who play well versus a larger diversity of
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opponents. Figure 6.7 shows the results of the experiments using these optimal parameter
values. Here we can see two graphs: one for the benchmark versus the deterministic op-
ponent, and one versus the random moving opponent. The tests versus the deterministic
opponent show learning, although at a limited scale. The maximum score reached is 32%
after 800.000 evaluations. When tested the same player against a random moving player
a score of 71% is reached after 750.000 evaluations. These scores can be compared to the
graphs plotted in figure 6.8. Figure 6.8 shows the cooperative learning done by ESP against
a deterministic opponent. These are the same opponent and setting as done for the expe-
riments in figure 4.14. When comparing the performance versus the deterministic opponent,
it is clear cooperative learning is superior to the tournament learning done using random
pairing. Cooperative learning reaches a maximum score of 70% versus the deterministic op-
ponent, while tournament play using random pairing reaches 32%. The speed of learning is
faster using the traditional cooperative learning. Although random pairing tournament play
reaches its maximum at 800.000 evaluations, this maximum is significantly lower than when
using cooperative learning. While these experiments have used a deterministic opponent to
learn, it is interesting to see how this evolved ESP population performs against a different
opponent, a random moving opponent. This is tested to determine how specialised the
players are. The best performing player in figure 6.8 fails to increase performance against a
random moving opponent. A score of 64% is maintained throughout the experiments. This
indicates cooperative learning manages to learn against the player being trained against,
but fails to increase overall performance. When using random pairing tournament play an
increase of performance is seen reaching a score of 72% against a random moving opponent.
This increase is performance can be attributed to the pairing which takes place during
the tournaments. When pairing against another learning player means visiting more states
resulting in better overall play, which is tested by the random moving opponent.
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Figure 6.7: ESP, competitive learning using random pairing and learning vs deterministic
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Figure 6.8: ESP, cooperative learning vs deterministic opponent
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CHAPTER 7

SwIsS PAIRING EXPERIMENTS

This chapter shows the results obtained while using a Swiss tournament instead of the
random pairing experiments done in chapter 6. Although the experiments in the previous
chapter were successful while training against a random moving opponent, ESP failed to
learn a good strategy against the deterministic opponent while using random pairing. Swiss
tournament is a more advanced tournament type where players only play opponents of
roughly the same strength. Swiss tournaments are described in subsection 5.2.2. Using
Swiss tournaments, a better learning curve is expected than was the case in chapter 6.

7.1 Experiment setup

As was the case in chapter 6, all experiments here use tournaments in order to receive their
fitness measurements. The Swiss pairing algorithm is used here to provide a better and more
reliable way of measuring these fitnesses. The Swiss pairing tournaments will take slightly
more time to complete as the algorithm itself is more complex than the random pairing
used previously. This extra time, however, is negligible in contrast to the time required for
evaluating the players. Every experiment is limited to doing 2.000.000 evaluations, and is
repeated five times each. For the experiments the same default parameters are used as in
chapter 6 due to simultaneous execution.

7.2 Random opponents

7.2.1 Tuning for Random Opponents

The first type of experiments done are learning versus a random moving opponent. Once
again a large amount of experiments were done to determine the best possible parameter
values for learning. A different pairing technique may very well require different values
for its parameters than was the case with random pairing. As a starting point the same
parameters were used as was done in section 6.2.

Number of hidden neurons 40
Subpopulation size 20
Mutation rate 40%
Number of ESP instances 1
Tournament type Swiss
Percentage random moving players 0
Percentage deterministic players 0
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Tuning of the parameters was done exactly the same as it was done in subsection 6.2.1.

Mutation rates: 1%, 10%, 40% and 50%

As a mutation rate the values 1%, 10%, 40% and 50% were tested. The experiments showed
no difference when using the four different mutationrates. All variables resulted in a win-
ning percentage of 79% When comparing the results to the results obtained at subsection
6.2.1 equal results are obtained.

Subpopulation sizes: 5, 20 and 100

Subpopulation sizes have once again been tested at values of 5, 20 and 100. Using a subpop-
ulation of 5 shows little to no learning. A very short learning period results in a winning
percentage of only 70%. Using a subpopulation of 20 resulted in less fast learing but a
better end result of 79%. A subpopulation of 100 meant having more gradual learning due
to having to replace more bad performing neurons in order to have a larger amount of good
performing networks. A subpopulation of 100 resulted in a winning percentage of 83%. The
results from using a Swiss tournament rather than a random pairing tournament do not
differ significantly.

ESP instances: 1 and 5

When comparing different numbers of ESP instances, one and five have been tested to
maintain more diversity and keep different populations trying to outperform each other.
The results of testing one and five instances of ESP training against a random moving
opponent using Swiss pairing are equal. Both the single instance and the five instances of
ESP reached a winning percentage of 79%.

Random players: 0%, 50% and 80%

When using Swiss pairing the placing of random moving players to the tournament might
have a positive effect on learning. Once again experiments were done using 0%, 50% and
80% random moving players in the tournaments. Using different percentages of random
moving players in the tournaments resulted in different learning behaviour. On contrary to
what was expected using 0% random moving players in the tournaments resulted in the best
results of 79% wins. Using 50% random moving players resulted in a winning percentage of
78% and using 80% random moving players resulted in 75% wins. Adding random moving
playes to the tournaments does not add the required information to the tournaments which
the ESP players can exploit. Adding a higher percentage of random moving players actually
harms the learning process as the ESP players receive less evaluations and thus a less reliable
fitness.

7.2.2 Final Experiments versus Random Moving Opponent

Final experiments were performed using the best parameter values obtained during the tun-
ing performed in subsection 7.2.1. These parameters are tuned changing one parameter and
keeping all others the same. This shows what parameters are important and what values
work better than others.
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During the tuning process in subsection 7.2.1 these parameter values are found best per-
forming;:

Number of hidden neurons 40
Subpopulation size 100
Mutation rate 40%
Number of ESP instances 1
Tournament type Swiss
Percentage random moving players 0
Percentage deterministic players 0

Using these parameter values, experiments have been performed in order to determine learn-
ing capabilities. Instead of the usual benchmark of 1000 games against a random moving
opponent, again two benchmarks are performed during the experiments: one versus the
random moving opponent and one versus the deterministic opponent. This experiment will
show learning capabilities using Swiss tournaments and a random moving player as bench-
mark. The experiment has been repeated ten times and results from these experiments can
be seen in figure 7.1.

These experiments will be compared to the experiments done using random pairing. The
random pairing experiments are plotted in figure 7.2 and are the same graphs as figure 6.5.
Using Swiss pairing, a score of 84% is achieved after doing 1.200.000 evaluations, where
random pairing reached a score of 82% after 1.000.000 evaluations. Random pairing has a
stronger convergence although fails to reach the score of 84% as was reached by the Swiss
pairing experiments.

In both the random pairing experiments and the Swiss pairing experiments done versus a
random moving opponent, the global skill of the evolved ESP population increases steadily.
Using random pairing a score against the deterministic opponent of 39% was reached, where
the Swiss pairing experiments reached 35%. Both experiments show the same learning rates
over the same courses of time.

7.3 Deterministic opponents

7.3.1 Tuning for Deterministic Opponents

During the tuning process of the parameters for Swiss tournaments and deterministic op-
ponents, the same experiments are performed as done in the other three tuning tests.

Number of hidden neurons 40
Subpopulation size 20
Mutation rate 40%
Number of ESP instances 1
Tournament type Swiss
Percentage random moving players 0
Percentage deterministic players 0
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Figure 7.1: ESP, competitive learning using Swiss pairing and learning vs random moving
opponent
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Mutation rates: 1%, 10%, 40% and 50%

Different mutation rates have been tested in order to determine the most promising muta-
tion rate. Once again mutation rates of 1%, 10%, 40% and 50% have been tested. Using
different mutationrates when using Swiss tournaments and a deterministic opponent results
in equally fast learing. Mutationrates of 1% and 50% both scored 22% wins versus the
deterministic opponent. When using a mutationrate of 10% a score was obtained of 25%,
a mutationrate of 40% resulted in a winning percentage of 23%. Using a mutationrate of
10% returns the best results for this setup.

Subpopulation sizes: 5, 20 and 100

Subpopulation sizes 5, 20 and 100 have once again been tested. It is expected to see a
subpopulation of 100 to perform better than subpopulations of 5 and 20.

When using a subpopulation size of 5 hardly any learning takes place, and ESP manages
to reach a score of 13%. This was expected as tuning experiments done in subsections
6.2.1, 7.2.1 and 6.3.1 also showed little to no learning when using a subpopulationsize of 5.
Obviously a small subpopulationsize means too little diversity for learning although each
neuron gets a better and more reliable fitness assigned as every neuron has a larger chance
of being selected for use in a network.

A subpopulation size of 20 resulted in a score of 25%. Again a fast convergence is the result
although suboptimal. The experiments done with a subpopulation of 100 showed a more
gradual learning curve and resulted in a winning percentage of 33%. using a subpopulation-
size of 100 has the best results when using Swiss tournaments and a deterministic opponent.

ESP instances: 1 and 5

Again two different setups are tested concerning the number of ESP instances. More in-
stances should result in more diversity maintained as well as different hill climbs being
performed at the same time. Higher scores are expected when using multiple ESP instances
rather than a single one. For these experiments two setups are tested: a single ESP in-
stance, and five ESP instances. When using a single ESP instance a result is obtained of
25% wins versus the deterministic opponent. Five ESP instances result in 29% wins against
the deterministic opponent.

Deterministic players: 0%, 50% and 80%

Three different proportions of deterministic players have been added to the tournaments to
add information for the ESP players to use and exploit. When using 0% deterministic players
in the Swiss tournaments, a winning percentage of 25% was reached. Adding deterministic
players will add required information to the tournaments, but at the cost of evaluations and
so less evaluations can be performed on ESP players. When using 50% deterministic players
in the tournament a result of 24% wins was reached. Using 80% deterministic players in the
tournament did mean an improvement. 27% Wins against the deterministic opponent are
reached. A reason for the decrease in performance when using 50% deterministic players
in the tournaments might be the fact the added information does not outweigh the fewer
evaluations performed on the ESP players. One would expect this to be even more true
when using 80% deterministic opponents, although the higher percentage means a much
larger chance to pair up with a deterministic player. Apparantly this happens often enough
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to outweigh the fewer evaluations performed for ESP players.

7.3.2 Final Experiments versus Deterministic Opponent

Experiments have been performed using the tuned parameters for comparison to the expe-
riments performed in section 4.7 and subsection 6.5.2. Expectations are to see a better
performing competitive learning ESP population than was the case in subsection 6.3.2.
The best performing parameter values at subsection 7.5.1 are used here, and are listed.

Number of hidden neurons 40
Subpopulation size 100
Mutation rate 10%
Number of ESP instances 5
Tournament type Swiss
Percentage random moving players 0
Percentage deterministic players 0

These parameter values are equal to the values used for the experiments using random
pairing, except for the percentage of deterministic opponents entered into the tournaments.
Although using 80% deterministic opponents in the parameter tuning proved to be slightly
more succesful in learning, it was chosen not to use this value for the final experiments. As
can be seen in figure 6.2 there is a trade-off between using more players and the number of
rounds and tournaments that can be played. Both using five instances of ESP and using
80% deterministic opponents in the tournament resulted in improving results. Using 80%
deterministic opponents in the tournament means having a tournament size five times as
large as using 0% deterministic opponents. Because every individual in the population of
ESP needs to play sufficient games in order to receive a reliable fitness for each neuron in the
population, reducing the number of ESP players is not an option. Using five ESP instances
also require each instance to add sufficient players to the tournament, which means each in-
stance needs to add 100 players to the tournament. When using a total of 500 ESP players,
and adding 80% deterministic opponents, doing tournaments and allowing only 2.000.000
evaluations means calculating very few generations for the ESP instances, and so allowing
very little evolution to take place. Because of this the best performing option was chosen
to use as final experiment, this being the use of five ESP instances and 0% deterministic
opponents.

The experiments using these parameters have been repeated ten times and use, like the
other tuned experiments in subsections 6.2.2, 6.3.2, and 7.2.2, two different benchmarks to
measure performance during these experiments. After each generation the winner of the
tournament plays 1000 games against a deterministic opponent, followed by 1000 games
against a random moving opponent.

Comparison is done between the results obtained using random pairing while learning using
a deterministic opponent, and Swiss pairing using the same deterministic opponent for
learning. As done with the other three final experiments, this comparison is done with
learning speed, maximum scores reached and specialized learning. Figure 7.4 shows the
same results which were shown in figure 6.7 while figure 7.3 shows the results from the
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Swiss pairing experiment.

Using Swiss pairing as a tournament technique, successful learning was achieved. When
comparing the scores reached in the benchmarks against the deterministic opponent Swiss
pairing reached a top of 38% after 2.000.000 evaluations. At this point convergence has
not yet completed and it is expected to perform better after having reached more than
2.000.000 evaluations. Comparing the results to the results from using random pairing
tournaments, random pairing reached a maximum of 32% wins, while Swiss pairing reached
38%. Learning speed is equally fast although using Swiss pairing allows learning past
the 32% wins. Performance against the random moving opponent has also increased when
using Swiss pairing. In figure 7.4 a maximum score of 71% was achieved against the random
moving opponent. Using Swiss pairing tournaments allows ESP to reach a score of 83%.
The performance increase versus the random moving opponent is significantly faster than
is the case when using random pairing tournaments. This shows Swiss tournaments are
capable of learning better and faster and also create players which are better suited playing
different opponents.
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Figure 7.3: ESP, competitive learning using Swiss pairing and learning vs deterministic
opponent
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CHAPTER 8

CONCLUSION

8.1 Part I - Neuroevolution and Othello

Find the neuroevolution technique that is best at learning to play Othello.

Three neuroevolution techniques, SANE, ESP and NEAT, have been tested and compared
in terms of learning potential and speed.

Looking at the results in chapter 4 the first conclusion is that both ESP and NEAT perform
much better than SANE. SANE ended with a 83% win percentage against the random
opponent. That is not a bad score and several other researches with reinforcement learning
and Othello show percentages like that. Probably with some optimizations SANE can
perform even better. But we expect that in the long run it will never be as good as ESP
and NEAT.

ESP is a technique partly based on SANE, but more sophisticated in terms of specialization.
ESP uses subpopulations to choose its neurons from which leads to faster specialization than
SANE.

The results of ESP show a much better performance than SANE. There is a difference
between ESP with and without delta coding where the experiments without delta coding
show better results. Maybe delta coding can be used to increase the end result, but fur-
ther experiments are needed to find out. Without delta coding, ESP reaches a 88% win
percentage against a random opponent which is significantly higher than SANE.

ESP shows good gaming potential. It has smooth learning curves and shows good pro-
gression over the generations. And because of its 40 hidden neurons it probably has good
potential against different opponents because the last technique, NEAT, only uses a few
hidden neurons to perform even better than ESP.

NEAT differs from SANE and ESP, because it evolves both weights and topology of the
neural network. The results of NEAT are very promising. A steep learning curve in the
beginning and a high win percentage at the end of the experiment. After 400 generations
it had reached a win percentage of 92% against the random opponent and is still (slowly)
learning. This is a better result than ESP and SANE, which gives NEAT good potential.
One remarkable observation was that the best networks only use 2 hidden neurons. The
strategy includes a focus on only 2 corners of the board instead of 4. So apparently very
few knowledge and a simple strategy is all that it takes to beat a random opponent.

To find out whether NEAT can perform against other opponents NEAT was tested against
the same deterministic opponent as ESP played against. The results of this experiment
also shows slightly better results than ESP, ending with a 90% win percentage after 400
generations. The networks needed around 6 hidden neurons to beat this player, which is a
lot less than the 40 that ESP uses.
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It is clear that NEAT has the best results. This is probably due to the fact that NEAT
evolves the topology instead of only the weights, resulting in much more different neural
networks. This makes NEAT a very powerful method because it can minimize the number
of neurons needed resulting in a faster learning process. Both SANE and ESP use a fixed
topology that has to be designed before the experiments. This results in bigger neural
networks and they take much longer to learn.

Both ESP and SANE use a fixed topology and ESP is based on SANE, but is more sophis-
ticated. So it is not a big surprise that it performs better.

NEAT and ESP are completely different, but both show smooth learning curves and good
results. So which one has the best potential to learn an overall good strategy for Othello?
Both have their strengths and their weaknesses.

ESP uses a fixed topology which needs a good decision of the researcher before starting the
experiments, but with a large network it is able to learn a good strategy. NEAT shows that
a very small network is capable of defeating a random opponent, so ESP can probably get
better and faster results with a smaller network against a random opponent, but that does
not make a good Othello player.

NEAT does not need a decision on its topology, but to be able to learn a good topology
and strategy, it needs several different opponents.

Because of time constraints it was not possible to do more experiments to find out how
ESP and NEAT perform when learning against different opponents at the same time. New
experiments are needed for that.

8.2 Part II - Neuroevolution: Cooperative and Competitive

Can learning speed in neuroevolution be increased by using a different learning method while
maintaining the same level of play?

When doing experiments for Part I, good results were achieved and SANE, ESP and NEAT
learned at good speed. The player created performed very well against the type of player
being trained against. Although NEAT performed best in Part I, ESP was used instead
due to advantages and disadvantages discussed in chapter 6.

In Part II, fitnesses of neurons was determined through tournament play rather than pairing
every ESP player with the type of player used as benchmark. The goal is to need less games
being played to receive the same amount of fitness measurements and maintain the same
level of play.

Four different types of experiments were performed using two different tournament types
as well as two different types of opponents. For every type of experiment tuning of the
parameter values was performed in order to achieve the best results for that setup.

The first experiment done was having a random pairing tournament learn to play against
a random moving opponent. The same was done in Part I using ESP where a result of
87% was reached after 1.000.000 evaluations. This experiment showed random pairing to
be slightly less succesful at learning to play against a random moving opponent, reaching
a score of 82% after 1.000.000 evaluations. The learningspeed itself did not differ much
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between the two types of experiments. Interesting to see was the performance measured
versus the determinsitic opponent while learning against the random moving opponent. The
cooperative ESP experiments reached a result of 24% where the competitive experiments
using random pairing resulted in 39% wins.

The second type of competitive neuroevolution against the random moving opponent tested
was Swiss pairing. Swiss pairing was expected to perform better than random pairing
due to its more advanced pairing algorithm. When training against the random moving
opponent, random pairing reached a win percentage of 82% where Swiss pairing reached
84%, this is according to expectations. While training versus the random moving opponent
random pairing reached a score of 39% versus the deterministic opponent where Swiss
pairing reached 35%. It is unclear why Swiss pairing fails to reach an equal or higher result
than obtained using random pairing since parameter settings were the same.

The third type of experiment done was using neuroevolution with a random pairing tour-
nament learn to play versus a deterministic opponent. In the cooperative experiments done
in Part I, ESP reached a score of 70% after 2.000.000 evaluations. Using tournament play,
it was expected to see less good results against the deterministic opponent. But as was the
case using random pairing, a more allround strategy was expected to be learned. Using
random pairing against a deterministic opponent a result of 32% was reached which is sig-
nificantly lower than using the standard cooperative learning. Although it took standard
cooperative ESP 2.000.000 evaluations to reach 70% and random pairing 800.000 evalua-
tions to reach 32%.

This score of 32% might improve if more than 2.000.000 evaluations would be allowed as no
full convergence has taken place. The score itself is likely the cause of not pairing the ESP
players with the deterministic opponents all the time as is the case with the cooperative
learning in section 4.7. The experiments using cooperative learning have the ESP players
each play 50 matches against the deterministic opponent, resulting in playing with good
skill against this deterministic player to receive a high fitness. In the experiments performed
in subsection 6.3.2 no deterministic opponents have been added to the tournament, hav-
ing all ESP players play themselves rather than the determinsitic opponent. This in turn
means the ESP players receive fitness for their capability in playing a player other than the
deterministic opponent.

An advantage of having all ESP players play themselves is the fact they do not special-
ize against a single type of opponent, but rather evolve a more widely usable strategy.
This strategy might not be as effective as players specialized in defeating the deterministic
opponent but are an interesting area of research nonetheless.

The fourth and last type of experiment performed was using a Swiss pairing tournament
in order to evolve the ESP population into playing the deterministic opponent. Using a
Swiss pairing tournament should increase the learning capabilities versus the deterministic
opponent slightly.

Using Swiss pairing, a score was obtained of 38% wins against the deterministic opponent,
where the random pairing tournaments reached a score of 32%. This rise in score is likely
due to the fact the Swiss pairing allows a better sorting of ESP players to take place, which
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in turn allows faster and better learning. it is, however still much lower than the score of
70% obtained using standard cooperative learning done in section 4.7. Even though the
ESP population is trained versus the deterministic opponent, the performance versus the
random moving opponent also increases up to a win percentage of 83% where random pair-
ing reached 71% and the standard cooperative learning reaches a score of 64%.

From these experiments it can be concluded competitive learning results in less specializa-
tion and allows players to be evolved who are capable of playing successfully against a large
number of different types of opponents. The learning capabilities are less successful when
a player needs to be trained versus a single type of opponent, but is more successful when
an ESP population needs to be trained to play against multiple opponents.

Learning speeds do not differ much between the two different pairing techniques.

An interesting area of research is present in the training of players in evolving more gen-
eral strategies in order to defeat different playing styles offered by different opponents.
Neuroevolution allows fast learning, and combined with tournament play it allows for pop-
ulations to evolve these more general strategies in order to create more interesting players
capable of defeating more than one type of opponent.
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RECOMMENDATIONS

9.1 Part I - Neuroevolution and Othello

Several improvements on the experiments could lead to an even better comparison of the
three techniques.

To measure the performance of a technique 50 games of Othello were played by each neural
network in the population each generation. At the end of the generation, the best neural
network was allowed to play 1000 games to measure the champion’s fitness of that genera-
tion. The problem here is that 50 games might be too few. There can be a lot of inaccurate
results resulting in unjust champions, especially against a random opponent. So maybe
more games are needed, or a different way of measuring the performance.

More interesting future research is learning against several different opponents. This way
the result should be an overall good Othello player. Therefore more sophisticated Othello
players are needed. The big disadvantage of this is that good opponents are slow which will
slow down experiments dramatically.

Another interesting possibility is learning against itself. Have one technique play tourna-
ments where neural networks play against each other every generation, and evolve the good
ones. The advantage is that it is much faster than learning against slow sophisticated op-
ponents, but the disadvantage is that no result is guaranteed because of the lack of known
good opponents.

ESP showed good potential and can be optimized by experimenting with different popula-
tion and subpopulation sizes and different delta coding values.

Other interesting areas are combining a good neuroevolution technique with other reinforce-
ment learning methods.

Also optimizing the knowledge representation is an interesting area of research. Maybe put
some more focus on learning strategies and use a priori knowledge of good strategies to
speed up the learning process.

In this research only three techniques have been compared, while other techniques like
TEAM or CoSyNe might have good gaming potential. It can be interesting to test these
techniques as well.

73



CHAPTER 9. RECOMMENDATIONS

9.2 Part II - Neuroevolution: Cooperative and Competitive

As discussed in section 9.1, improvements to learning using neuroevolution could be made
using tournament play. Although a number of different approaches have been explored into
the use of tournament play combined with neuroevolution, there are areas of interest to be
researched.

As became apparent during the experiments performed, the limit of 2.000.000 evaluations
was in some cases insufficient as no convergence was reached during the experiment. Better
results can be obtained when a longer period of learning is allowed.

Although the tuning of the parameters has been performed, this can be done in a more
precise way. The different experiments used rather similar parameter values, but also a
range of values remained untested during this research. Larger subpopulations, for example,
might result in even better performance.

During this research only two different types of tournaments have been tested: random
pairing tournaments and Swiss tournaments. Using these types of tournaments only shows
a limited part of the available tournament types and different tournaments could very well
result in better learning. Using promotion and relegation tournaments in combination
with longer experiments could result in better learning. Using promotion and relegation
tournaments could be particularly interesting when used in combination with NEAT as
neuroevolution technique. Promotion and relegation tournaments require the same play-
ers/teams being in the tournament, and as NEAT uses complete networks as population
this can be achieved.

NEAT could also be coupled with the already tested tournament types random pairing and
Swiss, longer learning times are expected due to likeliness of initial simplification of the
networks.

Another improvement could be using many different types of players in the tournaments.
Only random moving opponents and the deterministic opponents have been added to the
tournaments to improve performance. Using many different players will cause the learning
players to encounter many different playstyles and force them to develop more general
strategies rather than exploiting a single type of opponent. Computationally expensive
opponents could also be added in controlled numbers so the best performing learning players
will meet them, and still have reasonable fast experiments. Also matches between non-
learning players could be skipped or rated based upon statistical information of earlier
matches between the two players. This depending on the type of tournament being played.
Doing this might add a bias to the learning though.

Tournament play coupled with neuroevolution shows good potential, but more research
needs to be done in order for better players to be evolved.
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