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Abstract
Background The ING Domestic Bank possesses around 22% market share of Dutch mortgages. Nor-
mally, mortgage customers have to pay the interest or deposit monthly. But somehow, a considerable
number of customers repay late, or default for one or even several months, which brings tremendous
losses to ING. The Arrears department manages the arrears of mortgage payments, and it contacts
defaulters by letters, SMS, Emails or phone calls. Comparing with the existing working process, the
Arrears department aims at to make the treatments more intensive in order to push defaulters to repay
as soon as possible, while keeping the current operational cost.

Research problem We develop a classification model to predict the behaviour of the mortgage cus-
tomers who were healthy in the last month but do not pay the debt at the beginning of the current
month. One label with two possible values is assigned by our model: the delayers, who just pay late but
not exceeding 1 month, and defaulters, who do not pay even at the end of the month. In this way, the
Arrears department can only treat defaulters intensively, who really have payment problems.

Data and method In this project, 400,000 customers with more than 2,000 features are collected from
the ING data warehouse. Feature selection and data preprocessing are executed first. Then, we train
several popular basic classifiers such as KNN, Naive Bayes, decision trees, logistic regression, and also
some ensemble methods like bagging, random forests, boosting, voting and stacking. Since the two
classes are highly imbalanced (the ratio of defaulters to delayers is around 1:9), we discuss the eval-
uation metrics of skewed data learning. The Area under the ROC curve is employed to compare the
results of different classifiers. Besides, the impacts of sampling techniques are empirically studied as well.

Result and conclusion Our experiments show that ensemble methods increase the performance of
basic classifiers remarkably. We also conclude that symmetric sampling improves the classification per-
formance. Balanced random forests is chosen to build the model for the Arrears department, which
gives an AUC value of around 0.772. The model has already been deployed into the daily work of the
Arrears department of the ING domestic bank since June 2013. Finally, cost matrix analysis and feature
importance ranking are studied in order to guide the daily work of the Arrears department and give
a deep insight to this problem. Conservatively estimating, the risk cost of can be saved per
month by using the model and the new working process.



Chapter 1

Introduction

1.1 Current situation and complication of the Arrears depart-
ment of ING

The ING Group (Dutch: ING Groep) is a global financial institution of Dutch origin offering banking,
investments, life insurance and retirement services [1]. The ING Domestic Bank Netherlands is the retail
bank of the ING Group in the Netherlands, which is subsidiary of the ING Group. Where in this thesis
ING is used, ING Domestic Bank Netherlands is meant.

ING owns more than 700,000 mortgages in the Netherlands, which is a share of 22% in the Dutch
mortgages market [2]. Normally, customers have to pay the interest or deposit of mortgages monthly.
There are four opportunities each month that ING deducts the payment from each customer’s appointed
bank account (one chance of collecting money is called one “incasso” in Dutch). Most customers pay
on the first “incasso” on schedule, but somehow, around customers (In consideration of the total
number of mortgages, is a considerable amount) pay late, or even default for one or several months.
Figure 1.1 illustrates four typical payment behaviors of customers who are supposed to pay e 200 per
month.

Figure 1.1: Customer A always pays in the first “incasso” of each month; customer B could not catch
up the first “incasso” sometimes, but does not have arrears; customer C defaults in March, repays all
debts and arrears in April, but defaults in May again; customer D could not repay for all three months
and has e 600 arrears in the end of May.

Due to the bad economic situation in the recent years, more and more customers meet financial distress
and stay in arrears. The EU and the Dutch government have already strengthened the supervision on
the mortgage sector, and the capital and liquidity requirements for banks under Basel III have become
stricter [3]. One policy is loan loss provision illustrated in figure 1.2a. In the Netherlands, if one mortgage
customer misses 1, 2 or more than 3 monthly payments, the bank has to freeze 14%, 42% and 100% of
the total value of the mortgage as guarantee, respectively.
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Figure 1.2b compares the average recovery rate of customers in arrears between ING (the orange
curve) and the competitors in the Dutch mortgages market: the leftmost point of the curves means the
whole population who have arrears in the first month; customers repay and go out of arrears gradually,
so curves fall down month by month; eventually some customers still stick to the arrears even after a
whole year. It is clear that ING customers have a poor recovery rate and this brings ING tremendous
costs.

(a) Provision (“Mutatie in voorzieningen” in Dutch);
a certain amount of money is frozen and used as pro-
visions.

(b) Recovery rates of ING customers and benchmark

Figure 1.2

In ING, the Arrears Department is in charge of managing the arrears of mortgage payments. It starts
tracing customers when they have arrears (miss the first “incasso” or have been in arrears before). Letters,
emails, or SMS will be sent in order to remind customers to pay when they miss the first “incasso”; if
customers do not pay longer than one and half months, case managers of the Arrears Department will
contact them by phone calls, and help them clear the defaulted payments. As soon as customers repay
all defaulted payments, they will be called healthy or out of arrears, and the Arrears Department will
not contact them any more.

Besides the aforementioned loan loss provision, the customers who have arrears also cause interest
losses and potential collection losses for ING (the details are in appendix A). These tremendous losses
compel the Arrears Department to optimize its working flow, e.g., making the orange curve in figure 1.2b
go downwards. Intuitively, a stricter treatment will definitely push customers out of arrears. For instance,
case managers can start calling customers as soon as they miss the first “incasso”: the “lazy” customers
who forget to pay will get a reminder; the “unwilling” customers who want to divert money to vacations
or fancy electricity appliances will control their consumption desire better; the “bankrupt” customers
who indeed meet financial distress will be identified at the very beginning so that ING can offer them
a more rational payment schedule. However, contacting every customer in arrears is a very unrealistic
task. Neither ING has such capacity of case managers, nor it is willing to pay extraordinary extra money
to hire more case managers. So, a smarter process should be adopted. The goal is maintaining the
operational cost at the same level while lowering the risk cost, namely pushing customers out of arrears
while keeping the same capacity of case managers.

1.2 Research questions

In order to clarify the research questions easily, three definitions are raised as below:

� New arrear customer: the customers who were healthy in the previous month and do not pay
in the first “incasso” of the current month.
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� Defaulters: new arrear customers who do not repay even at the end of the current month (miss
all four “incasso’s”).

� Delayed customers: new arrear customers who repay before the end of the current month (repay
in second, third or fourth “incasso”).

New arrear customers consist of defaulters and delayers. Let us give examples by the customers in
figure 1.1. Suppose May 2013 is the current month: B and C are new arrear customers; B is a delayer,
because he/she had no arrears in April, does not repay in the first “incasso” but repays in the third
“incasso”; C is a defaulter, because he/she had no arrears in April, and does not repay in whole May.

Currently, the Arrears Department wants to improve the process only for new arrear customers.
Customers who are healthy (A in figure 1.1) are out of scope, because they do not bring any risk
cost to ING. Customers who have been in arrears for more than one month (D in figure 1.1) are not the
central issue either, because these customers have already been traced and contacted by case managers.

On average, ING has around new arrear customers in arrears per month, of which nearly
10% are defaulters and 90% are delayers. Intuitively, a defaulter needs extra help from case managers,
because delayers repay spontaneously before the end of the month. So, if there is a model which can label
new arrear customers as defaulters and delayers at the beginning of each month, they can be treated
discriminately: automatic treatment like letter, Email, SMS are sent to delayers, and case managers will
give intensive contact or a fine to defaulters.

By implementing the above proposed model two research questions are attempted to be answered:

1. Can we build a binary classification model to classify the new arrear customers as
defaulters and delayers?

2. If the answer to question 1 is positive, can the model also have good interpretability so
that some rules, patterns or useful knowledge can be used by the Arrears department?

1.3 Outline

The outline of this thesis is as follows.

Chapter 2 will introduce the framework of our classification system. First, we will review the general
pipeline. Then, some details will be described, such as the scope and the availability of the data, data
gathering and data preprocessing in this project. Next, a literature review will look back at some
approaches in the banking mortgage default field. Last, four popular classifiers, namely case-based
reasoning, logistic regression, naive Bayes and decision trees will be described.

Chapter 3 will focus on imbalanced learning. The imbalance of our data is first discussed. Then,
various assessment metrics are compared and selected as our evaluation metrics. Next, some sampling
techniques are introduced. At last, groups of experiments are set up to compare the results with and
without sampling techniques.

Chapter 4 will continue discussing imbalanced learning, but focuses on the effect of ensemble methods.
First, some typical ensemble methods like bagging, random forests and boosting will be reviewed and
compared with basic classifiers. Then, we will experimentally study the combination of sampling tech-
niques and ensemble methods. Finally, the voting and stacking methods will be researched to examine
if this can lead to even better results.

Chapter 5 will first decide on the best classifier according to the test results of the previous chapters.
Then, some knowledge will be discovered and interpreted from some aspects such as cost matrix analysis,
feature importance, dummy variable analysis and the rules derived from decision trees.
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Chapter 6 will conclude the thesis and answer the research questions posed in the first chapter. It will
also discuss what ends were left open and give suggestions for further research into model developing
and deploying.

4



Chapter 2

The data

2.1 Classification system framework

Data mining, also known as “knowledge discovery in a database”, is the process of discovering interesting
patterns in a database that are useful in decision making. Today, with greater data storage capabilities
and declining costs, data mining has offered organizations a new way of doing business. Data mining can
help organizations better understand their business, be able to better serve their customers, and increase
the effectiveness of the organization [4]. According to the investigation of Liao et al. in [5], in the past
few decades many organizations in the finance and banking field have recognized the importance of the
information they have from their customers. Hormozi and Giles [6] list some typical applications in the
banking and retail industries, such as marketing, risk management, fraud detection, customer acquisition
and retention.

Figure 2.1: An overview of the data mining framework.

Figure 2.1 illustrates a typical data mining workflow. The first step is data selection and gathering
for analysis. The data set may be retrieved from a single source, such as a data warehouse, or may be
extracted from several operational databases. Then, data cleaning is a prerequisite, because discrep-
ancies, inconsistencies and missing data always exist in real banking databases due to imperfect client
information or unsatisfactory database design. Preprocessing techniques such as discretization, normal-
ization, scaling and dimensionality reduction are also required by the following steps. Next, the data set
is analysed to generate models that can predict or classify. The model is then validated with new data
sets to ensure its generalizability. A bunch of models will be developed, such as statistical approaches
and machine learning approaches, to identify patterns in data. At last, some models can be translated
into rules or meaningful business knowledge so that they can be comprehended and applied into business
processes.

2.2 Data collection and preparation

In this section, how to implement data gathering, initial selection, feature extraction, and data processing
will be discussed.
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2.2.1 Data review

Like all classification system exercises, the identification of relevant data in the right quantity is
critical for the development of meaningful models. Given this and after discussing with the domain
experts, we proceeded to identify the necessary data sources available and those readily accessible for
initial review. Table 2.1 summarizes the data sources identified and their descriptions.

Data name Data source Description

Table 2.1: Initial selection of relevant data from all possible data sources.

Besides the static data listed in table 2.1, some synthetic features are also helpful to our system:

1How is 30% computed: we compare the percentage of new arrear customers who have only two or less ING products.
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�

�

Tracing back to a certain number of months from the current month and sampling the static features,
a bunch of time series can be obtained. Time series are instructive to the system as well, e.g., the trend
of incomes, month-end balance and utility bill in the last 12 months are very good indicators when the
financial circumstance of the customer fluctuates.

2.2.2 Data period identification

One rule of thumb in machine learning is that more data beats a more clever algorithm [7]. Given the
data availability and its time periodicity, we should collect as many data instances as possible. The
Arrears department started tracking repayments of mortgage customers 3, so the
earliest new arrear customers were in However, since history data and time series need
to be extracted as mentioned in the previous section, the first available month is . Till

, new arrear customers which have ever been in the database are available as shown in figure
2.2.

Figure 2.2: Time span of new arrear customers

2.2.3 Data gathering

The aim of data gathering is joining dispersed features from various kinds of sources in table 2.1 and
assembling them into one data table. The procedure is illustrated in figure 2.3.

Figure 2.3: Typical analytical architecture. Step 1: Extract required data from the source databases by
using SQL queries. Step 2: various data are merged into the analytical database and organized by time
and customer ID; history data and time series data are also generated. Step 3: According to different
output requirements, data tables are exported to plain text files.

An automatic database platform was built to fulfill data gathering. By running a set of SQL scripts
with modifications of a few parameters, the datasets with desired time periods and features are exported
from it. In this way, rapid development and monthly operation become reality. Figure 2.4 illustrates the
design of the automatic database platform.

The same as any other large scale data warehouse, is not organized as a unique large flat
table but as a star pattern, where each table contains data that come from different systems. Different

2The definition of default term is total arrears divided by the amount of monthly payments. So, term is different from
number of defaulted months. It could be a decimal number.

3To be precise, the Arrears department employed another way of tracking mortgage customers before
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tables are linked to each other by unique keys.

When predicting each month in actual operations, the test
set can be obtained automatically as well.

Figure 2.4: The framework of data translation.

It should be emphasized that the variable data in the dataset are always 2 months earlier than the
sampling period. For example, regarding new arrear customers in March 2013, features such as salary,
month-end balance and transaction records are actually the data of January 2013. This is because the
ORION data warehouse spends one month to integrate data from various systems. This limitation causes
that variables cannot reflect real-time personal financial information, which deteriorates the quality of
the data.

2.3 Feature selection

The initial dataset contains around 2,000 features. It is obviously impossible to use all of them from
the perspective of either theory (the curse of dimensions) or practise (CPU and memory resources). This
section will discuss dimensionality reduction.

Domain knowledge Before selecting features by using a machine learning approach, we should first
ask ourselves “do we have domain knowledge?” If yes, construct a good set of “ad hoc” features [8].
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Table 2.2 shows some empirical reasons that customers stay in arrears, which are from the investigation
of case managers in the Arrears Department. The corresponding features on the right column in the
table will be employed in the system regardless of the result of feature selection.

Reasons Features

Table 2.2: Domain knowledge on the reasons of default and corresponding features.

Filter and wrapper methods In literature feature selection methods are classified into three cate-
gories: filter, wrapper and embedded methods. The following paragraphs only discuss filter and wrapper
methods, and embedded method will be described in chapter 5.

The filter method is a preprocessing phase which is independent of the learning algorithm that is
adopted to tune and/or build the model. As shown in figure 2.5a, all input variables are classified on
the basis of their pertinence to the target considering statistical tests [10]. The filter method does not
involve any training or learning algorithm, so it is computationally convenient especially for large scale
data sets. On the other hand the main disadvantage of a filter approach is that, being independent of
the algorithm that is used to tune or build the model which is fed with the selected variables as inputs,
this method cannot optimize the adopted model in the system [11]. Common feature ranking techniques
are information gain, gini-index, relief, χ2, correlation criterion, etc.

Kohavi and John popularized the wrapper method in [12] in 1997. It considers the learning al-
gorithms as a black box in order to select subsets of variables on the basis of their predictive power.
Figure 2.5b illustrates a generic scheme. At first, a subset is generated based on the chosen starting
point and searching strategy, for example, best-first, branch-and-bound, simulated annealing, genetic
algorithm [12]. Then, a predictor or classifier is employed to evaluate the performance. How to assess
the performance needs to be defined as well, e.g., classification accuracy or area under ROC curve. If the
performance meets the stopping criterion such as the improvement of classification accuracy less than

9



(a) Filter

(b) Wrapper

Figure 2.5: Diagram of filter and wrapper approaches [9].

0.01%, the procedure stops; otherwise a new subset of features is generated by the searching algorithm
and input to the learner. Compared to filter methods, a wrapper method is simple and universal. On the
other hand, a wrapper method is computationally expensive, especially with a large number of features.

Weighted rank voting and first selection Based on the description of filter and wrapper method,
we can see that it is wise to use a filter method to do a first selection owing to the large scale data
(2000 initial features and more than 400,000 instances). As aforementioned, there are several popular
filter approaches such as information gain, Gini-index, relief, χ2, correlation criterion. Stemming from
the field of ensemble learning, some ensemble feature selection techniques were proposed by Saeys et al.
in [13] and Shen et al. in [14]. Waad et al. investigated majority vote and mean aggregation of filter
approaches in [15], and indicated that there is a general beneficial effect of aggregating feature ranking
in credit scoring applications.

In this thesis, we adopt the weighted voting approach in [13]: Consider an ensemble E consisting
of s feature selectors, E = {F1, F2, · · · , Fs}, then we assume each Fi provides a feature ranking f i =
(f1i , · · · , fNi ), which are aggregated into a consensus feature ranking f by equal weighted voting:

f l =

s∑
i=1

w(f li)

where w(·) denotes a weighting function. In the first selection step, we choose information gain, Gini-
index and χ2 as basic rankers and use equal weights. As a result, 100 features come to the fore from all
initial features.

2.4 Time series representation

As mentioned in section 2.2.1, 18 time series which mainly cover the financial situation of customers
are sampled. There are several popular time series feature extraction methods such as Discrete Fourier
Transform (DFT), Discrete Wavelet Transform (DWT) [16], Symbolic Aggregate approXimation (SAX)
[17], Piecewise Aggregate Approximation (PAA) [18]. The common idea behind these methods is that
processed time series can be analyzed by classifiers easily, i.e., dimensionality reduction, convenient
distance computation and better representation of time series.

In this thesis, we employ a light-weight method to represent time series as one nominal feature.
We notate the time series C of length 12 (12 month samples) by a vector c1, · · · , c12. The method is
demonstrated below:
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1. Smooth the time series by a n-month width sliding window: ci = 1
n

∑i+n−1
j=i cj (we use n = 2 in

the system).

2. Normalise the time series to have a mean of zero and standard deviation of one.

3. Given the normalized time series that have a Gaussian distribution, we can simply determine the
“breakpoints” that will produce α equal-sized areas under the Gaussian curve [17]. Table 2.3 gives
the breakpoints for values of α from 3 to 10.

4. Discretize the last element of the smoothed time series vector C according to the value of α and
“breakpoints”.

HHH
HHβi

α
3 4 5 6 7 8 9 10

β1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28
β2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84
β3 0.67 0.25 0 -0.18 -0.32 -0.43 -0.52
β4 0.84 0.43 0.18 0 -0.14 -0.25
β5 0.97 0.57 0.32 0.14 0
β6 1.07 0.67 0.43 0.25
β7 1.15 0.76 0.52
β8 1.22 0.84
β9 1.28

Table 2.3: A lookup table that contains the breakpoints that divide a Gaussian distribution in an
arbitrary number from (3 to 10) of equiprobable regions [17]. Definition of breakpoints: breakpoints are
a sorted list of numbers B = β1, · · · , βα−1 such that the area under a N(0, 1) Gaussian curve from βi to
βi+1 = 1/α (β0 and βα are defined as − inf and inf, respectively).

This extracted feature indicates the latest trends of the customer of salary, balance, utility payment
series or other time series on which the feature extraction method applies. For instance, if using 10 level
categories (α = 10), a value with category 10 or 0 manifests abnormal lift or drop. Domain knowledge
points out that the change of financial related context of customers leads to default.

One essential point of learning time series in classifiers is distance measurement: independent of using
Euclidean distance, non-linear alignment distance measurement or dynamic time warping, a distance
function dist() is required to calculate the similarity of time series. In contrast, the extracted feature is
more flexible to be adopted in the existing classifiers. Without any extra step, the extracted feature can
be embedded into the dataset with other features in the role of either nominal or numeric feature.

2.5 Data preprocessing

So far, 100 selected features, which include around 20 domain knowledge features and 18 extracted
features from time series, are ready to be fed into the preprocessing step of the classification system.
Table 2.4 lists some of them.

The preprocessing step is indispensable to resolve several types of problems including noisy data,
redundant data, missing data values, etc. All the next learning algorithms rely heavily on the product
of this stage, which is the final training set. It is noteworthy that different preprocessing methods
will be used with different classifiers, for example, discretization is a compulsory step for Naive Bayes;
normalization needs to be done for some distance-based or metrics sensitive classifier like kNN, linear
regression, neural networks; dummy variable can be employed by logistic regression. Data cleaning,
missing value imputation, discretization, normalization will be covered in the next paragraphs and during
the discussion of classifiers in section 3.

Data cleaning Data cleaning, also known as instance selection, is the process of removing unwanted
instances from a database. Similar to feature selection, data cleaning approaches fall into two categories,
filter and wrapper. Wrapper approaches explicitly evaluate results by using the specific machine learning
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Features Description Features Description

Table 2.4: Descriptions of the selected features
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algorithm to trigger instance selection, e.g., Tomek-Link sample method, edited nearest neighbor (ENN)
rule, etc. Chandola et al. provided a comprehensive overview of existing techniques in [19]. The
filter approach is more straightforward: suspicious instances will be evaluated and removed instance by
instance. Several filter approaches used in this thesis are listed below:

� Unexpected categories: gender is unknown; the length of the zip code is larger than 4, etc.

� Out of range: the values outside a permissible minimal or maximal range.

� Interquartile ranges: based on the assumption that deviation of statistical values should not be
extreme. If we annotate Q1 as 25% quartile, Q3 as 75% quartile, and EV F as extreme value factor,
outliers can be detected if x > Q3 + EV F × (Q3 −Q1).

Format converting Some retrieved data elements cannot be recognized or handled directly, and a
format converting step is needed. For example, date format data are converted to the month difference
between the retrieved data and the current date; character strings are cataloged as nominal features. All
this processing can be done by pieces of code in our system.

Missing values Incomplete data is an unavoidable problem in dealing with the real banking data. Data
may be missed during many stages with different reasons: the customers do not provide full personal
information intentionally, accidentally or by the concern for privacy; when entering the data into the IT
system or manipulating data warehouse, mistakes might cause missing data as well; many customers do
not own some products like saving account and credit card, the related information is apparently not
applicable.

In this thesis, we use the most common imputation methods. For nominal features, the value of the
feature that occurs most often within the same class is selected to be the value for all the unknown
values of the feature. Sometimes we treat “unknown” itself as a new value for the features that contain
missing values. For numeric features, substitute a feature’s mean value computed from available samples
belonging to the same class to fill in missing data values on the remaining cases.

It should be noted that the inapplicable items use zero as well as a real missing (“NA” or empty) label
in some places in the dataset. For example, if customers do not own a saving account, the amount of
monthly transaction of saving account is zero. In this case, we have to find the associated indicator flag
and substitute the real missing item with the mean value for a numeric feature or “unknown” category
for nominal features.

Normalization Normalization is important for neural networks and distance-based classifiers like kNN.
When normalization is performed the value magnitudes are scaled to appreciably low values. In this
thesis, we mainly use z-score normalization x = x−µ

σ .

Discretization Some classifiers like Naive Bayes require discrete values. Generally, discretization
algorithms can be divided into unsupervised algorithms that discretize attributes without taking into
account the class labels and supervised algorithms that discretize attributes by taking into account
the class attribute. Liu et al. compared binning based approaches (unsupervised algorithm), entropy
measure based approaches, dependency based approaches and accuracy based approaches (supervised
algorithm) in [20], and the results were quite consistent and identified Ent-MDLP as the first choice to
consider.

Following the suggestion, we use Ent-MDLP as discretization method in this thesis. The Ent-MDLP
discretization process is illustrated in figure 2.6. First, the continuous values for a feature are sorted in
either a descending or an ascending order; then, the cut-point candidates to split a range of continuous
values are selected by entropy minimization; next, a minimum description length principle (MDLP) is
used to determine if the candidate cut-point can be accepted: if the MDLP stop criterion as shown
in formula 2.1 is satisfied, the discretization process stops, otherwise this procedure is continued. The
formula of MDLP is

Gain(A, T ;S) >
log2(N − 1)

N
+

∆(A, T ;S)

N
(2.1)
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where Gain(A, T ;S) is information gain and ∆(A, T ;S) = log2(3k − 2) − [kEnt(S) − k1Ent(S1) −
k2Ent(S2)], where Ent is entropy, k, k1 and k2 are the number of total class, left class and right class
divided by the cut-point, respectively. The definition of entropy and information gain is show in formula
3.4 in section 3.5.

Figure 2.6: Discretization process [20].
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Chapter 3

Classifiers in banking

3.1 A literature review of classifiers used in banking mortgage
default field

A credit score is a numerical expression based on a statistical analysis of a person’s credit files, to
represent the creditworthiness of that person. The arrival of credit cards in the late 1960s made the banks
and other credit card issuers realize the usefulness of credit scoring. Since the work of Altman in 1968 [21],
who suggested using the so-called “Z score” to predict firms default risk, hundreds of research articles have
studied this issue [22]. In the 1980s the success of credit scoring in credit cards meant that banks started
using scoring for other products like mortgages [23]. At the beginning of using credit scoring, researchers
focused on statistical or operational methods, including discriminant analysis, linear regression and linear
programming. Gradually, more and more machine learning modelling approaches were imported into this
field. Baesens et al. [22] reviewed some classification algorithms applied to eight real-life credit scoring
data sets from major Benelux and UK financial institutions. Some well-known classification algorithms,
e.g., k-nearest neighbour, neural networks, decision trees, support vector machines and least-squares
support vector machines (LS-SVMs) were investigated. It was found that both the LS-SVM and neural
network classifiers yield a very good performance, but also simple classifiers such as logistic regression and
linear discriminant analysis perform very well for credit scoring. Feldman and Gross discussed the pros
and cons of classification and regression trees (CART) in relation to traditional methods in [24]. They
used CART to produce the first academic study of Israeli mortgages default data. Gan [25] investigated
the risk management for residential mortgage in China and built an effective screening system to reduce
the risk introduced by loan defaults. The paper reported an analytic study based on a real dataset
of 641,988 observations provided by a Chinese commercial bank, and imported a profit matrix for the
classification model to make the decision.

Behavioural score systems allow lenders to make better decisions in managing existing clients by fore-
casting their future performance. The decisions to be made include what credit limit to assign, whether
to market new products to these particular clients, and if the account turns bad how to manage the
recovery of the debt [23]. There are also plenty of research articles about behavioral score or behavioral
assessment. Malik and Thomas [26] developed a Markov chain model based on behavioural scores to
establish the credit risk of portfolios of consumer loans. The model is applied using data on a credit
card portfolio from a major UK bank. Cumulative logistic regression was used to estimate the tran-
sition probabilities of the Markov chain. Hsieh used a self-organizing map neural network to identify
groups of customers based on repayment behavior and recency, frequency, monetary behavioral scoring
predictors in [27]. Case-based reasoning (CBR) is also a popular methodology for problem solving and
decision-making in customer behavioral assessment [28, 29, 30]. Park proposed an analogical reasoning
structure for feature weighting using a new framework called the analytic hierarchy process weighted
k-NN algorithm in [31]. Krishnan [32] clustered the credit card debtors into homogeneous segments by
using a self-organizing map, then developed credit prediction models to recognize the repayment patterns
of each segment by using a Cox proportional hazard analysis. Ha [33] used a similar approach to estimate
the expected time of credit recovery from delinquents.
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The brief literature review above has shown several approaches, and naturally one question will pop
up: “in these introduced or untouched approaches, which one should be used for our research problem?”.
It is not easy to tell which one is a winner. On the one hand, the research performed in this thesis is
different from any work before and it should be the first application in short term recovery prediction of
defaulted customers, therefore successful classification techniques in previous works cannot guarantee a
global optimal solution to this problem. On the other hand, Capon [34] indicated that the use of credit
scoring in the mortgage industry should be based on a pragmatic approach. The object is to predict
who will recover accurately not to give explanation for why they recover or answer hypothesis on the
relationship between default and other economic or social variables (at least the explanation is just icing
on the cake, but not the fundamental requirement). This thesis will follow this pragmatic idea: the
most popular classification models will be tested and the best one will be deployed.

3.2 Case based reasoning

Case based reasoning (CBR) solves new problems by using or adapting solutions that were used to
solve old problems. A general CBR algorithm involves four steps [35]: (1) accepting a new problem
representation, (2) retrieving relevant cases from a case base, (3) adapting retrieved cases to fit the
problem at hand and generating the solution for it, and (4) store the problem in the case base and reuse
it in future problem solving. This circle is illustrated in figure 3.1.

Figure 3.1: The CBR cycle.

The key issues in the CBR process are indexing and retrieving similar cases in the case base, measuring
case similarity to match the best case, and adapting a similar solution to fit the new problem. Therefore,
the measures of success of a CBR system depend on its ability to index cases and retrieve the most
relevant ones in support of the solution to a new case. In this thesis, we use personal information to
locate similar cases and the nearest neighbor of financial related data to match the best case as below:

� When retrieving candidates (similar cases), choose instances from the dataset with:

– similar age (discretize age, and select the same category);

– same gender;

– same marriage status;

– same geography location (The first two digits of the zip code) ;

– in the new arrear customers who meet the four above requirements, select new arrear customers
with the difference of mortgage monthly payment less than 0.1σ; if no customer’s monthly
payment falls in this area, enlarge the criteria to 0.2σ, 0.3σ, · · · , until similar cases are found.

� To find the best match case:

1. scale the financial related data by dividing them with monthly payment;

2. normalize the financial related data;

3. use wrapper feature selection method with kNN to select the top 10 related features;

4. calculate the Euclidean distance1, choose the best match with minimal distance from all
candidates, and assign the label.

1A better way is using generalized matrix learning vector quantization to learn the relevant distance metric.
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3.3 Logistic regression

Since it was first applied in customer credit behaviour prediction by Wiginton in 1980 [36], logistic
regression has been widely used in the field of banking credit score. Logistic regression is an extension
of linear regression. It has less restrictions on hypotheses about the data and can deal with qualitative
indicators. The regression equation of LR is:

ln(
pi

1− pi
) = β0 + β1x1 + β2x2 + · · ·+ βnxn, (3.1)

where xi is the i-th input variable, βi are the regression coefficients, and the probability pi obtained by
Equation 3.1 is a bound of classification. The customer is considered a defaulter if it is larger than 0.5
or a delayer on the contrary. LR is proved as effective and accurate as LDA, but does not require input
variables to follow a normal distribution [37].

A dummy variable takes the value 0 or 1 to indicate the absence or presence of some categorical effect.
In a regression model, a dummy variable with a value of 0 will cause its coefficient to disappear from
the equation. Conversely, the value of 1 causes the coefficient to function as a supplemental intercept,
because of the identity property of multiplication by 1. So, encoding features as dummy variables allows
easy interpretation, and it is a common method involved in studies of credit scoring.

For a nominal feature with C distinct categories, a set of C dummy variables can be generated.

x1 =

{
1 if the category is 1
0 otherwise

x2 =

{
1 if the category is 2
0 otherwise

...

xC =

{
1 if the category is C
0 otherwise

Since the C dummy variables are linearly dependent, any C−1 out of the C variables sufficiently identify
a category. For numeric features, Ent-MDLP discretization is applied in order to convert numbers to
categories; then dummy variables can be generated in the same way.

3.4 Naive Bayes

The Naive Bayes classifier is one of the oldest formal classification algorithms, and yet even in its simplest
form it is often surprisingly effective. It is widely used in the statistical, data mining, machine learning,
and pattern recognition communities [38].

Bayesian classifiers are statistical classifiers with a “white box” nature. Bayesian classification is
based on Bayesian theory, which is described below. Consider a supervised learning problem in which we
wish to approximate an unknown target function f : X → Y , or equivalently P (Y |X). After we apply
Bayes rule, we see that P (Y = yi|x1 · · ·xn) can be represented as

P (Y = yk|x1 · · ·xn) =
P (X = x1 · · ·xn|Y = yk)P (Y = yk)∑
j P (X = x1 · · ·xn|Y = yj)P (Y = yj)

(3.2)

where yk denotes the kth possible value for Y , xi denotes the ith possible vector value for X, and where
the summation in the denominator is over all legal values of the random variable Y [39].

The Naive Bayes classifier assumes that the attributes of a sample are independent given the class.
It reduces the number of parameters to be estimated dramatically when modelling P (X = x1 · · ·xn|Y ),
i.e., we can have P (X = x1 · · ·xn|Y ) =

∏n
i=1 P (xi|Y ). Now use this to rewrite equation 3.2 as

P (Y = yk|X = x1 · · ·xn) =
P (Y = yk)

∏n
i=1 P (xi|Y = yk)∑

j P (Y = yj)
∏n
i=1 P (xi|Y = yj))

(3.3)
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Because we are interested in the classification result, we assign the instance Y the label with the most
probable value.

Y ← arg max
yk

P (Y = yk)
∏
i

P (xi|Y = yk)

For discrete features, we can simply substitute the nominal values into the Naive Bayes formula2. For
continuous features, there are normally two approaches: estimating the probability density function or
discretize the continuous variables. In our dataset, numeric features have different types of distributions
as shown in figure 3.2: the amount of rest mortgages follows a normal distribution approximately, total
number of successful cashless transactions over the past 12 months follows an edge peak right-skewed
gamma distribution, and age has a bimodal distribution. So, we choose to employ the Ent-MDLP
discretization method again to transform all features as nominal to make the system brief and clear.

(a) Histogram of total amount of
rest mortgages

(b) Histogram of amount of cash-
less transactions

(c) Histogram of age

Figure 3.2: Histograms of some features in the dataset. Blue parts are histogram of defaulters and red
parts are delayers.

Since the Naive Bayes classifier has a strong assumption about feature independence and there are
indeed highly correlated features in the dataset (wealth class and incomes, the balance of bank account
as 1st account holder and 2nd holder, etc), the correlated-based feature selection (CFS) method is
applied before the Naive Bayes classifier. CFS evaluates subsets of features on the basis of the following
hypothesis: “feature subsets contain features highly correlated with the classification, yet uncorrelated
to each other” [40]. A greedy stepwise searching strategy is used with CFS to choose an independent
subset.

3.5 Decision trees

The decision tree method is also known as recursive partitioning. It works as follows. First, according to
a certain standard, the customer data are divided into limited subsets by using one (or more with linear
split) attribute(s). Then the division process continues until the new subsets meet the requirements of
the end node. The construction of a decision tree contains three elements: bifurcation rules, stopping
rules and the rules deciding which class the end node belongs to. Bifurcation rules are used to divide
new sub sets. Stopping rules determine whether the subset is an end node. In statistics and machine
learning, there are several specific decision tree algorithms including ID3 (Iterative Dichotomiser 3),
C4.5 (successor of ID3), CART (Classification And Regression Tree), CHAID (CHi-squared Automatic
Interaction Detector), etc.

2Sometimes a smoothening step is needed for two reasons: to avoid zero-values; and to make the distribution smoother.
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In this thesis C4.5 is employed. C4.5 uses information gain for its impurity function. Let S be a set,
p be the fraction of defaulters, and q be the fraction of delayers. The definition of entropy is:

Ent(S) = −plog2(p)− qlog2(q) (3.4)

The entropy changes when we use a node in a decision tree to partition the training instances into smaller
subsets. Information gain is a measure of this change in entropy. Suppose A is an attribute, Sv is the
subset of S with A = v, Value(A) is the set of all possible values of A and |S| is the size of set S, then

Gain(S,A) = Ent(S)−
∑

v∈Values(A)

|Sv|
|S|
· Ent(Sv) (3.5)

Besides information gain, differences between C4.5 and other variations of decision trees are listed as
following [41]:

� Univariate splits: bifurcation rules only use one feature instead of a linear combination like α1x1 +
α2x2 + α3x3 < c.

� The number of branches could be larger than 2.

� Pruning: goes back through the tree once it has been created, and attempts to remove branches
that do not help by replacing them with leaf nodes.

3.6 Summary

Until now, the framework and details of our classification system have been discussed. Equivalent to any
other system: data gathering, feature selection, feature extraction and data preprocessing are first carried
out, followed by various classifiers. We have not set up experiments in this chapter, because assessment
metrics, one of the most critical steps especially in this imbalanced problem, have not been touched yet.
In the next chapter, metrics, experiments and results of sampling techniques will be introduced.
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Chapter 4

Sampling techniques in imbalanced
learning

4.1 Nature of the problem

In this research problem, the two classes are imbalanced. Table 4.1 illustrates the number of defaulters
and delayers from October 2012 to March 2013 and the ratio between defaulters and delayers is around
1 : 8. The reason of this imbalanced distribution is not complicated. According to the survey from the
Arrears department, the vast majority of new arrear customers miss the first “incasso” just because their
bank accounts are blocked temporarily, forget or feel lazy to pay the monthly debt. Most of them will
repay before the end of the month.

Time Oct 2012 Nov 2012 Dec 2012 Jan 2013 Feb 2013 Mar 2013
# New arrear customers

# Defaulters
# Delayers

percentage of defaulters

Table 4.1: Number of defaulters and delayers in 6 months.

This is a typical imbalanced learning problem. When classifying imbalanced data sets, most standard
algorithms fail to properly represent the distributive characteristics of the data and result in unfavourable
accuracies across the classes of the data [42]. Therefore, the imbalanced learning problem is warranting
increasing exploration. Figure 4.1 illustrates the number of papers on imbalanced learning in data
mining, pattern recognition and machine learning in the last decade in Google Scholar. As can be seen,
the activity of publications in this field is growing fast.

Strictly speaking, any data set that exhibits an unequal distribution between its classes can be con-
sidered imbalanced. However, the common understanding in the community is that imbalanced data
correspond to data sets exhibiting significant imbalances [42]. In some scenarios, one class severely over-
represents another naturally, e.g., gene expressing data (100:1) [43] and shuttle system failure (1000:1)
[44]. In some extreme cases the counter-examples are even absent. One-class classification, also known
as unary classification, learns from a training set containing only the objects of that class. It is noted
that imbalance also exists in multi-class classification problem [45], [46], [47]. In this thesis, we only
focus on the binary class imbalanced learning problem. There are two reasons that imbalance falls into
two cases: the data are naturally imbalanced, or it is too expensive to obtain data of the minority class.
Obviously, customer behavior leads to our imbalanced research problem naturally.
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Figure 4.1: Number of results when searching publications with the keywords “imbalance learning”
followed by “machine learning”, “pattern recognition” or “data mining” in Google Scholar.

4.2 Assessment metrics

Assessment metrics should be discussed critically at the beginning of working on imbalanced learning,
since inappropriate metrics would lead to wrong conclusions. In this section, we comparatively study the
confusion matrix, singular metrics (accuracy, error rate, precision, recall, F-measure, G-mean) and curve
metrics (Receiver Operating Characteristic curve) in imbalanced binary classification. In this thesis, the
ROC curve and the area under the curve (AUC) are the main metrics to compare different
classifiers.

4.2.1 Confusion matrix

Because defaulters are the principle component of risk cost which ING wants to cut down eagerly, we can
rephrase our classification problem as “can we detect defaulters from new arrear customers?”.
Logically, we regard defaulters as the positive class and delayers as the negative class, then a repre-
sentation of classification performance can be formulated by a confusion matrix, as illustrated in table
4.2.

Predict class
Defaulter Delayer

Actual class
Defaulter true positive (TP) false negative (FN)
Delayer false positive (FP) true negative (TN)

Table 4.2: Confusion matrix for performance evaluation

4.2.2 Accuracy and error rate

Traditionally, the most frequent used metrics are accuracy and error rate.

Accuracy =
TP + TN

TP + FP + FN + TN
ErrorRate = 1−Accuracy

They provide a straightforward way of describing a classifier’s performance on a given data set. How-
ever, for imbalanced data, especially strongly skewed data, using accuracy and error rate as measurement
is not appropriate, because:

� One fact against the use of accuracy (or error rate) is that these metrics consider different classifi-
cation errors to be equally important. However, highly imbalanced problems generally have highly
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non-uniform error costs that favor the minority class, which is often the class of primary interest
[48]. In our case, a defaulter misclassified as delayer is less acceptable than a delayer labelled
as defaulter, since the misclassified defaulters will lose the opportunity to be contacted by case
managers.

� Accuracy (or error rate) will lead to unexpected conclusions. For example, table 4.3a shows one
possible output by decision trees. The confusion matrix is biased to delayers severely and gets an
accuracy value of 90%. Another even more extreme example in table 4.3b is a naive classifier which
regards every new arrear customer as delayer. The accuracy is also 90%, which sounds as excellent
as the classifier in 4.3a!

Predict class
Defaulter Delayer

Actual
class

Defaulter 100 900
Delayer 100 8900

(a) One possible output of a decision tree.

Predict class
Defaulter Delayer

Actual
class

Defaulter 0 1000
Delayer 0 9000

(b) Naive classifier: assigns all customers as delay-
ers.

Table 4.3: Confusion matrix of two classifiers with accuracies of 90%.

4.2.3 Singular assessment metrics

From the confusion matrix, we can easily extend the definition of accuracy and error rate to two metrics
which measure the classification performance on the positive and negative class independently:

True positive rate TPrate =
TP

TP + FN
is the percentage of defaulters correctly classified as default-

ers;

True negative rate TNrate =
TN

FP + TN
is the percentage of delayers correctly classified as delayers.

TPrate and TNrate just measure completeness (i.e., how many examples of the positive class were
labelled correctly). Exactness (i.e., of the examples labelled as positive, how many are actually labeled
correctly) should be also paid close attention. So, positive predictive value (ppv) and negative predictive
value (npv) are imported as well.

Positive predictive value ppv =
TP

TP + FP
is the proportion of the true defaulters against all the

predicted defaulters;

Negative predictive value npv =
TN

TN + FN
is the proportion of the true delayers against all the

predicted delayers.

There are different names describing these metrics in different fields. For example, in information
retrieval, TPrate is called recall and positive predictive value is precision. In statistic test theory,
hit rate and false alarm rate are true positive rate and false positive rate, respectively. Sensitivity
and specificity are also common terminology in statistical binary tests, sensitivity is true positive rate
and specificity is true negative rate. In this thesis, precision and recall are used.

Intuitively, the main goal for learning from imbalanced new arrear customers in arrears is to improve
the recall without hurting the precision. However, recall and precision goals can be often conflicting,
since when increasing the true positive rate for the defaulters, the number of false positives (i.e., delayers
misclassified as defaulter) can also be increased; this will reduce the precision. So, here comes a question:
suppose two confusion matrices are given like in table 4.4, how do we decide which confusion matrix is
better than the other when one has higher recall while another has higher precision?
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Predict class
Defaulter Delayer

Actual
class

Defaulter 600 400
Delayer 1400 7600

(a) Recall is 60% and precision is 30%

Predict class
Defaulter Delayer

Actual
class

Defaulter 500 500
Delayer 500 8500

(b) Recall is 50% and precision is 50%

Table 4.4: How to judge which confusion matrix is better?

Two measures are frequently adopted in the research community to provide comprehensive assessments
of imbalanced learning problems:

F-Measure =
(1 + β2) ·Recall · Precision
β2 ·Recall + Precision

, where β is a coefficient to adjust the relative importance

of precision versus recall (usually, β = 1). The F-measure score can be interpreted as a weighted
average of the precision and recall, where an F-measure reaches its best value at 1 and worst score
at 0. It is easy to see that the F-measure of table 4.4a is (2 · 0.6 · 0.3)/(0.6 + 0.3) = 0.4, while it is
(2 · 0.5 · 0.5)/(0.5 + 0.5) = 0.5 in table 4.4b.

G-mean =

√
TP

TP + FN
× TN

TN + FP
. G-mean indicates the balance between classification perfor-

mances on the majority and minority class. This metric takes into account both true positive rate
and true negative rate. Again, given table 4.4, we get G-mean of (a) is

√
0.6 · 0.8444 = 0.711 and

G-mean of (b) is
√

0.5 · 0.9444 = 0.687.

Though F-Measure and G-Mean are great improvements over accuracy, they are still ineffective in
answering more generic questions about classification evaluations. In the next section, curve metrics will
be introduced, which can give answers of assessing the holistic classification performance.

4.2.4 Curve metrics

Some singular metrics were introduced in the previous section. If we plot one singular metric against
another in a two-dimensional graph, more meaning can be represented. One most commonly used graph
is the ROC graph, which plots TP rate on the Y axis and FP rate on the X axis. Before discussing the
ROC graph, we first compare the hard-type classifiers and soft-type classifiers.

Hard-type classifiers and soft-type classifiers Many classifiers, such as nearest neighbor or de-
cision trees, are designed to produce only a class decision, i.e., a label of defaulter or delayer on each
new arrear customer. When such classifier is applied to a test set, it yields a single confusion matrix,
which in turn corresponds to one (FP rate,TP rate) pair. They are called hard-type classifiers or discrete
classifiers.

Some classifiers, such as Naive Bayes or neural networks, naturally yield an instance a numeric value
that represents the degree to which an instance is a member of a class. Normally, the numeric outputs
could possess one of three kinds of meaning below:

� Strict probabilities: the outputs adhere to standard theorems of probability, like Naive Bayes or
Multi-variance discriminant analysis.

� Relative probabilities: some bagging based classifiers like random forests use voting to yield the
final output. The outputs are kinds of pseudo probabilities.

� General and uncalibrated scores: the only property that holds is that a higher score indicates a
higher tendency to predict the positive class, like logistic regression.

We call these three types of classifiers soft-type classifiers or probabilistic classifiers. Soft-type classifiers
can be used with a threshold to produce a discrete classifier: if the classifier output is above the threshold,
the classifier produces a defaulter, else a delayer.
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Fawcett listed several methods which make discrete classifiers generate scores rather than just a class
label in [49]. For example, a decision tree determines a class label of a leaf node from the proportion of
instances at the node, and these class proportions may serve as a score [50]; MetaCost employs bagging
to generate an ensemble of discrete classifiers, each of which produces a vote, and the set of votes could
be used to generate a score [51].

ROC graph As aforementioned, a discrete classifier only generates one (FP rate, TP rate) pair. In
other words, one discrete classifier corresponds to one single point in ROC space. Figure 4.2a shows an
ROC graph with five typical classifiers labeled A through E.

Before discussing points A to E, let us look at several special points in the ROC graph. Both points
(0, 0) and (1, 1) are two naive approaches: (0, 0) represents an all-negative classifier, which assigns all new
arrear customers as delayer; (1, 1) represents an all-positive classifier, which labels new arrear customers
as defaulter unconditionally. Any point on the diagonal line represents the strategy of randomly guessing
a class. For example, if a classifier assigns the label by tossing a coin, it can be sure that it gets half
defaulters and half delayers correct; this yields the point (0.5, 0.5) in ROC space. If it guesses the positive
class 70% of the time, it can be expected to get 70% of the positives correct but its false positive rate
will increase to 70% as well, yielding point C in figure 4.2a.

From the ROC graph it is easily concluded that one point is better than another if it is to the
northwest (TP rate is higher, FP rate is lower, or both) of the other. So, points A and B are better than
C, while point D (0, 1) represents the perfect classification. Note that a point which is southeast to the
diagonal line does not mean that the classifier cannot provide useful information. On the contrary, the
classifier is informative but just misused. For instance, if we reverse the classification result of point E,
then it will just produce point A in figure 4.2a.

(a) A basic ROC graph showing five discrete classifiers
[49]: C is a random guessing classifier; A and B out-
perform C; E is symmetric with A; D is the perfect
classifier.

(b) Classifier B is generally better than A except at
FPrate > 0.6 where A has a slight advantage. But in
practice the AUC performs very well and is often used
when a general measure of predictiveness is desired
[49].

Figure 4.2

ROC Curve and Area under the curve (AUC) In the case of soft-type classifiers, a threshold can
divide the output into two parts: above threshold are assigned positive labels, else negative labels. In
other words, a threshold produces a discrete classifier and one point on the ROC graph. If varying the
threshold between the minimal probability (score) and maximal probability (score), a series of points are
generated on the ROC graph. Changing the threshold value corresponds to moving from one point to
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another point, and by traversing all thresholds, an ROC curve is generated. Even for discrete classifiers,
it is straightforward to have them produce soft-type outputs as aforementioned, and generate ROC curves
in the same way.

Similar with the evaluation criterion comparing two points in the ROC graph, the ROC curve which
protrudes to the northwest corner outperforms ROC curves under it. The area under the curve, ab-
breviated AUC, is a common method to convert the ROC curve to a single scalar value representing
performance. The AUC value is always between 0 and 1. As the analysis of random guessing in the
previous paragraph, any ROC curve having AUC lower than 0.5 is misused: just simply getting the
complement value of the output will give an AUC above 0.5 again.

Although it is possible for a high-AUC classifier to perform worse in a specific region of ROC space
than a low-AUC classifier as illustrated in figure 4.2b, a classifier with higher AUC normally has better
average performance.

4.3 The state-of-the-art for imbalanced learning

Nowadays, there is a common understanding in the community that most traditional machine learning
methods are affected by imbalanced distributed data [52, 53, 54, 55]. One example was given by Lemnaru
and Potolea in [55]: the experimental result on 32 data sets from the UCI machine learning data repository
showed that decision trees and SVMs perform strongly worse when the data is imbalanced. That is
mainly because they are not built with the purpose of this domain: first, they are designed to maximize
accuracy, which has already been proved to be an improper metric in the last section; secondly, the
generated model, pattern or rules that describe the minority concepts are often rarer and weaker than
those of majority concepts, since the minority class is often both outnumbered and underrepresented.

The remedies to deal with the problem of class imbalance are of three different levels according to the
phases in learning, i.e., data level methods for handling imbalance, which contain changing class distribu-
tions mainly by re-sampling techniques and feature selection in the feature level, classifiers level by ma-
nipulating classifiers internally and ensemble learning level [56]. Against imbalanced data distributions,
changing class distributions is the most natural solution. Sampling methods seem to be the dominate
type of approach in the machine learning community as the way these methods work is straightforward
[57]. The following paragraphs will mainly focus on the sampling methods, such as random oversampling
and undersampling, informed undersampling, synthetic sampling with data generation.

Random sampling The basic sampling methods include random undersampling and random oversam-
pling. Like the literal meaning of “random sampling”, undersampling eliminates majority-class examples
randomly while oversampling duplicates minority-class examples randomly. Both of these sampling tech-
niques decrease the overall level of class imbalance, thereby making the rare class less rare.

These random sampling methods have several drawbacks. Intuitively, undersampling discards po-
tentially useful majority-class examples and thus can degrade classifier performance. With regards to
oversampling, because it introduces additional training cases, the training time increases when building
a classifier. Worse yet, because oversampling makes exact copies of examples, it may lead to overfit-
ting: although the training accuracy is high, the classification performance on the unseen testing data
is generally far worse [58]. Some studies have shown simple oversampling to be ineffective at improving
recognition of the minority class and why undersampling may be a better choice [59].

Informed undersampling Since random undersampling would miss potentially useful information,
Zhang and Mani proposed four undersampling methods combined with k-nearest neighbor in [60], which
only keep useful majority-class instances. The basic idea behind them is that the majority-class instances
which are surrounded by minority-class instances are more likely to locate around a decision boundary,
which is slightly similar with the theory of Support Vector Machines. The four proposed methods are
called NearMiss-1, NearMiss-2, NearMiss-3, and the “most distant” method. The NearMiss-1 method
selects those majority examples whose average distance to the three closest minority class examples is
the smallest to keep, while the NearMiss-2 method selects the majority class examples whose average
distance to the three farthest minority class examples is the smallest. NearMiss-3 selects a given number
of the closest majority examples for each minority example to guarantee that every minority example is
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surrounded by some majority examples. Finally, the “most distant” method selects the majority class
examples whose average distance to the three closest minority class examples is the largest.

There are some other informed undersampling methods such as EasyEnsemble and BalanceCascade
algorithms [61], which will be discussed in chapter 4.

Synthetic sampling with data generation Synthetic sampling with data generation techniques have
also attracted much attention. The synthetic minority oversampling technique (SMOTE) algorithm is
the most enlightened approach, which oversamples by introducing new, non-replicated minority class
examples [62]. Its main idea is that minority class examples are generated by interpolating examples
from the line segments that join the k minority-class nearest neighbors. For every minority instance, its
k nearest neighbors of the same class are calculated based on euclidean distance, then some examples
are randomly selected from them according to the oversampling rate. After that, randomly select one of
the k nearest neighbor, then new synthetic examples are generated along the line between the minority
example and its selected nearest neighbors. Thus, the overfitting problem is avoided and causes the
decision boundaries for the minority class to spread further into the majority class space. Figure 4.3
shows an example of the SMOTE procedure.

Figure 4.3: (a) Example of the K-nearest neighbors for the xi example under consideration (k = 6). (b)
Data creation based on euclidian distance. [42]

Some approaches were proposed to improve the SMOTE algorithm, such as Borderline-SMOTE [63],
SMOTE with ENN [48], SMOTE with Tomek links [48], SMOTE-RSB [64] and SMOTEBoost [65]. Here
follows a short introduction of Borderline-SMOTE. Suppose among k nearest neighbors of minority class
instance Xi, m neighbors belong to the minority class and k − m ones belong to the majority class.
Xi can be regarded as “SAFE”, “DANGEROUS” or “NOISY ” according to the distribution of m and
k −m as below:

� “SAFE”: m > k −m
� “DANGEROUS”: 0 < m <= k −m
� “NOISY ”: m = 0

Since the examples in “DANGEROUS” represent the borderline minority class examples (the examples
that are most likely to be misclassified), the “DANGEROUS” set is input to the SMOTE algorithm.
Figure 4.4 illustrates an example of the Borderline-SMOTE procedure. We see that Borderline-SMOTE
only generates synthetic instances for those minority examples closest to the border.

4.4 Experimental study and discussion

Until now, we introduced the dataset, the classification pipeline and the classifiers in chapter 2 and 3,
then explained the imbalanced distribution of our dataset, the evaluation metrics and the approaches of
imbalanced learning in the earlier sections in this chapter. In this section, we carry out the empirical
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Figure 4.4: (a) The original distribution of the Circle data set. (b) The borderline minority examples
(solid squares). (c) The borderline synthetic minority examples (hollow squares). [63]

comparison of the algorithms that we have reviewed in section 3, i.e., case based reasoning, Naive
Bayes, decision trees (C4.5) and logistic regression. Then, three types of sampling methods, random
undersampling, random oversampling and SMOTE are employed here to comparatively study the impact
of sampling techniques on the classification performances. True positive rate, precision of defaulters,
True negative rate, F-score, AUC and ROC curve are employed as evaluation metrics. The normal k-fold
cross validation would bring the situation that the distribution of defaulters and delayers in each fold
are slightly different. In order to reduce the deviation of the result, stratified k-fold cross validation
is adopted to ensure the numbers of instances in both majority and minority class are strictly equal in
each fold. Following the common usage, we use 10 folds in our experiments. As mentioned in chapter
2, the total dataset has around new arrear customers, and such a large number of instances
will lead to remarkable computation time, especially with 10-fold cross validation. A randomly sampled
subset ( ) will be used in the phase of
comparing classifiers for the purpose of reducing experiment time. When the best classifier is spotted,
the whole dataset will be employed again to build the final model.

Our aim is to answer several questions in the scenario of this arrears customers imbalanced classification
problem:

� What is the impact of the imbalanced data distribution?

� How do sampling techniques improve the performance?

� Find the best solution to classify defaulters and delayers so far

Table 4.6 lists all performance indicators with average value and standard deviation of the result of
10-fold cross validation. In order to explain the results clearly, we extract parts of the data from table
4.6 to form some new table and figures. CBR, NB, DT and LR in the following tables and figures in
this and the rest of the chapters are abbreviations for Case-based Reasoning, Naive Bayes, Decision tree,
logistic regression.

Basic classifiers We first consider the results of singular assessment metrics without sampling tech-
niques as shown in table 4.5. The first four columns list the four numbers of the confusion matrices. In
order to observe easily, the numbers are rounded as the unit of tens or hundreds. The next four columns
in the table show true positive rate (the percentage of defaulters correctly classified as defaulters), pos-
itive predictive value (the proportion of the true defaulters against all the predicted defaulters), true
negative rate (the percentage of delayers correctly classified as delayers) and negative predictive value
(the proportion of the true delayers against all the predicted delayers), respectively.

It is clear that none of the four classifiers can obtain good classification performance for both defaulters
and delayers simultaneously. Case-based reasoning, decision trees and logistic regression can distinguish
most delayers (TN rates are aound 98%) but the ability to detect defaulters is very poor (TP rates
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are less than 12%). That is because delayers dominate the dataset and all the instances are equally
weighted: Case based reasoning has a higher probability to find delayers than nearest neighbors; the
splitting rule of a Decision tree can almost ignore defaulters since information gain can get benefit from
a good splitting of delayers; the aim of logistic regression is to optimize the cost function, i.e, the sum
of square errors of all instances, and biasing to the majority class can obtain smaller cost.

If we just employed the singular metrics in table 4.5, comparing the performances of the four classifiers
is impossible because we do not know how to trade-off the confusion matrix.

Methods TP FN FP TN TP rate ppv TN rate npv

CBR 0.0576 0.3884 0.9962 0.9089
NB 0.9112 0.1064 0.1971 0.9542
DT 0.1141 0.4181 0.9830 0.9134
LR 0.0509 0.4584 0.9935 0.9087

Table 4.5: Using singular metrics to assess basic classifiers. TP, FN, FP, TN, TP rate, ppv, TN rate and
npv are abbreviations for true positive, false negative, false positive, true negative, true positive rate,
positive predictive value, true negative rate, negative predictive value. All these results are achieved
when the cut-off threshold is 0.5, which is the default threshold of these classification methods.

Sampling techniques Next, we evaluate the impact of sampling techniques by singular metrics. By
observing the TP rate and TN rate with and without a sampling technique, we can see clearly that
sampling generates more balanced results, that makes the value of one metric higher and another value
lower.

The F-measure was introduced in subsection 4.2.3. It is a weighted average of the true positive rate
and precision, where an F-measure reaches its best value at 1 and its worst score at 0. Figure 4.5 plots
the F-measure of four classifiers with four sampling techniques. For each group of bars, it is clear that the
performance of the original classifier (the leftmost white bar) is significantly lower than the performance
of classifiers with sampling techniques (other three bars). Put another way, the detection of defaulters
becomes more accurate and more effective.

Figure 4.5: Bar charts of F-measure. Original, Under, Over and SMOTE in the legend stand for basic
classifier, randomly undersampling, randomly oversampling and SMOTE, respectively.

Comparison by using ROC curve and AUC As discussed in section 4.2.4, curve metrics assess
the performance of classifiers holistically. Figure 4.6 compares AUC values of four classifiers with four
kinds of sampling techniques. All four groups of bars indicate that undersampling (the second left
bar) outperforms the original classifiers (the left most bar) significantly. If comparing with random
oversampling and SMOTE, undersampling performs also better or equally (the AUC of logistic regression
with random oversampling is close to undersampling).
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Another interesting result is that SMOTE does not lift the performance remarkably. The testing
result of SMOTE on Naive Bayes and logistic regression even decreases slightly. We can get explanation
from the study of SMOTE for high-dimensional class-imbalanced data by Blagus and Lusa in [66]. On
high dimensional and imbalanced data like our case, they set up a group of experiments and conclude
that SMOTE has hardly any effect on most classifiers trained on high-dimensional data. KNN-based
feature selection before SMOTE can eliminate this problem. In our experiment, however, we do not use
KNN-based feature selection1, hence the SMOTE oversampling does not work very well.

Figure 4.7 plots ROC curves of four classifiers with undersampling. The ROC curve of logistic
regression (black curve) dominates the other three curves in the whole range of the graph. A student
t-test also shows AUC of logistic regression exceeds the other three significantly. The p-value of the t-test
between logistic regression with undersampling and Decision tree with undersampling is 0.006455.

Figure 4.6: Bar charts of AUC. Original, Under, Over and SMOTE in the legend stand for basic classifier,
randomly undersampling, randomly oversampling and SMOTE, respectively.

Figure 4.7: ROC curves of case-based reasoning, Naive Bayes, Decision tree and logistic regression with
undersampling. The bars attached on the curves are standard deviation bars.

1To be precise, we use the Naive-Bayes-based wrapper method to select the features when we test the Naive Bayes
classifier, and logistic-regression based wrapper method for the testing of the logistic regression classifier.

29



Three naive approaches As reference, three naive approaches are also tested here as shown in table
4.6. The performance of all three naive classifiers is very poor, but it is noted that if we use accuracy as
assessment metric, “All delayers” can even get 90.5% accuracy and beats all other four classifiers! That
also confirms that accuracy is not a good metric for imbalanced data.

4.5 Summary

In this chapter, we first described the situation of imbalanced distributed data, then assessment metrics
and some sampling techniques were introduced. At last, 10-fold cross validation was applied with four
classifiers and sampling techniques. The empirical study on the testing results can answer the three
questions in the previous section:

What is the impact of the imbalanced data distribution: imbalanced data cause the basic clas-
sifiers to bias to the majority class seriously.

How do sampling techniques improve the performance: sampling makes performance more bal-
anced and increases AUC. Random undersampling works better than the other three techniques.

Find the best solution to classify defaulters and delayers: logistic regression with undersampling
is the best classifier so far. It gives an AUC of 0.7531 and outperforms other tested classifiers sig-
nificantly. According to the literature review, we have already realized that logistic regression is
one of the most popular approaches in the field of credit score prediction. Our testing result con-
firms the success of logistic regression. Bolton indicated in [67] that logistic regression is the most
favored method in practice of credit score prediction due to (almost) no assumptions imposed on
variables, with the exception of missing values and multicollinearity among variables.

In the next chapter, ensemble methods will be used to learn models and we will show that they
achieve better performance in classifying defaulters and delayers.
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Methods Recall Precision TN rate F-measure G-means ROC Area

All defaulters 1 0.095 0 0.1735 0 NA
All delayers 0 0 1 0 0 NA
Random (coin toss) 0.5 0.095 0.5 0.1596 0.5 NA

CBR 0.0576 ± 0.110 0.3884 ± 0.066 0.9962 ± 0.012 0.1005 ± 0.031 0.2377 ± 0.051 0.6989 ± 0.018
CBR + undersampling (1:1) 0.5959 ± 0.018 0.1942 ± 0.120 0.7418 ± 0.056 0.2928 ± 0.068 0.3397 ± 0.011 0.7140 ± 0.050
CBR + oversampling (1:1) 0.6832 ± 0.028 0.1403 ± 0.007 0.5609 ± 0.009 0.2327 ± 0.009 0.3095 ± 0.011 0.6742 ± 0.015
CBR + SMOTE (1:1) 0.3272 ± 0.025 0.3016 ± 0.018 0.9203 ± 0.008 0.3128 ± 0.011 0.3136 ± 0.011 0.6977 ± 0.010

NB 0.2092 ± 0.029 0.3964 ± 0.002 0.9671 ± 0.038 0.3966 ± 0.004 0.4498 ± 0.030 0.6540 ± 0.012
NB + undersampling (1:1) 0.3330 ± 0.106 0.3543 ± 0.017 0.9362 ± 0.163 0.3544 ± 0.021 0.5586 ± 0.077 0.6830 ± 0.023
NB + oversampling (1:1) 0.8462 ± 0.047 0.1132 ± 0.009 0.3003 ± 0.069 0.1993± 0.013 0.3089 ± 0.009 0.6638 ± 0.009
NB + SMOTE (1:1) 0.6911 ± 0.049 0.1229 ± 0.011 0.4788 ± 0.062 0.2081 ± 0.014 0.2907 ± 0.009 0.6521 ± 0.019

DT 0.1141 ± 0.017 0.4181 ± 0.062 0.9830 ± 0.004 0.1785 ± 0.024 0.3340 ± 0.025 0.6574 ± 0.018
DT + under-sampling (1:1) 0.6704 ± 0.027 0.2026 ± 0.012 0.7222 ± 0.022 0.3110 ± 0.015 0.6956 ± 0.014 0.7339 ± 0.008
DT + oversampling (1:1) 0.5787 ± 0.016 0.2805 ± 0.012 0.8442 ± 0.005 0.3777 ± 0.013 0.4028 ± 0.012 0.7147 ± 0.009
DT + SMOTE (1:1) 0.2008 ± 0.047 0.2636 ± 0.027 0.9414 ± 0.011 0.2258 ± 0.035 0.2290 ± 0.034 0.7023 ± 0.049

LR 0.0509 ± 0.007 0.4584 ± 0.076 0.9935 ± 0.002 0.0915 ± 0.012 0.2245 ± 0.015 0.7412 ± 0.017
LR + under-sampling (1:1) 0.6069 ± 0.032 0.2242 ± 0.014 0.7793 ± 0.010 0.3273 ± 0.019 0.6876 ± 0.020 0.7531 ± 0.017
LR + oversampling (1:1) 0.6480 ± 0.034 0.2069 ± 0.017 0.7381 ± 0.029 0.3130 ± 0.018 0.3656 ± 0.014 0.7529 ± 0.013
LR + SMOTE (1:1) 0.3260 ± 0.115 0.2825 ± 0.053 0.8935 ± 0.110 0.2873 ± 0.026 0.2947 ± 0.017 0.7354 ± 0.029

Table 4.6: Testing results. CBR, NB, DT and LR are abbreviations for case-based reasoning, Naive Bayes, decision trees, logistic regression. The recall,
precision, TN rate, F-measure and G-means are achieved when the cut-off threshold is 0.5, which is the default threshold of these classification methods.
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Chapter 5

Ensemble methods on imbalanced
data

5.1 Ensemble learning

The idea of ensemble learning is to build a prediction model by combining the strengths of a collection
of simpler base models. The earliest study of ensemble learning is from Dasarathy and Sheela [68] in
1979, which discussed partitioning the feature space using two or more classifiers. Since the huge success
of bagging [69], Random forests [70], random subspace methods [71], boosting [72], AdaBoost [73] and
Gradient boosting [74], ensemble learning is one of the hottest research fields in the machine learning
community. The following subsections will introduce these ensemble methods successively.

5.1.1 Bagging

The Bagging algorithm (Bootstrap aggregating), proposed by Breiman in [69], is one of the earliest
ensemble learning algorithms. Following the abbreviation, Bagging is based on the concepts of boot-
strapping and aggregating, and incorporates the benefits of both approaches.

Given a training set S of size N , a Bootstrap sample B is obtained by uniformly subsampling N ′

instances from S with replacement. By uniformly sampling with replacement, some training examples
may be repeated in a bootstrap sample, while some instances may not appear. The probability which
an instance has in the bootstrap sample is 1− (1− 1/N)N

′
. If N ′ = N and for large N , the probability

becomes limN→∞ 1− (1− 1/N)N = 1− 1/e ≈ 0.632. In other words, one bootstrap sample is expected
to have 63.2% of the unique examples of S.

M bootstrap samples B1, B2, · · · , BM are generated. Each sample Bi is used to train a different
base learner Ci of the same type. Then, aggregating actually means combining classifiers by majority
voting. The final classifier C∗ is built from C1, C2, · · · , CM whose output is the class predicted most
often by its base classifiers. Algorithm 1 shows the implementation of bagging.

Algorithm 1 Bagging

Input: training set S, Inducer I, integer M (number of bootstrap samples)

for i = 1 to M do
S′ = bootstrap sample from S (i.i.d. sample with replacement)
Ci = I(S′)

end for
C∗(x) = arg maxy∈Y

∑
i:Ci(x)=y

1 (the most often predicted label y)

Output: classifier C∗
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Simple as it is, a combined classifier gives better results than individual classifiers, because this strategy
can reduce variance when combined with bootstrap sampling. The detailed explanation can be found in
the original paper [69]. It is noteworthy that relatively unstable base classifiers (e.g. Decision trees and
neural networks) should be used so that sufficiently different decision boundaries can be obtained for small
perturbations in different bootstrap samples. Stable algorithms (e.g. k-nearest neighbors and Linear
Discriminant Analysis) cannot get significant benefit or even may slightly degrade the performance,
because stable learning methods have low variance to begin with, and bagging may not help much.

5.1.2 Random forests

Like the literal meaning, a random forest [70] is a “forest”, which aggregates unpruned classification
or regression trees. The trees are induced from bootstrap samples of the training data by using random
feature selection in the tree induction process. The final prediction is made by aggregating (majority
vote for classification or averaging for regression) the predictions of the ensemble. Algorithm 2 shows
the procedure.

Algorithm 2 Random forests for Regression or Classification

Input: training set S, integer M (number of bootstrap samples)

1. For b = 1 to M :

(a) Draw a bootstrap sample B∗ of size N from the training data.

(b) Grow a random-forest tree Tb to fit the bootstrapped data, by recursively repeating the
following steps for each terminal node of the tree, until the minimum node size nmin is
reached.

i. Select m variables at random from the p variables.

ii. Pick the best variable/split-point among the m.

iii. Split the node into daughter nodes.

2. Output the ensemble of trees {Tb}M1 .

To make a prediction at a new point x:

Regression: f̃Mrf (x) = 1
M

∑M
b=1 Tb(x)

Classification: Let C̃b(x) be the class prediction of the bth random-forest tree. Then C̃Mrf (x) =

majority vote{C̃b(x)}M1

As we discussed in the previous subsection, the idea in bagging is to aggregate many noisy but ap-
proximately unbiased models, and hence reduce the variance [70]. Trees are ideal candidates for bagging.
The idea in random forests is to improve the variance reduction of bagging by reducing the correlation
between the trees, without increasing the bias too much. This is achieved in the tree-growing process
through random selection of the input variables.

During the phase of training, an estimation of the error rate can be obtained: at each bootstrap
iteration, some data not in the bootstrap sample are called “out-of-bag”, or OOB. Each data instance
would be out-of-bag around 36% of the time. First, predict each OOB by the corresponding tree. Then
aggregate the OOB predictions and calculate the error rate. Liaw and Wiener [75] indicated that the
OOB estimate of the error rate is quite accurate, so it can be usually used to tune parameters of random
forests.

The number of trees N and the number of randomly selected features mtry are the two most important
factors to tune. The number of trees necessary for good performance normally grows with the number
of available features. Experiments can decide how many trees are necessary. We can stop building trees,
when the AUC value does not increase anymore, or in another way, the subsets of the forest works as
well as the full forest. For selecting the number of features mtry, the default value is p/3 for regression
problems or

√
p for classification problems, where p is the number of features. Breiman recommends

trying the default value, half of the default, and twice the default, and pick the best. However, Liaw
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and Wiener pointed out in [75] that the way of searching the best mtry recommended by Breiman is
not always the best. Even mtry = 1 can give very good performance for some data, and if one has a
very large number of variables but expects only very few to be “important”, using larger mtry may give
better performance. So, in our case we will test and select the best mtry.

In summary, random forests are a substantial modification of bagging that build a large collection of
de-correlated trees, and then average them. A random forest is an accurate predictor, relatively robust
to outliers and noise, faster than bagging and boosting, simply parallelized and it is easy to tune the
parameters. Apart from these, random forests can estimate variable importance, which will be touched
again in chapter 5.

5.1.3 Boosting

Boosting is a general method which attempts to “boost” the accuracy of any given learning algorithm.
It is motivated by the question from Kearns and Valiant [76]:“Can a set of weak learners create a
powerful committee?” A weak learner is regarded as a classifier which performs just slightly better than
random guessing. In contrast, a powerful committee is a classifier that is well-correlated with the true
classification. One of the earliest boosting algorithms is the hypothesis boosting mechanism proposed
by Schapire in [72], but it was not adaptive and could not take full advantage of the weak learners.
In 1996, Schapire presented AdaBoost in [77]. It can adapt to weak learners, and more important it
was a breakthrough which showed that a strong learner can be produced in polynomial time. After
that, various boosting algorithms were proposed. In our thesis, we mainly concentrate on the AdaBoost
algorithm, sometimes called AdaBoost.M1.

Like Bagging, the AdaBoost algorithm generates a set of classifiers and lets them vote. Beyond
this, the two algorithms differ substantially. AdaBoost, shown in algorithm 3, generates the classifiers
sequentially, while Bagging can generate them in parallel. AdaBoost also changes the weights of the
training instances provided as input to each inducer based on classifiers that were previously built. The
goal is to force the inducer to minimize the expected error over different input distributions. Given an
integer M specifying the number of trials, M weighted training sets S1, S2, · · · , SM are generated in
sequence and T classifiers C1, C2, · · · , CM are built. A final classifier C∗ is formed using a weighted
voting scheme: the weight of each classifier depends on its performance on the training set used to build
it.

Algorithm 3 AdaBoost. M1.

Input: training set S of size N , Inducer I, integer M (number of trials)

1. Initialize the observation weights wi = 1/N , i = 1, 2, · · · , N .

2. For m = 1 to M

(a) Fit a classifier Gm(x) to the training data using weights wi.

(b) Compute

errm =

∑N
i=1 wiI(yi 6= Gm(xi))∑N

i=1 wi

(c) Compute αm = log((1− errm)/errm).

(d) Set wi ← wi · exp[αm · I(yi 6= Gm(xi))], i = 1, 2, · · · , N .

(e) Normalize wi, i = 1, 2, · · · , N .

3. C∗(x) = sign[
∑M
m=1 αmGm(x)]

Output: classifier C∗

Freund [73] proved that the ensemble (training) error E is bounded from above

E < 2M
M∏
m=1

√
errm(1− errm).
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Since the errm of a weak learner is strictly less than 0.5, the ensemble error E monotonically decreases
as new classifiers are added.

Once the training is complete, test data are classified by this ensemble of T classifiers using weighted
majority voting, where each classifier receives a voting weight that is inversely proportional to its nor-
malized error. The weighted majority voting then chooses the class receiving the highest total vote from
all classifiers.

5.1.4 Experiments and discussion

After introducing these ensemble methods, we set up two groups of experiments:

� comparing the basic classifiers and bagging of basic classifiers;

� comparing performance of ensemble methods.

Table 5.2 assembles all testing results. Similar to the previous chapter, useful information is extracted
to form some new tables or figures.

Bagging with basic classifiers 50 bootstrap samples bagging is tested here. Figure 5.1 plots the bar
charts of the AUC of basic classifiers and bagging. It illustrates that all results of bagging (right bars)
exceed the performance of the basic classifiers (left bars). If we use a student t-test here to compare the
difference of AUC with and without bagging, the p-values are 0.4592 for case-based reasoning, 0.10368
for Naive Bayes, 0 for the Decision tree and 0.31978 for logistic regression. Although bagging helps all
four basic classifiers, applying it to the Decision tree gives the most significant difference. The results fit
the theoretical analysis in subsection 5.1.1 that the Decision tree, which is a kind of unstable classifier,
can get more benefit from bagging.

Figure 5.1: Bar charts of the AUC value with and without bagging.

Comparing ensemble methods We configure random forests and AdaBoost as following:

� Random forests: 50 trees are adopted and mtry is set to the defaulted value
√
p = 10.

� AdaBoost: 50 boosting iterations. Decision stump, also called 1-rules [78], is used in conjunction
with AdaBoost. It is a one level decision tree, which gives a classification based on only a single
input feature, independent of being a nominal feature or numeric feature. Weights of instances are
updated by each AdaBoost iteration (wi in algorithm 3) and can be input into the decision stump
easily to make the best split for the next AdaBoost iterations.
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By observing the singular metric (TP rate, precision, TN rate, etc.) results in table 5.2, both random
forests and AdaBoost are highly biased to the majority class, in particular for AdaBoost, since all new
arrear customers are classified as delayers when we use 0.5 as the cutoff threshold to distinguish defaulters
and delayers. It thus proves again that just taking singular metrics into account is not a comprehensive
way to measure the performance. On the other hand, random forests, AdaBoost and bagging with
decision tree generate the highest AUC so far, which throw off the basic classifiers remarkably.

Until now, we have introduced ensemble methods and experimentally studied their usage in this
problem. Compared with the original classifiers, the ensemble methods show great power to lift the
performance. However, it is noted that undersampling with logistic regression is even better than bagging
with logistic regression. So, we will combine sampling techniques with ensemble methods in the next
section, and try to obtain benefits from both techniques.

5.2 Ensemble method application in imbalanced learning

In recent years, ensembles of classifiers have arisen as a possible solution to the class imbalance problem
attracting great interest among researchers. Galar et al. reviewed the existing works in [79], and
categorize them into four different families as shown in figure 5.2. In this section, we will focus on
some methods which will be employed in our thesis, i.e., symmetric bagging, balanced random forests,
EasyEnsemble and balanceCascade.

Figure 5.2: Proposed taxonomy for ensembles to address the class imbalance problem [79].

5.2.1 Symmetric bagging

Although the testing result in subsection 5.1.4 has already shown that bagging trees outperforms a single
decision tree, Bagging is still unavoidably awkward when combined with imbalanced data: during the
bootstrap step, there is a significant probability that a bootstrap sample contains even fewer instances
of the minority class. A symmetric bagging strategy, as shown in algorithm 4, was proposed by Hido
et al. in [80] to overcome it. On the one hand, undersampling is an efficient strategy to deal with class
imbalance as shown in the previous chapter. On the other hand, multiple bootstrap steps can suppress
the drawback brought by undersampling that throws away a lot of potentially useful data.

5.2.2 Balanced random forests

Random forests are a fancier version of bagging decision trees. A decision tree is constructed to minimize
the overall error rate. When combined with imbalanced data, it will tend to bias the majority class,
which often results in poor accuracy for the minority class. In addition, as mentioned in the previous
subsection, fewer instance of the minority class in a bootstrap sample also disturbs the performance.
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Algorithm 4 Symmetric Bagging

Input: training set S, Inducer I, integer M (number of bootstrap samples)
for i = 1 to M do

Draw a bootstrap sample from the minority class.
Randomly draw the same number of cases with replacement from the majority class.
S′ = bootstrap sample from S (i.i.d. sample with replacement)
Ci = I(S′)

end for
C∗(x) = arg maxy∈Y

∑
i:Ci(x)=y

1 (the most often predicted label y)
Output: classifier C∗

Chen et al. proposed a solution called balanced random forests (BRF) in [81] as shown in algorithm
5. Unlike random forests, balanced downsampled data are used to build trees. It is easy to see that
balanced random forests is computationally more efficient with very imbalanced data, since each tree
only uses a small portion of the training set to grow.

Algorithm 5 Balanced Random Forests

1. For b = 1 to M :

(a) Draw a bootstrap sample from the minority class.

(b) Randomly draw the same number of cases with replacement from the majority class.

(c) Grow a random-forest tree Tb using the bootstrapped data, by recursively repeating the
following steps for each terminal node of the tree, until the minimum node size nmin is
reached.

i. Select m variables at random from the p variables.

ii. Pick the best variable/split-point among the m.

iii. Split the node into daughter nodes.

2. Output the ensemble of trees {Tb}M1 .

5.2.3 EasyEnsemble

As aforementioned, bagging mainly reduces the variance, while boosting mainly reduces the bias. Bor-
rowing this idea, Liu et al. proposed EasyEnsemble in [61]. Algorithm 6 shows how EasyEnsemble
works. It generates T balanced subproblems by bootstrapping and undersampling. The output of the
ith subproblem is AdaBoost classifier Hi, an ensemble with si weak classifiers {hi,j}. EasyEnsemble uses
Bagging as the main ensemble learning method, but in spite of training a classifier for each new bag,
they train each classifier using AdaBoost. Hence, the final classifier is an ensemble of ensembles and can
reduce the bias and variance simultaneously. The same as other bagging based classifiers, EasyEnsemble
can be trained in parallel.

5.2.4 BalanceCascade

EasyEnsemble is an unsupervised strategy to explore the dataset since it uses independent random
sampling with replacement. BalanceCascade, another algorithm proposed in [61], explores the dataset
in a supervised manner. The idea is as follows. After H1 is trained, if an example x1 ∈ N is correctly
classified to be in the majority class by H1, it is reasonable to conjecture that x1 is somewhat redundant
in N , given that we already have H1. Thus, we can remove some correctly classified majority class
examples from N . As in EasyEnsemble, AdaBoost is employed in this method. The pseudocode of
BalanceCascade is shown in Algorithm 7.
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Algorithm 6 EasyEnsemble.

Input: A set of minority class examples P , a set of majority class examples N , |P | < |N |, the number
of subsets M to sample from N , and si, the number of iterations to train an AdaBoost ensemble Hi.

1. For i = 1 to M

(a) Randomly sample a subset Ni from N , |Ni| = |P |.
(b) Learn Hi using P and Ni. Hi is an AdaBoost ensemble with si weak classifiers hi,j and

corresponding weights αi,j . The ensemble’s threshold is θi, i.e.,

Hi(x) = sgn

 si∑
j=1

αi,jhi,j(x)− θi


2. C∗(x) = sgn

(∑M
i=1

∑si
j=1 αi,jhi,j(x)−

∑M
i=1 θi

)
Output: classifier C∗

Algorithm 7 BalanceCascade.

Input: A set of minority class examples P , a set of majority class examples N , |P | < |N |, the number
of subsets M to sample from N , and si, the number of iterations to train an AdaBoost ensemble Hi.

1. f = M−1
√
|P |/|N |, f is the false positive rate (the error rate of misclassifying a majority class

example) that Hi should achieve.

2. For i = 1 to M

(a) Randomly sample a subset Ni from N , |Ni| = |P |.
(b) Learn Hi using P and Ni. Hi is an AdaBoost ensemble with si weak classifiers hi,j and

corresponding weights αi,j . The ensemble’s threshold is θi, i.e.,

Hi(x) = sgn

 si∑
j=1

αi,jhi,j(x)− θi


(c) Adjust θi, such that Hi’s false positive rate is f .

(d) Remove from N all examples that are correctly classified by Hi.

3. C∗(x) = sgn
(∑M

i=1

∑si
j=1 αi,jhi,j(x)−

∑M
i=1 θi

)
Output: classifier C∗
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5.2.5 Experiments and discussion

In this subsection, we will first compare and discuss the impact of sampling techniques on ensemble
methods and the performance of symmetric bagging, balanced random forests, EasyEnsemble and Bal-
anceCascade and find the best approach so far. All results are summarized in table 5.3. We will extract
some data and form new tables and figures in order to discuss conveniently. The methods used in this
subsection are configured as below:

� Symmetric bagging: 50 bootstrap samples, 1:1 sampling and 1:5 sampling;

� Balanced random forests: 50 trees are adopted and the number of features (mtry) is set to the
default value

√
p = 10; 1:1 bootstrap sampling;

� EasyEnsemble: 50 bootstrap samples for bagging, AdaBoost uses 20 boosting iterations, decision
stump as weak classifier;

� BalanceCascade: the same configuration as EasyEnsemble.

Ensemble methods with sampling techniques We compare the impact of sampling techniques
on ensemble methods experimentally. Bagging with decision trees, bagging with logistic regression and
random forests are tested with three kinds of sampling ratios, 1:9 (original), 1:5 (around half undersam-
pling delayers) and 1:1 (balanced sampling). Figure 5.3 illustrates the different AUC values and all three
groups of results show the same trend that balanced sampling does help the classification. The original
distribution (the left most bars) obtains the lowest AUC value, 1:5 ratio (the bars in the middle) lifts the
AUC value, and 1:1 symmetric sampling (the rightmost bars) gives the highest AUC scores. Our testing
results are consistent with former studies of symmetric bagging [80] and balanced random forests [81].

Figure 5.3: Bar chart of AUC values with different sampling ratios. Bagging+DT, bagging+LR and RF
are short for bagging with decision tree, bagging with logistic regression and random forests, respectively.

Balanced ensemble methods Symmetric bagging, balanced random forests, EasyEnsemble and Bal-
anceCascade are compared in this experiment. Figure 5.4a plots the bar charts of AUC values. The
performance of all four classifiers are close to each other. Although symmetric bagging performs a bit
better than the other three methods, the student t-test does not show significant differences between them
(p-value between symmetric bagging and balanced random forests is 0.6415354). Figure 5.4b illustrates
the ROC curves. The curves of four balanced ensemble methods are very close and even overlapping
with each other. The curve of symmetric bagging is slightly more to the most left upper point than other
curves on some parts of the curve (like in the left corner), but it cannot dominate the whole ROC graph.
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We also paste the result of logistic regression with undersampling in the figures as baseline. Appar-
ently its performance is exceeded by all four balanced ensemble methods.

(a) Bar chart of AUC values.
(b) ROC curves. The bars attached on the curves are standard
deviation bars.

Figure 5.4: Testing results of symmetric bagging, balanced random forests, EasyEnsemble and Balace-
Cascade. SymBagging, BRF and LR are abbreviations of symmetric bagging, balanced random forests
and logistic regression.

In summary, these experiments tell us two things: balancing the number of defaulters and delayers
conjuncted with ensemble methods does help the classification; balanced random forests, BalanceCascade
and symmetric bagging achieve the best performance so far.

Since we have already tested various classifiers, why not integrate their advantage and obtain a better
classifier? The next section will discuss combining different classifiers.

5.3 Combining multiple learners

Learning a classifier is an ill-posed problem because the data employed as training set is always a finite
sample of real circumstances. Each algorithm must come with a set of assumptions, i.e., the data
distribution, noise model, parameters, etc. One assumption may be suitable for one situation, while
failing under different situations. For example, the performance of a learner may be fine-tuned to get the
highest possible accuracy on a validation set, but the model after fine-tuning still performs not accurate
enough when it encounters new coming testing data. The idea is that there may be another base-learner
that is accurate on these. By suitably combining multiple base learners, the accuracy can be improved.
This section will introduce the two most popular and basic combining strategies, voting and stacking,
and we use them to construct a better classifier.

5.3.1 Voting

Voting is the simplest way to combine multiple classifiers. For classification problems, majority voting
gives the final classification result; for regression problems, voting corresponds to a linear combination
of the learners (see figure 5.5a):

yi =
∑
j

wjdji,where wj ≥ 0,
∑
j

wj = 1

In the simplest case, all learners are given equal weight. We will use the average class probability on the
experiment. Actually, voting is a special algebraic combiner. There are also some other combiners such
as maximum rule, minimum rule, median rule, product rule. As we have already seen in the introduction
of bagging, voting can reduce the variance of different base classifier.
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5.3.2 Stacking

As shown in figure 5.5b, stacking is concerned with combining multiple classifiers generated by using
different learning algorithms L1, · · · , LN on a single dataset S. In the first phase, a set of base-level
classifiers d1, d2, · · · , dN is generated, where di = Li(S). The outputs of the base-learners dj define
a new L dimensional space. In the second phase, a meta-level classifier is learned from the new L
dimensional data.

In stacking, there is no restriction on the combiner function and unlike voting, f(·) can be any
arbitrary combiner method, such as regression splines or an ensemble method. But in practice, a logistic
regression model is often used as the combiner.

(a) Voting (b) Stacking

Figure 5.5: Combining multiple classifiers [82].

5.3.3 Experiments and discussion

We use the equal weight average in voting, and logistic regression as the meta classifier in stacking.
10-fold cross validation is employed. The best classifiers we got so far are assembled in the experiments.
These “basic” classifiers are:

� Symmetric bagging: 50 bootstrap samples and 1:1 sampling

� Balanced random forests: 50 trees are adopted and the number of features (mtry) uses the default
value

√
p = 10; 1:1 bootstrap sampling;

� EasyEnsemble: bagging with 50 bootstrap samples and AdaBoost with 20 boosting iterations;
decision stump is used as weak classifier in AdaBoost;

� BalanceCascade: the same configuration as EasyEnsemble.

Table 5.4 records the testing result. In order to observe easily, we put AUC values of voting, stacking
and “basic” classifiers together in table 5.1. Although voting and stacking is slightly better than the
four “basic” methods, it is not significantly better, e.g., p-value is 0.5911 between stacking and balanced
random forests.

Methods SymmBagging BRF EE BC Voting Stacking
AUC 0.7895 0.7843 0.7813 0.7852 0.7898 0.7916

Table 5.1: AUC values of “basic” classifiers, voting and stacking.
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5.4 Summary

In this chapter, we first introduced ensemble methods and compared them with basic classifiers, then
we comparatively studied the impact of ensemble methods with sampling techniques on the imbalanced
learning. We can summarize that:

� Although bagging is one of the most intuitive and simplest ensemble methods, it has a surprisingly
good performance. Bagging is a relatively easy way to improve an existing method.

� Bagging, random forests and AdaBoost outperform the basic classifiers, but they are still biased
to the majority class.

� Sampling methods help improving the performance of ensemble methods. The more balance be-
tween the majority class and minority class, the better the performance is.

� Symmetric bagging with decision trees, BalanceEnsemble and balanced random forests give the
best results so far.

� Although the average values of the cross validation results of stacking and voting are slightly better
than the results of the balanced ensemble methods, they do not perform significantly better.
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Methods Recall Precision FN rate F-measure G-means AUC

CBR 0.0576 ± 0.110 0.3884 ± 0.066 0.9962 ± 0.012 0.1005 ± 0.031 0.2377 ± 0.051 0.6989 ± 0.018
Bagging + CBR 0.0342 ± 0.083 0.4000 ± 0.058 0.9965 ± 0.011 0.1145 ± 0.035 0.1850 ± 0.024 0.7017 ± 0.083
NB 0.2092 ± 0.029 0.3964 ± 0.002 0.9671 ± 0.038 0.3966 ± 0.004 0.4498 ± 0.030 0.6540 ± 0.012
Bagging + NB 0.1931 ± 0.016 0.4012 ± 0.005 0.9683 ± 0.018 0.3974 ± 0.031 0.4324 ± 0.022 0.6664 ± 0.026
DT 0.1141 ± 0.017 0.4181 ± 0.062 0.9830 ± 0.004 0.1785 ± 0.024 0.3340 ± 0.025 0.6574 ± 0.018
Bagging + DT 0.0885 ± 0.008 0.5438 ± 0.053 0.9920 ± 0.002 0.1519 ± 0.011 0.2961 ± 0.013 0.7754 ± 0.012
LR 0.0509 ± 0.007 0.4584 ± 0.076 0.9935 ± 0.002 0.0915 ± 0.012 0.2245 ± 0.015 0.7412 ± 0.017
Bagging + LR 0.0536 ± 0.023 0.4506 ± 0.010 0.9935 ± 0.024 0.4515 ± 0.028 0.2308 ± 0.008 0.7442 ± 0.011
Random Forests 0.0560 ± 0.013 0.5126 ± 0.097 0.9942 ± 0.002 0.1006 ± 0.022 0.1684 ± 0.029 0.7763 ± 0.016
AdaBoost + DecisonStump 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.7747 ± 0.013

Table 5.2: Testing results of basic classifiers with and without Bagging (50 bootstrap samples), Random Forests (50 trees) and AdaBoost(50 iterations
with decision stump). The recall, precision, TN rate, F-measure and G-means are achieved when the cut-off threshold is 0.5, which is the default threshold
of these classification methods. As discussed in the previous chapters, these classifiers are biased to the majority classes seriously, especially the AdaBoost
algorithm, for which all the customers are classified as delayers!
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Methods Recall Precision TN rate F-measure G-means AUC

Bagging + DT 0.0885 ± 0.008 0.5438 ± 0.053 0.9920 ± 0.002 0.1519 ± 0.011 0.2961 ± 0.013 0.7754 ± 0.012
Bagging (1:5) + DT 0.2509 ± 0.033 0.4587 ± 0.016 0.9691 ± 0.005 0.3236 ± 0.041 0.4931 ± 0.021 0.7813 ± 0.028
Symmetric Bagging (1:1) + DT 0.6348 ± 0.029 0.2589 ± 0.009 0.8093 ± 0.007 0.3677 ± 0.013 0.7166 ± 0.016 0.7895 ± 0.024
Bagging + LR 0.0536 ± 0.023 0.4506 ± 0.010 0.9935 ± 0.024 0.4515 ± 0.028 0.2308 ± 0.008 0.7442 ± 0.011
Bagging (1:5) + LR 0.1303 ± 0.009 0.4154 ± 0.008 0.9815 ± 0.016 0.1982 ± 0.037 0.3574 ± 0.057 0.7500 ± 0.016
Symmetric LR (1:1) + LR 0.6054 ± 0.017 0.2283 ± 0.022 0.7859 ± 0.16 0.3325 ± 0.009 0.6891 ± 0.027 0.7581 ± 0.020
Random Forests 0.0560 ± 0.013 0.5126 ± 0.097 0.9942 ± 0.002 0.1006 ± 0.022 0.1684 ± 0.029 0.7763 ± 0.016
Random Forests (1:5) 0.1609 ± 0.021 0.4659 ± 0.063 0.9805 ± 0.003 0.2387 ± 0.029 0.2734 ± 0.033 0.7801 ± 0.010
Balance random forests 0.5563 ± 0.022 0.2985 ± 0.016 0.8628 ± 0.007 0.3884 ± 0.016 0.4073 ± 0.016 0.7843 ± 0.009
EasyEnsemble 0.5836 ± 0.029 0.2796 ± 0.012 0.8422 ± 0.006 0.3780 ± 0.016 0.7009 ± 0.018 0.7813 ± 0.032
BalanceCascade 0.2710 ± 0.025 0.4385 ± 0.052 0.9632 ± 0.006 0.3330 ± 0.029 0.3442 ± 0.031 0.7852 ± 0.013

Table 5.3: Testing results of Symmetric bagging (50 bootstrap samples), balanced random forests (50 trees), EasyEnsemble (bagging with 50 bootstrap
samples, AdaBoost with 20 iterations), BalanceCascade (bagging with 50 bootstrap samples, AdaBoost with 20 iterations). The recall, precision, TN rate,
F-measure and G-means are achieved when the cut-off threshold is 0.5, which is the default threshold of these classification methods. The results show
that the balanced sampling techniques not only suppress the bias for delayers, but also increase the AUC values, which represent the holistic performance.

Methods Recall Precision TN rate F-measure G-means AUC

Voting 0.3258 ± 0.032 0.4302 ± 0.012 0.9556 ± 0.009 0.4303 ± 0.021 0.5572 ± 0.017 0.7898 ± 0.011
Stacking 0.4745 ± 0.014 0.3386 ± 0.037 0.9027 ± 0.032 0.3388 ± 0.010 0.6538 ± 0.036 0.7916 ± 0.038

Table 5.4: Testing results of voting and stacking. The basic classifiers are symmetric bagging, balance random forests, EasyEnsemble and BalanceCascade,
which configurations are the same as in table 5.3. Voting uses the average probability, and stacking uses logistic regression as meta classifier. The recall,
precision, TN rate, F-measure and G-means are achieved when the cut-off threshold is 0.5, which is the default threshold of these classification methods.
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Chapter 6

Knowledge discovery

6.1 Finding the best model

We have already tested and compared several approaches. The experiments in the previous chapter
conclude that balanced ensemble methods give the best results. For the sake of building a robust,
meaningful and fast model for the Arrears department in ING, we select balanced random forests (BRF).
The reasons are as following:

� BRF can handle thousands of variables efficiently. Normally, data preprocessing and feature se-
lection take considerable effort in the pipeline of the classification system, especially on high di-
mensional data. However, RF needs less data preprocessing (it can handle both discrete and
continuous data), is not sensitive to outliers, and does not need variable deletion [70]. Plus the
excellent performance, random forests is known as an “off-the-shelf” machine learning algorithm.

� BRF is a fast method. Our experiment environment is a server with four 2.67 GHz Intel CPUs, 16
GB RAM and Windows 2008 Server operating system. BRF is the fastest methods in all tested
balanced ensemble methods and figure 6.1 demonstrates it. There are three reasons which make
BRF fast:

– BRF undersamples the majority class in each bootstrap sample, which reduces the training
data size;

– Random forests only uses a part of the features (mtry) but not the full set when it constructs
each split node;

– Random forests does not need to prune trees.

– Random forests are extremely parallel because bootstrapping is easy to parallelize. In contrast,
it can be significantly harder to parallelize a boosting-based method.

� BRF does not need too many parameters to tune. The only parameters are the number of trees
(Ntrees) and the number of variables randomly sampled as candidates at each split (mtry)

6.1.1 Tuning parameters

In order to find the best mtry and Ntrees, we set dozens of runs to iterate mtry from 1 to 50 and Ntrees
from 50 to 2000. 10-fold cross validation is employed in each run. Table 6.9 lists the testing results with
mean and standard deviation. The bar graphs 6.2 are drawn from the data extracted from table 6.9 and
we can get the conclusions as below:

� There is no overfitting when more trees are added: the AUC value keeps increasing along with
adding more trees in figure 6.2a. Ntree = 2000 can always beat less trees. However, it is a remark-
able fact that the benefit from increasing Ntree becomes slower because the growth is gradually
flat with large Ntree.
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Figure 6.1: The comparison of the training time of classifiers. The bars use the left Y-axis and show the
approximate running time for one round of 10-fold cross validation. The line chart uses the right Y-axis
and lists the performance of each classifier. The single decision tree with undersampling (the leftmost
bar) is also pasted here as baseline. Clearly, in the four balanced ensemble methods which output similar
AUC values, balanced random forests costs the least time. DT+under, BRF, SymBagging, EE and
BC are abbreviation of decision tree with undersampling, balanced random forests, symmetric bagging,
EasyEnsemble and BalanceCascade, respectively. The results of voting and stacking are not included
here because their time consumptions are the sum of four basic classifiers and the performances are not
significantly better.

� The performance varies with the change of mtry. Basically, accompanied with increasing mtry, the
AUC value becomes higher. However, the performance drops when mtry reaches a certain value.
In figure 6.2b, the bar of mtry = 80 (the right most) is shorter than 70 (the second right most). It
is noteworthy that the default value of mtry, which is 10 in our case, does not work as well as the
larger mtry, and it implies that tuning random forests is an essential step.

6.1.2 Building the best model

According to the experiments we did, we choose balanced random forests with Ntree = 2000 and
mtry = 70 to build our final model. Unlike randomly dividing the training set and the testing set
in the cross validation as former experiments, it is more natural and reasonable to use all new customers
from one or more months as the testing set, and all other customers as the training set. The reason is
that the model always predicts new arrear customers from a new coming month when it is deployed in
the Arrears department. The latent factor of a new coming month may be different from old months,
like the economic situation, different consumption expectation (e.g., more consumption in holidays), etc.
So, this kind of experiment setting conforms the real application scenarios. However, it can be foreseen
that the testing result will be worse than the results in table 6.9, because the former testing samples
10-fold sets randomly so that some instances of the testing set and the training set are from the same
months, but now the testing set is strictly isolated from the training set.

The whole dataset spans from November 2011 to March 2013. We employ the first 12 months (Novem-
ber 2011 to October 2012) as training set, and the remaining 5 months to estimate the performance of the
model. Table 6.1 demonstrates the result and the average AUC is 0.78565. It confirms our guess that
the result is worse than the results of cross validation. It also shows that the results vary in different
months. The test sets of November and December 2012 have better results than the test sets of the
months in 2013. But the AUC values have no obvious linear relation with the percentage of defaulters
or the number of new arrear customers. One possible explanation is that the test set of 2012 is closer
to the training set, so that the latent factors are more similar. But another group of tests in table 6.2
disproves this. So, we can only conjecture that the difficulty of predicting varies in different months.
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(a) Bar chart of AUC values. The clusters of columns are when mtry equals 1, 5, 10, 50
and 70. Each cluster contains five columns from white to black which Ntree are 100, 200,
500, 1000 and 2000 respectively. The AUC values grow with the increasing of Ntree.

(b) Bar chart of AUC values. The clusters of columns are when Ntree equals 100, 200, 500,
1000 and 2000. Each cluster contains five columns from white to black when mtry is 5, 10,
50, 70 and 80 respectively. The AUC values increase while enlarging mtry. However, AUC
values start falling down after mtry is large than 70.

Figure 6.2: Tune mtry and Ntree of random forests.

Month Nov 2012 Dec 2012 Jan 2013 Feb 2013 Mar 2013
# New arrear customers
# Defaulters
# Delayers
percentage of defaulters
AUC

Table 6.1: The AUC values of different months. We use the data from
to train the model, and test the new arrear customers from .
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hhhhhhhhhhhhhhhTraining months
Test month

Nov 2012 Dec 2012 Jan 2013 Feb 2013 Mar 2013

Nov 2011 to Oct 2012 0.7959 0.8014 0.7796 0.7740 0.7774
Dec 2011 to Nov 2012 0.8004 0.7815 0.7601 0.7763
Jan 2012 to Dec 2012 0.7797 0.7754 0.7723
Feb 2012 to Jan 2013 0.7755 0.7733
Mar 2012 to Feb 2013 0.7728

Table 6.2: The AUC values of five tests. In each test, the training set contains 12-months of new arrear
customers. If our assumption is true that the result should be better if the training set is closer to the
test set, the AUC value of each column should increase. But this is not the case, so our assumption does
not hold.

6.2 Cost analysis

Both from the customer and bank perspective, the objective is to save as much on risk costs as possible.
In addition to this, the bank needs to balance these risk costs with operational costs, such as employing
customer service clerks and system capabilities. In this section, we first propose a cost matrix, then
analyse our project in two ways, i.e., making optimal decisions by Bayesian Decision Theory, and deciding
the best cut-off threshold to make minimal global costs.

6.2.1 Cost matrix

In our case, contacting new arrear customers after classification will import operational costs. As men-
tioned in chapter 1, only letter/Email/SMS will be sent to the new arrear customers who are predicted
as delayers, and more intensive contacting such as phone calls will be given to the new arrear customers
who are predicted as defaulters. All these treatments will cost ING human resources and overhead.

We also define the processing benefit as the risk cost reduction brought by the treatment. Since a
defaulter will repay the debt after the treatment with a certain probability, the interest loss, provision
(explained in figure 1.2b) and potential collection loss will be saved.

The operational cost matrix and processing benefit matrix are listed as in table 6.3a and 6.3b. The
final cost matrix, which is shown in table 6.3c, is the operational cost matrix subtracting the process-
ing benefit matrix. Appendix A will explain the interest loss, the provision, the potential
collection loss, and how we get the value of these losses.

Predict class
Defaulter Delayer

Actual
class

Defaulter
Delayer

(a) Operational cost matrix.

Predict class
Defaulter Delayer

Actual
class

Defaulter
Delayer

(b) Processing benefit matrix.

Predict class
Defaulter Delayer

Actual
class

Defaulter
Delayer

(c) Cost matrix.

Table 6.3: Operational cost matrix, processing benefit matrix and cost matrix. Units of the numbers in
the matrices are Euro. Appendix A will explain how we get these numbers.
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6.2.2 Minimum-error-rate classification

For the sake of expressing easier in the formula, let us denote r as defaulter and g as delayer (in the
process, defaulters are called “red” customers and delayers are “green”). Consequently, ωr represents
the actual label defaulter, and ωg is the actual label delayer. Given a new arrear customer x, the
probabilities of x being defaulter and delayer are P (ωr|x) and P (ωg|x), respectively. We denote α as
our action/decision, i.e., αr means we predict the new arrear customer as defaulter, and αg as delayer.
By definition we can also incur the cost λ(αi|ωj), where i, j ∈ {r, g}. Table 6.3c can also be rewritten as
table 6.4:

Predict class
Defaulter Delayer

Actual
class

Defaulter λ(αr|ωr) = λ(αg|ωr) =
Delayer λ(αr|ωg) = λ(αg|ωg) =

Table 6.4: Cost matrix.

The expected loss associated with taking action α is merely:

L(αr|x) = λ(αr|ωr)P (ωr|x) + λ(αr|ωg)P (ωg|x) (6.1)

L(αg|x) = λ(αg|ωr)P (ωr|x) + λ(αg|ωg)P (ωg|x) (6.2)

In this two-class case, the optimal prediction is a defaulter if and only if the expected loss L(αr|x) is
less or equal to L(αg|x), i.e., if and only if

λ(αr|ωr)P (ωr|x) + λ(αr|ωg)P (ωg|x) ≤ λ(αg|ωr)P (ωr|x) + λ(αg|ωg)P (ωg|x)

which is equal to

(λ(αr|ωr)− λ(αg|ωr))P (ωr|x) ≤ (λ(αr|ωg)− λ(αg|ωg))P (ωg|x)

P (ωr|x)

P (ωg|x)
≤ λ(αg|ωg)− λ(αr|ωg)
λ(αr|ωr)− λ(αg|ωr)

If this inequality is in fact an equality, then predicting either class is optimal. Since it is a two-
category classification, P (ωg|x) = 1−P (ωr|x). The threshold for making the optimal decision is p∗ such
that:

p∗

1− p∗
=
λ(αg|ωg)− λ(αr|ωg)
λ(αr|ωr)− λ(αg|ωr)

Rearranging the equation for p∗ leads to the solution

p∗ =
λ(αg|ωg)− λ(αr|ωg)

λ(αr|ωr)− λ(αg|ωr) + λ(αg|ωg)− λ(αr|ωg)
(6.3)

By using the real costs in table 6.3c, we get p∗ = = 0.0273. For classifiers which
generate real probabilities like Naive Bayes, we employ the cost matrix analysis and get the new results
in table 6.5. The classification result is biased to defaulters. It is noted that the AUC value is the same
because optimal decisions only change the threshold of the classification.

Methods Recall Precision FN rate F-measure G-means AUC

NB 0.2092 0.3964 0.9671 0.3966 0.4498 0.6540
Cost + NB 0.7321 0.1659 0.6124 0.1651 0.6696 0.6540

Table 6.5: The result of Naive Bayes without and with cost matrix [−353, 3; 13, 3]. The decision threshold
which classifies defaults and delayers is 0.5 without cost matrix and 0.0273 with cost matrix.
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6.2.3 Optimize the total cost

Most classifiers do not output real probabilities but pseudo-probabilities or ranking scores. It is not
suitable to use Bayesian decision theory anymore for them. Alternatively, we can calculate the minimal
global cost to determine the best cut-off threshold.

As mentioned in chapter 3 in curve metrics, different confusion matrices will be generated by a given
different cut-off threshold. Let us denote the threshold as θ, and TP (θ), FP (θ), TN(θ) and FN(θ) as
the four elements in the confusion matrix. Since the elements in the cost matrix represent the average
unit cost per customer, we can dot multiply the cost matrix and confusion matrix, and sum up the four
elements as total cost.

Predict class
Defaulter Delayer

Actual
class

Defaulter · TP (θ) · FN(θ)
Delayer · FP (θ) · TN(θ)

Table 6.6: Total cost by given a threshold θ. Ctotal(θ) = ·TP (θ)+ ·FP (θ)+ FN(θ)+ ·TN(θ).

By using the same way of plotting a ROC curve, different costs can be calculated by traversing
each threshold and plotting the result on a cost curve. Then, the minimal cost can be spotted and
the corresponding threshold is just the optimal threshold. We will gives an example. In our test set,
there are new arrear customers, which contain defaulters and delayers. Balanced
random forests with 2,000 trees and default mtry gives the confusion matrix with a threshold θ = 0.5
in table 6.7a, where the total cost is .
Table 6.7b gives the confusion matrix with a threshold θ = 0.178 where the total cost is minimal, i.e.,

. The confusion matrix with the minimal
cost is more biased to the defaulters since the benefit brought by correctly classifying a defaulter is much
higher than the cost brought by misclassifying a delayer.

Predict class
Defaulter Delayer

Actual
class

Defaulter
Delayer

(a) Confusion matrix with threshold 0.5. Total cost
is .

Predict class
Defaulter Delayer

Actual
class

Defaulter
Delayer

(b) Confusion matrix with minimal cost. Thresh-
old is 0.178. Total cost is .

Table 6.7: Confusion matrices.

The cost curve plotted in figure 6.3 can inspire our deeper understanding. The threshold 0.178 gives
us the minimal cost as the green point in the left figure, but the corresponding positive rate is around
0.80 as the green point in the right figure. In other word, 80% of the new arrear customers are classified
as defaulters. Although the total cost is smallest, is it a smart decision at the moment? Obviously not,
because the Arrears department does not have enough capacity of case managers to handle (call) 80%
of the new arrear customers1. It is noted that the cost curve in figure 6.3b is monotonically decreasing
before the lowest cost point (the green point), so in the real deployment of the model the best threshold
corresponds to the maximum capacity of case managers. The positive rate of our balanced random forests
model is around 25% to 30%, which is fitting the current contacting ability of the Arrears department.

6.3 Random forests feature importance analysis

As mentioned in subsection 2.3, an embedded method is the third way to select features apart from
the filter and wrapper approaches. Some popular embedded methods are random forests/decision trees
feature importance, weight vector of SVM, neural networks coefficients [83]. Since we have already

1However, it must be noted here that the capacity constraint is just at the moment. This does provide valuable insight
for the future when decisions need to be made about capacity.
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(a) (b)

Figure 6.3: Cost curve plotting. (a) X-axis is the cut-off threshold. Y-axis is the total cost. The green
point on which the cut-off threshold is 0.178 corresponds the minimal cost; the red point represents
the default cut-off threshold 0.5 of balanced random forests, which gives more cost. (b) X-axis is the
percentage of predicted defaulters of all new arrear customers. Y-axis is the total cost. The green point
gives the minimal cost (corresponds to the green point in the left figure), where our model classifies
80% customers as defaulters. Although the default cut-off threshold (the red point) gives more cost,
the percentage of predicted defaulters (25%) matches the current capacity of the case managers of the
Arrears department.

determined balanced random forests as our model, it is natural to employ built-in functionalities of
random forests to analyse the data further.

The calculation of the feature importance accompanies with the procedure of building the forests as
shown in algorithm 8. We run balanced random forests again with Ntrees = 2000 and mtry = 70, and
plot the top 30 features in figure 6.4. Some interesting points can be summarized:

�

.

�

�

terms are
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Figure 6.4: Dot chart of feature importance. The Y-axis shows the name of features. They are ordered
top-to-bottom as most-to-least important. The X-axis is the mean decrease in accuracy as determined
during the out of bag error calculation phase. The more the accuracy of the random forests decreases due
to the addition of a single variable, the more important the variable is deemed, and therefore variables
with a large mean decrease in accuracy are more important for classification of the data.

Algorithm 8 Feature importance of random forests

Input: training set S with P features, integer M (number of trees)
for i = 1 to M do

Construct the ith tree
The OOB (out-of-bag) samples are put down into the tree, and calculate the accuracy
for j = 1 to P do

Randomly permuted jth feature in OOB samples
Put down the “new” OOB samples again and calculate the accuracy
Record the reduction of accuracy

end for
end for
Output: Average of the reduction of accuracy over all M trees, used as a measure of importance of
features.

52



Test with top 30 features Another fact from figure 6.4 is that the feature importance decreases
dramatically from DLT , the third most important feature. Then, the importance keeps more and
more stable. We make a new experiment with just running a 10-fold cross validation with the top 30
features and with Ntree = 1000, mtry =

√
30 = 5(default value). The AUC value is 0.79681 ± 0.0110.

Not surprisingly, the result is better than when using Ntree = 1000 and mtry = 5 on all features
(0.78950 ± 0.0115, if we look up table 6.9). If we test with Ntree = 1000, mtry = 20, the result is
0.80106±0.0116, which is even better than the best result 0.80016±0.0130 but not significantly (p-value
is 0.56416). Some random forests packages such as Fortran code implemented by Breiman and Cutler3

utilize the result of feature importance when building the forest: “if the number of variables is very large,
forests can be run once with all the variables, then run again using only the most important features
from the first run”.

6.4 Individual variables analysis by logistic regression coeffi-
cients

We can also interpret logistic regression coefficients. Let us paste the regression equation here.

ln(
pi

1− pi
) = β0 + β1x1 + β2x2 + · · ·+ βnxn (6.4)

Dummy variables have already been explained in section 3.3. First, all numeric features are discretized
to nominal features by the Entropy Minimum Description Length principle. Then, nominal features are
binarized into dummy variables, e.g. x1 in equation 6.4 is converted to x11, x12, · · · , x1C in equation 6.5,
which are either 0 or 1.

ln(
pi

1− pi
) = β0 + β11x11 + β12x12 + · · ·+ β1C1

x1C1︸ ︷︷ ︸
β1x1

+ · · ·+ βn1xn1 + βn2xn2 + · · ·+ βnCn
xnCn︸ ︷︷ ︸

βnxn

(6.5)

ln( pi
1−pi ) is a monotonic increasing function, hence the sign and absolute value of coefficient β of dummy

variables decide how the dummy variable impacts on classification: if the coefficient is a positive number,
the corresponding dummy variable is prone to defaulters, and a negative coefficient to delayers; the
magnitude indicates the extent of tendentiousness.

Table 6.8 lists dummy variable coefficients of some features.

.

3http://www.stat.berkeley.edu/~breiman/RandomForests/cc_software.htm
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Features Cutoff region of dummy variable Coefficient

(−∞, 0.15] -0.6533
(0.15, 2.85] 0.3617
(2.85,∞) 0.6634

(−∞, 0.000409] -0.315
(0.000409, 0.000509] -0.2293
(0.000509, 0.002663] 0.0201
(0.002663, 0.023208] 0.2426

(0.023208,∞) 0.1543

(−∞, 61] 0.1069
(61, 3001] -0.0176
(3001,∞] -0.0509

(−∞, 16.8] 0.1586
(16.8, 1045] -0.0038
(1045, 3139] -0.1287
(3139,∞] -0.3313

(−∞,−825] 0.0087
(−825, 970] -0.0057

(970,∞] -0.1606

(−∞, 438] 0.1887
(438, 11538] -0.0989
(11538,∞] -0.5049

Table 6.8: Dummy variables and coefficient. The second column lists some numeric features; the third
column is the discrete region divided by cut-off points; the fourth column is the corresponding coefficient.

54



PPPPPPPPmtry

Ntree 50 100 200 300 400

1 0.75168 ± 0.0095 0.75877 ± 0.0132 0.75873 ± 0.0105 0.76222 ± 0.0108 0.76184 ± 0.0109
5 0.77410 ± 0.0098 0.78322 ± 0.0085 0.78542 ± 0.0097 0.78763 ± 0.0108 0.78861 ± 0.0102

10 (default) 0.78431 ± 0.0088 0.78557 ± 0.0078 0.79150 ± 0.0080 0.79212 ± 0.0077 0.79218 ± 0.0079
20 0.78626 ± 0.0132 0.79215 ± 0.0111 0.79635 ± 0.0112 0.79602 ± 0.0112 0.79700 ± 0.0108
30 0.78559 ± 0.0132 0.79329 ± 0.0098 0.79606 ± 0.0107 0.79714 ± 0.0133 0.79768 ± 0.0124
40 0.78946 ± 0.0108 0.79505 ± 0.0131 0.79717 ± 0.0118 0.79868 ± 0.0126 0.79828 ± 0.0130
50 0.79050 ± 0.0133 0.79536 ± 0.0145 0.79720 ± 0.0124 0.79766 ± 0.0133 0.79735 ± 0.0125
60 0.79042 ± 0.0119 0.79504 ± 0.0113 0.79778 ± 0.0123 0.79774 ± 0.0137 0.79844 ± 0.0120
70 0.78979 ± 0.0130 0.79587 ± 0.0145 0.79684 ± 0.0130 0.79790 ± 0.0129 0.79819 ± 0.0127
80 0.79028 ± 0.0144 0.79540 ± 0.0127 0.79702 ± 0.0124 0.798803 ± 0.0131 0.79892 ± 0.0127

PPPPPPPPmtry

Ntree 500 750 1000 1500 2000

1 0.76183 ± 0.0102 0.76225 ± 0.0114 0.76333 ± 0.0117 0.76340 ± 0.0110 0.76348 ± 0.0111
5 0.78966 ± 0.0114 0.79006 ± 0.0109 0.78950 ± 0.0115 0.78934 ± 0.0105 0.79058 ± 0.0101

10 (default) 0.79342 ± 0.0086 0.79339 ± 0.0114 0.79375 ± 0.0086 0.79435 ± 0.0114 0.79397 ± 0.0085
20 0.79584 ± 0.0127 0.79745 ± 0.0116 0.79822 ± 0.0129 0.79862 ± 0.0121 0.79773 ± 0.0122
30 0.79783 ± 0.0125 0.79881 ± 0.0124 0.79891 ± 0.0128 0.79866 ± 0.0127 0.79864 ± 0.0123
40 0.79892 ± 0.0125 0.79931 ± 0.0125 0.79967 ± 0.0126 0.79937 ± 0.0129 0.79942 ± 0.0126
50 0.79817 ± 0.0122 0.79921 ± 0.0130 0.79922 ± 0.0126 0.79929 ± 0.0128 0.79966 ± 0.0128
60 0.79970 ± 0.0131 0.79920 ± 0.0127 0.79960 ± 0.0130 0.79955 ± 0.0130 0.79990 ± 0.0131
70 0.79962 ± 0.0127 0.79924 ± 0.0136 0.79973 ± 0.0128 0.79977 ± 0.0128 0.80016 ± 0.0130
80 0.79875 ± 0.0134 0.79992 ± 0.0132 0.79959 ± 0.0127 0.79997 ± 0.0129 0.79980 ± 0.0125

Table 6.9: The AUC values of different numbers of trees (Ntrees) and numbers of variables randomly sampled as candidates at each split (mtry).
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Chapter 7

Conclusion and future work

7.1 Conclusion

Now, we can start answering the research questions in the first chapter:

1. Can we build a binary classification model to distinguish defaulters and delayers from new arrear
customers at the beginning of each month?

2. If the answer to question 1 is positive, can the model also have good interpretability so that some
rules, patterns or useful discovery can be used by the Arrears Department?

We chose balanced random forests as the classification model. The model gives an AUC value of around
0.7856 during testing. When the model was deployed in the daily work of the Arrears department of
ING, we know the real labels of predicted new arrear customers at the end of the month. The real labels
can be used as validation. The AUC value of May 2013 is 0.7714, which is promising and consistent with
the test result. Useful knowledge is also discovered, such as feature importance, cost matrix analysis and
logistic regression coefficient analysis. They can guide the daily work of the Arrears department and give
a deep insight to this problem.

The classification model just assigns the labels of “defaulters” or “delayers” to the new arrear cus-
tomers. In order to apply the power of classification, a new process must be formulated to treat new
arrear customers differentially. Figure 7.2 demonstrates it roughly. Comparing with the old process in
figure 7.1, we can see that the case managers get involved at the very beginning for the defaulters (red
customers), meanwhile the delayers (green customers) are treated automatically by Emails, letters and
SMS.

We started to test the model and new process in the Arrears department from

Since , the model and
new process were deployed officially.

Compared to the old process, the new process can push 19% ∼ 30% more defaulters out of arrears1.
Then, we can estimate the cost saving by deploying the model and new process: In 2013, the Arrears
department has around defaulters per month and our model can target more than 60% of the
defaulters, which means defaulters will be treated by case managers intensively; then is
multiplied by the recovery rate mentioned above, let us use 20% which is the lower bound in the range,
we can derive that defaulters go back healthy approximately. Appendix A shows that one defaulter
will bring interest loss, provision loss and potential loss. If we only account the one-term provision loss

1The way to compare the old and new process is like this: select two groups of defaulters with the same size. One group
of defaulters is treated by the old process, i.e., only letter and SMS, while another group is treated with a new treatment,
i.e., intensive phone call contact. At the end of the month, count and compare how many defaulters are out of arrears in
the two groups.
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conservatively, our model and new process will save ING per
month!

This project is one of the pioneer projects which import the power of classification into daily banking
operation. Inspired by the success of this project, ING firms the strategy to employ machine learning
and big data.

7.2 Future work

We outline future work for improving the proposed model:

Gradient Boosting Proposed by Friedman in [86], gradient boosting might be an interesting classifier
to our problem, or at least a good basic classifier in the ensemble by voting or stacking, because it usually
gets similar or even better results than random forests [87]. Gradient boosting builds the model in a
stage-wise fashion like other boosting methods do, and it generalizes them by allowing optimization of
an arbitrary differentiable loss function. The same as random forests, gradient boosting can be used to
carry out variable selection during the training process. In addition, partial dependence can be generated
as well to show the dependence between the target response and a set of “target” features, marginalizing
over the values of all other features (the “complement” features).

Ensemble Selection In section 5.3, we simply combined the best four learners by voting and stacking
and the result did not outperform basic classifiers significantly. It is a kind of trying our luck because just
picking up four best standalone classifiers cannot ensure that the ensemble of them improves remarkably.
Caruana proposed “ensemble selection from libraries of models” in [88], which should obtain a better
model. The basic idea is building a library of models with approximately hundreds or thousands of
models. All classifiers with all different parameters will be included in the library. Then a hillclimbing
searching strategy is employed to select and ensemble classifiers. Algorithm 9 shows the detail. Ensemble
selection has been highlighted in winning solutions of the Netflix prize [89] and the KDD Cup 2009 [90].

Algorithm 9 Ensemble Selection.

Input: Start with the empty ensemble and a library of models trained before.

1. Add to the ensemble the model in the library that maximizes the ensemble’s performance to the
error metric on a hillclimb (validation) set.

2. Repeat Step 2 for a fixed number of iterations or until all the models have been used.

Output: the ensemble from the nested set of ensembles that has maximum performance on the
hillclimb (validation) set.
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Appendix A

Cost matrix

We will revisit the cost matrices and explain them in this appendix. Let us have a look at the operational
cost matrix in table A.2a first.

Operational cost matrix Automatic treatments like Email/SMS/letter will be sent to all new cus-
tomers no matter defaulters or delayers. By merely calculating the cost per Email, SMS and letter, we
get per new arrear customer. Defaulters have extra treatments by phone calls. We calculate the cost
of phone calls as below:

1. Count the yearly salary costs of case managers and all overhead;

2. Divided by number of effective hours per year (total effective hours per day × working days per
month × number of months), we get the cost per effective hour.

3. Divided by the average number of phone calls per effective hour, we get the cost of a phone call
treatment per defaulters.

The calculation gives around per defaulter. In this way, we get the numbers in table A.2a.

Processing benefit matrix The risk cost mainly contains three parts:

� Interest loss: because customers do not pay monthly debt on time, ING will lose interest of the
debt. Suppose average monthly debt per new arrear customer is and interest rate is
per month [91], the interest loss is

� Potential collection loss: if a customer misses the payment longer than 6 months, his/her property
will be sold or auctioned by force. The price is lower than the normal real estate market, so it
brings ING the loss. The average loss by default is . Of course, only a small fraction of
new arrear customers will be in this phase.

� Provision: as in figure 1.2a, if a mortgage customer has arrears, a certain amount of potential loss
is frozen as provision. The potential loss is around per year. If the customer is found one
term debt delay, ING needs to freeze in the next month. Similarly,
two terms debt delay leads to and missing more than three terms leads to .

Here, we consider processing benefit as the risk cost saving after employing the new process, rather
than the absolute value of risk cost. Hence, table A.1 lists the decreasing risk cost. Some explanations
are following:

� Predicted delayer (first row): no matter who the new arrear customer is, he/she will get the loose
treatment (Email/SMS/letter), which is just the same as in the old process. So, no risk cost
changes.

� Predicted defaulter who is an actual delayer (second row): although the new arrear customer
receives intensive treatment, he/she is an actual delayer and will repay the debt before the end of
the month anyway. So, the risk cost does not change either.

� Predicted defaulter who is an actual defaulter (third row): this defaulter is correctly spotted and
treated. But we should notice that even a proper treatment cannot help defaulters sometimes. So,

61



we import four coefficients α, β1, β2 and θ. By analysing the experimental deployment result of
March, April and May 2013, α is around For example, if there are defaulters who are
treated by the old process and go back healthy, then defaulters can go back healthy with the
new process. β1 and β2 are still unknown. θ is around . Suppose β1 and β2 are both

is a conservative estimation.

Type of new arrear
customers

Interest loss Provision Potential collection loss In total

Predicted delayer

Predicted defaulter,
actual delayer
Predicted defaulter,
actual defaulter

Table A.1: Decreasing risk cost by employing new process. α is percentage extra customers to get healthy
with the new treatment; β1 and β2 are how many less percentages of defaulters miss two and three or
longer than three terms after the treatment; θ is how many less percentages of defaulters miss longer
than six terms after the treatment.

Predict class
Defaulter Delayer

Actual
class

Defaulter
Delayer

(a) Operational cost matrix.

Predict class
Defaulter Delayer

Actual
class

Defaulter
Delayer

(b) Processing benefit matrix.

Table A.2: Operational cost matrix and processing benefit matrix. Units of the numbers in the matrices
are Euro.
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[12] R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artificial intelligence, vol. 97,
no. 1, pp. 273–324, 1997.

[13] Y. Saeys, T. Abeel, and Y. Van de Peer, “Robust feature selection using ensemble feature selection
techniques,” in Machine Learning and Knowledge Discovery in Databases, pp. 313–325, Springer,
2008.

[14] Q. Shen, R. Diao, and P. Su, “Feature selection ensemble,” in Proceedings of the Alan Turing
centenary conference, 2012.

[15] B. Waad, B. M. Ghazi, and L. Mohamed, “Rank aggregation for filter feature selection in credit
scoring,” International Conference on Control, Engineering and Information Technology (CEIT 13),
vol. 1, pp. 64–68, 2013.
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