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Abstract

The most common method to achieve dimensionality reduction of data would
be to perform matrix decompositions, as is the case in Latent Semantic Analysis
(LSA) and Principal Component Analysis (PCA). However, dimensionality re-
duction can also be achieved by layered Restricted Boltzmann Machines (RBM),
called Deep Belief Networks (DBN). A primary application of LSA is informa-
tion retrieval (IR), in this context often referred to as Latent Semantic Indexing
(LSI). Dimensionality reduction in IR is used to interpret data on an abstract
level to represent the data as patterns in more informative, fewer dimensions.
Through these patterns meaning can be attributed to words and documents.

This research investigates whether or not neural networks can compete with
these traditional methods of dimensionality reduction in IR in the setting of a
small database. Experiments are conducted with a search engine constructed for
the purpose of comparison of the different algorithms. It compares vector space
search, LSI search, DBN search and different variations of DBN search. These
variations are based on so-called phantom document querying, where queries are
being replaced by the entire text body of the top search results of a different
search engine. For each search algorithm different parameter configurations are
being researched and their optimal implementations are compared with each
other.

The results show that the DBN shows slightly inferior results to the tradi-
tional methods in the application of deep learning in a relatively small database.
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Chapter 1

Introduction

1.1 Relevance

In the last decade a new area of artificial intelligence has become popular: deep
learning [24]. As opposed to ‘traditional’ or ‘shallow’ machine learning, deep
learning has a different approach to representing information. Instead of classi-
fying or clustering data based on the direct input, a deep learning algorithm will
process information toward an abstract level. So not only the direct data are im-
portant, but also the context of the data, and any latent cross-connections that
might be in the data. Deep learning algorithms represent the data as meaningful
patterns which might not be directly visible to the naked eye.

A popular quote circulating on social media these days: “A smart man knows
that a tomato is a fruit. A wise man knows not to put it in a fruit salad.”. This
captures the essence of deep learning in layman’s terms. In this metaphor, it is
easy for an algorithm to classify a tomato as fruit. It’s an entirely different thing
to deduce, based on knowledge of the world around us, that a tomato doesn’t
belong in a fruit salad.

Deep learning arguably is or could become an entirely new paradigm within
the field of artificial intelligence: one step closer to the way the human brain
processes the information from our natural sensors, which has proven to be
incredibly hard, if not impossible, to formalize. It is a very obvious consequence
then, that the big software corporations and leading AI-scientists take deep
learning very seriously. One of the most popular deep learning architectures is
the convolutional neural network [23]. However, this is a supervised learning
algorithm. So the data needs to be labelled or annotated. When an application
calls for unsupervised machine learning, deep belief networks (DBNs) [16] are a
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CHAPTER 1. INTRODUCTION

common type of deep learning algorithm.
Another subject that concerns this research is the field of information re-

trieval (IR) [27]. This is a field that focuses on retrieving the most relevant
information from an unordered database. This is becoming more and more rel-
evant in the recent years, where the internet is taking a leap in the amount of
information available to anyone who owns a computer and an internet connec-
tion. Big data is a term that’s buzzing around the large internet corporations
these days. Everything a user does on the web generates statistics: activity on
social media, search behavior on the web, purchases in web stores, etcetera.

As the amount of data available to users and companies grows and grows, it
becomes harder to find the right information. This is the reason search engines
become more and more important. Searching for novel methods to find the most
relevant search results in a database is therefore important. The innovation in
this area should keep up with the increase in size of the data.

1.2 Research Question

In this thesis the use of deep learning with DBNs in the context of IR will be
examined. IR is the branch of science that focuses on techniques to effectively
find relevant data in databases. There are many ways to process and index data
to make a search engine as effective as possible, among which even ways to make
abstractions of the data. This leads us to the following research question:

Can deep neural networks improve search engines, when compared
to the conventional methods in information retrieval?

The question will be answered based on experiments with software programmed
for this research.

1.3 Outline

This thesis has the following structure.

• First the necessary background information on IR and DBNs will be pro-
vided in Chapter 2

• Then the different types of search engines that will be compared will be
discussed in Chapter 3. Also the experimental setup will be discussed in
this chapter.
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• The results will be presented in Chapter 4

• The results will be discussed in Chapter 5

• Finally the conclusions and recommendations will be given in Chapter 6
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Chapter 2

Context and Background

2.1 Historical Context: the Origins of Informa-

tion Retrieval

To understand the significance of this research, it is vital to know the context
in which it takes place. For that reason this section contains a brief history of
Information Retrieval (IR). This section is mostly based on [34].

Over the years IR has become a mature field of science. The need to effi-
ciently retrieve and rank data has grown along with the need to find our way
through enormous masses of data that become more and more common nowa-
days. IR is the science of finding the desired information among documents or
entries in a database. It is based around a query given by the end-user, which
determines the subset of most relevant documents in the database. This subset
of documents is called the search result and can be ranked according to rele-
vance. The most common appliance of IR is one most people use on a daily basis:
searching the entire Internet with the well-known search engines of Google, Bing
or Yahoo!. However the full spectrum of applications is a lot broader than that.
Any system using a database of semi-structured data is subject to IR. Some
examples include video search (e.g. YouTube), web shops (e.g. amazon.com)
and social media (e.g. Twitter).

Computer-based search applications have been around since the 1940s. Ever
since computers started to appear there has been information to be searched
through. Most of these databases were small enough to manually set up. How-
ever, with the increase of processor and memory capacities, the libraries of
information grew, and search strategies became more and more advanced.
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CHAPTER 2. CONTEXT AND BACKGROUND

2.1.1 Development of Basic Information Retrieval Tech-
niques

From the 1950s important IR techniques surfaced: indexing and ranked retrieval.
This marked a huge step: from a predetermined hierarchy, often numerically
labeled, to a list of keywords for each document [45]. This made it clear in
a single glance if a document could possibly be relevant to a query or not.
Nowadays this seems like a basic and trivial step, but obviously it was a huge
improvement back then.

The next big step came quickly after: ranked retrieval. Instead of just re-
turning whether or not a document fits a query, return how good it fits that
particular query [26]. Some documents are more relevant to a certain query
than others. The first basal techniques assumed that the more a term appeared
in a document, the more relevant it would be to queries containing that term.
This technique later became known as term-frequency weighting.

The 1960s gave birth to a number of relevant techniques that we still use
today: vector-space models [43], relevance feedback [29] and document cluster-
ing. At this time search engines became interesting for bigger data, and thus for
companies. However, commercial enterprises conservatively held on to the old,
inferior techniques. Somehow current research on IR did not make it through
into commercial applications.

The 1970s brought another major innovation to the field of IR: tf-idf [40, 33].
This relevance measure does not only consider the occurrence of a term in the
document itself, but also considers how often it occurs in all the other documents.
This way, a document is ranked also based on the context it is in. So in this case
the terms in the query are also weighted: if that specific term appears in every
document in the database, it is not going to yield relevant results. Hence it is
unimportant. A term that is searched for and only appears in a few documents
is very important by this measure.

2.1.2 Novel Approaches to Information Retrieval

Throughout the 80s and 90s two other important techniques, or rather, trends,
appeared in the field of IR. The first one was to incorporate natural language
processing in IR. This means that instead of just looking at the text as if it
were an unordered set of words, these systems could consider things like the
syntactical structure of data and could consider semantical interpretations like
synonimity, lexical variation or named entities.
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The second technique from this time period also used semantic information
to organize the data: Latent Semantic Analysis (LSA) [11]. This method, con-
sisting of various mathematical operations from the field of linear algebra, would
reduce the bag-of-words interpretation to an abstract level, a semantic interpre-
tation. If this analysis is used in the context of search engines, it is called Latent
Semantic Indexing (LSI). This way search engines can utilize semantic knowl-
edge about a query in ranking the search results. This method is the primary
subject of this thesis.

Furthermore, during this period of time, information retrieval got a lot of
interest from commercial parties. Research on the subject increased, as did the
size of the unstructured data. During this period another idea dawned: there
is no such thing as the Holy Grail of information retrieval. Each dataset is
different in size, topics and lexical variety, so there will never be one ultimate
information retrieval system.

2.1.3 The Emergence of Web Search Engines

The Internet quickly emerged in the course of the 1990s. It grew tremendously
and thus the need for good information retrieval grew explosively. This devel-
opment marked the birth of web search. According to the historical summary of
[38] the actual first web search engine was called Archie, which searched through
file names on an FTP-server. The index had to be built manually.

This first automatic indexing system emerged around 1993: the World Wide
Web Wanderer from MIT. Its purpose was interestingly not to build a search
index, but to do something that would be a sheer impossibility these days:
measure the size of the Internet by indexing it all. This program is documented
poorly, the author reported the findings online1.

In 1994 a revolutionary search engine appears: AltaVista. In many ways
this is a unique search engine, most notably because it accepts queries in nat-
ural language. Quickly many new web search engines pop-up, Yahoo!, Lycos,
somewhat later Google, and more recently Bing. The latter examples are web
search engines as we know them nowadays: smart complex systems that aim
to match the user’s query with the most relevant documents in their database.
The sheer amount of research tech-giant Google performs2 in the fields of IR,
natural language processing and artificial intelligence suggests that their search

1Measuring the Growth of the Web, http://www.mit.edu/people/mkgray/growth/
2Research at Google, http://research.google.com/pubs/papers.html
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CHAPTER 2. CONTEXT AND BACKGROUND

results are scored by complex composite algorithms that together operate as one
search engine.

2.1.4 PageRank

Up until this point, all the previously mentioned algorithms were based purely
on content. However, there is another reason Google survived where many other
search engines bit the dust. Google developed an algorithm called PageRank
[28]. PageRank is an algorithm that views the Internet as a graph. Each webpage
is represented by a node in this graph, and each link is represented by an edge.
Via this structure the importance of certain web pages can be measured: getting
a lot of links toward a page makes it more important. In this situation highly
ranked pages add more importance than lowly ranked pages. For example, a
certain page would benefit more from getting a link from the BBC than it would
from getting a link from my personal web page.

Taking into account this information makes it easier to discriminate between
important high-profile websites and someone’s weblog where he or she writes
about his or her hobbies. This would be a lot harder purely based on content.
This algorithm is said to be one of the prime reasons that Google outgrew
its peers AltaVista and Yahoo!. The significance of search results improves
tremendously using PageRank.

2.2 Common Techniques in Information Retrieval

This section describes the most commonly used techniques in IR. It is mostly
based on [27], unless referenced otherwise.

2.2.1 Search Engines

We all use search engines now and then, but what exactly happens under the
hood when a search query is submitted? Basically a search engine consists of
three parts: an index, a crawler (or spider, these terms are interchangeable)
and an interface. The interface is of little technical interest: it is the (often
graphical) environment in which the user submits his or her query and receives
the list of search results. The index and the crawler constitute the technical side
of the search engine.

In a giant database, it is unthinkable to try to match every word in the
query to every word in every document. There is often too much irrelevant
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text in the data for this to be useful. That is why documents need to be
properly indexed. The index is basically a list of key-value pairs, where the key
(the index) is the most relevant possible summary of the value (the document).
So only the key is matched to the query, being able to handle requests a lot
quicker, but also possibly better. Because not only is the index most often a
lot smaller than its corresponding document, the developer of the search engine
can exercise control on what should and what should not appear in the index.
For example, unimportant words can be filtered out, while others are assigned
extra importance.

The data in the index are gathered automatically by a program called a
crawler. This program gets a list of seed URLs as its input, which it visits and
pushes to the index. Then, it gathers the hyperlinks on those pages, and gener-
ates a new fetch list out of those links. This way the crawler ‘crawls’ through the
Internet (which paints a picture why crawlers are also called ‘spiders’), keeping
anything it comes across.

2.2.2 Boolean Retrieval

The most basic form of a search engine is through Boolean Retrieval. Each
document in the index is represented by an array of Boolean values. Each
of these values represents a term that appears in the set of terms known to
the search engine (the search engine dictionary). So each document simply is
indexed by whether or not the term appears in it or not. To illustrate: an empty
document will contain only zeros in its index, whereas a document that contains
all the words in the dictionary (no matter how many times) will be indexed with
only ones. When a one-word query is entered, all the documents containing that
word will be returned. When a multi-word query is entered, a choice will have
to be made which Boolean operator is going to be applied (term1 OR term2 vs.
term1 AND term2 ).

2.2.3 Scoring

One of the main problems with Boolean retrieval is that also the results are re-
turned as a Boolean: either a document is a valid search result, or it is not. There
is nothing in between. So the relevance of the search result is not reflected in any
way; the results are unordered. Imagine performing a Google-search for “buy
Mercedes”, and having to go through the (at the time of typing) 121,000,000 re-
sults by hand searching for a relevant result, because they are unordered. That
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would be a completely hopeless endeavor. This is where the concept of scoring
comes in: the search engine calculates a score for each document about how
well it matches the query. This should lead to a list of results where the most
relevant ones are at the top, and the least relevant ones stay out of view: at the
bottom. There is a wide range of different measures to calculate this score. The
most commonly used ones will be discussed next.

2.2.4 Term Frequency

Term frequency weighting is the technique where the score of each document is
defined as how often the words in the search query appear in the document. This
means that it assumes that if a term is important to a document, it is probable
that it will appear more often in it. Intuitively this makes sense: documents
mentioning the word car ten times are probably related to cars. But one can
imagine situations where this is not at all true. For example, if the word ‘the’ is
the most frequent word in a document, is it the most important one? If a news
article mentions a famous singer once, as opposed to a fan’s web page where it
appears 30 times, is the latter a 30 times more relevant search result? It seems
term weighting is a step in the right direction, but we’re not quite there yet.

2.2.5 Term Frequency - Inverse Document Frequency

So besides term frequency, another measure should be used, to prevent insignif-
icant common words to gain the upper hand in determining the (order of the)
search results. Because obviously not every term has the same importance, a
measure was defined of how important a term is within a certain database. This
measure is called Inverse Document Frequency. It is defined in the following
formula:

idft = log
N

dft

The idf for term t is a logarithm of the total amount of documents in the
database (N), divided by the amount of documents containing the term (dft).
Basically, the more rare a term is, the more important it becomes. The TF-IDF
score for a term in a document can then be obtained by multiplying the tf by
the idf score. This is a commonly used and good score for terms in a document,
because it incorporates information about the context of a given document,
instead of only counting within the document.
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2.2.6 Vector Space Models

Now we can simply build a document-term matrix with corresponding TF-IDF
scores. This matrix consists of document vectors ~V (d). One can use these vectors
to calculate similarities between the vectors. One could, for example, consider
using the vector difference between the two documents as a measure. However,
this will lead to bad results when the length of the documents differ. Topical
similar documents can have a very large vector difference if one is very short
and the other very long. For this reason the common approach is to calculate
the cosine similarity. This similarity of document d1 and d2 given their vector
representations ~V (d1) and ~V (d2) is defined by the following formula:

sim(d1, d2) =
~V (d1) · ~V (d2)

|~V (d1)||~V (d2)|

In this formula the dot product of the vectors is corrected for their Euclidian
length (which is the square root of the sum of all squared values). Another way
to do the same thing would be to first calculate a length-normalized unit vector
~v(d) = ~V (d)/|~V (d)|. In that case a simple multiplication of two document
vectors would suffice to find their cosine similarity. To apply this model to
search engine technology, one should consider each query as a document. Then
the score of each document d for a query q could be calculated by the dot product
~v(q) · ~v(d).

Inverted Indices

Since nowadays in the current state of hardware, storage is in many applications
not really a bottleneck anymore, there is a trick to speed up the search process
in a vector space model: inverted indexing. The potential downside being that
one needs to store extra information.

In inverted indexing, there is an extra index: instead of only storing which
document contains which term, we also store which term appears in which doc-
ument. This way, we can check a query for the relevant documents, and skip
expensive computations on documents which do not even contain one of the
terms in the query.

Relevance Feedback and Query Expansion

Two more methods of improving search results are relevance feedback and query
expansion. For relevance feedback, input from the user is needed. It is the
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process of letting a user give feedback on which results are good and which are
bad, and improving the set of results based on this feedback. More results similar
to the documents which are marked as ‘good’ by the user will be returned, while
documents similar to the ones marked ‘bad’ will be shunned. This way a search
engine can be improved incrementally.

This type of feedback can also be implicit. In that case the user will not have
to mark documents explicitly, but for example, clicking behavior is monitored. If
some documents are often selected by many users in relation to a certain query,
this could mean that these documents should be boosted for that specific query.

Query expansion is the technique of changing the query to improve search
results. An example of this is stemming. In stemming each word in the overall
dictionary is reduced to its stem. This way, for example, ‘searched’, ‘searching’
and ‘search’ will end up as the same entry in the feature set. This could also be
applicable to query expansion: each word in the query could be reduced to its
stem. This assumes that each conjugation of a word has the same, or at least
similar, meaning.

An elaboration of the two techniques, relevance feedback and query expan-
sion, is Phantom Document Masking, as explained in section 3.3.5. It combines
any number of the most relevant search results into a new query. This way we use
so-called blind relevance feedback (the top search results) and query expansion
(replace the query by phantom documents).

2.3 Latent Semantic Analysis

Another way of approaching the data in IR is by using Latent Semantic Analysis
[11]. The basic idea of this approach is to reduce the dimensionality of the data to
get a more abstract interpretation. Such a high level interpretation of the data
shows similarity to human interpretation of documents. Previously described
methods have no further interpretation of the data than just the words that
occur in the documents. The human interpretation of a given database would
be very different. For example, we might group documents based on abstract
concepts such as underlying topics. This is a very different similarity measure
than counting word frequencies. In fact, for a human to group a document
under a certain theme, the actual theme itself doesn’t need to be included in the
document. For example, a news article about the current presidential candidates
in the US would be categorized by humans under ‘politics’, while the term
‘politics’ itself probably doesn’t even occur in the document. Another article,
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for example about the US’s policy towards a foreign war (which would clearly
also be labeled ‘politics’, even though it might not share many of the words
from the previous document) should be associated with the same category. To
achieve this, we need a semantic interpretation, and that is where LSA comes
in.

2.3.1 Singular Value Decomposition

Singular Value Decomposition is a mathematical technique to decompose a ma-
trix into the product of three other matrices: M = UΣV ∗. In this function, U
and V are matrices with the so-called singular vectors. Σ is a matrix with only
diagonal entries: the singular values. If M is reconstructed with a smaller num-
ber of singular values (the rest replaced by 0’s), the result is a low-rank matrix
approximation. The matrix retains its original dimensions, but is reconstructed
from a lower dimensionality, a truncated version of itself. This way the values
are stripped of noise, and provide a more generalized view of the data. Latent
Semantic Analysis is the analysis of data on an implicit semantic level, which is
achieved by reducing the dimensionality. It is also the basis for the approach of
Latent Semantic Indexing.

2.3.2 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is the application of the previously described
method, LSA, in the context of information retrieval [2]. The gist of the method
is to store the dimensionality-reduced data in the index of the search engine.
In this section we discuss a list of possible advantages and disadvantages of LSI
versus simple vector space search, according to [30] and [11].

2.3.3 Advantages

Latent Dimensions

The basis of LSI is that the lower dimensionality of the transformed data shows
a truer representation of reality. The documents are a sample of empirical data,
but won’t contain perfect semantical information. This basis of true latent
semantic information is obscured by the fact that each document contains a
different set of words, and thus different dimensions. Because of this, the actual
semantics can never be represented in such a noisy high-dimensional structure.
The assumption is that LSI recovers this structure.
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Synonimity

One of the most prominent advantages of LSI is that this search engine searches
through (what are assumed to be) more informative features than the regular
vector space model: concepts rather than terms. There are loads of terms in
the index of a regular search engine, which more or less mean the same thing:
they share a certain grade of synonimity. This synonimity is compressed into
one abstract semantically relevant feature.

Polysemy

Another issue tackled with LSI is polysemy, multiple terms referring to one and
the same semantical concept. If a query would contain multiple polysemous
terms, the vector space model would be very noisy: a lot of documents which
contain the terms are actually about something completely different! LSI tries to
reduce this noise by averaging out polysemous terms. This is a disadvantage as
well as an advantage. It reduces noise among polysemous terms, but it also drags
them towards the average. So this makes polysemy work well if the meaning of
the terms in the query are close to those terms’ average meaning.

Interdependence

The vector space model assumes term independence. Each term is treated as a
separate piece of information, in no way linked to related or similar information.
This assumption never represents reality, as terms show very much dependence
among documents. LSI does account for this high level of interdependency
among words.

2.3.4 Disadvantages

Memory Efficiency

Intuitively one might think that this decreased dimensionality would lead to a
reduced amount of memory needed to store the model. However, this is not
true. Assuming that one would store only non-zero entries in a document-term
matrix, this database is quite modest in size, since the matrices are very, very
sparse. Using SVD to reduce these data to a lower dimensionality indeed reduces
the size of the matrix. The problem is however that the density of the matrix
also greatly increases: the probability of a zero value in the matrix is next
to nothing. However, as previously discussed, in the current developments in
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computer hardware, storage is seldom a problem. The problem lies mostly in
computational efficiency.

Computational Efficiency

The most important way to increase the computational speed of the vector space
model is by means of inverted indexing (see section 2.2.6). This is unfortunately
not possible in LSI. Inverted indexing exploits the fact that the data consist of
sparse matrices containing natural numbers. When the data are transformed
using LSA, the index becomes a dense matrix of real numbers. This means that
for every document a score has to be calculated.

2.4 Artificial Neural Networks

In this first section on neural networks we will give a short introduction to the
traditional supervised neural network. In the next section we will discuss the
type of neural network that is more relevant to understand for this research.

A traditional neural network is a machine learning algorithm with a wide
variety of applications. It can solve non-linear classification problems, a type
of problem very common in the real world. A neural network in AI (or rather:
artificial neural network) is loosely inspired on the actual structure of neurons
in the human brain.

2.4.1 Structure

The neural network consists of a number of neurons (sometimes referred to
as ‘nodes’). These neurons are topologically structured. Neurons have one or
more weighted connections to other neurons. In this sense a neural network
can be seen as a weighted graph. The network contains input neurons, output
neurons and possibly any number of so-called ‘hidden’ neurons. These earn their
name from the fact that the user generally only observes input and output, and
everything in between is hidden (the so-called ’black box’). Each neuron has
an activation level. Input neurons get their activation directly from the input
data represented as a feature vector. Each input neuron represents and is fed
by one feature of each data point. Each other neuron has an activation level
based on the activation level of the neurons that have a weighted connection to
it. The activation of the output neurons is the output of the system, which can
be multi-dimensional, based on the number of output neurons.
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2.4.2 Supervised Learning

In many applications neural networks are supervised learning algorithms. That
is, they learn from a labeled dataset to build a model. This model is a mapping
between inputs and their corresponding outputs. This means that there needs
to be a training set to determine the weights between the neurons. This is a
useful approach if the data contain labeled examples, and has a wide variety of
applications, ranging from computer vision and robotics to simple classification
tasks.

2.4.3 Applications

Neural networks come in lots of varieties [13]. There are supervised networks
vs. unsupervised networks, feedforward networks vs. recurrent networks and
so on. For this reason, applications of neural networks have been as broad as
the use of artificial intelligence in general: ranging from medical applications
(for example, predicting medical outcomes [46]) to economical applications (e.g.
predicting bank failure [44]). Neural networks are a very popular solution for
classification and prediction. Mainly because so many different types of neural
networks exist, they are very flexible and form a fitting solution for a large
variety of problems.

Some examples of applications in the area of language and information in-
clude text generation [42] and text classification [37]. Different incarnations of
neural networks have already been used in the specific context of information
retrieval, such as self-organizing maps [25] and Hopfield-networks [4].

2.5 Retricted Boltzmann Machines

2.5.1 Structure

In the context of this research, the most important type of neural network to
examine is the Restricted Boltzmann Machine (RBM) [39]. The RBM differs
from the previously described neural network in that it is an unsupervised prob-
abilistic network. Instead of mapping an input to a desired output, this is an
unsupervised algorithm: it learns what the inputs look like, but there is no spe-
cific output. The RBM is a generative model: once the inputs are learnt, it can
generate data based on its learned interpretation of what the real data looks
like. It can be viewed as an undirected graph where a node is only dependent
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on the nodes it has a connection to. Such a network is called a Markov Random
Field, and the ‘neighbourhood’ a node solely depends on is called the Markov
Blanket of that node.

The Restricted Boltzmann Machine consists of two layers of nodes: one
visible layer v and one hidden layer h. For the visible layer we use binary
inputs. Each node is connected to all the other nodes in the other layer, but
is connected to none of the nodes in the same layer. This is why this type
of Boltzmann Machine is called ‘Restricted’. Each of the edges in the graph
represents a weight value. Besides that, every node has a unary bias. The reason
for the restriction in the connectivity is that the training algorithm, explained
later, is very inefficient for the fully connected Boltzmann Machine.

2.5.2 Training a Restricted Boltzmann Machine

This section is mainly based on [15].
The state of a Boltzmann Machine is represented by an energy function:

E(v,h) = −
∑

i∈visible

aivi −
∑

j∈hidden

bjhj −
∑
i,j

vihjwij

Where ai is the bias for visible neuron i, vi is its binary state. Similarly, bj and
hj represent respectively the bias and state of hidden neuron j. Finally wij is
the weight between visible neuron i and hidden neuron j.

Based on this energy function the RBM assigns a probability to each possible
combination of visible and invisible neurons:

p(v,h) =
1

Z
e−E(v,h)

Z is the partition function for normalization, the total energy summed over all
visible/hidden neuron pairs. If we sum over all possible hidden vectors, we get
the probability for a visible vector v:

p(v) =
1

Z

∑
h

e−E(v,h)

So to train the network we want to set the weights in such a manner that each
training example that we put into the RBM has a high probability.

First let us look at the process of presenting an input vector v to the RBM.
The probability that a hidden neuron j has the value 1 is given by the function:
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p(hj = 1|v) = σ(bj +
∑
i

viwij)

Where σ represents the sigmoid function. In the same way, if we have a distri-
bution for the hidden units, we can symmetrically calculate a visible vector v,
due to the undirected nature of the graph.

p(vj = 1|h) = σ(ai +
∑
j

hjwij)

This back-projection then is called the reconstruction. The learning rule is based
on this reconstruction:

∆wij = ε(〈vihj〉data − 〈vihj〉recon)

In this function ε is the learning rate. This process can be repeated: feed
the reconstruction back and let it recalculate the values of the hidden layer.
This process of reconstructing the visible layer and recalculating the hidden
layer can go on infinitely. This is called repeated Gibbs sampling. Ideally
the reconstruction used for the formula above would be the reconstruction after
infinite Gibbs samples. This is called maximum likelihood learning: it maximizes
the likelihood that it produces vectors that are just like the training data. But
since this is computationally very expensive, it suffices to do the Gibbs sampling
just for one step. This is not the optimal training, but it suffices for most
applications. This method of training the RBM is called contrastive divergence
[16].

2.6 Deep Belief Networks

2.6.1 Deep Learning

Deep learning is a popular name for machine learning algorithms that search
for high-level abstractions through stacked algorithms (in our case the most
successful of the lot, neural networks) that step-by-step reduce the complexity
of the data. In this way the data can be represented in a more essential set of
features. In the specific case of information retrieval, this set of features would
be considered ‘semantical concepts’: abstract notions of meaning, instead of
plain words. It is clear that there is a parallel with the previously discussed
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latent semantic analysis. Now we reach the actual heart of the matter: how do
these forms of data-abstraction compare?

2.6.2 Structure

Deep neural networks (DNNs) are multiple neural networks, in this case Re-
stricted Boltzmann Machines, linked together. This type of DNN is also called
a deep belief network (DBN) [16]. The input enters the network in the first
RBM. The output of the first RBM forms the input of the second, and so on
until the actual output layer is reached.

These stacks of RBMs may vary in size: they can contain a few RBMs, but
can also contain a large stack of RBMs. Furthermore, the amount of neurons in
each layer may vary. Each layer may contain less than, equal to or more neurons
than the previous. These structures are very flexible and can thus be applied in
lots of different applications.

The nodes in an RBM layer can be viewed as dimensions. If we stack a
number of RBMs and reduce the size of neurons towards a small number in
the hidden layer of the final RBM, we achieve dimensionality reduction. So
the DBNs can be viewed as a way to reduce dimensionality. Using this type of
neural network structure, the deep belief network, to reduce the dimensionality
of data has initially been used in [17]. The findings of that research were that in
many different applications the DBNs outperformed traditional dimensionality
reduction algorithms like Principal Component Analysis (elaborately explained
in [19]).

The results presented in [17] were a direct motivation for this research. LSA
shows many similarities to PCA, and thus it might be hypothesized that DBNs
also might outperform LSA in the context of information retrieval.

2.6.3 Optimization

A DBN contains a lot of free parameters that have to be tuned. On the scale
of the DBN itself there is of course the topological structure: how many layers
are there, how many nodes per layer are there? On the scale of the RBM there
are also parameters to tune, most importantly the learning rate (and optionally
its decay as training progresses). Then the process of training can be varied in
length to produce qualitatively different DBNs.

Optimization can be achieved through a grid search: automatically cross-
test different settings for each of these parameters. This is a long process, but
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eventually leads to the optimal DBN-configuration.

2.6.4 Applications

Deep neural networks have been around at least since 1980 [12]. But only
when a way was found to effectively train these networks [16] and use them
for dimensionality reduction [17] in 2006, the principle of deep learning gained
momentum in the field of artificial intelligence. Since then, many applications
have been found.

One of the main applications of deep neural networks in general is within the
research area of image recognition and object detection (see [6, 5, 21, 7] among
others). These studies use convolutional neural networks. Images, like text, also
have the property of often being very high-dimensional, but the true meaning
of the data is in abstractions of that complex, noisy data. The meaningful
structures in this case are patterns or shapes that are relevant to recognize in the
world, like traffic signs [5] or signs of a certain disease on medical scans [7]. We
can draw an analogy with our textual ‘search engine’ data here: terms relate to
pixels (sub-units), in the same way concepts relate to shapes (bigger structure).
A very recent and notable effort of image analysis is [14], a very successful
attempt by Microsoft to improve results on one of the biggest challenges and
benchmarks in image analysis: the Large Scale Visual Recognition Challenge
2015 [32]. They produce the lowest error rate in object detection ever produced
on this dataset using a 152-layer convolutional DNN.

Another interesting application of DNNs is speech recognition [10]. In this
case the DNN would pre-process the data before they would be inserted in the
Hidden Markov Model, which is the staple algorithm for speech recognition.
Results seem to indicate that in this case the neural networks outperform the
previous preprocessing methods (among which the most commonly used Gaus-
sian Mixture Model).

Finally, even a little more closely related to this project, DNNs have been
applied to natural language processing [8]. In this field, the aim is to represent
natural language into a formal language, to be understood and manipulated
by computers. An example of this is part-of-speech tagging: label words in a
sentence as nouns, verbs etcetera. Natural language is (from a computational
point of view) unnecessarily complex: a lot of words have little to no mean-
ing. To filter out this ‘noise’, once again DNNs can be applied to reduce the
dimensionality of the data.

Another application in the understanding of natural language was researched
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[35]. The authors of this study compared DBNs to conventional methods of text
classification. Common methods of text classification are Support Vector Ma-
chines [9] and Maximum Entropy classifiers [1], but DBNs could at least match
their performance. As an extra boost for the system, the researchers added ad-
ditional input data at one of the middle layers of their DNN. So where normally
only abstract data would be found, they added fresh uncompressed training
data. This improved the performance significantly. Using this method they
were able to achieve higher performances than the ‘conventional’ classification
tools they tested.

24



Chapter 3

Experiments

In this chapter the experimental procedures will be explained. We will discuss
the data used, the queries used and the different search engines that are being
compared.

3.1 Data

3.1.1 Dataset

For the experimental part of the research data from the 20 newsgroup1 data is
used. We use a subset2 of the data to represent smaller datasets. In many, for
example commercial, applications of IR this is a plausible amount of documents.
Concrete examples of commercial databases of this size include web stores or
news archives. This is data collected from Usenet newsgroups. These are dis-
cussion forums about a very broad variety of topics. The 20 newsgroup dataset,
as the name suggests, contains data about 20 of these topics. These are the
topics, more or less sorted by topical similarity:

comp.graphics

comp.os.ms-windows.misc

comp.sys.ibm.pc.hardware

comp.sys.mac.hardware

comp.windows.x

1Home Page for 20 Newsgroups Data Set, http://qwone.com/ jason/20Newsgroups/
220 Newsgroups, http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html

25



CHAPTER 3. EXPERIMENTS

rec.autos

rec.motorcycles

rec.sport.baseball

rec.sport.hockey

sci.crypt

sci.electronics

sci.med

sci.space

misc.forsale

talk.politics.misc

talk.politics.guns

talk.politics.mideast

talk.religion.misc

alt.atheism

soc.religion.christian

As visible from this list, the dataset contains topics that are similar
(comp.sys.ibm.pc.hardware and comp.sys.mac.hardware) and topics that
are very diverse (talk.politics.mideast and rec.motorcycles). This makes
it a very suitable dataset for this experiment: we want to be sure to test the
different search engines on different levels of data abstraction (and thus different
levels of topical similarity). The dataset was gathered for the study [22], but
commonly used since then.

3.1.2 Preprocessing

Before any document is read from file, the system compiles a dictionary out of all
the documents. This dictionary contains all the relevant terms in the database.
That is, all the stemmed types, without any stop words. Words are split by
spaces, and all the non-letter characters are removed. The stemming algorithm
used is the Snowball implementation3 of the Porter-stemmer. The stop words
are filtered according to the Xpo6 stopword list4. Out of the resulting words, the

3Snowball, http://snowball.tartarus.org/index.php
4Xpo6 Stopword List, http://xpo6.com/wp-content/uploads/2015/01/stop-word-list.csv
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2000 most common words are picked to fill the dictionary with. This leaves out
irrelevant words, which adds noise to the data. Using only the most common
words significantly improves efficiency during the training of the neural networks
and during the performance of the singular value decomposition.

3.1.3 Representation

Each document is represented as a vector. Each element in the vector represents
a term in the total dictionary that is extracted from the relevant dataset. We
can distinguish between two types of data representation used.

1. Numerical Each document is represented as a vector containing numer-
ical values. Each element of the vector represents the amount of times
the respective term occurs in the document. This representation is used
for the vector space search, the LSI search, the autoassociator and the
phantom document-DBN search (explained later on).

2. Binary Each document is represented as a vector containing binary values.
Each element of the vector represents whether or not the respective term
occurs in the document. This representation is used for the DBN-search.
The reason for this representation is that it can serve as input for the first
layer of the first RBM of the DBN, which, in this research, takes binary
data (see section 2.5.1).

3.2 Queries

The experimental queries will vary in specificity: the algorithms should return a
lot of relevant data when we search for a very broad term (for example, science).
However, a very specific query (for example Honda ST1100, a specific type of
motorcycle) should yield documents about that topic only. Hence the query-
answer set contains queries and the subset of relevant documents. These relevant
documents can be documents in a certain newsgroup category (broad) or a
manually grounded (annotated) selection of the documents (narrow). For a
comprehensive overview of all the tested queries, see the appendix. These two
types of tests will from now on be dubbed ‘broad’ queries and ‘narrow’ queries.
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3.2.1 Broad Queries

Examples of broad queries are queries that are relevant to an entire newsgroup.
For example, there is the newsgroup rec.motorcycles. Each newsgroup in
our dataset contains 100 documents. When we query the system for motor-
cycle ideally we would want those 100 documents to be in the top 100 search
results. Other examples include atheism, hockey, space and graphics, which all
are representative for the documents in one newsgroup.

3.2.2 Narrow Queries

The narrow queries are only relevant to 2 - 12 documents. The only correct
results associated with these queries are these documents. Search scores will
be a lot lower, because it is a lot harder to get a top 2 correct than a sizeable
portion of ‘broad’ top 100. Since both could be important in finding desired
information, both types of tests will be considered.

3.2.3 Relevance

The relevance of the queries has been determined in two different ways. For
the broad queries, we assume that each query tested represents an entire news-
group category. For example, for the query space the relevant results are every
document within the category sci.space. Each of the 20 newsgroups has such
a query associated with it in the broad query tests: cryptography for category
sci.crypt, hockey for category rec.sport.hockey and so on.

For the narrow experiments the queries were selected manually. To create a
set of queries that would be relevant to only a small number of documents, the
conversational nature of the dataset was used. The newsgroups are discussion
forums where discussions take place in topics. So for each conversation topic,
a few documents exist in the dataset. For example, there is a topic where
motorcycle enthuasist discuss wheelies on a shaft driven motorcycle, under the
topic of Subject: Re: Shaft-drives and Wheelies. Nowhere else in the
dataset are people talking about wheelies, so the query wheelie is associated with
the set of documents in this particular relevant discussion. The set of queries
was created in such a way that for each query there are some, but not a lot of
relevant documents. Another restraint was that each query had to be in the
2000 word dictionary used to represent the data.

28



CHAPTER 3. EXPERIMENTS

3.3 Types of Search Engines

3.3.1 Vector Space Search

The vector space model, as explained in section 2.2.6, will serve as the baseline.
It is the most direct approach of information retrieval we will consider. It
applies no dimensionality reduction, just straightforward query-document cosine
similarity.

3.3.2 LSI Search

When the data have been read and preprocessed LSA is performed. When the
search engine receives a query from the user, or any test environment, it folds it
into the SVD of the training data. Then the search score for each document is
calculated using the cosine similarity between the lower-dimensional version of
the query and the lower-dimensional version of each document

Efficiency

In LSI the reduced vectors contain real values. The problem with having real
valued number in the index, is that inverted indexing is not possible. Inverted
indexing profits from the sparseness of the normal term vectors of each docu-
ment. The reduced vectors are not sparse, so inverted indexing cannot be used.
This makes search in large databases considerably slower.

3.3.3 Deep Belief Network Search

Data Representation

As mentioned before, the DBN trains on the newsgroup dataset. Once this model
is calculated (or loaded from file, to prevent having to go through the training
phase every run) each document (in binary representation) in the set is given a
forward pass through the RBMs in the DBN. Then the query is passed through
the network. Now we have low-dimensional representations for both the query
and all of the documents. The scores for each document are then calculated
based on the cosine-similarity between the low-dimensional representations of
the query and that of the respective document.
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Efficiency

Using DBNs as search engines has a few implications regarding efficiency. To be
as quick as possible in returning the search results, the deep vectors of all the
documents in the dataset will have to be calculated beforehand. This prevents
long calculation times. Each query needs all deep vectors, so it would be very
impractical to do a forward pass on each document for each vector. Similar to
the efficiency issue the LSI has, as discussed above, DBNs cannot use inverted
indexing to improve efficiency because there are real valued numbers in the
index. There is no sparseness to profit from.

Dropout Training

A training technique to increase the performance of any neural network is the
dropout-method [18, 41]. A problem with training neural networks on small
datasets is that some features will only occur in the presence of other features.
For example, in a small dataset the word car might hypothetically appear only in
the context of the word convertible. Because these words only appear together
in a document, this will mean that they are useless by themselves. This is
purely the product of a lack of enough data to represent semantic reality. On
themselves the words also have meaning, but the network will not be trained on
a document with just one of these two words. To account for this, the network
can be trained where in each training sample a portion of the features is left
out: the dropout. This way the network will also see the documents with just
either car or convertible and learn that without each other they have meaning.

3.3.4 Autoassociator

Another way of reducing the dimensionality of data with a neural network is
called the autoassociator [3]. This is not a restricted Boltzmann machine, but
a more common type of neural network: the multi-layer perceptron [31]. In
most situations, the multi-layer perceptron is a supervised machine learning
method. This means that the data on which it is trained need to be labelled
in advance. However, in the case of an autoassociator, we use the perceptron
for dimensionality reduction. In this case, the input and output layer have the
same size. The output represents a reconstruction of the input. The hidden layer
contains less neurons than the input and output layers. This is where the data
are represented in a low-dimensional space. The search score for a document
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in this system is calculated using the similarity of the hidden representations of
each document and the user query.

The autoassociators training depends on the error of the reconstructed data:
therefore the data should be normalized. Otherwise the training vectors with
higher summed inputs will produce larger errors. That will make these samples
weight heavier in the training. That is not desirable. To solve this, we make
sure every input vector is preprocessed to have a sum of 1.

3.3.5 Phantom Document Masking

Phantom document masking is an alternative condition that could be applied
to any of the search engines. It is a form of query expansion.

In this search case the same engines are used as in the regular search ex-
periments. However, there is an extra step. First we use the query with some
(another or the same) search engine. The top result of that search is then re-
turned, and used as input to the search. This way the hope is to substitute
the query by the document that is its best representation in the dataset. The
document is richer, less sparse with more (hopefully relevant) features than the
original query. We call this document a phantom document.

Variations to this approach are to take more than just one phantom docu-
ment. We could take any number of top results. The more documents included
in the query, the more stable the representation of the query in the dataset
should be: the query is less dependent of the results generated by an entirely
different search engine. However, when we make the amount of phantom docu-
ments too high, we lose specificity. We lose the ability to search very specifically
for one keyword. This is a trade-off between robustness and search precision
that will be researched by comparing results of various sized sets of phantom
documents.

3.4 Search Engine Parameters

The algorithms that are at the heart of the different search engines contain
a lot of free parameters. That means that they require a lot of fine tuning.
These parameters are very dependent on each other: changing one means that
the optimal value of the other might very well shift. This means that many
different configurations need to be tested. Test results will thus contain various
parameter settings.
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3.4.1 Parameters for LSI

The main parameter to be experimented with for the LSI-search engine is of
course the number of dimensions after reduction. Literature states that the
optimal dimensionality after reduction lies somewhere between 70 and 300 di-
mensions [30, 20]. This will be closely examined.

3.4.2 Parameters for the Deep Belief Network

Topology

A DBN has many parameters to optimize. Similar to LSI, one very important
variable is of course the dimensionality. But for the neural network this is more
complex because not just the final layer of neurons is relevant for the success
of the network, but also the topology of the network. The amount of layers,
and how many neurons there are in each layer could affect the quality of the
dimensionality reduction.

Some interesting variations in this area could concern the amount of layers,
but also the amounts of nodes per layer. First simple two-layer nets will be
tested. They are the most straightforward networks. In these experiments a very
broad range of different numbers of hidden neurons will be tested, ranging from
about 50 to 1000. This is the DBN equivalent of the amount of LSI dimensions,
since the amount of hidden neurons will essentially be the dimensionality of the
data.

Then different amounts and sizes of hidden layers will be tested. When we
look at the DBN used for text classification in [35], we see three hidden layers of
500 units. Although the applications are not the same: they use only a few class
label units as output, whereas in this experiment we use an arbitrary number
of abstract dimensions as smallest layer in the network. However, it could be
worth testing this successful topology for our purposes.

Training Examples

The performance of the neural network will be very dependent on the amount
of training examples it will see during training. Using the experiments we find
out how often the network needs to see all the data before it can successfully
function as the basis for a search engine.

After a certain amount of training the network converges. Up to this point
the performance is supposed to increase. Beyond this point training starts to
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have very small effects (or no effect at all) on the performance of the network.
For each network topology and parameter configuration convergence might be
reached after a different number of training iterations.

Epsilon

A parameter that’s known to greatly influence the training of a neural network is
its learning rate, commonly denoted as ε. This is considered the most important
parameter for training an RBM [36]. Choosing a good value for ε is vital for the
process of training a DBN. It has a great impact on the final performance of the
network. Different values of ε will be tried out.

3.5 Measuring Quality

Common measures in IR are for example precision, recall and F-score. However,
this is based on a search engine that returns a set of data as being relevant.
In this returned set of documents the precision and recall can be calculated.
However, in these experiments ranked results are returned. That means all the
documents in the entire database will be returned, ordered by relevance score.
For ranked results a different method is needed that does not rely on a binary
relevance assessment.

To measure the quality of an instantiation of one of the search engines de-
scribed in this chapter the mean average precision (MAP) is measured. This is a
common measure for the quality of ranked retrieval. Each tested query yields an
average precision. The MAP is the mean average precision over all the queries.

To calculate the average precision, each relevant document will be assigned
a precision value. This value is calculated according to the precision of the
subset of documents up to the rank of that document. When the precision is
calculated for each relevant document, this value is averaged over all the relevant
documents. The mean average precision is the mean of the calculated values over
all the queries.

For example, we consider a query which has three relevant results. The
three relevant documents are ranked as first, third and fifth search result. The
precision for the first relevant document is 1 out of 1: 1

1
= 1. For the second

relevant document (with rank 3) the precision is 2 out of 3: 2
3
. For the third

relevant document (with rank 5) the precision is 3 out of 5 documents: 3
5
. The

average precision of these results for this query is (1 + 2
3

+ 3
5
)/3. The mean of all
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the average precisions of all the queries yields the mean average precision, our
measure of quality.
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Results & Discussion

This chapter will contain the results of the experiments. For many experiments
there is a broad and a narrow variant, which concerns the specificity of the test
queries. This is done to ensure that the experiments test both the results for
mean average precision about general topics (broad), as well as finding specific
documents in the top search results (narrow).

4.1 Latent Semantic Indexing Dimensions

First, results of possible varying dimensionality reductions of the decomposition
in LSI will be inspected. This determines the level of abstractness in the reduced
representations of the data in the LSI search. According to literature the optimal
value should lie between 70 and 300 dimensions [30, 20]. To assert the truth of
this claim a wider variety of values will be tested. Results are shown in figure 4.1.

4.2 Phantom Documents

First we will examine the potential added value of the phantom document
queries. We will consider this in a broad perspective as explained in the previous
chapter, as well as in the narrow ones. Experiments with 1, 2 and 5 phantom
documents were performed. The phantom documents were concatenated to form
a mask that represents the query. These concatenated phantom documents were
entered into the search engine instead of the query itself. The phantom docu-
ments were collected using a simple vector space search, under the assumption
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Figure 4.1: The influence of the number of dimensions kept in the LSI on the
percentage of correct answers in the broad experiment. The best results are ob-
tained with 150 - 200 dimensions.
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Figure 4.2: Results of the broad query tests with the DBN search engine. This
figure shows the influence of the amount of training iterations on the performance
of the search engine. The best results are acquired around 150 iterations. DBN
= deep belief network/restricted Boltzmann machine, 1PD = DBN with one
phantom document, 2PD = DBN with two phantom documents, 5PD = DBN
with five phantom documents.

that the top results of vector space search would be a fair substitution for the
query.

4.3 Training Iterations

4.3.1 Broad Queries

In this experiment we zoom in on the influence of the amount of training itera-
tions. That is, how many times does the network see each document during the
training phase. The most important question in this experiment is: up to which
point does it make sense to increase the amount of iterations? The results are
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Figure 4.3: Results of the narrow query tests with the DBN search engine. This
figure shows the influence of the amount of training iterations on the perfor-
mance of the search engine. The best results are acquired between 150 and 250
iterations, depending on the amount of phantom documents. DBN = deep belief
network/restricted Boltzmann machine, 1PD = DBN with one phantom docu-
ment, 2PD = DBN with two phantom documents, 5PD = DBN with five phan-
tom documents.
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Figure 4.4: Results of the tests with the DBN search engine. This figure shows
the influence of the learining rate ε on the performance of the search results. We
clearly see the best ε-value within the scope of the tests at 0.01. DBN = deep
belief network/restricted Boltzmann machine, 1PD = DBN with one phantom
document, 2PD = DBN with two phantom documents, 5PD = DBN with five
phantom documents.
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shown in figure 4.2. This figure shows the mean average precision influenced by
the amount of training iterations. One training iteration means that the net-
work has been trained on all of the documents exactly one time. The figure also
shows different amounts of phantom document policies. There are four lines in
the figure: one for the results of the deep belief network without any phantom
documents (DBN), one for the results using a single phantom document (1PD),
one for the results with two phantom documents (2PD) and one for the results
using five phantom documents (5PD)

4.3.2 Narrow Queries

To confirm that also in the narrow experiment the neural network reached con-
vergence the influence of the amount of iterations was also tested, shown in
figure 4.3.

4.4 Restricted Boltzmann Machine Parameters

The first thing to find out about the RBM is how the parameters should be con-
figured. The main ones being the learning rate (ε) and the amount of training.
The results of this experiment are displayed in figure 4.4. We see that the best
tested value, under any tested phantom document-condition, is 0.01.

4.5 Deep Learning

Deep belief networks come in many different shapes and sizes: from shallow
single RBMs to many layered stacks of RBMs. In this section we will discuss
experiments that compare different topologies. Deep learning occurs when mul-
tiple RBMs are stacked. Here we investigate whether this extra abstraction of
the data improves search performance.

4.5.1 Triple Layer DBN

The first contained two RBMs, with the following layer configuration: {2000, 500, 45},
meaning that there were 2000 input nodes, 500 hidden nodes for the first RBM
and visible nodes for the second, and 45 hidden nodes for the second RBM. The
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best result found here was 0.291. This result was found using a learning rate of
0.01 and a maximum number of training iterations of 150.

4.5.2 Quadruple Layer DBN

The second deep network tested had four layers: {2000, 500, 500, 45}. The best
MAP found in this case was 0.1152. Unfortunately we see the results declining
when more layers are added. The limited size of the dataset might account for
this. Deep learning is aimed at high level abstract patterns that might not be
visible in a small dataset like the 20 newsgroups data.

4.5.3 Dropout Training

The networks have also been trained using dropout training, as explained in sec-
tion 3.3.3. In the experiments, the dropouts were 20% of the features, randomly
selected. This amount of dropout has proven successful in previous studies [18].
However, no improvements or decreases in search engine performance were mea-
sured using this technique.

4.6 Comparison of Search Algorithms

In this experiment we compare the best results of the different search algo-
rithms. The tested search algorithms are: vector space search (VSS), latent
semantic indexing (LSI) and deep belief network (DBN). For each search en-
gine, the table also shows the best result obtained using one or more phantom
documents as query. Out of all the experiments the best parameter settings
are collected and compared among each other. For each of the search engines,
they show the highest results obtained during the process of testing different
parameter configurations. The tables also show the relevant parameters. For
LSI the relevant parameter is the number of dimensions kept in the SVD. For
the deep belief networks, the relevant paramters are the amount of hidden units,
the amount of training the network has had, and the learning rate ε. For each
trial where phantom document querying was applied, the amount of phantom
documents used is also shown. The best score of each algorithm is the high-
est mean average precision it achieves. Tables 4.1 and 4.2 show the results.
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Search engine Parameter settings Best MAP score measured

VSS - 0.326
PD-VSS 1 PD 0.245

LSI 200 dimensions 0.386
PD-LSI 1 PD, 200 dimensions 0.352

Autoassociator 100 dimensions 0.091
DBN 45 hid. un., 150 it., ε = 0.01 0.138

PD-DBN 2 PD, 45 hid. un., 100 it., ε = 0.01 0.374

Table 4.1: Top results on the broad query experiment. For each type of search engine

this table shows the highest obtained result on the broad query experiment. VSS = vec-

tor space search, LSI = latent semantic analysis, DBN = deep belief network/restricted

Boltzmann machine, PD = phantom document, hid. un. = hidden units, it. = amount

of training iterations.

Search engine Parameter settings Best MAP score measured

VSS - 0.327
PD-VSS 1 PD 0.112

LSI 200 dimensions 0.188
PD-LSI 1 PD, 200 dimensions 0.129
DBN 45 hid. un., 100 it., ε = 0.01 0.006

PD-DBN 2PD, 45 hid. un., 100 it., ε = 0.01 0.096

Table 4.2: Top results on the narrow query experiment. For each type of search

engine this table shows the highest obtained result on the narrow query experiment.

VSS = vector space search, LSI = latent semantic analysis, DBN = deep belief net-

work/restricted Boltzmann machine, PD = phantom document, hid. un. = hidden

units, it. = amount of training iterations.
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Discussion

In this chapter the results will be discussed. The different experiments will be
handled in the same order as in the previous chapter.

5.1 LSI Dimensions

In this experiment the optimal number of LSI dimensions kept during the SVD
was tested. The number of dimensions was varied, and then performance was
tested in the broad experiment.

The claim that 70 to 300 LSI dimensions would yield the best results seems
to be quite plausible (fig. 4.1). However, the higher scores are around 150 to 200,
and not 70. Raising the number even higher yields slightly worse results. This is
a result that is very dependent on the data [20]. Each different data set has its
own optimal number of LSI dimensions. This result is thus only for reference in
this research rather than that it is generalizable to a broader perspective. The
optimal number of dimensions is dependent on the number of documents in the
data and the distribution of features among the documents.

5.2 Autoassociator

Using an autoassociator as a means to reduce the dimensionality of data has not
proven to be an effective method to improve search results.
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5.3 Deep Belief Network Parameters

5.3.1 Learning Rate

The influence of the learning rate ε is shown in figure 4.4. The results are
obvious: the best option among the tested values is 0.01. Any of the experiments
conducted yielded the best scores with this value.

5.3.2 Training Iterations

Broad Queries

The influence of the amount of training is shown in figure 4.2 for the broad
experiments. In this experiment we can see that the best duration of the training
phase is about 150 iterations (i.e. the amount of times the network has seen
all the training samples). Beyond that the quality of the search slowly declines.
Possibly the results decline because the network is overfitting: it only trains
on the specific combinations of features that are in the training set. The query
itself might not be exactly like one of these trained documents, and an overfitted
network might have trouble generalizing and matching the similarity of the query
to the documents.

Narrow Queries

The results for this experiment are shown in figure 4.3. In these experiments we
see that the value with the best results lies a bit higher. This might be explained
due to the fact that there has to be a bit more specificity in the network: the
global meaning of the documents is a lot less important, the desired documents
are rather specific in their content.

5.4 Phantom Documents for the Deep Belief

Network

The influence of the phantom documents on the quality of DBN searches is
shown in the same figures: 4.2 and 4.3.
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5.4.1 Broad Queries

We find that using phantom document masks does certainly improve the quality
of the search results. In comparison to the bare queries inserted in the search
DBN, the phantom documents yield much higher scores. One other clear finding
is that we see that the amount of documents used to form a phantom query is
not too important here. The different amounts of phantom documents used to
expand the query with show similar results. Also note that, despite the absolute
difference, the relative performance for the amount of phantom documents is
similar for any number of training iterations. The training time is irrelevant for
the added value of the use of phantom documents.

5.4.2 Narrow Queries

Without phantom documents we see that the neural network search yields very
low MAPs. Also in figure 4.3 showing the results of the narrow experiments,
we see the relative success of phantom documents. All the variants show better
results than just the DBN as search engine. We also see the trend here that few
training iterations yield low success rates, but somewhere between 200 and 300
iterations lies the value with the best highest mean average precision.

5.4.3 Analysis

The increase in performance when using phantom documents can be explained
by sparsity. The documents all contain more words that a single worded query.
So the network is not trained on data similar to the query. This leads to low
similarity between the low dimensional representations of each document and
the query. If all the similarities are low, faulty results are more likely to occur.
The phantom document solves this: in this case the query contains many useful
features (in its original representation, but also in the low dimensional repre-
sentation) to match with the documents. The phantom documents are much
more similar (or, in the case of a single phantom document, even identical) to
the samples in the training data.

5.5 Comparison of Search Algorithms

All the best results that were found during the experiments are gathered in table
4.1 and table 4.2. Each different result was obtained using a specific parameter
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configuration. This configuration is also included in the tables. As shown in
previously discussed experiments, these parameter settings influence the results
a lot.

5.5.1 Broad Queries

In table 4.1 we see the best results obtained with each search engine for the broad
experiments. We see the scores of the phantom document DBN search engine
achieve nearly the same results as the LSI search. These two outperform the
other search engines slightly, but only by a verys small margin. The phantom
document variant of the LSI search comes very close after.

5.5.2 Narrow Queries

In table 4.2 we see that none of the DBN search engines can compete with
the conventional methods. The results are very low. Since all the results are
relatively low, we can consider two explanations. Perhaps the queries were too
specific. That means that they never found any relevant representation in the
low dimensional feature space. In this case the noise in natural language would
obfuscate these tiny bits of semantic information. Another explanation is that
perhaps the documents selected in the process of annotation were not relevant
enough. Either way, we could still consider these results because all the search
engines used the same queries with the same relevant target documents. Within
the scope of the comparison in this thesis the results all suffer from the same
defect. However, the broad query experiments yielded much more insightful
results than the narrow queries.

46



Chapter 6

Conclusion and Future Work

6.1 Different Types of Search Engines

It seems that DBNs do not meet their expectations on a data set of the size used
in these experiments. Further research is needed to determine the effectiveness
of dimensionality reduction by DBNs as a means of building a search index in
the case of a considerably bigger database. Deep learning is generally considered
most effective when the data set is very large. There are very many parameters
that need to be trained in case of a very big DBN. That is the reason that a lot
of data is needed to train the networks on. One conclusion we can draw from
the results of these experiments is that 2.000 training examples is not enough to
increase the quality of a search engine based on DBNs. The DBN search engine
does not outperform any of the more basic search engines.

6.2 Analysis

To account for the difference in performance among the two compared algorithms
LSI and RBM we need to look at the internal, low dimensional representation
of a one word query. The internal representation of a query in LSI looks very
different from the internal representation in the neural networks. These internal
representations by the LSI and the RBM are respectively shown in figure 6.1
and figure 6.2. In the case of LSI, there are values very close to 0. If we take
the example of the query cryptography, we see values taking on values between 0
and 1, with quite a lot of variation. The information is packaged very subtly in
informative and sensitive features. When we look at the internal representation
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Figure 6.1: A visualisation of an example of an internal vector representation
in LSI. This is the query ‘cryptography’ folded in a 45-dimensional SVD.

Figure 6.2: A visualisation of an example of an internal representation in the
RBM. This is the query ‘cryptography’ passed forward to the hidden layer of a
45-dimensional RBM.

48



CHAPTER 6. CONCLUSION AND FUTURE WORK

in the neural network we see values ranging from nearly 0 to nearly 1, since the
vectors are made up of probabilities. The striking thing about these features
is that many of them are actually nearly 0 or 1. This means that they are
(nearly) being treated as the binary values that an RBM uses. The information
density is much lower when we consider the documents in practically binary
features. We see that the internal representation in the RBM is very black-or-
white. The values are almost binary values. The values in the internal SVD
representation are shades of gray, which contain a lot more information. This
shows a weakness in using the RBMs to represent documents in the context of
information retrieval.

6.3 Phantom Documents

When considering performance we see that the DBN search really benefits from
phantom documents. However none of the other search engines benefit from
this trick. The cause of this difference could lie in the fact that the DBN has
binary representations under the hood. That means that small differences in
the input might not make any differences further on in the RBM. So a one-word
document (the query) has no relevant features active in the deeper layers. It has
more resemblance to an empty document, than to any document in the dataset.
This could be why the bare DBN scores very bad in either of these experiments.
Changing the query to the contents of an actual document make it possible to do
a proper assessment of the similarity between it and the other documents. This
also explains why the other search engines don’t benefit from it: both a vector
space search and an LSI search can properly calculate the similarity between a
one-word query and a document. In further research concerning the use of DBNs
for indexing search engines using a bigger dataset, adding phantom documents
would be something to examine.

6.4 Autoassociator

The autoassociator is a common ‘shallow’ way of reducing the dimensionality
of data: there is no deep learning applied. The underlying idea for including
this method in the experiments is that we use only a small dataset. Shallow
methods are more direct in using the data, and could work better when the
search database is of a relatively limited size. However, in the experiments, using
the hidden layer of the autoassociator has not shown to be a useful addition
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to the search engine. It scores inferior to the other dimensionality reduction
methods, DBNs and LSI.

6.5 Deep Learning

On the topic of deep learning we can draw a clear conclusion: with a database
this size, 2000 documents, we cannot plausibly apply deep learning. The results
of the multi-layer DBNs show very poor results compared to the single layer
variants. Successful application of deep learning requires very much training
data. So for web search this could be an option, but for relatively small search
engines, deep learning will not be of any added value.

6.6 Deep Learning in Natural Language Pro-

cessing

One explanation for the lack of fruitful results in this thesis could be that deep
learning might not be as suited for NLP related problems as it is for, for ex-
ample, computer vision or genome data. Despite language being very rich in
features (there are many different words in any language) it is a very different
problem. Contrary to other applications, in language features can be already
very descriptive of reality. If the word motorcycle appears in a document, that
feature alone is already quite informative as to the contents of the document.
In the case of computer vision, a single red pixel is not at all informative in
relation to the object shown. In the case of genome data, a single base-pair is
not informative in relation to the higher structure of the gene. This effect might
account for the fact that more than one layer of neural networks (or, in the case
of LSI, a single SVD) is enough to capture abstract concepts of language.

6.7 Future Work

The results of the DBN search engine do not promise to be an improvement
over conventional methods of search. However, there are some questions that
this research leaves unanswered, that could lead to future research. The first
interesting follow up question would be how the DBN search would perform on a
huge database. For sitesearch solutions the DBN does not show to be useful, but
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for searching the internet, billions and billions of indexed pages, deep learning
might prove to be a more powerful tool.

The second subject of recommended future research is that the autoassocia-
tor might prove useful still. It was not the focus of this research, and thus did
not see a lot of experimental exploration. However, there are many parameters,
such as the activation function and learning rate that could be varied to poten-
tially be a success. The autoassociator is a shallow method for dimensionality
reduction, and should not be bothered by the relatively small size of the dataset.

51



CHAPTER 6. CONCLUSION AND FUTURE WORK

Appendix

A Broad Experiment Queries

Query Accepted newsgroups

baseball rec.sport.baseball

motorcycle rec.motorcycles

electronics sci.electronics

hockey rec.sport.hockey

windows
comp.os.ms-windows.misc

comp.windows.x

atheism alt.atheism

graphics comp.graphics

ibm comp.sys.ibm.pc.hardware

auto rec.autos

mac comp.sys.mac.hardware

cryptography sci.crypt

medicine sci.med

space sci.space

christianity soc.religion.christian

guns talk.politics.guns

religion
talk.religion.misc

soc.religion.christian

politics
talk.politics.misc

talk.politics.mideast

talk.politics.guns

sports
rec.sport.baseball

rec.sport.hockey

computer

comp.os.ms-windows.misc

comp.windows.x

comp.graphics

comp.sys.ibm.pc.hardware

comp.sys.mac.hardware

sale misc.forsale
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B Narrow Experiment Queries

Query Accepted documents

evolution "51139", "53061", "53433", "53610", "83599"

rendering "37916", "38674", "38788", "38843", "38853"

alarm "76441", "102914", "103667", "103723"

wheelie "104387", "104639", "104752", "104217", "105220", "105249"

apple "52155", "52190", "52214", "52248", "68012"

prediction
"102606", "102649", "104385", "105039",

"53540", "59154", "20491", "53564"

password "15413", "15482", "15868", "54010"

mask "53862", "53961", "38375", "54010"

surgery "59424", "59456"

placebo "58951", "59076", "59579"

moon
"60821", "60950", "60976", "60995", "61066", "61087",

"61118", "61253", "61272", "61318", "61484"

radar
"52794", "53872", "54041", "54248", "76117", "76795",

"102733", "102852", "103141", "103497", "103680", "61253"
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[7] D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. Mitosis
detection in breast cancer histology images with deep neural networks. In
Medical Image Computing and Computer-Assisted Intervention–MICCAI,
pages 411–418. Springer, 2013.

[8] R. Collobert and J. Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings
of the 25th international conference on Machine learning, pages 160–167.
ACM, 2008.

54



BIBLIOGRAPHY

[9] C. Cortes and V. Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[10] G. E. Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition. Au-
dio, Speech, and Language Processing, IEEE Transactions on, 20(1):30–42,
2012.

[11] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.
Harshman. Indexing by latent semantic analysis. Journal of the Association
for Information Science and Technology, 41(6):391–407, 1990.

[12] K. Fukushima. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological
cybernetics, 36(4):193–202, 1980.

[13] K. Gurney. An introduction to neural networks. CRC press, 1997.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image
Recognition. ArXiv e-prints, Dec. 2015.

[15] G. Hinton. A practical guide to training restricted Boltzmann machines.
Momentum, 9(1):926, 2010.

[16] G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527–1554, 2006.

[17] G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507, 2006.

[18] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov. Improving neural networks by preventing co-adaptation
of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[19] I. Jolliffe. Principal component analysis. Wiley Online Library, 2002.

[20] A. Kontostathis. Essential dimensions of latent semantic indexing (LSI). In
Hawaii International Conference on System Sciences, page 73. IEEE, 2007.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

55



BIBLIOGRAPHY

[22] K. Lang. Newsweeder: Learning to filter netnews. In Proceedings of the
12th international conference on machine learning, pages 331–339, 1995.

[23] Y. LeCun and Y. Bengio. Convolutional networks for images, speech,
and time series. The handbook of brain theory and neural networks,
3361(10):1995, 1995.

[24] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[25] X. Lin, D. Soergel, and G. Marchionini. A self-organizing semantic map for
information retrieval. In Proceedings of the 14th annual international ACM
SIGIR conference on Research and development in information retrieval,
pages 262–269, 1991.

[26] H. P. Luhn. A statistical approach to mechanized encoding and searching of
literary information. IBM Journal of research and development, 1(4):309–
317, 1957.

[27] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information
retrieval, volume 1. Cambridge university press Cambridge, 2008.

[28] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation
ranking: Bringing order to the web. Technical Report 66, November 1999.

[29] J. J. Rocchio. Relevance feedback in information retrieval. The SMART
system-experiments in automatic document processing, pages 313–323, 1971.

[30] B. Rosario. Latent semantic indexing: An overview. Techn. rep. INFOSYS,
240, 2000.

[31] F. Rosenblatt. Perceptrons and the theory of brain mechanisms. Spartan
Books, 1962.

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Ima-
geNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

[33] G. Salton and C.-S. Yang. On the specification of term values in automatic
indexing. Journal of documentation, 29(4):351–372, 1973.

56



BIBLIOGRAPHY

[34] M. Sanderson and W. B. Croft. The history of information retrieval re-
search. Proceedings of the IEEE, 100(Special Centennial Issue):1444–1451,
2012.

[35] R. Sarikaya, G. E. Hinton, and A. Deoras. Application of deep belief net-
works for natural language understanding. Audio, Speech, and Language
Processing, IEEE/ACM Transactions on, 22(4):778–784, 2014.

[36] H. Schulz, A. Müller, and S. Behnke. Investigating convergence of restricted
Boltzmann machine learning. In NIPS Workshop on Deep Learning and
Unsupervised Feature Learning, 2010.

[37] F. Sebastiani. Machine learning in automated text categorization. ACM
computing surveys (CSUR), 34(1):1–47, 2002.

[38] T. Seymour, D. Frantsvog, and S. Kumar. History of search engines.
International Journal of Management & Information Systems (IJMIS),
15(4):47–58, 2011.

[39] P. Smolensky. Information processing in dynamical systems: Foundations
of harmony theory. DTIC Document, 1986.

[40] K. Sparck Jones. A statistical interpretation of term specificity and its
application in retrieval. Journal of documentation, 28(1):11–21, 1972.

[41] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[42] I. Sutskever, J. Martens, and G. E. Hinton. Generating text with recurrent
neural networks. In Proceedings of the 28th International Conference on
Machine Learning (ICML-11), pages 1017–1024, 2011.

[43] P. Switzer. Vector images in document retrieval. Statistical association
methods for mechanized documentation, pages 163–171, 1965.

[44] K. Y. Tam and M. Y. Kiang. Managerial applications of neural networks:
the case of bank failure predictions. Management science, 38(7):926–947,
1992.

[45] M. Taube, C. Gull, and I. S. Wachtel. Unit terms in coordinate indexing.
American documentation, 3(4):213–218, 1952.

57



BIBLIOGRAPHY

[46] J. V. Tu. Advantages and disadvantages of using artificial neural networks
versus logistic regression for predicting medical outcomes. Journal of clin-
ical epidemiology, 49(11):1225–1231, 1996.

58


