
The Neural-SIFT Feature Descriptor for
Visual Vocabulary Object Recognition

Sybren Jansen
December 21, 2014

Master Thesis
Artificial Intelligence

University of Groningen, The Netherlands

First supervisor:
Dr. Marco Wiering (Artificial Intelligence, University of Groningen)

Second supervisor:
MSc. Amirhosein Shantia (Artificial Intelligence, University of Groningen)



Abstract

In computer vision, one area of research which receives a lot of attention is
recognizing the semantic content of an image. It’s a challenging problem where
varying pose, occlusion, scale and differing light conditions affect the ease of
recognition. A common approach is to extract local feature descriptors from
images and attach object class labels to them, but choosing the best type of
feature to use is still an open problem. Some use deep learning methods to
learn to create features during training. Others apply local image descriptors
to extract features from an image. In most cases these algorithms show good
performance, however, the downside of these type of algorithms is that they are
not trainable by design. After training there is no feedback loop to update the
type of features to extract, while there possibly could be room for improvement.

In this thesis, a continuous deep neural network feedback system is pro-
posed, which consists of an adaptive neural network feature descriptor, the
bag of visual words approach, and a neural classifier. Two initialization meth-
ods for the neural network feature descriptor were compared, one where it
was trained on the popular Scale Invariant Feature Transform (SIFT) descriptor
output, and one where it was randomly initialized. After initial training, the
system propagates the classification error from the neural network classifier
through the entire pipeline, updating not only the classifier itself, but also the
type of features to extract. The feature descriptor, before and after additional
training, was also applied using a support vector machine (SVM) classifier to
test for generalizability.

Results show that for both initialization methods the feedback system in-
creased accuracy substantially when regular training was not able to increase it
any further. The proposed neural-SIFT feature descriptor performs better than
the SIFT descriptor itself even with limited number of training instances. Ini-
tializing on an existing feature descriptor is beneficial when not a lot of training
samples are available. However, when there are a lot of training samples avail-
able the system is able to construct a well-performing feature descriptor when
starting in a random state, solely based on classifier feedback. The improved
feature descriptor did not only show improved performance in the setting in
which it was trained, but also while using an SVM classifier. However, the im-
provements were small and were only demonstrated with one other classifier.
Therefore, more experiments are needed to get a better grip on the generaliz-
ability of the improved descriptor.





Contents

1 Introduction 5

1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Bag-of-words . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.4 Classification approaches . . . . . . . . . . . . . . . . . . . 8

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Theoretical background 11

2.1 Artificial neural networks . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 The perceptron . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 The multilayer perceptron . . . . . . . . . . . . . . . . . . . 13

2.1.3 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 Resilient propagation (RPROP) . . . . . . . . . . . . . . . . 20

2.1.5 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Scale invariant feature transform (SIFT) . . . . . . . . . . . . . . . 22

2.2.1 Assigning keypoint orientation . . . . . . . . . . . . . . . . 23

2.2.2 Descriptor computation . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Bag of visual words . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 k-means clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Accelerated k-means clustering . . . . . . . . . . . . . . . . 24

2.4.2 k-means initialization . . . . . . . . . . . . . . . . . . . . . 25

2.4.3 Empty clusters . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Support vector machines . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 RBF kernel parameters . . . . . . . . . . . . . . . . . . . . . 27

3 Methods 29

3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Neural-SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Network topology . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Training the network . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Bag of visual words . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Creating the image histogram . . . . . . . . . . . . . . . . 32

3.4 Neural classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Network topology . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 Training the network . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Full backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Neural classifier . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.2 Bag of visual words . . . . . . . . . . . . . . . . . . . . . . 37

3.5.3 Neural-SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.4 Training procedure . . . . . . . . . . . . . . . . . . . . . . . 39

3



Contents

4 Experiments & results 41

4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Caltech-101 . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Corel-1k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Training without full backpropagation . . . . . . . . . . . . . . . . 43

4.2.1 Neural-SIFT feature descriptor . . . . . . . . . . . . . . . . 43

4.2.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.3 Neural classifier . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.4 Neural-SIFT versus the SIFT descriptor . . . . . . . . . . . 46

4.3 Full backpropagation training . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Single iteration . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 Multiple iterations . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.3 Improved neural-SIFT versus the SIFT descriptor . . . . . 52

4.3.4 Confusion matrices . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Random descriptor initialization . . . . . . . . . . . . . . . . . . . 56

4.4.1 System settings . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.2 Results without full backpropagation . . . . . . . . . . . . 56

4.4.3 Full backpropagation training . . . . . . . . . . . . . . . . 57

4.4.4 Improved neural-RANDOM versus improved neural-SIFT 58

4.5 Generalizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 SVM classifier . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Conclusion & further work 61

5.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Full backpropagation . . . . . . . . . . . . . . . . . . . . . 61

5.1.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.3 Generalizability . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4



1Introduction

One of the most challenging problems in computer vision is to recognize the
semantic content of an image. This is especially the case in situations where
objects vary in pose, where there is occlusion, and where differing light con-
ditions are present. Detecting the contents of an image (e.g., visible objects or
scene category) is an important task in image retrieval and robotics, among
others.

In image retrieval tasks, a search query is given and images containing
this query should be reported back. Such systems could be very useful, for
example, in medical diagnosis. Apart from aiding doctors you could take a
picture at home of some skin disease you have and run it through a database.
Similar photos will show up which tells you what the disease might be and if
you should call a doctor or go to the nearest hospital as soon as possible.

For robotics, localization is one of the most fundamental problems. Without
this, a robot does not know how to go to a certain place when ordered to do
so. This is identical to when we humans do not know how to get home when
we’re in a deserted place which we do not recognize. Scene recognition can
help a robot localize itself [12, 8]. Additionally, a lot of tasks for a robot involve
manipulating certain objects (e.g., bringing coffee or finding emergency buttons
in residential care homes). Without knowing which object is which, the robot
has a hard time performing any of these tasks.

A common approach to object recognition in complex and changing envi-
ronments is to extract local feature descriptors from images and attach object
class labels to them [44]. Given the extracted features from a test image, these
are then matched against features from each class. When there are enough
matching features for an object class in a test image, that specific class is de-
tected.

Finding the best features is still an open problem in computer vision. Some
have used deep learning architectures to learn to create features during train-
ing [25, 28]. Other methods include extracting features using fixed algorithms.
Such algorithms have shown to give good performance in many applications
[2, 10, 17, 26, 36, 40], however, the downside of these type of algorithms is that
they are not trainable by design. After training there is no feedback loop from
the classifier to the feature extraction stage to update the type of features to
extract, while there possibly could be room for improvement.

This thesis proposes a continuous feedback system to improve existing fea-
ture descriptors. To create a trainable feature descriptor a fixed algorithm has
to be made trainable. For this purpose, trainable feature descriptors like arti-
ficial neural networks can be applied and initially trained on such descriptors.
The popular Scale Invariant Feature Transform (SIFT) algorithm [30] will be
used for this purpose. Based on this trainable network (termed ‘neural-SIFT’),
the bag of visual words approach and a neural network classifier, a system is
proposed which allows for the classification error to be propagated all the way
back to the feature extraction network (termed ‘full backpropagation’), which
in turn tries to improve its feature extraction capabilities.

5



1.1. Related work Chapter 1. Introduction

1.1 Related work

1.1.1 Deep learning

Deep learning architectures (e.g., employed in [20, 28, 46]) have recently become
one of to the most common used systems in image classification tasks. One of
the most classic architectures for deep learning are artificial neural networks.
Generally, deep learning architectures involve modeling high-level abstractions
in data by using multiple non-linear transformations. The most common ab-
straction in an image is the object to be recognized. Deep learning architectures
can also model intermediate levels such as the edges, corners or shape of an
object. This abstraction level is usually referred to as feature extraction. Based
on these extracted features the final abstraction can be made towards the object
class.

1.1.2 Feature extraction

A simple approach for object recognition is to use global features like color
histograms [42]. However, global features lack the power to distinguish be-
tween foreground and background objects. Color histograms also suffer from
differing light conditions which causes the performance to drop significantly.
Nowadays, a more common approach is the use of local descriptive features.
Such a feature could represent a certain shape or curve in the image. The actual
content of the feature, however, is not really relevant. According to Tuytelaars
and Mikolajczyk, the ideal local feature should be distinctive, invariant, and
robust [44]. These properties are closely related, if a feature is more invariant it
generally leads to a reduced distinctiveness. If a feature must be more robust,
typically some information is disregarded and therefore the feature can become
less distinctive.

There has been extensive research proposing different local descriptors. One
of the most popular descriptors is the Scale Invariant Feature Transform (SIFT)
[30] (see Section 2.2). A comprehensive study comparing multiple local features
on differing image transformations showed that the SIFT descriptor performed
as one of the best [33]. Typically, SIFT detects salient keypoint regions, which
correspond to parts in the image containing relevant information, and extracts
a feature vector from each of these regions. Another method is to replace
keypoints with a fixed partitioning scheme so that the whole image content
is represented. Features can then be extracted from each image patch (e.g.,
used in [1, 3, 7]). Abdullah et al. compared both schemes and found that they
perform similarly well [3].

Some have tried to use machine learning techniques to learn and extract
local features from training images. One of these techniques involves using
artificial neural networks (ANNs), which have been successfully applied to de-
tect edges [41], corners [43], and other features. These ANNs can also be used
as deep learning architectures by themselves when composed of multiple lay-
ers, for example, in character recognition [14]. One advantage of using neural
networks with several hidden layers is that they can perform any non-linear
feature extraction. As a downside, though, neural networks suffer from having
no statistical basis, the network will behave like a black box after training [15].

For classification, one approach is to extract features from the test image
and compare these with every feature from every known object class. One
can imagine that the computation time needed for this approach increases very

6



Chapter 1. Introduction 1.1. Related work

rapidly as the number of classes and number of extracted features increases.
As with SIFT, a single keypoint results in a 128-dimensional feature vector and
depending on the number of scales used, a typical image can contain between
1000-3000 keypoints [30]. Detecting the keypoints at different scales and match-
ing the keypoints consumes a lot of computation time. There are alternatives
that show similar performance and are faster in terms of computation. One of
them is the Speeded Up Robust Features (SURF) algorithm [6]. This algorithm
is more suitable for real time image processing, but it performs less well than
the SIFT algorithm regarding accuracy [24].

1.1.3 Bag-of-words

Another type of matching is inspired by the bag-of-words method frequently
used in text classification [23, 29]. In text classification, word frequency in-
formation is gathered and stored in a histogram. Based on this histogram, a
classifier can determine the semantic context of the text. Apparently, there
are specific words that have high indicative power for certain contexts. Sivic
and Zisserman proposed to use this for the visual domain as well, which has
been shown to work surprisingly well in image classification and categorization
[2, 10, 17, 26, 34, 36, 37, 40, 47].

Terms like bag-of-keypatches [10] and bag-of-visterms [34] have been used
to make the distinction for computer vision applications. The idea is to clus-
ter the extracted features from training images to obtain visual codebooks or
visual keywords. As a result, these visual keywords represent similar features.
The extracted features from a given test image are then matched to the visual
keywords and the frequency of matches per cluster is stored in a histogram.
This histogram is then used as input for a classifier.

The counting of matches per cluster is called the hard bag-of-features ap-
proach [40], as it is employing a hard assignment scheme: a single feature has
only one closest cluster. Other methods using a soft assignment approach to
construct a histogram have been introduced. These approaches give weights to
multiple clusters which are close to a feature. Weights can be given by ranking
nearest neighbors by distance [22] (i.e., the lower the distance, the higher the
rank and the higher the weight), or using the distances itself [38, 45].

Histograms have the advantage of simplicity and computational efficiency,
but ignore any spatial information in the image, information which could be of
potential use. It is then also highly surprising that this method shows such
great results, even under challenging real-world conditions including intra-
class variations and background clutter [10, 47]. Sivic and Zisserman even
showed the strength of this method in object and scene retrieval in videos [40].
Zhang et al. researched the effect of possible ‘hints’ in background features as
some scenario background features are not entirely uncorrelated from the fore-
ground (e.g., cars are usually on a road and a boat is usually found on water)
[47]. Despite these correlations, using additional background information does
not improve performance, the features extracted from the object itself play the
key part in recognition.

The lack of spatial information has been addressed by using so-called spa-
tial pyramids, first introduced by Grauman and Darrell [18] and later adopted
to use with the bag of visual words approach by Lazebnik et al. [26]. The idea
behind this is to divide the image into multiple regions and create a histogram
for each of them. Spatial information can be captured by combining these his-
tograms to form a set of histograms (e.g., by concatenation). This approach can

7



1.2. Research questions Chapter 1. Introduction

be applied at different resolutions to create an even richer representation of an
image. It is shown that this method can often outperform the single histogram
approach [7, 18, 19, 26].

Multiple approaches to clustering the visual keywords have been proposed,
some have used k-means clustering [10, 40], some have used Gaussian mixture
models (GMMs) [17, 37]. k-means clustering [31] provides a hard assignment
scheme, while with GMMs a soft assignment scheme is used, where a single
feature can belong to multiple clusters. Abdullah et al. compared multiple soft
assignment schemes with the traditional hard assignment scheme [2], their soft
assignment approaches perform significantly better than the hard method.

1.1.4 Classification approaches

For the last stage, classification, numerous methods are available. One very
popular method in classifying histograms of visual keywords is the Support
Vector Machine (SVM) [9] used by [2, 10, 17, 26, 34, 36, 37, 47]. Abdullah et al.
also tried k-nearest neighbors (k-nn) as classifier, but showed that SVMs sig-
nificantly outperform the k-nn method [2]. Another approach is to use neural
networks. Egmont-Petersen et al. provides an extensive overview of different
types of neural networks used in this scope [15].

1.2 Research questions

The main challenge of this thesis is to create a modular object recognition sys-
tem which can learn from its mistakes. Based on neural networks and an adap-
tation of the bag-of-words approach to the visual domain, the system should
learn, based on the classification error, to extract ‘better’ features than the initial
local image descriptor. Better features in the sense that these features should
be more distinctive, in a way to achieve higher recognition accuracy. To sum
up the goal of this thesis, in the conclusion of their review of more than 250

research papers on image processing with neural networks, Egmont-Petersen
et al. state:

A true challenge is to use ANNs [artificial neural networks] as building
blocks in large, adaptive systems consisting of collaborating modules. Such
an adaptive system should be able to control each module and propagate
feedback from the highest level (e.g., object detection) to the lowest level
(e.g., preprocessing). (Egmont-Petersen et al., 2293)

The focus of this thesis is not on achieving the highest recognition accuracy
possible, but rather to improve recognition results by training the feature ex-
traction system based on the classification error. The main question is: Will
this learning process be able to improve the feature descriptor in a way that the
whole system achieves a higher recognition accuracy? An important follow up
question is whether or not this improved feature descriptor will be generaliz-
able to other classification systems (e.g., by using a support vector machine as
classifier), or if it is optimized specifically for the system at hand. If this would
not be the case the entire error propagation pipeline would need to be applied
to each new setting, which would be far from ideal.

Another goal of this thesis is to investigate the role of initializing the fea-
ture extraction system on the output given by an existing feature descriptor. As
mentioned above, artificial neural networks will be used in this system. Initial-
izing a neural network to an underlying feature extraction function can take

8



Chapter 1. Introduction 1.3. Outline

quite some learning time. If the system would be able to learn itself to extract
good features when starting in a random state, this would save training time
and time investigated in choosing an appropriate feature descriptor to train on.

These objectives lead to the following research questions:

1. Can training the feature descriptor based on the classification error im-
prove recognition results?

(a) What is the recognition accuracy before and after applying the addi-
tional training step?

(b) Will retraining the vocabulary and classifier help improve results
even further?

2. Can the system come up with a good feature descriptor without initializ-
ing on an existing one?

(a) What is the recognition accuracy after applying full backpropagation
when starting with a random feature descriptor compared to the ac-
curacy achieved when initializing on an existing feature descriptor?

3. Is the improved feature descriptor generalizable to other recognition sys-
tems?

(a) What is the recognition accuracy based on the original and addition-
ally trained feature descriptor while using an SVM classifier?

1.3 Outline

In Chapter 2, the theoretical background of the techniques used in this thesis
are described in detail. It starts off with an introduction to object recognition
in general, after which individual techniques are further explained. Chapter 3

reports on the individual stages of the proposed system (Sections 3.1-3.4) and
the derived training steps (Section 3.5). The experimental setup, the perfor-
mance of the system, and a discussion regarding the results are presented in
Chapter 4. Chapter 5 concludes this thesis, where the research questions will
be answered and possible future work is presented.

9





2Theoretical background

Object recognition systems are often designed using the same underlying pipe-
line. Usually, the first step is to normalize the images to suit the needs of the
system. In this preprocessing stage, images can be transformed to an appro-
priate resolution, noise can be reduced, or color space transformations can be
applied, amongst other steps. In the next step, features are extracted in the
feature extraction stage. The goal here is to reduce the amount of information
present in the image, but still make the extracted information as distinctive for
the image as possible. Some systems have an intermediate step transforming or
grouping together features to make a final representation of the image. Finally,
in the classification stage, a classifier is used which tries to recognize objects
based on the extracted features.

In this chapter, the basic techniques used for the proposed system are de-
scribed in detail. Because an adaptive feature extraction system is required,
artificial neural networks, or just neural networks for short, seem to be an ideal
tool. The basics of neural networks are described in Section 2.1. These net-
works can be trained beforehand on a variety of target functions. One example
of a target function could be a local image descriptor, which takes a region of
the image as input and transforms it to a feature description. As mentioned in
Section 1.1, even though the SURF algorithm [6] is computationally less expen-
sive compared to the SIFT algorithm [30], the SIFT algorithm provides better
accuracy [24]. The type of target function for neural networks does not change
the required computation time, the topology of the network is the determining
factor. Therefore, the SIFT keypoint descriptor will be the target function to
train on and is described in Section 2.2.

The bag-of-words approach is adapted for the use in the visual domain
(Section 2.3). Because no clear ‘words’ exist in the visual domain, a clustering
procedure is used to determine the visual vocabulary of words. Although soft
assignment approaches, like Gaussian mixture models (GMMs), have shown to
give better results than hard assignment approaches (e.g., k-means clustering)
[2], the computational time needed to train GMMs is much higher than the
more simple k-means models. GMMs are typically trained using maximum
likelihood estimation (MLE) [13], which requires calculating the full covariance
matrix for each cluster. When using the SIFT descriptor this translates to a
matrix of size 128× 128. Perronnin et al. [37] proposed to use diagonal instead
of full covariance matrices for two reasons:

(1) any distribution can be approximated by a weighted sum of Gaussians
with diagonal covariances; and

(2) the computational costs is much lower for calculating diagonal covari-
ances.

Although this approach is much faster than the traditional one, k-means
is still much faster. Given that k-means itself is used as an initialization step
for MLE, this becomes even more evident. Because of the poor scalability of

11



2.1. Artificial neural networks Chapter 2. Theoretical background

...
Σ

x0 = +1

x1

xd

w0

w1

wd

y

Input layer Ouput layer

Figure 2.1: The basic perceptron. x1, . . . , xd are the input units, x0 is the bias unit, which
always takes the value +1, y is the output unit, and wi is the weight from xi
to the output.

Gaussian mixture models, k-means is preferred. k-means is described in more
detail in Section 2.4.

Finally, for classification a neural network will be used. Once the error
propagation is successful and an improved feature descriptor has been realized,
generalizability can be tested. As mentioned earlier, a support vector machine
classifier will be utilized for this purpose. A brief explanation of the SVM
algorithm is provided in Section 2.5.

2.1 Artificial neural networks

Artificial neural networks take their inspiration from the central nervous sys-
tems found in animals (the brain in particular). The brain is a very powerful
organ capable of massive parallel processing and is superior in vision, speech
recognition, and many other things, when compared to the artificial models
currently available. Simulating the workings of the brain can help understand
how the brain functions and can possibly lead to very powerful computer sys-
tems.

2.1.1 The perceptron

The most basic ANN is the perceptron (see Figure 2.1). It has inputs which can
come from any type of source, indicated by xi ∈ R, i = 1, . . . , d. Each input has
a corresponding weighted connection wi ∈ R to the output unit y. The output
y in the simplest case is the weighted sum of the inputs:

y =
d∑
i=1

(xiwi) +w0 (2.1)

x0 is the bias unit and always takes the value +1. This bias unit makes the
model more general. If there was no bias unit and the inputs were all zero the
network’s output would be zero as well, which might not always be the desired
behavior.

The perceptron in its current form can be used to learn linear functions.
When d = 1, the network can learn a basic line with slope w1 and intercept w0.

12



Chapter 2. Theoretical background 2.1. Artificial neural networks

By adding more inputs the line becomes a plane or a hyperplane and can learn
multivariate linear lines.

Apart from regression problems the perceptron can also learn linear dis-
criminant functions to separate two or more classes with a threshold function,
for example:

y(a) =

{
1 if a > 0

0 otherwise
, (2.2)

where a is the weighted sum of inputs. When dealing with only two classes
a single output unit can be used. Because the output is linear, the classes to
separate should be linearly separable. In the case of more than two classes
more than one output unit should be used. Each output unit then acts as a
one-versus-all threshold function. In the case that the posterior probability
is required a sigmoid function can be used for two classes, like the logistic
function:

y =
1

1 + exp(−a)
, (2.3)

or the softmax function for more than two classes:

yi =
exp(ai)∑
k exp(ak)

, (2.4)

where k is the number of classes.

2.1.2 The multilayer perceptron

When the target function to be learned is nonlinear a simple perceptron won’t
suffice. A famous nonlinear function is the XOR function. This function takes
two inputs and has a single output unit. Because of the linear nature of the
perceptron it fails in fitting this function. To overcome this problem the network
should introduce some kind of nonlinearity.

In Figure 2.2, the structure of a multilayer perceptron is given. For this
network a hidden layer is introduced which, as with the input layer, has its
own bias unit h0, with value +1. This network can be thought of as multiple
layers of perceptrons stacked onto each other. The first layer of perceptrons
have x as the input and h as the output vector. The second layer has h as the
input and y as the output vector.

If the output of a hidden unit were to be calculated in the same way as the
output of an output unit in a basic perceptron, this network would still not
be able to solve nonlinear functions. Combining multiple linear functions in
a linear fashion results in just another linear function. Therefore, nonlinearity
is introduced by applying a sigmoid-like function to the hidden units’ output.
This sigmoid function is also necessary for gradient-based learning as these
kind of functions are differentiable (hard threshold functions are not). The
sigmoid function was already provided earlier in Eq. (2.3), but there are other
nonlinear activation functions available. The sigmoid function’s output has
a range of [0,+1], the hyperbolic tangent function, for example, ranges from
[−1,+1].

A multilayer perceptron can have as many hidden units or hidden layers
as needed, but more than one hidden layer is generally not necessary as any
continuous function can be fitted using a single hidden layer with a sufficient
number of units [11].

13



2.1. Artificial neural networks Chapter 2. Theoretical background

...

Σ

...

Σ

...

Σ

...

Σ

...

x0 = +1

x1

xd

h0 = +1

h1

hh

y1

yk

Input layer Hidden layer Ouput layer

w v

Figure 2.2: The multilayer perceptron. x1, . . . , xd are the input units, x0 is the bias unit
for the input layer, which always takes the value +1, h1, . . . , hh are the hid-
den units, h0 is the bias unit for the hidden layer, which always takes the
value +1 as well, w is the weight vector from the input to the hidden units,
y1, . . . , yk are the output units, and v is the weight vector from the hidden
to the output units.

2.1.3 Backpropagation

The parameters of a multilayer perceptron with one hidden layer, from now on
referred to as a neural network, are the weight vectors w and v. These weights
need to be trained in order to approximate the target function. A common
learning algorithm for neural networks is the backpropagation algorithm [32].
The idea behind this is to compute the error in the output layer using some
predetermined error function and propagate that error back to the weights and
use this information to update the weights in the correct direction. Gradient
descent is used to update the weight vectors.

Two basic techniques for training are online and batch training. For online
learning, the network updates its parameters after each instance that is pre-
sented, based on the error of that instance. For batch training, the weights are
updated only once, based on the mean error of all instances.

The mean square error (MSE) is usually used as the error term for regression
problems:

E(w, v|x) =
1

2P

P∑
p=1

O∑
i=1

(rpi − y
p
i )2, (2.5)

where w and v are the weight vectors for the hidden and output layer,
respectively, x is the input vector, P is the number of input patterns, O is the
number of output units, rpi is the target output and ypi is the calculated output
for a pattern p for the i-th output unit.

14



Chapter 2. Theoretical background 2.1. Artificial neural networks

Σ

vij
bj

hi

yj

Figure 2.3: Part of a neural network showing the influence of a single weight vij on the
output yj.

Equation (2.5) is the error term that is used for batch learning, for online
learning the weights of the network are updated after presenting each pattern,
therefore the error function to minimize is simplified to

Ep(w, v|xp) =
1

2

O∑
i=1

(rpi − y
p
i )2 (2.6)

For brevity, the superscript p is omitted in the remainder of this thesis.

Updating the weight vector v

To calculate the error with respect to the weights v, the partial derivative of the
error E with respect to v is derived. In Figure 2.3, a part of a neural network
is shown which shows the influence of a single weight vij on the output. Here,
bj is added for completeness, being the weighted sum of the hidden layer
activations with respect to output node yj. For the activation function the
symbol σwill be used for the time being as the type of function to use can differ
among various setups. The chain rule is used to derive the partial derivative:

∂E

∂vij
=
∂E

∂yj

∂yj

∂bj

∂bj

∂vij
(2.7)

The derivation is made for the online variant, after which the update rules
for batch training are derived:

∂E

∂yj
=

∂

∂yj

[
1

2

O∑
i=1

(ri − yi)2

]
= −(rj − yj) (2.8)

∂yj

∂bj
=

∂

∂bj

[
σ(bj)

]
= σ ′(bj) (2.9)

∂bj

∂vij
=

∂

∂vij

(
h∑
k=1

hkvkj

)
= hi (2.10)

By combining the intermediate results the error for a single weight becomes:

∂E

∂vij
= −(rj − yj)σ ′(bj)hi (2.11)

Now the update rule can be constructed using gradient descent:

∆vij = −α
∂E

∂vij

= α(rj − yj)σ ′(bj)hi, (2.12)

where α is the learning rate.

15



2.1. Artificial neural networks Chapter 2. Theoretical background

Σ

Σ

...
Σ

...

xi
wij

aj
vj1

vjO

b1

bO

hj

y1

yO

Figure 2.4: Part of a neural network diagram showing the influence of a single weight
wij on the output y.

For batch learning the update rule can be implemented by calculating the
weight updates for each pattern, updating the weights only once by the mean
of the weight updates.

Updating the weight vector w

The update rule for the weight vectorw can be derived in a similar way, but the
influence of these weights are bigger than those of the second layer. Therefore,
the update rule needs to take into account the influence of the weight to all
output nodes, see Fig. 2.4 (aj is added for completeness which corresponds to
the weighted sum with respect to hidden unit hj). For the activation function
in the hidden layer the symbol τ is used. Again, for online learning the weights
are updated one by one:

∂E

∂wij
=
O∑
k=1

(
∂E

∂yk

∂yk
∂bk

∂bk
∂hj

)
∂hj

∂aj

∂aj

∂wij
(2.13)

∂E

∂yk
=

∂

∂yk

[
1

2

O∑
l=1

(rl − yl)2

]
= −(rk − yk) (2.14)

∂yk
∂bk

=
∂

∂bk
[σ(bk)] = σ ′(bk) (2.15)

∂bk
∂hj

=
∂

∂hj

(
h∑
l=1

hlvlk

)
= vjk (2.16)

∂hj

∂aj
=

∂

∂aj

[
τ(aj)

]
= τ ′(aj) (2.17)

∂aj

∂wij
=

∂

∂wij

(
h∑
k=d

xkwkj

)
= xi (2.18)

When combining the intermediate results the derivative of the error for a
single weight becomes:

∂E

∂wij
= −τ ′(aj)xi

O∑
k=1

(rk − yk)σ ′(bk)vjk (2.19)

16



Chapter 2. Theoretical background 2.1. Artificial neural networks

Σ

Σ

...
Σ

...

xi
wij

aj
vj1

vjO

b1

bO

hj

y1

yO

Figure 2.5: Part of a neural network diagram with the softmax activation function at the
output layer showing the influence of a single weight wij on the output y.

Now the update rule can be constructed using gradient descent:

∆wij = −α
∂E

∂wij

= ατ ′(aj)xi
O∑
k=1

(rk − yk)σ ′(bk)vjk (2.20)

For batch training again the weights are updated only once based on the
mean error.

Softmax & cross-entropy

As mentioned before, the softmax function is often utilized for multiclass dis-
criminant functions, given by Eq. (2.4). Together with the softmax activation
function, instead of using the mean square error (MSE) measure, the cross-
entropy error function is often used:

Ece(w, v|x) = −

O∑
i=1

ri logyi, (2.21)

The update rules can be inferred in a similar way as with a neural network
using the MSE function, but with the adaptation of using the softmax and
cross-entropy functions:

∂Ece

∂vij
=
O∑
k=1

(
∂Ece

∂yk

∂yk
∂bj

)
∂bj

∂vij
(2.22)

∂Ece

∂wij
=
O∑
l=1

[
O∑
k=1

(
∂Ece

∂yk

∂yk
∂bl

)
∂bl
∂hj

]
∂hj

∂aj

∂aj

∂wij
(2.23)

Note the additional summation in these update rules. This is because the
activation function used in the output layer depends on all weighted sums (see
Fig. 2.5).

As it turns out, the derivation from the error towards bi is rather mathemat-
ically convenient. The first part of Eq. (2.22) consists of two cases, one where

17



2.1. Artificial neural networks Chapter 2. Theoretical background

k = j and one where k 6= j. For Eq. (2.23) this corresponds to k = l and k 6= l, re-
spectively. Both cases are derived individually for Eq. (2.22) and later adapted
for Eq. (2.23):

∂Ece

∂yk
=

∂

∂yk

(
−

O∑
l=1

rl logyl

)
= −

rk
yk

(2.24)

For k = j:

∂yk
∂bk

=
∂

∂bk

(
ebk∑O
i=1
ebi

)
(2.25)

For this derivation the quotient rule is used:

if f(x) =
g(x)
h(x)

, then f ′(x) =
g ′(x)h(x) − g(x)h ′(x)

[h(x)]2
(2.26)

Substituting Eq. (2.25) into (2.26) results in:

g(bk) = ebk , g ′(bk) = ebk (2.27)

h(bk) =
O∑
i=1

ebi , h ′(bk) = ebk (2.28)

Plugging these in gives:

∂yk
∂bk

=
ebk
∑O
i=1
ebi − ebkebk(∑O
i=1
ebi
)

2

=
ebk
∑O
i=1
ebi∑O

i=1
ebi
∑O
i=1
ebi

−
ebkebk∑O

i=1
ebi
∑O
i=1
ebi

=
ebk∑O
i=1
ebi

−
ebk∑O
i=1
ebi

ebk∑O
i=1
ebi

= yk − ykyk (2.29)

18



Chapter 2. Theoretical background 2.1. Artificial neural networks

For k 6= j:

∂yk
∂bj

=
∂

∂bj

(
ebk∑O
i=1
ebi

)

=
∂

∂bj

ebk ( O∑
i=1

ebi

)−1


= ebk ∗−

(
O∑
i=1

ebi

)−2

ebj

= −
ebkebj(∑O
i=1
ebi
)

2

= −
ebk∑O
i=1
ebi

ebj∑O
i=1
ebi

= −ykyj (2.30)

Both cases can be combined using the Kronecker delta function:

∂yk
∂bj

= yk(δj,k − yj), (2.31)

where the Kronecker delta function is defined as:

δi,j =

{
0 if i 6= j
1 if i = j

(2.32)

Combining these derivations leads to:

O∑
k=1

(
∂Ece

∂yk

∂yk
∂bj

)
=

O∑
k=1

−
rk
yk
yk(δj,k − yj)

=
O∑
k=1

−rk(δj,k − yj)

=
O∑
k=1

(rkyj − rkδj,k)

=

(
O∑
k=1

rk

)
yj − rj

= yj − rj (2.33)

where
∑O
k=1

rk = 1, as each image only has one corresponding object label.
The update rules become:

∆vij = −α
∂Ece

∂vij

= −α(yj − rj)hi
= α(rj − yj)hi (2.34)

for the second layer of weights, and

19



2.1. Artificial neural networks Chapter 2. Theoretical background

∆wij = −α
∂Ece

∂wij

= ατ ′(aj)xi
O∑
k=1

(rk − yk)vjk (2.35)

for the first layer of weights.

2.1.4 Resilient propagation (RPROP)

Resilient propagation (RPROP) is a batch learning scheme which performs
adaptations on individual weight steps [39]. This training method specifies an
update value for each individual weight and updates this over time based on
the error gradient. In comparison to original batch training it shows significant
improvement in learning time [39].

RPROP does not use the gradient magnitude to compute how much to up-
date the weights, but only uses its sign. The algorithm starts with a predefined
update value ∆ij for each individual weight wij. At each iteration of training
(also called an epoch) the mean gradient of each weight is computed over all
samples. If the sign of a gradient is equal to the sign of the gradient in the pre-
vious epoch, then it seems that the weight is updated in the correct direction.
Therefore, the update value is increased by a factor η+. If, on the other hand,
the sign flips, the update constant is decreased with a factor η−:

∆(t)
ij =


η+ ∗∆(t−1)

ij , if ∂E∂wij
(t−1) ∗ ∂E

∂wij

(t)
> 0

η− ∗∆(t−1)
ij , if ∂E∂wij

(t−1) ∗ ∂E
∂wij

(t)
< 0

∆(t−1)
ij , else

(2.36)

where 0 < η− < 1 < η+

∂E
∂wij

(t)
corresponds to the error with respect to weightwij at epoch, or time,

t. Similarly ∂E
∂wij

(t−1)
corresponds to the error at epoch t− 1. Note that if these

errors are multiplied and share the same sign the result is positive, if the sign
flips the result is negative.

The update values start with some initial value ∆0 and are bounded by
∆min and ∆max. Riedmiller and Braun suggests using η+ = 1.2 and η− = 0.5,
as these values provided good overall results [39].

After the update values are updated, the weight updates become:

if
∂E

∂wij

(t−1)
∗ ∂E

∂wij

(t)
> 0 then ∆w(t)

ij := −sign(
∂E

∂wij

(t)
) ∗∆(t)

ij (2.37)

if
∂E

∂wij

(t−1)
∗ ∂E

∂wij

(t)
< 0 then ∆w(t)

ij := 0 (2.38)

Variations on RPROP

RPROP knows a few adaptations of which two are RPROP+ and iRPROP+

[21]. The basic idea of RPROP+ is that if at some point the error goes up,

20



Chapter 2. Theoretical background 2.1. Artificial neural networks

it’s better to take a step back and revert the weight updates, this is called
weight-backtracking. However, this adaptation appeared to be counterproduc-
tive. iRPROP+ leans on the same idea, but with the fact that when a weight
update does not lead to a change of sign in the derivative, this update is taking
the weight closer to its optimum value and therefore does not have to be re-
verted. This leads to the following adaptation of update rule (2.38) where only
the weights are reverted that have caused changes in sign of the derivative in
case of an increase in error:

if
∂E

∂wij

(t−1)
∗ ∂E

∂wij

(t)
< 0 and E(t) > E(t−1)

then ∆w(t)
ij := −∆w(t−1)

ij

(2.39)

Of the proposed adaptations in [21] iRPROP+ yielded the best results.

2.1.5 Overfitting

Overfitting is a well-known phenomenon which applies to ANNs as well. Over-
fitting occurs when the network is trained too long on the same data or has too
many trainable parameters and as a consequence is starting to follow the train
data too closely, losing any generalizability.

A common approach to learning is to divide the training set into a train,
validation and a test set. The network is trained on the train data and every so
many epochs the network is validated on the validation set. When the valida-
tion error goes up training is stopped. This is called early stopping. Accuracy
is finally measured by testing on the test set.

Another way to increase generalizability is to increase the amount of train-
ing data. Unfortunately, more train data is not always available, but the amount
of train data can also be increased by artificially generated data. Another way
is to reduce the number of trainable parameters by, for example, decreasing the
size of the network. However, large networks have the potential to be more
powerful than small networks, so that’s not always a desirable solution.

Regularization

Other techniques are available to decrease overfitting. One of them is adding
a regularization term, where the most common ones are the L1 and L2 norm.
Such a regularization term can be added to any error function (e.g., Eq. (2.5)
and (2.21)) and can be written as:

E = E0 + freg(w), (2.40)

where E0 is the original error function and freg(w) is the regularization
function applied on all the weights except the biases. This corresponds to

fL1(w) =
λ

P

∑
w

|w| (2.41)

for the L1 norm and

fL2(w) =
λ

2P

∑
w

w2 (2.42)

21



2.2. Scale invariant feature transform (SIFT) Chapter 2. Theoretical background

for the L2 norm, where λ determines the amount of regularization and P is
the number of input patterns.

The idea behind these regularization techniques is to penalize large weights.
By adding this term all weights tend to go to zero, making the model more
simple. Large weights are only allowed if they considerably decrease the first
term of the error function. When λ is small the preference will be to minimize
the original error function, when λ is large small weights are preferred.

When adding this regularization term to the error function the update rules
of the weights need to be updated. The partial derivatives become

∂E

∂wij
=
∂E0

∂wij
+
λ

P
sign(wij) (2.43)

and

∂E

∂vij
=
∂E0

∂vij
+
λ

P
sign(vij) (2.44)

for the L1 norm, where sign(w) is the sign of w (i.e., +1 if w is positive, −1

if w is negative). If w = 0 the L1 term isn’t differentiable and no regularization
will take place. The idea behind regularization is to reduce the weights, when
a weight is already zero the weight cannot be decreased anymore, so this poses
no problems. Intuitively, the regularization terms for the L1 norm bring the
weights closer to zero each epoch, independent of the size of the weight. For
the L2 norm the partial derivatives become

∂E

∂wij
=
∂E0

∂wij
+
λ

P
wij (2.45)

and

∂E

∂vij
=
∂E0

∂vij
+
λ

P
vij (2.46)

In this case, the higher the weights, the more influence the regularization
part has. Larger weights are pulled harder towards zero, whereas small weights
are only pulled a little. The partial derivatives with respect to the biases remain
unaffected for both the L1 and L2 norm.

2.2 Scale invariant feature transform (SIFT)

The SIFT algorithm [30] transforms an image to a collection of local image
descriptors. It does this by first detecting stable keypoints in the image. The
descriptions of these keypoints are constructed in such a way that they are
invariant to scale, rotation and partially invariant to affine transformations and
illumination changes.

Keypoint detection will be ignored for now as a fixed grid over the entire
image will be used instead. This saves processing power and should work iden-
tically well [3]. The fixed grid will be implemented as a sliding window, where
the center of the window will function as the keypoint in the SIFT algorithm.
The sliding window approach ensures that the grid has overlapping blocks to
be able to capture more detail. The size of this window, or image patch, in the
SIFT algorithm is usually set to 16× 16 pixels.

22



Chapter 2. Theoretical background 2.3. Bag of visual words

2.2.1 Assigning keypoint orientation

The first step is to assign an orientation to the keypoint. This orientation is used
in a later step to obtain invariance to rotation. To determine the orientation, a
histogram is created consisting of 36 bins, each bin covering 10 degrees of a cir-
cle. The histogram is formed from the gradient orientations of the neighboring
points. For each point in the window, the gradient magnitude and orientation
are calculated using pixel differences:

m(x, y) =
√

(G(x + 1, y) −G(x− 1, y))2 + (G(x, y + 1) −G(x, y− 1))2 (2.47)

specifies the magnitude and

θ(x, y) = tan−1

(
G(x, y + 1) −G(x, y− 1)
G(x + 1, y) −G(x− 1, y)

)
(2.48)

the orientation, where G(x, y) is the pixel intensity at position (x, y) in the
Gaussian smoothed grayscale image.

Each pixel point is weighted by its gradient magnitude and by a Gaussian-
weighted circular window with σ = 1.5. When the histogram is created the
highest peak is detected and used as the keypoint’s orientation. In the SIFT
algorithm additional keypoints are created for any other peak within 80% of
the height of the highest peak and is given that orientation.

2.2.2 Descriptor computation

This step creates a descriptor for each keypoint that is designed to be as dis-
tinctive as possible. Again, the gradient magnitude and orientation are used
from the surrounding keypoint pixels in the window. A Gaussian weighting
function is also used, this time with σ being half the width of the window. To
achieve invariance to rotation the keypoint orientation is subtracted from the
window orientations.

Next, the window is divided in 4 × 4 cells. For each cell a histogram is
created consisting of 8 orientation bins (each covering 45 degrees). In a similar
way as described above, each histogram is filled with the weighted magnitudes
of the pixels. The 16 histograms are concatenated to form a 128-dimensional
descriptor.

2.2.3 Normalization

In the last step, the descriptor is normalized to unit length:

û =
u

‖u‖
(2.49)

Finally, values higher than 0.2 are thresholded and given the value 0.2 to
overcome some illumination effects. After that, the descriptor is normalized
again to unit length.

2.3 Bag of visual words

The idea behind the bag-of-visual-words approach is based on a popular text
classification method called bag-of-words [23, 31]. In text classification, word

23



2.4. k-means clustering Chapter 2. Theoretical background

frequency information is gathered and stored in a histogram. Based on this
histogram a classifier can determine the semantic context of the text.

Analogously, this is applied to the visual domain [40]. The visual words
are local image descriptors extracted from the image. Creating a frequency
histogram of raw image descriptors is hard as no predefined vocabulary is
available. Instead, the vocabulary can be created using a clustering approach.
The number of words in the visual vocabulary then depends on the number of
clusters used.

To create the histogram, each visual word is compared to the established
clusters and the amount of similarity is added to the histogram. The resulting
histogram is given to a classifier which determines the object label. For more
details see Section 3.3.

2.4 k-means clustering

k-means clustering is a popular vector quantization method that seeks to min-
imize the total squared distance between points and their closest cluster. It’s
widely used primarily due to its intuitive nature, speed and simplicity. It uses
a hard assignment scheme, meaning that a data sample only belongs to a single
cluster:

bti =

{
1 if ‖xt − ci‖= minj ‖xt − cj‖
0 otherwise

, (2.50)

where xt is the t-th data sample and ci is the i-th cluster center. Given the
membership values, b, the total reconstruction error can be defined as:

E({ci}ki=1
|X) =

∑
t

∑
i

bti‖xt − ci‖
2, (2.51)

which intuitively translates to the total sum of squared distances between
each point and their closest cluster.
k-means is an iterative algorithm, at each iteration the membership values

are calculated by Eq. (2.50) and the best estimate of the center of a cluster ci is
calculated by taking the derivative of Eq. (2.51) with respect to ci and setting
it equal to 0, which results in:

ci =
∑
t b
t
ixt∑

t b
t
i

, (2.52)

which intuitively translates to the mean of all data samples belonging to a
cluster. k-means converges when the cluster centers do not change anymore
after a single iteration.

2.4.1 Accelerated k-means clustering

The k-means algorithm is very fast for small datasets, but when dealing with
a large amount of data samples and clusters this process becomes very slow.
At each iteration, the membership values have to be computed and the cluster
centers need to be updated. To determine the membership of each data sample,
that sample is compared to each cluster center. This process can be speeded up
by avoiding unnecessary distance computations when assigning data points to
clusters by using the triangle inequality [16]. The more clusters k there are the,
more effective this method becomes, but the more storage is required.

24



Chapter 2. Theoretical background 2.4. k-means clustering

x1 , c1 x2

x3 , c2 x4

→
x1 x2

x3 x4

c1

c2

Figure 2.6: Example of bad k-means clustering due to poor initialization. The black
dots are the data points, the red dots are the clusters. On the left: the initial
clusters are chosen using random data points. On the right: the result of one
iteration of the k-means algorithm.

The idea behind this algorithm is that when a cluster center does not move
much over a single iteration, most of the point-to-center calculations can be
avoided. The triangle inequality is used to determine which distance calcula-
tions can be omitted. This property states that for any three points x, y and
z, d(x, z) 6 d(x, y) + d(y, z). That is, the length of a single side of a triangle
never exceeds the sum of the length of the two other sides.

Let xt be a data point, cbt its current center and c another cluster center,
then:

‖xt − cbt ‖6
1

2

‖c − cbt ‖ ⇒ ‖xt − cbt ‖6 ‖xt − c‖ (2.53)

This means that when the distance between xt and its current center cbt
is smaller than halve the distance of cbt to another center c, then c can be
skipped when computing the membership of xt . In order to use this property
all the inter-center distances needs to be computed, but the number of clusters
usually is just a small fraction of the number of data points, so overall this will
reduce computation time.

Instead of using ‖xt − cbt ‖ as the condition, Elkan goes a step further by
using lower and upper bounds. For full details, see [16].

2.4.2 k-means initialization

To calculate the labels bt the clusters should already be initialized. Therefore,
an initialization procedure is required. The simplest one is to create clusters
with random initial values or to appoint unique data points to the clusters.

In Figure 2.6, an example is given using random data points as initial clus-
ters, the data points itself form a rectangle. After a single iteration, k-means
has reached convergence, but the resulting clustering is far from optimal. Imag-
ine stretching the width of the rectangle horizontally. The relative position of
the clusters will remain the same, but the squared distance from data points to
each cluster will be bigger the further it is stretched.

k-means++

To avoid the sometimes poor clusterings found by the k-means algorithm, k-
means++ initialization was introduced [4]. The idea behind this method is to
spread out the initial clusters over the data. First, a random data point is chosen
to be the first cluster center. For the subsequent clusters, the distance d for
each data point to its nearest center is calculated. The next cluster will then be
chosen randomly, using a weighted probability distribution with probabilities
proportional to d2. This step is repeated until k clusters have been chosen. This

25



2.5. Support vector machines Chapter 2. Theoretical background

implies that the further a data point is from the already chosen centers, the
higher the chance is that this point is chosen to be the next cluster.

Although the initialization step takes longer in computation time, the k-
means++ method has proven to often increase both speed and accuracy of the
k-means algorithm [4].

k-means‖

Although k-means++ provides a good initialization for k-means, the computa-
tion time involved in the choosing of the cluster centers can be very long. After
each newly chosen cluster center, the closest cluster for each data point has to
be determined again. The sequential nature of k-means++ limits its applicabil-
ity to large data sets and a large number of clusters.

To make it more scalable, Bahmani et al. introduced the k-means‖ algorithm
[5]. Compared to k-means++, k-means‖ only needs a logarithmic number of
passes to obtain a near optimal solution, making it a lot faster. It uses an
oversampling factor l, which specifies the expected number of points sampled
at each iteration.

First, as with k-means++ the first center is chosen randomly from the avail-
able data points, this is the first sampled point. The number of iterations is
dependent on the initial cost E∗, given by Eq. (2.51). Here, only the single
sampled point is used as being a cluster center. Next, additional points are
sampled with probability:

pxt =
l ∗
∑
i b
t
i‖xt − ci‖

2

E(C)
, (2.54)

where C is the union set of sampled points from the previous iterations and
E(C) is the total reconstruction error with respect to C.

This process is repeated log(E∗) times. Usually the total number of sampled
points is larger than the required number of clusters. When all iterations are
completed, each sampled point, or sampled cluster center, is weighted by the
number of points belonging to it. As a final step, these weighted points are
reclustered into k clusters, for example, by using k-means++.

2.4.3 Empty clusters

Having empty clusters is a problem that can occur when using k-means. When
an empty cluster is formed, Eq. (2.52) will fail for that cluster. To get rid of
them, a random data point can be used for the cluster. Usually, a new point is
sampled which is far away from already created clusters, for example, by using
k-means++.

2.5 Support vector machines

A support vector machine (SVM) [9] is a supervised learning method capable of
regression and both binary and multiclass classification, amongst other tasks.
SVMs use a rather different approach than most other classifiers. Instead of
estimating the class densities and posterior probabilities, it estimates only the
class boundaries. These boundaries can be expressed by the so-called support
vectors, training instances which lie on the boundaries of a class. The optimal
separating hyperplane for two classes is then defined as lying in the middle of

26



Chapter 2. Theoretical background 2.5. Support vector machines

y

x

w
· x

+ b
=

0w
· x

+ b
=

1

w
· x

+ b
=
−

1

M
argin

w

Figure 2.7: An example of a maximum margin hyperplane for an SVM separating two
classes. The filled dots mark the positive class (+1) and the open dots the
negative class (−1). The dots indicated by a red color are the support vectors.
The solid line is the separating hyperplane.

the margin between the support vectors. The main idea is illustrated in Fig. 2.7,
which shows an example separating two classes.

How such an hyperplane can be derived for two or more classes is beyond
the scope of this thesis. For more details, see [9].

2.5.1 Kernels

In the example above, the classes were linearly separable. If this would not be
the case, then no linear hyperplane can be defined to separate the classes. One
solution is to take a hyperplane which simply induces the lowest error. Another
solution is to map the data to a new space by some nonlinear transformation
and then perform linear separation on the transformed data. Functions that
transform the data are usually referred to as kernel functions.

A few popular kernel function are the linear kernel (i.e., no transformation),
the polynomial kernel, the radial-basis function (RBF), and the sigmoidal func-
tion. Each type of kernel has a different set of parameters which have to be
determined beforehand (e.g., through a grid-search algorithm). In this section,
only the two most important parameters for the RBF kernel will be touched
briefly.

2.5.2 RBF kernel parameters

Often, an SVM is not able to find the perfect separating hyperplane that sepa-
rates two classes with zero error without introducing a model so complex that
it loses all generalizability. In these cases a trade-off has to be made between
complexity and error, which is controlled by the parameter C.

A second parameter for the RBF kernel is the γ parameter. γ defines the
radius of the spherical kernel to apply. The higher γ, the smoother the bound-
aries will become.

27





3Methods

3.1 Preprocessing

Preprocessing is applied to make an image more suitable for feature extraction.
As the result of the SIFT descriptor will be used as the target function to extract
features, a necessary operation is to first convert the image to grayscale, as is
done with SIFT. Conversion is applied using the standard OpenCV1 conversion
function, which corresponds to:

I = 0.299R + 0.587G + 0.114B,

where I is the resulting grayscale intensity and R,G, and B are the intensities
in the individual RGB channels.

For calculating the gradient magnitude and orientations (Eq. (2.47) and
(2.48)), SIFT uses a Gaussian smoothed image. Therefore, for the proposed
system, each image is smoothened as well. A 3× 3 Gaussian filter is chosen for
this purpose.

3.2 Neural-SIFT

An important part of the SIFT algorithm includes detecting salient, but stable
keypoints. Instead of detecting keypoints a fixed partitioning scheme will be
used for the reasons mentioned earlier in Section 2.2. The grid is implemented
to have overlapping image patches where each patch is shifted 8 pixels hori-
zontally or vertically (i.e., a sliding window function is applied).

Another modification to the SIFT algorithm is that the keypoint’s orienta-
tion will not be used to make the keypoint rotation invariant. The reason for
this is that preliminary experiments showed that SIFT performed better on the
datasets (introduced in Section 4.1) without this step than with. This could
be due to the nature of the datasets in which not many rotated objects occur.
Another consideration for this is that the function to learn as a consequence
becomes easier to fit using a neural network. All other aspects of the SIFT
descriptor remain the same.

3.2.1 Network topology

In creating the SIFT descriptor a fixed-sized window around a keypoint is used.
Typically, the size is chosen to be 16× 16 pixels. For each point in the window,
gradient magnitudes and orientations are calculated using the four direct adja-
cent points. This means that by providing only the 16× 16 pixels for a given
window as input, the neural network receives incomplete information. There-
fore, the neural network receives a 18× 18 window as input.

The target function of the network is the local image descriptor function
used in the SIFT algorithm: the SIFT descriptor. The dimensionality of the SIFT

1 OpenCV is an open source computer vision library: http://opencv.org/

29

http://opencv.org/


3.2. Neural-SIFT Chapter 3. Methods

...

Σ

Σ

...
Σ

...

Σ

...
Σ

...

I0 = +1

I1

I2

IJ

h1

h2

hH

h0 = +1

y1

yO

Input layer Hidden layer Ouput layer

w
v

Figure 3.1: Neural-SIFT diagram for feature extraction. I is the input image (I0 being the
bias unit), h the hidden layer (h0 being the bias unit), and y the output layer.
w and v are the weight vectors for the hidden and output layer, respectively.

descriptor is 128 (see Section 2.2.2), therefore the output layer of the neural
network consists of 128 units as well.

Cybenko proved that a single layer is enough to fit any continuous func-
tion [11]. Therefore, only a single hidden layer is used for this network. One
important thing to consider before establishing the number of hidden units to
use is that when applying full backpropagation in a later stage, the network
will be further trained on training data. When the number of hidden units is
large, overfitting can occur more easily. So, even though a smaller train and
validation error for this network can be obtained by using more hidden units,
using less hidden units may give better results at a later stage. The number of
units as well as the type of activation function to use in the hidden layer are
determined empirically, taking these aspects into consideration.

For the output layer, using a sigmoid-like function does not seem to make
much sense as the network is dealing with a regression problem (i.e., a continu-
ous target function), not classification. Therefore, the linear activation function
is used in the output layer.

Even though the SIFT descriptor is computed using local neighborhood
pixels, all layers are fully connected. This enables the network to possibly learn
more complex functions when the error from the classifier is included. Both
the input and the hidden layer have a single bias unit which always takes the
value +1 as input. The network topology is shown in Figure 3.1.

3.2.2 Training the network

The target function of this network is of continuous nature. The objective func-
tion to minimize, therefore, is chosen to be the mean square error (MSE) using
online learning (Eq. (2.6)).

30



Chapter 3. Methods 3.3. Bag of visual words

The training size is of great influence to which training algorithm to use. A
typical train image contains around 900 patches which translates to 900 train
instances per image. Considering 10 object classes with 15 training images per
class, this translates to roughly 135,000 train instances in total. For regression
problems, online gradient descent learning is well suitable and is often faster
than using batch-type training algorithms like RPROP. Especially when the
number of training samples is high, updating the network after each instance
can speed up training quite substantially.

As discussed earlier, overfitting is a problem often encountered while train-
ing neural networks (see Section 2.1.5). To minimize overfitting, a regulariza-
tion term is added to the error function. The type of regularization and the
value of λ to use is determined empirically.

The update rules are:

∆vij = −α
∂E

∂vij

= α

(
(rj − yj)σ ′(bj)hi −

λ

P
sign(vij)

)
or (3.1)

= α

(
(rj − yj)σ ′(bj)hi −

λ

P
vij

)
(3.2)

for the second layer of weights, and

∆wij = −α
∂E

∂wij

= α

(
τ ′(aj)Ii

O∑
k=1

[
(rk − yk)σ ′(bj)vjk

]
−
λ

P
sign(wij)

)
or (3.3)

= α

(
τ ′(aj)Ii

O∑
k=1

[
(rk − yk)σ ′(bj)vjk

]
−
λ

P
wij

)
(3.4)

for the first layer of weights. Here α is the learning rate, σ and τ are the
activation functions for the output and hidden layer, respectively. Equations
(3.1) and (3.3) are applied when using the L1 norm, (3.2) and (3.4) are used
when the L2 norm is chosen. The weights of the network are initialized using
the Nguyen-Widrow algorithm [35]. This method initializes the weights so that
the active region of each unit will be distributed roughly uniformly over the
layer’s input space.

Stopping criterion

The number of training examples, as mentioned above, is quite large for a
typical dataset. Therefore, the network is expected to generalize quite well. To
guarantee convergence, however, the learning rate α is multiplied by a factor
of 0.997 each epoch. The number of epochs to train is determined empirically.

3.3 Bag of visual words

3.3.1 Clustering

After the neural-SIFT network is trained, the visual vocabulary is constructed
by creating clusters which represent the data as closely as possible. The clus-

31



3.3. Bag of visual words Chapter 3. Methods

ters are determined using the k-means algorithm which is described in great
detail in Section 2.4. This algorithm involves choosing the distance metric and
the number of clusters to use. As distance metric the widely used squared
Euclidean distance is chosen (see Eq. (3.7)). The number of clusters to use is
determined empirically.

3.3.2 Creating the image histogram

The next step is to create an image histogram which serves as input for the
classifier, for which numerous methods are available. Philbin et al. transformed
the distances from a feature vector to each cluster centroid to a sort of similarity
value according to:

exp
(
−
d2

2σ2

)
, (3.5)

where d is the distance between the feature vector and a cluster centroid
and σ is a parameter which specifies how much to penalize distance [38]. van
Gemert et al. proposed to use the codeword uncertainty method (UNC) which
calculates the probability of a feature vector belonging to a certain cluster [45].
The function is given by:

UNC(ch) =
1

N

N∑
i=1

Kσ(d(ch, fi))∑|V |
j=1
Kσ(d(cj, fi))

, (3.6)

where Kσ is the one-dimensional Gaussian kernel, N is the number of fea-
ture vectors in the image, |V | is the number of clusters, ci is the ith cluster and
fi is the ith feature vector.

For this system a hybrid approach is used in which similarities are calcu-
lated in a similar fashion as in Eq. (3.5) and the amount of probability mass is
normalized similarly as in Eq. (3.6).

Figure 3.2 shows the topology of constructing the image histogram. In this
figure, a neural-SIFT output vector corresponds to a feature vector f. Each fea-
ture vector is compared to each trained cluster by using the squared Euclidean
distance metric. The distance di,j between a feature vector fi and a cluster
center cj is defined as:

di,j = ‖fi − cj‖2 (3.7)

The resulting distances are consequently transformed to similarity values.
The similarity si,j between a feature vector fi and a cluster center cj is given
by:

si,j =
exp(−ζ ∗ di,j)∑C
k=1

exp(−ζ ∗ di,k)
, (3.8)

where ζ is a constant specifying how much to penalize distance. The bigger
ζ, the more the distance is penalized and the more this function approximates
the max function. Intuitively, the smaller the distance between a feature vector
and a cluster, the higher the similarity will become. The similarity values are
normalized over all clusters such that the sum of similarities for a single feature
vector equals 1.

32



Chapter 3. Methods 3.3. Bag of visual words

f1

...

fF

‖f1, c1‖

‖f1, c2‖...
‖f1, cC‖

...

‖fF, c1‖

‖fF, c2‖...
‖fF, cC‖

s1,1

s1,2...
s1,C

...

sF,1

sF,2...
sF,C

Σ/F

Σ/F

...

Σ/F

...
...

g1

g2

gC

x1

x2

xC

Network
output

Clustering Similarity
layer

Normalized
image

histogram

Figure 3.2: Diagram showing the process of creating the image histogram. Here, the
neural-SIFT network output vector corresponds to a feature vector f. For
each feature vector the distance to each cluster c is calculated and then trans-
formed to similarity values. Next, all these values are summed and divided
by the number of instances F, resulting in a normalized image histogram
g. The last step is to further normalize the image histogram to the range
[−1 : +1] for the classifier.

33



3.4. Neural classifier Chapter 3. Methods

When for each patch in the image the vector of similarity values has been
computed, they are summed and divided by the number of windows (F) to
obtain the required image histogram entry gj for cluster j:

gj =
1

F

F∑
i=1

si,j (3.9)

To make this histogram more suitable for the classifier input, the histogram
is normalized to the range [−1 : +1] for each input xi by:

xi =
2 ∗ (gi −mini)
maxi −mini

− 1, (3.10)

where mini and maxi are the lowest and highest value of gi over all the
training data, respectively.

3.4 Neural classifier

When the clusters have converged, the final stage of this system can be trained.
This part involves mapping the input to actual object labels.

3.4.1 Network topology

The result of the second stage, bag of visual words, is a histogram of visual
word frequencies. The dimensionality of this histogram equals the number of
clusters used, C. The number of input units for the neural network classifier,
therefore, equals C. The number of output units in the output layer equals the
number of object classes N. This directly reflects the flexibility of the system.
To add more object classes to the database, only the neural classifier has to be
updated by adding additional output units and connections.

As with the neural-SIFT network, only one hidden layer is used. Again, the
number of hidden units and the activation functions used were set experimen-
tally. The difference with respect to the neural-SIFT network is that the target
function in this case is a binary function where each output unit corresponds to
a one-versus-all classifier. Therefore, the softmax function is used at the output
layer (see Eq. (2.4)).

Again, all layers are fully connected and have an additional bias unit. The
topology of the neural network classifier is shown in Figure 3.3.

3.4.2 Training the network

Training the network is similar to that described in Section 3.2.2. The difference
is that for training the neural-SIFT network the MSE function is used, for this
network the cross-entropy error function is applied (see Section 2.1.3: softmax
& cross-entropy).

As with the neural-SIFT network a regularization term is added to the error
function. The type of regularization and the value of λ to use is determined
empirically.

The error at the weights of the neural classifier network becomes:

∂Ece

∂v ′ij
= (r ′j − y

′
j)h
′
i +

λ

P
sign(v ′ij) (3.11)

34



Chapter 3. Methods 3.4. Neural classifier

...

Σ

Σ

...
Σ

...

Σ

...
Σ

...

x0 = +1

x1

x2

xC

h ′
1

h ′
2

h ′H

h ′
0

= +1

y ′
1

y ′O

Input layer Hidden layer Ouput layer

w′

v′

Figure 3.3: Neural classifier diagram. x is the input image histogram (x0 being the bias
unit), h ′ the hidden layer (h ′

0
being the bias unit), and y ′ is the output layer

which translates to the classification output. w′ and v′ are the weight vectors
for the hidden and output layer, respectively.

and

∂Ece

∂w ′ij
= ϕ ′(a ′j)xi

N∑
k=1

[
(r ′k − y

′
k)v ′jk

]
+
λ

P
sign(w ′ij) (3.12)

when using L1 norm regularization, or

∂Ece

∂v ′ij
= (r ′j − y

′
j)h
′
i +

λ

P
v ′ij (3.13)

and

∂Ece

∂w ′ij
= ϕ ′(a ′j)xi

N∑
k=1

[
(r ′k − y

′
k)v ′jk

]
+
λ

P
w ′ij (3.14)

when using the L2 norm. Here, ϕ is the activation function for the hidden
layer.

Using gradient descent the update rules become:

∆v ′ij = −β
∂Ece

∂v ′ij
(3.15)

and

∆w ′ij = −β
∂Ece

∂w ′ij
, (3.16)

where β is the learning rate.
Instead of using online learning, the iRPROP+ training algorithm is used for

training the neural classifier. As mentioned in Section 2.1.4, this training algo-
rithm outperforms the classic batch training algorithm significantly in learning

35



3.5. Full backpropagation Chapter 3. Methods

time and has the additional benefit that no learning rate has to be specified
beforehand [39].

By changing the training algorithm, the update equations (3.15) and (3.16)
need to be changed as well. These equations can be easily adopted to the
ones mentioned in Section 2.1.4 (i.e., a single update equation is changed to
Equations (2.37) and (2.39)). The weights of the network are initialized using
the Nguyen-Widrow algorithm [35].

Stopping criterion

Whenever a new lowest validation error is observed, the weights of the net-
work at that state are saved. When not encountering a better validation error
within 50 epochs of the current minimum, training is terminated and the stored
weights are applied.

3.5 Full backpropagation

When all the parts of the system are individually trained, the system as a whole
is trained by propagating the error from the classifier output all the way back to
the neural-SIFT weightsw and v. Using gradient descent, the following partial
derivatives have to be solved:

∆vij = −γ
∂Ece

∂vij
(3.17)

∆wij = −γ
∂Ece

∂wij
, (3.18)

where γ is the learning rate. The update rule for vij is considered first as
this one is closer to the output. To solve Eq. (3.17), the chain rule is again
used, but split up in parts. Each part of the partial derivative corresponds to
one of the subsystems: neural network classifier; image histogram construction
using the bag of visual words approach; and neural-SIFT, respectively. Note
that the neural-SIFT network is used multiple times when creating the image
histograms (see Fig. 3.2). Therefore, a single weight of the neural-SIFT network
can be updated based on multiple errors.

3.5.1 Neural classifier

All parts will be derived individually, starting with the neural network classifier
part. Here, the derivation is first made towards a single network input:

∂Ece

∂xk
=

J∑
m=1

(
N∑
l=1

[
N∑
k=1

(
∂Ece

∂y ′k

∂y ′k
∂b ′l

)
∂b ′l
∂h ′m

]
∂h ′m
∂a ′m

∂a ′m
∂xk

)
(3.19)

A big part of this equation was already derived and is provided in Section
2.1.3. The only difference being that in this case the derivation has to be made
towards the network input x:

∂a ′m
∂xk

=
∂

∂xk

(
C∑
l=1

xlw
′
lm

)
= w ′km (3.20)

36



Chapter 3. Methods 3.5. Full backpropagation

By incorporating this intermediate result, the error at an input node xk of
the neural network classifier becomes:

∂Ece

∂xk
= −

J∑
m=1

(
ϕ ′(a ′m)w ′km

N∑
l=1

(r ′l − y
′
l)v
′
ml

)
(3.21)

3.5.2 Bag of visual words

Next, the part corresponding to creating the image histogram is derived. The
derivation is made towards a single entry in a feature vector, ff,e:

∂Ece

∂ff,e
=
C∑
n=1

(
C∑
k=1

[
∂Ece

∂xk

∂xk
∂gk

∂gk
∂sf,k

∂sf,k
∂df,n

]
∂df,n
∂ff,e

)
(3.22)

This equation is built up in the same manner as Eq. (3.19). A single entry
in the feature vector ff, here denoted as ff,e, has influence on the distance
towards each cluster. The inner summation corresponds to the influence of a
single distance on each similarity value.

First, normalization to the range [−1,+1] is derived:

∂xk
∂gk

=
∂

∂gk

(
2 ∗ (gk −mink)
maxk −mink

− 1

)
=

∂

∂gk

(
2

maxk −mink
gk −

2 ∗mink
maxk −mink

− 1

)
=

2

maxk −mink
(3.23)

The following part corresponds to summing the similarity values and divid-
ing the resulting histogram by the number of patches in the image:

∂gk
∂sf,k

=
∂

∂sf,k

(
1

F

F∑
l=1

sl,k

)
=

1

F
(3.24)

At this point, the error is split up and given to each individual image patch.
This means that the subsequent equations need to be applied for each image
patch.

The next partial derivative is very similar to Eq. (2.4). It is again a softmax
function, but this time there is a function within each exponential function.
Therefore, the chain rule can be used. The derivative of the softmax function
was already derived in (2.31). The part that is left to derive is:

∂

∂df,k
(−ζdf,k) = −ζ (3.25)

Combining these results in:

∂sf,k
∂df,n

= −ζsf,k(δk,n − sf,n) (3.26)

Finally, the distance computation derivative (i.e., squared Euclidean dis-
tance) is derived:

37



3.5. Full backpropagation Chapter 3. Methods

∂df,n
∂ff,e

=
∂

∂ff,e
‖ff − cn‖2

=
∂

∂ff,e

O∑
l=1

(ff,l − cn,l)2

= 2(ff,e − cn,e) (3.27)

Now that the error at a single element is derived, the error of each neural-
SIFT network can be determined. As each of the weights vij only influences one
particular output unit yj, only the error for one of the output units is necessary.
When considering updating the weights w, simply the sum of the errors at the
output nodes is taken, in the same way as was done in Eq. (2.13).

3.5.3 Neural-SIFT

The final component of back propagating the error from the classifier back
to the feature extractor is going through the neural-SIFT network, which was
already derived before, see Eq. (3.1) and (3.3) for updating the weights v and
w, respectively. The only difference on this part is that the error should not be
considered with respect to E, but to Ece.

As with the previous neural network update schemes, regularization can be
applied here as well. Which regularization method and regularization constant
λ to use is determined experimentally.

The error at the weights of the neural-SIFT network becomes:

∂Ece

∂vij
=
∂Ece

∂yj
σ ′(bj)hi +

λ

P
sign(vij) (3.28)

and

∂Ece

∂wij
= τ ′(aj)Ii

O∑
k=1

[
∂Ece

∂yk
σ ′(bk)vjk

]
+
λ

P
sign(wij) (3.29)

when using L1 norm regularization, or

∂Ece

∂vij
=
∂Ece

∂yj
σ ′(bj)hi +

λ

P
vij (3.30)

and

∂Ece

∂wij
= τ ′(aj)Ii

O∑
k=1

[
∂Ece

∂yk
σ ′(bk)vjk

]
+
λ

P
wij (3.31)

when using the L2 norm.
Using gradient descent, the update rules become:

∆vij = −γ
∂Ece

∂vij
(3.32)

and

∆wij = −γ
∂Ece

∂wij
, (3.33)

where γ is the learning rate.

38



Chapter 3. Methods 3.5. Full backpropagation

3.5.4 Training procedure

The question arises which training algorithm to use for this learning scheme.
Suppose there are 100 training images, the number of classes or the distribution
over them is not relevant here. In one epoch of full backpropagation, each
image is presented once to the system. This corresponds to 100 classification
errors which can be propagated back towards the neural-SIFT network. When
each image is partitioned in 900 image patches, each weight in the network can
be updated a total of 90,000 times, when using online learning. For a single
image, this corresponds to 900 updates per weight.

The problem with this approach is that the 900 image patches of a single
image all share the same underlying neural-SIFT network. When using online
learning, after updating the weights for the first image patch, the weights of
the network for the second image patch are different than the ones used in
calculating the error. Therefore, it makes sense to use the mean of the calculated
errors of a single image to update the neural-SIFT network. It will then be
updated only once for each image.

When dealing with the 100 images in the given example, this corresponds to
100 network updates per epoch. This number of updates is so low for a single
epoch that rather batch training should be used. Batch training minimizes the
true error of the entire training set, whereas online learning approximates this
true error by using multiple updates. Batch training thus ensures that the error
of the training set calculated after each epoch always goes down or stays the
same. With using online learning this is not guaranteed.

Instead of using regular batch training, iRPROP+ training is applied for full
backpropagation, as was done in training the neural classifier. By changing the
training algorithm, the update equations (3.32) and (3.33) need to be changed
as well. These equations can be easily adopted to the ones mentioned in Section
2.1.4 (i.e., a single update equation is changed to Equations (2.37) and (2.39)).

Multiple iterations

As with the neural classifier, the settings at the lowest validation error are
stored. When no lower validation error is encountered within 50 epochs of
the current lowest error, training is stopped and the stored settings are applied.
This marks one complete iteration of full backpropagation.

After one single iteration of full backpropagation the system reaches a point
where performance cannot be improved anymore by using regular training
schemes, but at this point the local image descriptor is updated. This translates
to a clustering which does not entirely match with the underlying feature vec-
tors. Therefore, a possible increase in performance can be achieved by updating
the clustering and consequently the neural classifier. When this retraining is
complete, a second iteration of full backpropagation can start. This cycle of
full backpropagation and retraining can be repeated indefinitely, until no more
improvement can be obtained.

The existing clustering will be updated given the updated neural-SIFT net-
work and the previous clustering. For updating the neural classifier, a much
lower regularization constant λ will be used to prevent the classifier network
error from increasing rapidly at the start. This is necessary because the individ-
ual learning rates used in iRPROP+ are low at first, leading to more influence
for the regularization part.

39





4Experiments & results

This chapter is divided into five parts. Section 4.1 provides a short overview
of the used datasets. and Section 4.2 describes the training results of the pro-
posed system without the full backpropagation part. Results are compared to
systems using the SIFT descriptor, instead of the neural network based descrip-
tor. In Section 4.3, full backpropagation is added to the pipeline. Results are
compared to the SIFT descriptor and to the original neural-SIFT descriptor. To
investigate the influence of initializing the neural-SIFT network on the SIFT
descriptor, Section 4.4 compares the proposed system with using a randomly
initialized untrained neural network as feature descriptor, both using the full
backpropagation training step. Finally, in Section 4.5 generalizability of the
Neural-SIFT descriptor is tested with the use of an SVM classifier.

4.1 Datasets

For the experiments described in this chapter two datasets were used for eval-
uation and are described below.

4.1.1 Caltech-101

The Caltech-101 dataset consists of images of 101 different object classes. Each
class contains about 40-800 images, where most of the classes contain around
50 images. The resolution of each image varies around 300× 200 pixels and
can be in both portrait or landscape mode. Of all images most have little or no
clutter, objects tend to be centered in each image and objects are presented in a
stereotypical pose.

For the experiments 10 classes were selected. These include: airplanes, cam-
eras, car sides, cellphones, cups, helicopters, motorbikes, scissors, umbrellas,
and watches. For evaluating the different methods, 15 training, 15 validation,
and 15 test images were used for each class. This equals the settings used in
[2]. Sample images of this dataset are shown in Figure 4.1.

4.1.2 Corel-1k

The Corel-1k dataset consists of 1000 images sorted in 10 classes, with 100

images per class. The classes are: African people, beaches, busses, dinosaurs,
elephants, flowers, food, horses, monuments, and mountains. The resolution
of the images are all 384× 256 pixels, either in portrait or in landscape mode.

All classes were selected for the experiments. From the available 100 images
per class, 60 were used for training, 20 for validation, and 20 for testing. Sample
images of this dataset are shown in Figure 4.2.

41



4.1. Datasets Chapter 4. Experiments & results

Figure 4.1: Example images of the Caltech-101 dataset showing two images of each of
the classes: airplanes, cameras, car sides, cellphones, cups, helicopters, mo-
torbikes, scissors, umbrellas, and watches.

Figure 4.2: Example images of the Corel-1k dataset showing two images of each of the
classes: African people, beaches, buses, dinosaurs, elephants, flowers, food,
horses, monuments, and mountains.

42



Chapter 4. Experiments & results 4.2. Training without full backpropagation

50 100 150 200

3

4

5

·10
−3

Epochs

Er
ro

r

Training set
Validation set

Figure 4.3: Typical error curve for the neural-SIFT network for a single fold.

4.2 Training without full backpropagation

For each individual stage of the system a parameter sweep is used to look for
optimal parameters. This sweep is applied to the Caltech-101 dataset only, the
resulting optimal settings are consequently applied for the Corel-1k dataset.
This section describes this process and reports on the achieved accuracy with-
out the use of full backpropagation. The bag of visual words approach is ap-
plied to the SIFT descriptor as well and performance is compared.

For each of the experiments presented in this chapter 10-fold cross-validation
is applied to more accurately determine the optimal parameters and to predict
the accuracy of the system.

4.2.1 Neural-SIFT feature descriptor

The biggest part of the Neural-SIFT network topology has already been estab-
lished earlier in Section 3.2.1. The only aspects yet to consider are the number
of hidden units and the activation functions to use in the hidden layer. In Sec-
tion 3.2.1, a brief discussion was given about the number of hidden units to
use in the neural-SIFT network. The number of hidden units play an important
part, not only in this phase of training, but also when full backpropagation is
added. The more units are added now, the higher the chance of overfitting at a
later stage. The number of hidden units was set experimentally to a relatively
low number, being 50 units. This resulted in still a low error during training
of the neural-SIFT network and less overfitting during full backpropagation,
when compared to using 100-150 hidden units.

Which activation functions to use was set experimentally. Two functions
for the hidden layer were considered: the logistic function (Eq. (2.3)) and the
hyperbolic tangent function. For the output layer the linear activation is used
as was discussed in Section 3.2.1. For each function a steepness can be defined
which controls the steepness of the function. A steepness of 1.0 for the linear
function and a steepness of 0.5 for the logistic and hyperbolic tangent func-
tion results in the original activation function. A few steepness values were
considered, namely 0.25, 0.50, and 0.75. For all settings the learning rate was
set to 0.01 and regularization was applied using the L2 norm where λ was set
experimentally to λ = 1.0 ∗ 10

−5.
Preliminary experiments showed that 200 epochs was a sufficient amount

of epochs for the network to stabilize. Training is therefore terminated after a

43



4.2. Training without full backpropagation Chapter 4. Experiments & results

Table 4.1: Validation MSE for the Neural-SIFT network using different activation func-
tions averaged over 10 folds. LF is short for the logistic function, HT for
the hyperbolic tangent function, and L corresponds to the linear activation
function. Hidden and output correspond to the hidden and output layer,
respectively. The best result is underlined.

Hidden

×10
−3 LF0.25 LF0.50 LF0.75 HT0.25 HT0.50 HT0.75

Output
L0.25 3.152 3.050 3.005 3.076 3.042 3.034

L0.50 3.270 3.239 3.112 3.195 3.129 3.155

L0.75 3.560 3.520 3.415 3.381 3.354 3.355

fixed amount of 200 epochs. An example error curve for training the network
is shown in Figure 4.3. After about 140 epochs the train and validation error
go down just marginally. The results for each setting are shown in Table 4.1.

Results indicate that the logistic function with a steepness of 0.75 at the
hidden layer, together with a linear function with a steepness of 0.25 at the
output layer gives the lowest validation error. These settings are used for the
remainder of this chapter. Increasing the steepness even further for the acti-
vation function in the hidden layer and lowering the steepness for the output
layer did not decrease the validation error any further. That a low steepness of
0.25 for the output layer gives good results is not entirely unexpected, as nor-
malization to unit length is the final step for creating the SIFT descriptor. This
ensures that the maximum value of an element in the descriptor is minimized
to a low value.

4.2.2 Clustering

For clustering, the only hyperparameter to determine is the number of clusters
to use. To determine this parameter the so-called ‘elbow’ method can be ap-
plied. For this method, the reconstruction error given by Eq. (2.51) is plotted as
a function of the number of clusters k. When k is large enough, additional clus-
ters will only divide existing small clusters, in which case the reconstruction
error decreases only marginally. The optimal number of clusters to use can be
found by locating the ‘elbow’, the point where adding more clusters results in
no big decrease in reconstruction error.

The average reconstruction error over 10 folds as a function of k is depicted
in Figure 4.4. This is shown for either using the SIFT descriptor (Fig. 4.4a)
or for using the neural-SIFT network as feature descriptor (Fig. 4.4b). For
both methods, the reconstruction error drops quickly up to about adding 100

clusters, after that the error goes down only marginally. The elbow is then
identified to be at k = 100 clusters. For the experiments, k = 100 and k = 300

clusters are chosen for testing.

In creating the input for the classifier, also the parameter ζ needs to be
determined (see Eq. (3.8)). ζ determines how much to penalize distance in
calculating the similarity values for each cluster. The best choice of this param-
eter is described below, together with choosing the optimal parameters for the
neural classifier.

44



Chapter 4. Experiments & results 4.2. Training without full backpropagation

200 400

4

6

8

·10
4

k

R
ec

on
st

ru
ct

io
n

er
ro

r

(a) SIFT descriptor

200 400

4

6

8

·10
4

k

R
ec

on
st

ru
ct

io
n

er
ro

r

(b) Neural-SIFT

Figure 4.4: The reconstruction error as a function of the number of clusters k for two
feature descriptors. Error is averaged over 10 folds.

4.2.3 Neural classifier

As with the Neural-SIFT network, the network topology of the neural classifier
has been established for a big part already (see Section 3.4.1). The number of
hidden units and the type of activation function to use in the hidden layer still
needs to be determined. Again, only the logistic function and the hyperbolic
tangent function were considered together with the same range of steepness
values. For determining the optimal value of ζ, the values 1, 3, and 5 were
considered, where ζ = 1 corresponds to the original softmax function. For
each setting, regularization was applied using the L2 norm where λ was set
experimentally to λ = 0.100.

A typical error curve for training the classifier is shown in Figure 4.5. Around
epoch 50 the validation error has reached its local minimum. After that, the val-
idation error starts to go up and overfitting occurs. As mentioned in Section
3.4.2, training is stopped when no lower validation error is encountered within
50 epochs of the current minimum. The results for the different settings using
the neural-SIFT network as feature descriptor and k = 100 clusters are shown
in Table 4.2.

The hyperbolic tangent function with steepness 0.25, 75 hidden units, and
ζ = 5 showed the best results. However, the results also indicate that the higher
ζ, the lower the validation error becomes. Also decreasing the steepness, in-
creasing the number of hidden units, and using the hyperbolic tangent function
instead of the logistic function decreases the error. Therefore, a more thorough
parameter sweep was done. 25 until 100 hidden units were considered, ζ values
ranging from 6 to 12, and steepness values as low as 0.05 were tested.

The results are shown in Table 4.3 for using the neural-SIFT network as fea-
ture descriptor and in Table 4.4 for the SIFT descriptor, both with 100 clusters.
Results show that using 75 hidden units with a steepness of 0.10 and ζ of 10

gives the best results for using the neural-SIFT feature descriptor. Changing
the steepness to 0.25 gives the best results for using the SIFT descriptor. No
further improvement was achieved when setting the steepness to higher values.
These settings were used for the experiments involving both datasets.

For k = 300 clusters, a similar parameter sweep was applied. For using
the neural-SIFT feature descriptor the best settings were similar to the ones
using 100 clusters. The best results were obtained using 75 hidden units, the
hyperbolic tangent function with a steepness of 0.25, and using ζ = 12. While

45



4.2. Training without full backpropagation Chapter 4. Experiments & results

20 40 60 80

1

2

Epochs

Er
ro

r

Training set Validation set Test set

(a) Error

20 40 60 80

0

0.2

0.4

0.6

0.8

Epochs

A
cc

ur
ac

y

Training set Validation set Test set

(b) Accuracy

Figure 4.5: Typical error and accuracy curve for the neural classifier for a single fold on
the Caltech-101 dataset.

Table 4.2: Initial parameter sweep showing the validation MSE for the neural classifier
network while using the neural-SIFT feature descriptor and k = 100 clusters.
Settings include using different ζ-values for image histogram creation, acti-
vation functions, and number of units in the hidden layer, averaged over 10

folds. LF is short for the logistic function and HT for the hyperbolic tangent
function. The best result is underlined.

25 units 50 units 75 units

ζ = 1 ζ = 3 ζ = 5 ζ = 1 ζ = 3 ζ = 5 ζ = 1 ζ = 3 ζ = 5

LF0.25 1.527 1.383 1.255 1.563 1.332 1.206 1.540 1.369 1.205

LF0.50 1.583 1.378 1.238 1.554 1.341 1.203 1.556 1.353 1.191

LF0.75 1.609 1.370 1.245 1.548 1.342 1.236 1.566 1.341 1.193

HT0.25 1.452 1.253 1.177 1.463 1.244 1.184 1.426 1.245 1.152

HT0.50 1.457 1.283 1.203 1.483 1.266 1.193 1.434 1.255 1.191

HT0.75 1.498 1.268 1.179 1.483 1.294 1.224 1.470 1.288 1.220

using 25 units, the hyperbolic tangent function with a steepness of 0.25, and
ζ of 10 provided the best results for using the SIFT descriptor. These settings
were applied to the Corel dataset as well.

4.2.4 Neural-SIFT versus the SIFT descriptor

Now that the parameters have been established, performance between the two
local image descriptors can be compared. The accuracies of the test set for
both datasets are shown in Table 4.5. Results show that the SIFT descriptor
outperforms the neural-SIFT network on both datasets for k = 100 clusters. For
k = 300, however, neural-SIFT performs slightly better than SIFT for the Caltech-
101 dataset. Noticeable is that the accuracies are close to each other, which is
not entirely surprising as the neural-SIFT descriptor is an approximation of the
SIFT descriptor.

46



Chapter 4. Experiments & results 4.2. Training without full backpropagation

Table 4.3: Validation MSE for the neural classifier network with different settings while
using the neural-SIFT descriptor and k = 100 clusters. Settings include us-
ing different ζ-values for image histogram creation, activation functions, and
number of units in the hidden layer, averaged over 10 folds. LF is short for the
logistic function and HT for the hyperbolic tangent function. The best result
is underlined.

25 units 50 units

ζ = 6 ζ = 8 ζ = 10 ζ = 12 ζ = 6 ζ = 8 ζ = 10 ζ = 12

HT0.05 1.162 1.175 1.136 1.173 1.169 1.159 1.151 1.146

HT0.10 1.183 1.152 1.152 1.131 1.155 1.133 1.153 1.145

HT0.15 1.185 1.161 1.152 1.154 1.178 1.148 1.163 1.165

HT0.25 1.158 1.192 1.129 1.133 1.182 1.133 1.149 1.156

75 units 100 units

ζ = 6 ζ = 8 ζ = 10 ζ = 12 ζ = 6 ζ = 8 ζ = 10 ζ = 12

HT0.05 1.171 1.161 1.142 1.131 1.140 1.160 1.136 1.154

HT0.10 1.157 1.144 1.121 1.142 1.136 1.129 1.141 1.140

HT0.15 1.166 1.169 1.122 1.138 1.162 1.155 1.170 1.146

HT0.25 1.179 1.151 1.173 1.173 1.147 1.144 1.136 1.158

Table 4.4: Validation MSE for the neural classifier network with different settings while
using the SIFT descriptor and k = 100 clusters. Settings include using differ-
ent ζ-values for image histogram creation, activation functions, and number
of units in the hidden layer, averaged over 10 folds. LF is short for the logis-
tic function and HT for the hyperbolic tangent function. The best result is
underlined.

25 units 50 units

ζ = 6 ζ = 8 ζ = 10 ζ = 12 ζ = 6 ζ = 8 ζ = 10 ζ = 12

HT0.05 1.119 1.099 1.100 1.104 1.127 1.135 1.114 1.096

HT0.10 1.083 1.116 1.082 1.131 1.130 1.150 1.127 1.105

HT0.15 1.108 1.123 1.105 1.088 1.135 1.113 1.134 1.116

HT0.25 1.132 1.121 1.077 1.154 1.141 1.110 1.100 1.106

75 units 100 units

ζ = 6 ζ = 8 ζ = 10 ζ = 12 ζ = 6 ζ = 8 ζ = 10 ζ = 12

HT0.05 1.144 1.138 1.135 1.111 1.154 1.146 1.131 1.100

HT0.10 1.107 1.096 1.113 1.105 1.087 1.128 1.084 1.107

HT0.15 1.132 1.149 1.117 1.104 1.117 1.137 1.107 1.080

HT0.25 1.136 1.151 1.065 1.127 1.163 1.127 1.109 1.115

47



4.3. Full backpropagation training Chapter 4. Experiments & results

Table 4.5: Average classification accuracy over 10 folds for using either the SIFT de-
scriptor or the neural-SIFT network as local image descriptor. Performance is
based on the test set. Numbers in parentheses show the difference in perfor-
mance compared to the SIFT descriptor.

100 clusters 300 clusters

SIFT Neural-SIFT SIFT Neural-SIFT

Caltech-101 62.80% 62.47% (−0.33%) 65.33% 68.53% (+3.20%)

Corel-1k 83.15% 81.65% (−1.50%) 86.25% 85.10% (−1.15%)

20 40 60 80

0.5

1

Epochs

Er
ro

r

Training set Validation set Test set

(a) Error

20 40 60 80

0.6

0.7

0.8

0.9

Epochs

A
cc

ur
ac

y

Training set Validation set Test set

(b) Accuracy

Figure 4.6: Example error and accuracy curve for the first iteration of full backpropaga-
tion for a single fold (Caltech-101 dataset).

4.3 Full backpropagation training

In this section, full backpropagation training is added. First, results are shown
for applying one single iteration of full backpropagation. This approach is
extended with multiple iterations in the subsequent section and performance
is compared to the SIFT descriptor.

4.3.1 Single iteration

After each individual part of the system is trained, the system reaches a point
where traditional training cannot push the performance any further. At this
point, the procedure explained in Section 3.5 is applied. First, a single iteration
of full backpropagation is considered. A single iteration can consist of multi-
ple training epochs. Regularization was also applied to full backpropagation
training, where λ was set experimentally to λ = 0.001 using the L2 norm. An
example error curve for the training, validation and test set for a single fold is
shown in Figure 4.6.

The train error goes down continuously accompanied with a steady increase
in accuracy. Up to about epoch 30, both validation and test error go down
together with the train error. This coincides with an increase in both validation
and test accuracy. After around epoch 30, overfitting starts to occur and both

48



Chapter 4. Experiments & results 4.3. Full backpropagation training

Table 4.6: Results of one single iteration of full backpropagation for both datasets using
k = 100 clusters, averaged over 10 folds. The + (up) and − (down) sign
indicates the direction of the corresponding update.

Caltech-101 Error update (+/−) Accuracy update (+/−)

Training set 0.529→ 0.432 (−) 0.849→ 0.893 (+)

Validation set 1.013→ 0.981 (−) 0.660→ 0.680 (+)

Test set 1.201→ 1.185 (−) 0.625→ 0.639 (+)

Corel-1k Error update (+/−) Accuracy update (+/−)

Training set 0.417→ 0.326 (−) 0.876→ 0.913 (+)

Validation set 0.546→ 0.466 (−) 0.836→ 0.864 (+)

Test set 0.599→ 0.526 (−) 0.817→ 0.839 (+)

the validation and test set error go up. In a similar way as with training the
neural classifier, training was stopped when the validation error did not reach a
new minimum within 50 epochs. The weights stored at the lowest encountered
validation error were applied at the end of training.

Figure 4.6 showed the results for one single fold, the results averaged over
all 10 folds for both datasets using 100 clusters are shown in Table 4.6. On
average the train, validation, and test set errors went down and accuracy went
up for both datasets. This indicates that applying full backpropagation can
push the system further than was possible with regular training. After one
single iteration, test set accuracy went up by 1.40% for the Caltech-101 dataset
and 2.20% for the Corel-1k dataset.

For the k = 300 clusters setting the, test set accuracy for the Caltech-101

dataset went up from 68.53% to 69.80% (+1.27%). For the Corel-1k dataset,
accuracy went up from 85.10% to 86.70% (+1.60%).

4.3.2 Multiple iterations

After one single iteration, this training scheme cannot improve performance
any further. But, as described in Section 3.5.4, additional iterations can be used
to possibly push the system even further. The procedure involves updating the
current clustering and the neural classifier based on the improved neural-SIFT
network. When these are retrained, a second iteration of full backpropagation
can begin. This cycle can be repeated over and over again, until no further
improvement can be achieved.

From the second iteration onwards, a lower regularization constant λ for
the neural classifier is used for reasons mentioned in Section 3.5.4. λ was set
experimentally to λ = 0.001 for both datasets. A maximum of 10 iterations is
used for each experiment. This proved to be a sufficient number of iterations
for the error to stabilize or to see overfitting on the training data occur.

The development of the errors and accuracies over multiple iterations for
both datasets using 100 clusters is shown in Figure 4.7. For the Caltech-101

dataset the validation error went down each single iteration, but went up or
down during retraining the clusters and classifier (indicated by the vertical
updates at each iteration point). On average, the lowest validation error was
reached at iteration 3, before retraining. From iteration 4 onwards the valida-

49



4.3. Full backpropagation training Chapter 4. Experiments & results

0 2 4 6 8 10

0.5

1

Iteration

Er
ro

r

Training set Validation set Test set

(a) Error (Caltech-101)

0 2 4 6 8 10

0.6

0.7

0.8

0.9

Iteration

A
cc

ur
ac

y

Training set Validation set Test set

(b) Accuracy (Caltech-101)

0 2 4 6 8 10

0.2

0.4

0.6

Iteration

Er
ro

r

(c) Error (Corel-1k)

0 2 4 6 8 10

0.8

0.85

0.9

0.95

Iteration

A
cc

ur
ac

y

(d) Accuracy (Corel-1k)

Figure 4.7: Full backpropagation training progress averaged over 10 folds using k = 100

clusters. (a) and (b) show the training progress for the Caltech-101 dataset,
the progress for the Corel-1k dataset is shown in (c) and (d). Vertical updates
indicate the error and accuracy after retraining the clusters and the neural
classifier.

tion error stabilized and for most folds no further training was possible while
not letting the validation error increase. For the Corel-1k dataset the lowest av-
erage validation error was observed at iteration 2, before retraining. After that
point, retraining most of the time led to an increase of validation error. The
training error was still going down which indicates possible overfitting on the
training set.

Figure 4.8 shows the development of the errors and accuracies over multi-
ple iterations in a similar way, but for using 300 clusters instead. On average,
the validation set error for the Caltech-101 dataset reached its lowest point at
iteration 5, before retraining. The test set error went down during the first iter-
ation, but showed an increase after that. The validation error for the Corel-1k
dataset went down at first, went up around iteration 3, but eventually obtained
the lowest validation set error at iteration 10. On average, the test set showed a
decrease in error up to iteration 7. For both datasets the train error was really
low at the end, which increases the chance of overfitting and therefore makes
it more difficult for the validation and test set errors to go down with it.

50



Chapter 4. Experiments & results 4.3. Full backpropagation training

0 2 4 6 8 10

0.5

1

Iteration

Er
ro

r

(a) Error (Caltech-101)

0 2 4 6 8 10

0.7

0.8

0.9

Iteration

A
cc

ur
ac

y

(b) Accuracy (Caltech-101)

0 2 4 6 8 10

0.2

0.4

0.6

Iteration

Er
ro

r

(c) Error (Corel-1k)

0 2 4 6 8 10

0.85

0.9

0.95

Iteration

A
cc

ur
ac

y

(d) Accuracy (Corel-1k)

Figure 4.8: Full backpropagation training progress averaged over 10 folds using k = 300

clusters. (a) and (b) show the training progress for the Caltech-101 dataset,
the progress for the Corel-1k dataset is shown in (c) and (d). Vertical updates
indicate the error and accuracy after retraining the clusters and the neural
classifier.

The exact figures for all settings, before applying full backpropagation and
at the point where the validation error was the lowest, are shown in Table
4.7. When comparing these results with Table 4.6, multiple iterations of full
backpropagation can push the accuracy of the system even further than when
using just a single iteration. Except for the Caltech-101 dataset with 300 clusters,
in each setting the error went down and accuracy went up for both image sets.
As one would expect, the train error went down quite substantially in each
setting and, as a consequence, the train accuracy got the highest boost. In all
cases the validation set error is lower than the test set error, which is to be
expected when fine-tuning on the validation set. This also corresponds to a
higher accuracy for the validation set compared to the test set.

The largest improvement was achieved when using only 100 clusters for the
Caltech-101 dataset. Here, the accuracy of the test set increased from 62.47%
to 66.13% (corresponding to an increase of +4.66%). For the Corel-1k dataset
accuracy increased by +4.50% going from an initial score of 81.65% to 86.15%.
When using 300 clusters the accuracy on the test set for the Caltech-101 dataset
increased from 68.53% to 70.20% (increase of +1.67%). The Corel-1k showed an
increase from 85.10% to 86.85% (+1.75%).

51



4.3. Full backpropagation training Chapter 4. Experiments & results

Table 4.7: Results of applying multiple iterations of full backpropagation for both
datasets, averaged over 10 folds. The + (up) and − (down) sign indicates
the direction of the corresponding update.

100 clusters

Caltech-101 Error update (+/−) Accuracy update (+/−)

Training set 0.529→ 0.270 (−) 0.849→ 0.946 (+)

Validation set 1.013→ 0.878 (−) 0.660→ 0.719 (+)

Test set 1.201→ 1.168 (−) 0.625→ 0.661 (+)

Corel-1k Error update (+/−) Accuracy update (+/−)

Training set 0.417→ 0.119 (−) 0.876→ 0.973 (+)

Validation set 0.546→ 0.344 (−) 0.836→ 0.900 (+)

Test set 0.599→ 0.480 (−) 0.817→ 0.862 (+)

300 clusters

Caltech-101 Error update (+/−) Accuracy update (+/−)

Training set 0.257→ 0.104 (−) 0.954→ 0.996 (+)

Validation set 0.913→ 0.852 (−) 0.728→ 0.738 (+)

Test set 1.046→ 1.055 (+) 0.685→ 0.702 (+)

Corel-1k Error update (+/−) Accuracy update (+/−)

Training set 0.162→ 0.055 (−) 0.965→ 0.995 (+)

Validation set 0.372→ 0.325 (−) 0.888→ 0.911 (+)

Test set 0.522→ 0.470 (−) 0.851→ 0.869 (+)

4.3.3 Improved neural-SIFT versus the SIFT descriptor

Performance of using the improved neural-SIFT descriptor is compared to the
performance of the SIFT descriptor in Table 4.8. Before full backpropagation
the SIFT descriptor obtained higher accuracy rates for both datasets in the 100

clusters setting, and achieved higher accuracy for the Corel-1k dataset for the
300 cluster setting. Only the Caltech-101 dataset with 300 clusters showed a bet-
ter performing neural-SIFT descriptor. After applying multiple iterations of full
backpropagation, however, the improved neural-SIFT descriptor takes over and
obtains better performance in all settings. For the Caltech-101 dataset increases
of +3.33% and +4.87% were realized for the 100 and 300 cluster setting, respec-
tively. A student t-test was conducted to compare the two descriptors. For the
100 clusters setting there was a significant difference in the scores for the SIFT
(M = 62.80, SEM = 0.95) and the neural-SIFT (M = 66.13, SEM = 1.24) descrip-
tor conditions; t(18) = 2.13, p = 0.047. Also the 300 clusters setting showed a
significant difference between the SIFT (M = 65.33, SEM = 1.30) and the neural-
SIFT (M = 70.20, SEM = 0.57) descriptor conditions; t(18) = 3.43, p = 0.003. For
the Corel-1k dataset increases of +3.00% and +0.60% were realized. The stu-
dent t-test could not be used here because we observed that the outcomes do
not follow a normal distribution, so the Binomial test was used instead. The re-
sults indicated that for both the 100 and 300 clusters setting there were 8 wins,
2 losses. The cumulative Binomial test then gives P(X > 8 | N = 10) = 0.054,
which is almost significant at the p = 0.05 level.

52



Chapter 4. Experiments & results 4.3. Full backpropagation training

Table 4.8: Average classification accuracy of the test set over 10 folds for using either
the SIFT descriptor, the neural-SIFT network or the improved neural-SIFT
network as local image descriptor. Numbers in parentheses show the differ-
ence in performance when compared to the SIFT descriptor.

100 clusters

SIFT descriptor Neural-SIFT Improved neural-SIFT

Caltech-101 62.80% 62.47% (−0.33%) 66.13% (+3.33%)*

Corel-1k 83.15% 81.65% (−1.50%) 86.15% (+3.00%)

300 clusters

SIFT descriptor Neural-SIFT Improved neural-SIFT

Caltech-101 65.33% 68.53% (+3.20%) 70.20% (+4.87%)**

Corel-1k 86.25% 85.10% (−1.15%) 86.85% (+0.60%)

* The mean difference is significant at the 0.05 level

** The mean difference is significant at the 0.005 level

4.3.4 Confusion matrices

The best performance for both datasets was encountered while using 300 clus-
ters. For this setting the confusion matrices for both datasets are constructed
while using the original or improved neural-SIFT descriptor.

A confusion matrix is a C× C matrix, where C is the number of classes,
which shows the correct and wrong classifications of the classifier. It allows
one to see which classes are often misclassified and, more specifically, which
classes are often confused with one another. In a confusion matrix the diagonal
values correspond to correct classifications, the off-diagonal values correspond
to incorrect classifications. From these numbers the precision and recall statis-
tics can be calculated. For classification, the precision is the fraction of images
predicted to have a certain class that actually belong to that class. For example,
if 100 images have been classified as class A, while of these images only 75 ac-
tually belong to this class, then the precision for class A equals 75/100 = 0.750.
Recall is the fraction of images that are of a specific class that are correctly clas-
sified. If there are 50 images that belong to class B and 40 of them have been
correctly classified, the recall for class B is 40/50 = 0.800.

The confusion matrices for the Caltech-101 dataset are shown in Table 4.9.
For using the original neural-SIFT descriptor the class cups showed the worst
performance, only 59 out of the possible 150 images were correctly classified.
The highest confusion for that class was found to be with the helicopters and
cameras class. Two classes that are semantically highly similar were also often
confused with one another, being the airplanes and helicopters. The best recog-
nized classes were the cellphones and the scissors, which show the highest recall
rate.

When looking at the numbers for the improved neural-SIFT descriptor the
largest improvement regarding recall was achieved with the umbrella class,
showing an increase from 70 to 82 images correctly classified. The top two
correctly classified classes were still the cellphones and the scissors.

53



4.3. Full backpropagation training Chapter 4. Experiments & results

Table 4.9: Confusion matrices of the Caltech-101 dataset for the 300 clusters setting,
summed over 10 folds. The labels are represented by abstract characters,
where A: airplanes; B: cameras; C: car sides; D: cellphones; E: cups; F: heli-
copters; G: motorbikes; H: scissors; I: umbrellas; and J: watches.

Original neural-SIFT

Predicted class

A B C D E F G H I J Prec. Recall
A

ct
ua

l
cl

as
s

A 111 0 15 0 0 18 2 0 4 0 0.730 0.740

B 4 83 4 1 25 7 4 3 5 14 0.686 0.553

C 4 0 127 0 0 16 2 0 1 0 0.713 0.847

D 0 0 1 136 4 0 0 1 1 7 0.895 0.907

E 2 18 2 6 59 20 12 6 12 13 0.457 0.393

F 15 1 10 1 6 104 3 0 6 4 0.500 0.693

G 6 4 14 0 5 15 101 2 1 2 0.802 0.673

H 0 2 0 0 5 0 0 132 2 9 0.835 0.880

I 8 4 4 6 13 19 2 10 70 14 0.648 0.467

J 2 9 1 2 12 9 0 4 6 105 0.625 0.700

Improved neural-SIFT

Predicted class

A B C D E F G H I J Prec. Recall

A
ct

ua
l

cl
as

s

A 109 1 17 0 0 12 4 0 7 0 0.637 0.727

B 7 89 1 0 26 5 7 1 9 5 0.701 0.593

C 10 0 132 0 0 5 2 0 1 0 0.725 0.880

D 3 0 0 135 3 0 1 0 2 6 0.906 0.900

E 3 13 2 7 68 9 11 9 15 13 0.466 0.453

F 22 1 15 1 6 88 3 0 8 6 0.607 0.587

G 5 6 9 0 6 6 111 0 1 6 0.782 0.740

H 0 0 0 2 4 0 0 140 1 3 0.864 0.933

I 10 5 6 3 15 11 1 10 82 7 0.626 0.547

J 2 12 0 1 18 9 2 2 5 99 0.683 0.660

The confusion matrices for the Corel-1k dataset are shown in Table 4.10.
An almost perfect score was achieved for the dinosaurs class, having both a
precision and recall of 0.995. Also the buses and the flowers classes showed good
performance with the original neural-SIFT descriptor. The lowest performance
was encountered with the African people, beaches, and mountains categories. The
biggest confusion seemed to be between the beaches and the mountains classes,
which share some semantical features. Interestingly, mountains were also often
classified as being food.

54



Chapter 4. Experiments & results 4.3. Full backpropagation training

Table 4.10: Confusion matrices of the Corel-1k dataset for the 300 clusters setting,
summed over 10 folds. The labels are represented by abstract characters,
where A: African people; B: beaches; C: buses; D: dinosaurs; E: elephants; F:
flowers; G: food; H: horses; I: monuments; and J: mountains.

Original neural-SIFT

Predicted class

A B C D E F G H I J Prec. Recall

A
ct

ua
l

cl
as

s

A 154 3 5 1 6 5 8 6 9 3 0.762 0.770

B 5 151 3 0 3 0 2 10 10 16 0.812 0.755

C 1 1 187 0 0 0 1 1 9 0 0.926 0.935

D 0 0 0 199 0 0 0 0 0 1 0.995 0.995

E 11 1 0 0 170 0 1 8 3 6 0.821 0.850

F 2 0 0 0 1 193 1 0 1 2 0.946 0.965

G 13 5 0 0 6 2 166 0 2 6 0.826 0.830

H 3 5 2 0 10 0 2 172 3 3 0.843 0.860

I 10 6 4 0 5 0 4 5 160 6 0.796 0.800

J 3 14 1 0 6 4 16 2 4 150 0.777 0.750

Improved neural-SIFT

Predicted class

A B C D E F G H I J Prec. Recall

A
ct

ua
l

cl
as

s

A 160 3 3 2 11 2 10 4 3 2 0.804 0.800

B 3 159 2 0 3 1 1 9 11 11 0.832 0.795

C 0 2 185 0 1 0 1 0 11 0 0.939 0.925

D 0 0 0 200 0 0 0 0 0 0 0.985 1.000

E 11 1 0 0 174 0 1 8 1 4 0.817 0.870

F 2 1 0 0 0 192 1 1 1 2 0.928 0.960

G 11 3 1 1 5 3 168 0 4 4 0.848 0.840

H 4 2 1 0 12 2 0 176 3 0 0.863 0.880

I 5 8 4 0 5 0 5 5 162 6 0.818 0.810

J 3 12 1 0 2 7 11 1 2 161 0.847 0.805

With the improved neural-SIFT descriptor the class dinosaurs achieved a per-
fect score: 200/200 images correct. The precision did go down a bit to 0.985, but
it still shows that this class is well separated from the others. All classes, except
for the buses and the flowers, showed an increase in performance. The largest
performance differences are seen with the classes that previously showed the
poorest accuracy (African people, beaches, and mountains). The highest confusion
is seen with horses being classified as elephants and mountains being classified
as beaches.

55



4.4. Random descriptor initialization Chapter 4. Experiments & results

Table 4.11: Average classification accuracy of the test set over 10 folds for using ei-
ther the neural-SIFT network, the improved neural-SIFT network, or the
randomly initialized neural-RANDOM network as local image descriptor.
Numbers in parentheses show the difference in performance when com-
pared to the original neural-SIFT descriptor.

100 clusters

Neural-SIFT Neural-RANDOM

Original Improved Original

Caltech-101 62.47% 66.13% (+3.66%) 50.33% (−12.14%)

Corel-1k 81.65% 86.15% (+4.50%) 78.10% (−3.55%)

300 clusters

Neural-SIFT Neural-RANDOM

Original Improved Original

Caltech-101 68.53% 70.20% (+1.67%) 54.59% (−13.94%)

Corel-1k 85.10% 86.85% (+1.75%) 76.90% (−8.20%)

4.4 Random descriptor initialization

During the previous experiments, full backpropagation was applied to a system
where the neural-SIFT network was initialized on SIFT descriptor output. In
the following experiment, a randomly initialized neural-SIFT network is used
instead, termed the neural-RANDOM network, to see how much influence ini-
tialization has on performance. Can the system learn to extract good features
without initializing on an existing feature descriptor when using full backprop-
agation training, or is it a crucial step in the process?

4.4.1 System settings

Almost all settings used for this system are identical to the neural-SIFT based
system. The only aspect that changed is the initialization of the neural-SIFT
network. The neural-SIFT network was pretrained on SIFT descriptor output.
However, in this case, the weights will only be initialized with random values.
When the weights are initialized in a small range (e.g., [−0.1,+0.1]), regulariza-
tion will have too much influence when applying full backpropagation. The
weights will be pushed too hard towards zero when λ is set to the same value
used in previous settings. Using the Nguyen-Widrow initialization method,
it was observed that the system had a hard time obtaining a reasonable level
of performance when applying full backpropagation. Therefore, weights were
randomly initialized in a much broader range, namely [−0.5,+0.5].

4.4.2 Results without full backpropagation

Performance of both the 100 and 300 clusters setting without full backpropa-
gation are shown in Table 4.11. In each setting the randomly initialized neural
network performs less well than the network initialized on SIFT descriptor
output. This is not surprising as the SIFT descriptor has shown to be a well
performing local image descriptor [24] and the random neural network has no
theoretical basis whatsoever.

56



Chapter 4. Experiments & results 4.4. Random descriptor initialization

0 2 4 6 8 10

0.5

1

1.5

Iteration

Er
ro

r
Training set Validation set Test set

(a) Error (Caltech-101)

0 2 4 6 8 10

0.6

0.8

Iteration

A
cc

ur
ac

y

Training set Validation set Test set

(b) Accuracy (Caltech-101)

0 2 4 6 8 10

0.2

0.4

0.6

Iteration

Er
ro

r

(c) Error (Corel-1k)

0 2 4 6 8 10

0.8

0.9

Iteration

A
cc

ur
ac

y

(d) Accuracy (Corel-1k)

Figure 4.9: Full backpropagation progress with a random initialized local image descrip-
tor network using k = 100 clusters. Error and accuracy are averaged over 10

folds. (a) and (b) show the progress for the Caltech-101 dataset, the progress
for the Corel-1k dataset is shown in (c) and (d). Vertical updates indicate the
error and accuracy after retraining the clusters and the neural classifier.

4.4.3 Full backpropagation training

Full backpropagation is applied to the system and results for the 100 clusters
setting are shown in Figure 4.9. For the Caltech-101 dataset the validation error
stabilized after around iteration 4. After that, the error went down just a little,
but no big decrease was observed further on. The lowest error was observed at
iteration 10. The lowest validation error for the Corel-1k dataset was observed
at iteration 3, before retraining the clusters and the neural classifier. At this
point, the training set error and accuracy showed some fluctuating behavior,
but did not affect the other image sets that much. The highest decrease in error
and increase in accuracy was observed at iteration 1.

The training results for the k = 300 clusters setting are shown in Figure
4.10. Similar to the full backpropagation progress of the 100 clusters setting,
the progress for the 300 clusters setting for the Caltech-101 dataset shows a
quick decrease in error for the first iteration. After that, it improves just a little
bit up to iteration 6 after which the validation error increased just a little bit.
The validation error of the Corel-1k dataset reached its lowest point at iteration
5, before retraining the clustering and the neural classifier.

57



4.4. Random descriptor initialization Chapter 4. Experiments & results

0 2 4 6 8 10

0.5

1

1.5

Iteration

Er
ro

r

Training set Validation set Test set

(a) Error (Caltech-101)

0 2 4 6 8 10

0.6

0.8

Iteration

A
cc

ur
ac

y

Training set Validation set Test set

(b) Accuracy (Caltech-101)

0 2 4 6 8 10

0.2

0.4

0.6

Iteration

Er
ro

r

(c) Error (Corel-1k)

0 2 4 6 8 10

0.8

0.9

Iteration

A
cc

ur
ac

y

(d) Accuracy (Corel-1k)

Figure 4.10: Full backpropagation progress with a random initialized local image de-
scriptor network using k = 300 clusters. Error and accuracy are averaged
over 10 folds. (a) and (b) show the progress for the Caltech-101 dataset, the
progress for the Corel-1k dataset is shown in (c) and (d). Vertical updates
indicate the error and accuracy after retraining the clusters and the neural
classifier.

4.4.4 Improved neural-RANDOM versus improved neural-SIFT

A summary of the results thus far is shown in Table 4.12. After applying full
backpropagation training, only one of the settings, the Caltech-101 dataset with
100 clusters setting, outperformed the SIFT descriptor. However, in each setting
the neural-RANDOM network loses from its neural-SIFT network counterpart
performance-wise. The difference is larger for the Caltech-101 dataset than for
the Corel-1k dataset. Adding more training images seems to have a positive
effect on the learning capabilities of the system through full backpropagation.
Although a properly initialized local image descriptor neural network gives
a head start performance-wise, if there are enough train images available the
system can recover quite well using full backpropagation. In other words, it can
come up with its own representation of what a good image feature looks like.
For the Corel-1k dataset, for example, it even outperformed the SIFT descriptor
without any prior knowledge of how to describe a local part of an image.

58



Chapter 4. Experiments & results 4.5. Generalizability

Table 4.12: Average classification accuracy of the test set over 10 folds for using either
the SIFT descriptor, the improved neural-SIFT network, the randomly initial-
ized neural-RANDOM network, or the improved neural-RANDOM network
as local image descriptor. Numbers in parentheses show the difference in
performance when compared to the SIFT descriptor.

100 clusters

SIFT Neural-SIFT Neural-RANDOM

descriptor Improved Original Improved

Caltech-101 62.80% 66.13% 50.33% 58.73%

(+3.33%) (−12.47%) (−4.07%)

Corel-1k 83.15% 86.15% 78.10% 83.60%

(+3.00%) (−5.05%) (+0.45%)

300 clusters

SIFT Neural-SIFT Neural-RANDOM

descriptor Improved Original Improved

Caltech-101 65.33% 70.20% 54.59% 61.80%

(+4.87%) (−10.74%) (−3.53%)

Corel-1k 86.25% 86.85% 76.90% 84.70%

(+0.60%) (−9.35%) (−1.50%)

4.5 Generalizability

In order to test the generalizability of the improved neural-SIFT descriptor,
performance is measured with a different classifier. This classifier is trained
using the original neural-SIFT network and the corresponding clusters in the
first setting (i.e., without full backpropagation applied). In the second setting
it uses the improved neural-SIFT network and the corresponding clusters (i.e.,
after applying full backpropagation). This experiment is applied for both k =
100 and k = 300 clusters.

4.5.1 SVM classifier

The Support Vector Machine (SVM) [9] is used as the new classifier (see Section
2.5). The SVM classifier has been applied in numerous studies and is known
for its good performance with high dimensional input data. As this system
deals with high dimensional input for the classifier, the SVM classifier is well
suited for the task at hand.

The radial basis function (RBF) is used as kernel function. This function
involves tuning two important parameters: C and γ (see Section 2.5.2 for a brief
explanation of the two). A grid-search algorithm is applied to fine-tune the two
parameters. First, a coarse grid search is used with C-values of 2

−5, 2−4, ..., 215

and γ-values of 2
−15, 2−14, ..., 23. The best performing parameters, denoted C∗

and γ∗ for C and γ respectively, are used as the starting point for a fine grid-
search. In this search, C ranges from 0.5C∗ to 2C∗ and γ ranges from 0.5γ∗ to
2γ∗, where each range is divided in 20 equal steps. The best parameters of the
fine grid-search are used to test performance of the system.

59



4.5. Generalizability Chapter 4. Experiments & results

Table 4.13: Average classification accuracy of the test set over 5 folds for using either
the neural classifier or the SVM classifier with the original or improved
neural-SIFT descriptor. Numbers in parentheses show the difference in per-
formance when compared to the original neural-SIFT descriptor for the same
classifier.

100 clusters

Neural classifier SVM classifier

Original Improved Original Improved

Caltech-101 62.47% 66.13% (+3.66%) 75.90% 77.08% (+1.18%)

Corel-1k 81.65% 86.15% (+4.50%) 90.10% 90.55% (+0.45%)

300 clusters

Neural classifier SVM classifier

Original Improved Original Improved

Caltech-101 68.53% 70.20% (+1.67%) 79.17% 79.72% (+0.55%)

Corel-1k 85.10% 86.85% (+1.75%) 90.25% 91.40% (+1.15%)

4.5.2 Results

The results for this experiment are shown in Table 4.13. In the second and third
column the results are again presented for the neural classifier. The fourth col-
umn shows the results while using the SVM classifier with the original neural-
SIFT descriptor. For this setting, the SVM performed better than the neural
classifier with the original neural-SIFT network for each number of clusters
and dataset. Especially for the Caltech-101 dataset the SVM performed a lot
better: +13.43% for the 100 clusters setting and +10.64% for using 300 clusters.

When training the SVM with the improved neural-SIFT network instead,
the performance for each setting improved. The improved neural-SIFT descrip-
tor not only led to an improvement for the neural classifier by which it was
trained, but it also led to an improvement when using a completely different
classifier. A classifier which has little or no structural resemblance to a neural
network. Although the performance increases are small, this shows that the
full backpropagation system has the capability to improve a feature descriptor
that can then be used in other settings than the one in which it was trained.

60



5Conclusion & further work

In Chapter 4, experiments were set up to answer the research questions com-
piled in Section 1.2. Section 5.1 reflects on the obtained results by answering
the research questions one by one. In Section 5.2, possible areas of explorations
and improvements are suggested for the presented framework and Section 5.3
concludes this thesis.

5.1 Research questions

The research questions are answered in the same order as they were compiled,
starting with the full backpropagation training scheme in general. Next, initial-
ization of the system will be examined, and lastly, generalizability will be the
subject of discussion.

5.1.1 Full backpropagation

Can training the feature descriptor based on the classification error be able to improve
recognition results?

A training scheme was proposed and constructed, capable of propagating
the classification error all the way back to the feature extracting neural-SIFT
network. This neural-SIFT network was initialized on SIFT descriptor output
and was capable of achieving a good level of performance when compared to
using a randomly initialized neural network. However, the performance when
using the neural-SIFT network was worse in three out of four settings than
when using the SIFT descriptor itself.

When full backpropagation was added to the pipeline, the performance of
the whole system improved for all settings. Compared to the original neural-
SIFT network improvements were obtained of 3.66% and 1.67% for the Caltech-
101 dataset and of 4.50% and 1.75% for the Corel-1k dataset, using either 100

or 300 clusters for the visual vocabulary, respectively. That the improvements
for the Corel-1k were higher than for the Caltech-101 dataset is not surprising,
as the number of training samples for the former are a lot higher (60 versus 15

training images per class).
Multiple iterations of full backpropagation showed to be able to boost the

system further than using just a single iteration. In most cases, the first iteration
of backpropagation together with the retraining of the clustering and the neural
classifier showed the highest performance increase. After about 10 iterations
of training, either the validation error stabilized or showed an ever increasing
trend, at which point training was halted. At these points, the training errors
were already really low which could lead to overfitting on the train data more
easily.

In the end, the improved neural-SIFT descriptor clearly outperformed the
SIFT descriptor on which the system was initially trained. For the Caltech-

61



5.1. Research questions Chapter 5. Conclusion & further work

101 dataset the improved neural-SIFT showed a significant difference in perfor-
mance of +3.33% and +4.78%. For the Corel-1k this was +3.00% and +0.60%.
For both settings concerning the Corel-1k dataset, the difference in performance
was shown to be almost significant at the p = 0.050 level (p = 0.054).

From the results mentioned above we conclude that using the classification
error the system is capable of improving the feature descriptor and as a con-
sequence improve recognition accuracy. Not even was the system capable of
improving the original neural-SIFT feature descriptor, it also achieved higher
performance than the original feature descriptor on which it was trained in two
out of four settings.

5.1.2 Initialization

Can the system come up with a good feature descriptor without initializing on an exist-
ing one?

The experiments involved in answering the first research question all used
a neural network feature descriptor initialized on the widely used SIFT descrip-
tor, with the task of improving it. The question that was asked subsequently
was: What would happen if this initialization process would not take place?
Would the system be able to learn to extract good features on its own, or does
the system initially need to be pushed in some predefined direction?

To answer these questions, the neural network used as feature descriptor
(i.e., the neural-SIFT network) was not trained on SIFT descriptor output any-
more. The only procedure applied was random weight initialization in a certain
range. The resulting network was termed the neural-RANDOM network, in a
similar way as the network initialized on SIFT descriptor output was termed
the neural-SIFT network. The experiments conducted were identical to the ones
using the neural-SIFT network.

Without applying full backpropagation training, the system’s performance
was clearly worse than that of using either the SIFT or the original neural-SIFT
descriptor. For using a vocabulary size of 100 (i.e., 100 clusters) the achieved
accuracy was 12.14% and 3.55% lower than that of the original neural-SIFT
network for the Caltech-101 and Corel-1k dataset, respectively. Looking at a
vocabulary size of 300 the performance difference was even higher: 13.94%
for the Caltech-101 dataset and 8.20% for the Corel-1k dataset. It seems that
when using more clusters a random initialized network causes a higher relative
decrease in performance.

When full backpropagation training was added, the performance increase
of the neural-RANDOM network was considerable. For the 100 clusters setting
the system showed an increase of +8.40% and +5.50% for the Caltech-101 and
Corel-1k dataset, respectively. An increase of +7.21% and +7.85% was observed
for the 300 clusters setting. In most settings, the first iteration with the retrain-
ing of the clusters and the neural classifier resulted in the largest decrease in
error and the largest increase in accuracy, as was the case with training the
neural-SIFT network. In all cases, the performance stabilized already quite
soon after about three or four iterations.

Comparing the results of the improved neural-RANDOM network with the
improved neural-SIFT network, the difference in performance is still in favor
of the neural-SIFT network, although the gap did decrease. Notably, the differ-
ence is much higher for the Caltech-101 dataset (−7.40% and −8.40%) than for
the Corel-1k dataset (−2.55% and −2.15%). It seems that when the system has

62



Chapter 5. Conclusion & further work 5.2. Future work

a lot of training images at its disposal the quality of the feature descriptor can
increase to almost the same heights as when using the neural-SIFT network.
Although the difference was small, for one setting the system even achieved a
higher performance than when using the SIFT descriptor (+0.45%).

Given the availability of a high number of training images, we conclude
that the system is able to achieve high performance using a random initialized
feature descriptor. This means that the system does not need to have any prior
knowledge of what a good feature descriptor looks like, it only needs the clas-
sifier to tell what is present in each image. When dealing with a low number
of training images the system does benefit greatly from initialization on an ex-
isting feature descriptor. For using a high number of training images this is the
case as well, as it gives a large head start performance-wise.

5.1.3 Generalizability

Is the improved feature descriptor generalizable to other recognition systems?

The improved neural-SIFT descriptor showed not only higher performance
compared to the original neural-SIFT descriptor, but also showed to be superior
to the SIFT descriptor itself in the context in which it was improved. The
question that arose was: Is the improved neural-SIFT descriptor, besides being
superior in the current context, also superior in other contexts? To answer this
question, a small experiment was set up that tested the performance of both
descriptors while using a different classifier than the neural classifier, in this
case an SVM.

Using an SVM with the original neural-SIFT descriptor resulted in a higher
performance than with using the neural classifier in each single setting. For the
Caltech-101 dataset the difference in performance was a lot higher (+13.43%
and +10.64% for the 100 and 300 clusters setting, respectively) than for the
Corel-1k dataset (similarly, +8.45% and +5.15% increase). Remarkably, in each
setting the SVM with the original neural-SIFT descriptor scored higher than the
neural classifier with the improved neural-SIFT descriptor. When the improved
neural-SIFT descriptor was used with the SVM, the performance increased for
each setting. The differences compared to the SVM with the original neural-
SIFT descriptor were small, ranging between +0.45% and +1.18%.

The results obtained in this experiment indicate that the neural-SIFT de-
scriptor, which was improved using a neural classification system, does gener-
alize to other systems, in this case the SVM. The improvements made, however,
were small and were only shown with one other type of classifier. Consequently,
these results should be interpreted with care. It is, therefore, hard to draw firm
conclusions in terms of generalizability to other systems, but the improvements
do show potential.

5.2 Future work

Research is a never ending process, which applies to constructing the frame-
work presented in this thesis as well. The proposed training scheme was a first
step in improving feature descriptors that are currently available using classi-
fier feedback, and many aspects exist which have not yet been touched upon.
Additionally, many adjustments to the system can be made that can possibly
lead to improved performance.

63



5.2. Future work Chapter 5. Conclusion & further work

In Section 5.2.1, possible areas of exploration are suggested for the system
in its current form. Section 5.2.2 provides modifications to the system that are
worthy of consideration.

5.2.1 Exploration

The system comes with many tunable parameters. For a multilayer neural net-
work there are already many, including: the number of hidden layers and units
in those hidden layers; the type of activation function and the steepness for that
function to use in each layer; the connectivity between layers; the learning algo-
rithm; and many others. It’s nearly impossible to go through all configurations
and test which one performs best.

The goal of this thesis was not to attain the highest performance possible,
but rather to obtain higher performance than with using the original feature
descriptor. Therefore, the effects of a lot of parameters were explored in little
detail, or not at all. For example, the parameters for the fixed partitioning
approach. The fixed partitioning was implemented using a sliding window
approach, where the number of pixels to shift can be changed. By decreasing
this value a lot more different image patches are fed to the system. Also the
size of the image patches can be changed to capture more or less pixels.

An important parameter is the number of hidden units to use in the neural-
SIFT network. Both while training the network on SIFT descriptor output as
while applying full backpropagation training, overfitting can occur. Overfitting
is more likely to occur when there are more units and connections, so setting
it to a low value is recommended. The downside is that this decreases the
degree of fit with the SIFT descriptor. A more thorough parameter sweep can
be applied to get a better understanding of the influence of this parameter.

To further test the full backpropagation pipeline, different local image de-
scriptors could be used. Now, only the SIFT descriptor was shown to be im-
proved by it, other feature descriptors (e.g., SURF and others) can be cast into
this framework as well. Virtually any feature descriptor that takes a window
of image pixels as input can be used and tested.

For creating the image histogram only two different visual vocabulary sizes
were considered, being 100 and 300 visual words (clusters). In each setting,
being it training the neural-SIFT network, the neural-RANDOM network, or
using an SVM as classifier, the 300 clusters setting showed higher performance
than the 100 clusters setting. The number of clusters to use thus has a clear
influence on accuracy. Optimizing the number of clusters to use seems like an
evident step in improving recognition accuracy for this system.

Lastly, in this thesis, generalizability of the improved neural-SIFT descriptor
has only been tested using the SVM classifier using the same bag of visual
words approach. To really get a grip on the generalizability of the improved
feature descriptor, the descriptor could be tested with additional classifiers and
using different pipelines than the currently used bag of visual words approach.

5.2.2 Modifications

Like the suggested areas of exploration, there are numerous ways of changing
parts of the system that can possibly lead to an improved performance. A few
modifications to the system are presented here.

64



Chapter 5. Conclusion & further work 5.2. Future work

For the neural-SIFT network, a simple feedforward multilayer perceptron
was used. Other types of networks can be used instead, for example, convolu-
tional neural networks [25, 27]. These networks are biologically inspired by the
visual cortex, where the cells in the cortex are only sensitive to specific regions
of the visual field. Convolutional networks use the same concept and consist
of multiple layers and use different types of layers. The most noteworthy type
of layer is the convolutional layer which consists of units taking a rectangular
subsection of the previous layer as input. The weights for each unit in such a
layer are shared. Convolutional neural networks have received a lot of attention
lately in the academic world and are shown to give very promising results (e.g.,
in [25]). Implementing them in the presented framework could give a possible
boost in performance.

To construct the visual vocabulary, the k-means algorithm was applied
as clustering technique. Usually, k-means uses the hard assignment method
where a sample instance only belongs to one single cluster. To make this
method differentiable the distances to each cluster were transformed to simi-
larity values. Instead of using this approach other techniques exist which fit
the distribution of data instances using probability density functions. When
comparing a test sample with such a distribution the relative likelihood of
the distribution generating this sample is returned. These values can be inter-
preted as how similar an instance is to a cluster, and therefore these techniques
are interesting to apply in this system. An example of such a technique is
the Gaussian mixture model (GMM) where the Gaussian distribution function
is used as density function (e.g., used in [17, 37]). This technique was first
attempted for the proposed system, but turned out to be too computational ex-
pensive in the current setting when training. A GMM uses a d× d covariance
matrix for each centroid to describe the distribution, where d is the dimension-
ality. d in this system equals the size of the SIFT descriptor, which is 128. The
algorithm involved in computing these big covariance matrices involve a lot
of computation and, as a consequence of the high dimensionality, introduced
computational under- and overflow problems. However, when a solution can
be found to the under- and overflow problems, for example, when using de-
scriptors with a lower dimensionality, GMMs can certainly be applied.

Abdullah et al. provided an overview of multiple methods for constructing
image histograms [2]. One of the simplest being the hard bag-of-features ap-
proach where the hard assignment method for clusters is applied and the num-
ber of cluster occurrences is counted. Another novel method, termed the MIN
approach, was proposed which involves computing a minimum distance map
for each visual word in the vocabulary [2]. This approach showed to be able
to outperform other histogram methods. Exploring the different approaches in
this system could possible lead to improved performance as well.

Each of these histogram construction methods, however, ignore any spatial
information present in the image. The fact that specific extracted features are
close to each other in the image can be very relevant for a specific object and can
help the classifier in the decision process. To get some form of spatial informa-
tion back in the system, the spatial pyramids approach was introduced [18, 26].
For this approach, a sample image is divided in multiple regions, possibly at
different resolutions. For each of these regions a histogram is constructed and
these are combined in a later stage. Applying the spatial pyramid approach
has shown to outperform the single histogram approach in many studies (e.g.,
in [2, 7, 26]) and can be applied in the system proposed in this thesis as well.
Full backpropagation will need to be adapted to distribute the error over the

65



5.3. Conclusion Chapter 5. Conclusion & further work

available region histograms, which is a similar approach as distributing the
error over the multiple histograms for each image patch, already incorporated.

The last stage in the proposed system is classification. As with the neural-
SIFT network, a feedforward multilayer perceptron was used here as well. In
the generalizability experiment an SVM classifier was used for testing. In each
setting the SVM outperformed the neural classifier. This shows that the choice
of classifier to use is an important one in terms of performance. The full back-
propagation approach can be applied to any type of classifier as long as the
classification error can be propagated back to the inputs.

5.3 Conclusion

In this thesis, a deep neural network training framework was introduced which
propagates the classification error through the entire pipeline all the way back
to the feature extraction stage to learn to extract ‘better’ features than the initial
local image descriptor. A neural network was trained on the SIFT descriptor
(termed neural-SIFT) and by using the proposed full backpropagation training
scheme the system was able to achieve higher recognition accuracy in each
single setting. Performance increases between 0.60% and 4.87% were realized
when compared to the SIFT descriptor.

The influence of initializing the feature extracting neural network on an
existing local image descriptor was examined by using a randomly initialized
network instead. The system showed a much lower performance initially, but
was able to narrow the performance-gap quite a bit after applying full back-
propagation training. This gap was a lot smaller for the Corel-1k dataset where
a lot more training images were available than for the subset of classes used
in the Caltech-101 dataset. This shows that, when a system has many training
samples available, it can figure out by itself, without any prior knowledge on
the subject, how a distinctive image descriptor should look like.

The image descriptor was improved in one specific context, with the bag of
visual words approach and a neural network classifier. To see if the improved
image descriptor not only led to an increased performance in the context in
which it was trained, both the original and the improved descriptor were tested
in another context as well. An SVM classifier was used for this purpose and in
each setting the performance increased when using the improved neural-SIFT
descriptor instead of the original. However, these improvements were small
and were only achieved in one other context. Other contexts should be tested
to get a better view on the generalizability of the improved descriptor.

The proposed system was a first step in improving feature descriptors based
on classifier feedback. The system can be modified and improved upon in nu-
merous ways and the influence of a large portion of parameters were examined
in little detail, or not at all. Other feature descriptors, or combinations of them,
can be applied, different image histogram creation methods can be used, and
any type of classifier which allows the error to be propagated back to the input
can be applied. The possibilities are endless.

66



Bibliography

[1] A. Abdullah, R. C. Veltkamp, and M. A. Wiering. Spatial pyramids and
two-layer stacking svm classifiers for image categorization: A comparative
study. In Neural Networks, 2009. IJCNN 2009. International Joint Conference
on, pages 5–12. IEEE, 2009.

[2] A. Abdullah, R. Veltkamp, and M. Wiering. Ensembles of novel visual key-
words descriptors for image categorization. In Control Automation Robotics
& Vision (ICARCV), 2010 11th International Conference, pages 1206–1211.
IEEE, 2010.

[3] A. Abdullah, R. Veltkamp, and M. Wiering. Fixed partitioning and salient
points with MPEG-7 cluster correlograms for image categorization. Pattern
Recognition, 43(3):650–662, 2010.

[4] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seed-
ing. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1027–1035. Society for Industrial and Applied Mathemat-
ics, 2007.

[5] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii. Scalable
k-means++. Proceedings of the VLDB Endowment, 5(7):622–633, 2012.

[6] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features.
In Proceedings of the European Conference on Computer Vision, pages 404–417.
Springer, 2006.

[7] A. Bosch, A. Zisserman, and X. Munoz. Representing shape with a spatial
pyramid kernel. In Proceedings of the 6th ACM international conference on
Image and video retrieval, pages 401–408. ACM, 2007.

[8] T. Botterill, S. Mills, and R. Green. Speeded-up bag-of-words algorithm for
robot localisation through scene recognition. In Image and Vision Computing
New Zealand, 2008. IVCNZ 2008. 23rd International Conference, pages 1–6.
IEEE, 2008.

[9] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):
273–297, 1995.

[10] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual catego-
rization with bags of keypoints. In Proceedings of the European Conference on
Computer Vision, Workshop on statistical learning in computer vision, volume 1,
page 22, 2004.

[11] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303–314, 1989.

[12] A. J. Davison. Real-time simultaneous localisation and mapping with a sin-
gle camera. In Computer Vision, 2003. Proceedings. Ninth IEEE International
Conference on, pages 1403–1410. IEEE, 2003.

67



Bibliography

[13] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society. Series
B (Methodological), pages 1–38, 1977.

[14] J. S. Denker, R. E. Howard, L. D. Jackel, and Y. LeCun. Hierarchical
constrained automatic learning neural network for character recognition,
Sept. 10 1991. US Patent 5,067,164.

[15] M. Egmont-Petersen, D. de Ridder, and H. Handels. Image processing
with neural networks a review. Pattern recognition, 35(10):2279–2301, 2002.

[16] C. Elkan. Using the triangle inequality to accelerate k-means. In Pro-
ceedings of the Internation Conference on Machine Learning, volume 3, pages
147–153, 2003.

[17] J. Farquhar, S. Szedmak, H. Meng, and J. Shawe-Taylor. Improving ”bag-
of-keypoints” image categorisation: Generative models and pdf-kernels.
Technical report, University of Southampton, 2005.

[18] K. Grauman and T. Darrell. The pyramid match kernel: Discriminative
classification with sets of image features. In Computer Vision, 2005. ICCV
2005. Tenth IEEE International Conference on, volume 2, pages 1458–1465.
IEEE, 2005.

[19] E. Hadjidemetriou, M. D. Grossberg, and S. K. Nayar. Spatial information
in multiresolution histograms. In Computer Vision and Pattern Recognition,
2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference
on, volume 1, pages I–702. IEEE, 2001.

[20] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Se-
nior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The shared views of four
research groups. Signal Processing Magazine, IEEE, 29(6):82–97, 2012.

[21] C. Igel and M. Hüsken. Improving the Rprop learning algorithm. In
Proceedings of the Second International Symposium on Neural Computation, In-
ternational Conference on Semantic Computing, volume 2000, pages 115–121.
ICSC Academic Press, 2000.

[22] Y.-G. Jiang, C.-W. Ngo, and J. Yang. Towards optimal bag-of-features for
object categorization and semantic video retrieval. In Proceedings of the
6th ACM international conference on Image and video retrieval, pages 494–501.
ACM, 2007.

[23] T. Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF
for text categorization. Technical report, DTIC Document, 1996.

[24] L. Juan and O. Gwun. A comparison of SIFT, PCA-SIFT and SURF. Inter-
national Journal of Image Processing (IJIP), 3(4):143–152, 2009.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information pro-
cessing systems, pages 1097–1105, 2012.

[26] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In Computer
Vision and Pattern Recognition, 2006 IEEE Computer Society Conference, vol-
ume 2, pages 2169–2178. IEEE, 2006.

68



Bibliography

[27] Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and
time series. The handbook of brain theory and neural networks, 3361, 1995.

[28] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep be-
lief networks for scalable unsupervised learning of hierarchical represen-
tations. In Proceedings of the 26th Annual International Conference on Machine
Learning, pages 609–616. ACM, 2009.

[29] D. D. Lewis. Naive (bayes) at forty: The independence assumption in
information retrieval. In Proceedings of the European Conference on Machine
Learning, pages 4–15. Springer, 1998.

[30] D. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national journal of computer vision, 60(2):91–110, 2004.

[31] J. MacQueen et al. Some methods for classification and analysis of multi-
variate observations. In Proceedings of the fifth Berkeley symposium on mathe-
matical statistics and probability, volume 1, pages 281–297. California, USA,
1967.

[32] J. L. McClelland, D. E. Rumelhart, P. R. Group, et al. Parallel distributed
processing. Explorations in the microstructure of cognition, 2, 1986.

[33] K. Mikolajczyk and C. Schmid. A performance evaluation of local descrip-
tors. Pattern Analysis and Machine Intelligence, IEEE Transactions, 27(10):
1615–1630, 2005.

[34] F. Monay, P. Quelhas, D. Gatica-Perez, and J. Odobez. Constructing visual
models with a latent space approach. In Subspace, Latent Structure and
Feature Selection, pages 115–126. Springer, 2006.

[35] D. Nguyen and B. Widrow. Improving the learning speed of 2-layer neural
networks by choosing initial values of the adaptive weights. In Neural
Networks, 1990., 1990 IJCNN International Joint Conference on, pages 21–26.
IEEE, 1990.

[36] F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image
categorization. In Computer Vision and Pattern Recognition, 2007. CVPR’07.
IEEE Conference on, pages 1–8. IEEE, 2007.

[37] F. Perronnin, C. Dance, G. Csurka, and M. Bressan. Adapted vocabularies
for generic visual categorization. In Proceedings of the European Conference
on Computer Vision, pages 464–475. Springer, 2006.

[38] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantiza-
tion: Improving particular object retrieval in large scale image databases.
In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Confer-
ence on, pages 1–8. IEEE, 2008.

[39] M. Riedmiller and H. Braun. A direct adaptive method for faster back-
propagation learning: The RPROP algorithm. In Neural Networks, 1993.,
IEEE International Conference on, pages 586–591. IEEE, 1993.

[40] J. Sivic and A. Zisserman. Video google: A text retrieval approach to
object matching in videos. In Computer Vision, 2003. Proceedings. Ninth
IEEE International Conference on, pages 1470–1477. IEEE, 2003.

69



Bibliography

[41] V. Srinivasan, P. Bhatia, and S. Ong. Edge detection using a neural network.
Pattern Recognition, 27(12):1653–1662, 1994.

[42] M. Swain and D. Ballard. Color indexing. International journal of computer
vision, 7(1):11–32, 1991.

[43] D.-M. Tsai. Boundary-based corner detection using neural networks. Pat-
tern Recognition, 30(1):85–97, 1997.

[44] T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors: a
survey. Foundations and Trends® in Computer Graphics and Vision, 3(3):177–
280, 2008.

[45] J. C. van Gemert, C. J. Veenman, A. W. Smeulders, and J.-M. Geusebroek.
Visual word ambiguity. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 32(7):1271–1283, 2010.

[46] D. Yu and L. Deng. Deep learning and its applications to signal and infor-
mation processing. Signal Processing Magazine, IEEE, 28(1):145–154, 2011.

[47] J. Zhang, M. Marszałek, S. Lazebnik, and C. Schmid. Local features and
kernels for classification of texture and object categories: A comprehensive
study. International journal of computer vision, 73(2):213–238, 2007.

70


	Introduction
	Related work
	Deep learning
	Feature extraction
	Bag-of-words
	Classification approaches

	Research questions
	Outline

	Theoretical background
	Artificial neural networks
	The perceptron
	The multilayer perceptron
	Backpropagation
	Resilient propagation (RPROP)
	Overfitting

	Scale invariant feature transform (SIFT)
	Assigning keypoint orientation
	Descriptor computation
	Normalization

	Bag of visual words
	k-means clustering
	Accelerated k-means clustering
	k-means initialization
	Empty clusters

	Support vector machines
	Kernels
	RBF kernel parameters


	Methods
	Preprocessing
	Neural-SIFT
	Network topology
	Training the network

	Bag of visual words
	Clustering
	Creating the image histogram

	Neural classifier
	Network topology
	Training the network

	Full backpropagation
	Neural classifier
	Bag of visual words
	Neural-SIFT
	Training procedure


	Experiments & results
	Datasets
	Caltech-101
	Corel-1k

	Training without full backpropagation
	Neural-SIFT feature descriptor
	Clustering
	Neural classifier
	Neural-SIFT versus the SIFT descriptor

	Full backpropagation training
	Single iteration
	Multiple iterations
	Improved neural-SIFT versus the SIFT descriptor
	Confusion matrices

	Random descriptor initialization
	System settings
	Results without full backpropagation
	Full backpropagation training
	Improved neural-RANDOM versus improved neural-SIFT

	Generalizability
	SVM classifier
	Results


	Conclusion & further work
	Research questions
	Full backpropagation
	Initialization
	Generalizability

	Future work
	Exploration
	Modifications

	Conclusion


