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Abstract

In an era of mobile communication, the demand for indoor-localization is increasing.

For instance, users could benefit from indoor-localization systems in complex indoor

environments such as large shopping malls, museums, and location-based services (e.g.

warn travelers to hurry to their gate). It is commonly known that GPS is unsuitable

and inaccurate for these kinds of applications. Therefore, in this thesis the feasibility

of indoor localization based on mobile phone motion and WiFi sensors is researched.

Methods such as circular lateration, K-nearest neighbours, and extended Kalman filter

simultaneous localization and mapping are assessed on their accuracy and applicability.

The effects of building characteristics and mobile-phone features on the performance of

these methods are discussed. Furthermore, it is shown that model-based methods such

as K-nearest neighbours outperform memory-less methods like fingerprinting.
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Chapter 1

Introduction

In an era of mobile communication the demand for indoor-localization is increasing.

Users could for instance benefit from indoor-localization systems in complex indoor

environments such as large shopping malls, hospitals, and museums. An increasing

amount of mobile devices (such as mobile phones) use the Global Positioning System

(GPS) [15] for outdoor localization. GPS devices use a technique called trilateration to

determine receiver location. A key aspect of this technique is satellite signal strength.

If the GPS device is unable to receive a proper signal from at least four satellites, the

GPS device fails its task. Indoor-localization systems might benefit from using GPS

but it is commonly known that mobile phone GPS sensors fail to operate in indoor

localization situations. Furthermore, GPS devices are often not accurate enough for

indoor applications.

Applications of an indoor-localization system are plentiful, to name a few:

1. Victim search: locate victims and fire fighters inside large buildings.

2. Tracking expensive or important objects. For instance artworks in a museum or

the portable X-ray machine in a hospital.

3. Indoor navigation at large conferences or expos.

4. Location-based services such as: (1) warn travelers to hurry to their gate, (2) offer

relevant discounts to shoppers, or (3) additional information to art in a museum.

This thesis reports on indoor-localization and indoor-localization and mapping methods

based on mobile phone sensor data, without installing additional devices in the building

(such as RFID tags) that might aid the localization process. Users should be able to use

the localization system ’off-the-shelf’. The system should be applicable in any building,

without having to install additional devices such as RFID tags or other transmitter/re-

ceiver related systems (e.g. site management or building management should not have to

make adjustments to the building before users could benefit from the proposed system).
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6 Chapter 1 Introduction

1.1 Related work

Techniques used for localization have changed over time, but the problem has always

remained the same: how to determine your position, relative to some point in space.

Let it be a combination of satellites orbiting around earth (GPS) or the Pole star.

Indoor Positioning Systems (IPS) are already commercially available, but all of these

solutions rely on additional transmitters/receivers which provide feedback about the

current position of the receiver. In this thesis we aim to develop a solution which

operates without any additional hardware.

Indoor-localization and mapping using mobile phones shows great resemblance with

localization challenges in robotics. In both situations the phone/robot has no prior

knowledge about the environment and is interested in its location. The key difference

between locating mobile phones and robot localization is the available information on

which localization is performed. In robotics, odometry and landmark based naviga-

tion are two commonly used features [12]. However, these are not available in mobile

phones, in particular odometry. In robotics is the usage of Simultaneous localization and

mapping (SLAM) [7] is a commonly used technique for simultaneous map making and

localization in previously unseen environments. The SLAM problem is an example of

a chicken-and-egg problem: a map is needed for localization, while accurate knowledge

about your current location is needed in order to build that map. Nowadays several

implementations for SLAM are available, but existing versions of SLAM are not ap-

plicable because these algorithms rely on information which is not available in mobile

phones. An interesting related method is FootSLAM [28]. FootSLAM uses data from

an inertial sensor mounted on a shoe to track user movement. These movements are

used to build maps of the environment and thereafter used for localization. Inertial

sensors are commonly integrated sensors in mobile phones which makes FootSLAM an

interesting method. However, observations made by foot-mounted inertial sensors may

greatly differ from those in mobile phones. Dead reckoning might be used in a similar

way using inertial sensors [32]. However, dead reckoning suffers greatly from cumulative

error.

Nowadays most non-residential buildings have multiple WiFi access points installed

throughout the building. Each access point has a unique identifier (MAC-address) and

signal strength corresponding to the distance to that access point. Earlier studies report

on localization based on WiFi access point radio fingerprinting [16]. IPS may greatly

benefit from WiFi fingerprinting. WiFi fingerprinting might provide the landmarks

needed for the above mentioned techniques.

In literature, the best performance is achieved by using a combination of inertial sensors

and WiFi access points. Some studies use only inertial sensors [25] or only WiFi access

points [9], others use hybrid methods of inertial sensors and WiFi access points [4].

The latter is called WiSLAM and shows an increase in performance over FeetSLAM
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[29] (which is the successor of FootSLAM) by adding signal strength measurements. In

WiSLAM, RSSI readings are added to (multiplied with) the likelihood function of the

FootSLAM algorithm.

The drawback of the studies discussed above is that users often require additional hard-

ware such as a foot mounted IMU [29]. In this thesis we aim at methods that require

only a mobile phone without any additional hardware.

1.2 Research questions

The main challenge in this thesis is to describe the environment and develop an indoor-

localization system based on observations made solely by mobile phone sensors. For

instance, we would like to be able to distinguish a coffee corner from the entrance of

a building based on mobile phone sensor data. Ideally, mobile phone sensor readings

provide enough information to accurately localize the mobile phone. This leads to the

following research questions:

1. How can mobile phone sensors be utilized for (1) indoor-localization and (2) indoor-

localization and mapping?

(a) What is the maximum accuracy of the evaluated methods, fingerprinting, K-

nearest neighbours, and circular lateration, on indoor-localization?

(b) Which of the evaluated methods, dead reckoning, extended Kalman filter si-

multaneous localization and mapping (EKF SLAM), and multi-user EKF

SLAM, performs best on device tracking?

(c) Which of the evaluated methods, EKF SLAM and multi-user EKF SLAM,

performs best on localization and mapping?

1.3 Outline

In Chapter 2 mobile phone sensors are discussed that are potentially interesting for

indoor-localization. Chapter 2 also reports on mobile phone sensor characteristics and

algorithms to translate raw sensor data into meaningful input for localization and map-

ping algorithms. In Chapter 3 multiple methods for localization and mapping are pre-

sented. The first part of Chapter 3 is focused on motion-based methods, followed by

Radio Frequency (RF) based methods. The last part of Chapter 3 deals with methods

combining motion sensors and RF-sensors. In Chapter 4 the performance of all local-

ization and mapping methods presented in Chapter 3 are discussed. In Chapter 5 this

thesis is concluded and research questions posed in the previous section are answered.

Chapter 5 also reports on open challenges for future research.





Chapter 2

Sensor Selection and

Environment

In this Chapter sensors for mapping and localization are discussed. Android OS was

chosen as the platform for testing localization and mapping algorithms because it is the

platform with the most open character and provides the most features to developers.

Depending on the manufacturer and type of mobile phone, Android offers access to a

multitude of interesting sensors. The most commonly available sensors include:

• Motion sensors: accelerometer, gyroscope, magnetic field, and orientation

• Environmental sensors: WiFi, Bluetooth, NFC, and GSM

• Ambient sensors: barometer, thermometer, and photometer

Sensors that are useful for localization and mapping are discussed below.

2.1 Coordinate systems

Nearly all Android motion sensors measure their values with respect to the coordinate

system of the device (see Figure 2.1(a)). It is important to realize that this is not the

same as the earth coordinate system. For instance, an increase of gyroscope values

in a particular direction creates insight in the angular velocity of the phone but does

not say anything about the absolute orientation of the phone in the physical world. In

order to make the sensory output useful for mapping and localization purposes, it is

necessary to create a mapping from Android sensors to the earth coordinate system (see

Figure 2.1(b)). This translation from one coordinate system to the other is discussed

below, but first some properties of the coordinate systems are discussed in more detail.

9



10 Chapter 2 Sensor Selection and Environment

In the Android coordinate system, the x, y, and z axes are defined relative to the screen

of the phone. If the phone is held in front of the user facing the screen, the x-axis

is defined as horizontal with positive values on the right. The y-axis points vertically

with positive values at the top. The z-axis points outward of the screen with positive

values towards the user. In the earth coordinate system, the x-axis always points east

and is tangential to the ground at the current location of the device. The y-axis is

also tangential to the ground at the device’s current location but points toward the

geomagnetic North Pole. The z-axis points toward the sky and is perpendicular to the

plane defined by the x and y axes.

For convenience device orientation is represented using quaternions. A quaternion is a

vector of length 4, where the last three numbers of this vector are reserved to again

represent a vector, and the first number of the quaternion is used to represents a ro-

tation around this axis. So instead of a vector, a quaternion is actually a composite

structure where the first part is a real number and the latter part is a vector of length

3. Quaternions are commonly used in data visualization applications to rotate objects.

An advantage of quaternions over other methods such as Euler angles and matrices is

that of compactness and relatively simple object rotation. Even though quaternions are

non-commutative they remain much easier to operate on compared to other methods.

(a) Coordinate system of an Android device (b) Coordinate system for the earth

Figure 2.1: Coordinate systems. Figure (a) depicts the coordinate system used for
an Android device. Figure (b) depicts the coordinate system used for the earth.

2.2 Motion sensors

Motion sensors are interesting for localization and mapping because they provide valu-

able information about the distance and bearing travelled by a user. A typical Inertial
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Measurement Unit (IMU) such as used in [28] consists of a six degrees of freedom unit

(6DOF) composed of a three-axial accelerometer and a three-axial gyroscope. In this

thesis the phone’s three-axial magnetic field sensor is also included as a motion sensor.

The magnetic field sensor is included because it can be used to measure orientation of

the phone and hence provide information on the direction of a motion. Self-evidently

the magnetic field sensor can be operated like a compass. This set of motion sensors

(accelerometer, gyroscope, and magnetic field sensor) distinguishes itself from other sen-

sors in the sense that they do not require any external hardware. Motion sensors detect

ever present physical events such as gravity and magnetic fields, whereas other sensors

- such as Bluetooth - require external devices before they become useful.

Typical output of an Android motion sensor (accelerometer) is depicted in Figure 2.2.

Each motion sensor measures in three dimensions. The green, blue, and red lines rep-

resent the x, y, z axis respectively. Sensor data presented here is generated by consecu-

tively moving the device in the positive direction of the x, y, and z axis.

2.2.1 Accelerometer

Nearly all modern phones are equipped with three-axial accelerometers. The abundant

availability of this sensor makes it a compelling sensor to consider for mapping and

localization. Accelerometer values are measured with respect to the device (see Figure

2.1(a)) and are measured in standard SI-units of m/s2. Some typical output of the

accelerometer is shown in Figure 2.2. This activity was generated by consecutively

displacing the phone along the x, y, and z axis. The whole sequence of displacements

takes about 3.5s. Regardless of the orientation of the phone there is the ever present

gravitational force of approximately 9.81 m/s2 pulling at the device. The gravitational

component is also visible in the accelerometer readings. Unless the device is in free fall,

of course. Together with other sensors, an accelerometer can be used to measure activity

and orientation of the phone. Theoretically it is possible to obtain speed and travelled

distance from the accelerometer by doubly integrating accelerometer values over time.

However, this method is known to have a rather poor accuracy. In Section 2.2.4, doubly

integrating accelerometer values and an alternative method are discussed for measuring

travelled distance using an accelerometer.

Android also provides a ’linear acceleration’ sensor which is basically the same as the

default accelerometer but without the gravity component. The linear acceleration sensor

can therefore be considered as the net acceleration. Figure 2.2(b) displays sensor data

from the linear accelerometer which was generated by exactly the same sequence of

displacements as used for the accelerometer.
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(a) Accelerometer
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(b) Linear accelerometer

Figure 2.2: Acceleration data obtained from a Samsung SII by consecutively moving
the phone in the positive direction of the x, y, and z axis. The axes are represented
by the green, blue, and red lines respectively. Figure (a) depicts accelerometer data,

Figure (b) depicts linear accelerometer data (i.e. without the gravity component).

2.2.2 Gyroscope

A gyroscope measures angular velocity and can be used to assist the magnetic field sensor

and accelerometer in acquiring high precision motion information. Gyroscope sensor
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values are measured in radians per second (rad/s) with respect to the device’s coordinate

system (see Figure 2.1(a)). Nowadays it is very common for phones to be equipped with

a three-axial gyroscope which measures angular velocity at all three axes of a device.

A gyroscope might be considered redundant if there is also a magnetic field sensor

available, because both a gyroscope and a magnetic field sensor can be used to measure

changes in rotation of the phone. But surely a gyroscope can’t replace a magnetic field

sensor considering a magnetic field sensor is necessary to obtain a device’s orientation

with respect to the North Magnetic Pole. The latter can’t be obtained using just a

gyroscope. Gyroscope measurements can therefore only be used to aid the magnetic

field sensor for better precision. In general the magnetic field sensor in a phone is much

slower compared to the gyroscope. Utilizing both provides short-term information on

quick changes via the gyroscope and long-term overall orientation information via the

magnetic field sensor, which makes it a perfect coalescence.

Typical output of a gyroscope is depicted in Figure 2.3. The data shown here are

generated by consecutively rotating the phone along the x, y, and z axis of the device.

The whole sequence of rotations takes about 8s.
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Figure 2.3: Gyroscope sensors values generated by rotating the phone consecutively
along the x, y, and z axis. These axes are represented by the green, blue and red lines

respectively.

2.2.3 Magnetic field

A magnetic field sensor measures orientation of the phone with respect to the magnetic

North. Sensor values are measured in Earth’s magnetic field in each direction (x, y,

and z), and can be utilized to detect the orientation of the phone with respect to the
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Earth’s surface. Magnetic field sensor values are measured in µT (micro-Tesla). It is

commonly known that the magnetic field sensor of mobile phones is very sensitive to local

disturbances and can easily be fooled. Electronic devices such as a refrigerator or even

some loudspeakers can easily disturb measurements. Other local disturbances can be

caused by structural parts of buildings such as reinforced concrete. Local disturbances in

the magnetic field are considered as noise, but can, on the other hand, also be exploited

as features. In a study by [36], it was found that local disturbances in the magnetic field

can be used for localization purposes. In [36] ’Organic Landmarks’ are proposed which

consist of a combination of local disturbances in the magnetic field, and may include

radio based features like 3G and WiFi, and optionally activity from motion sensors.

These features cannot be defined a priori and have to be learnt online.

The magnetic field sensor is an important sensor that will provide necessary input for

dead reckoning experiments (see Section 3.1.1) and hybrid methods such as SLAM (see

Section 3.3).

Next, two algorithms are discussed for reliably measuring distance and orientation/bear-

ing in respectively Section 2.2.4 and Section 2.2.5.

2.2.4 Distance measurement

The three motion sensors discussed above (accelerometer, gyroscope, and magnetic field

sensor) provide a powerful combination to measure distance and bearing. Unfortunately

only bearing can be measured directly using the magnetic field sensor. Speed (and hence

also distance) on the other hand can only be measured indirectly using accelerometers.

Probably the most obvious solution to estimate phone displacements is by doubly in-

tegrating accelerometer values over time (accelerometer values are measured in m/s2).

However, this requires knowledge about the initial orientation and velocity of the phone.

If the orientation is off or if the measurement algorithm is started while the phone is al-

ready moving (e.g. in a car, travelling at a velocity of 100 km/h), accelerometers would

indicate incorrect information. Furthermore, doubly integrating accelerometer values is

known to be prone to drift errors. In [23], doubly integrating accelerometer values is

used to determine device velocity and position and a Kalman filter is used to correct

drift errors.

The approach taken here is slightly different. Instead of measuring displacements by

integrating accelerometer values, a step counting algorithm is used. The advantage of

counting steps over other methods is that steps are easy to detect and are not prone to

drift errors. Methods based on integrating accelerometers need to be calibrated periodi-

cally by use of external measurements of position [23]. On the other hand, step counting

algorithms have the disadvantage that steps are only indirectly correlated to distance.
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Every person has a unique gait which implies a unique step size for every person. Knowl-

edge about the number of steps therefore does not directly imply knowledge of travelled

distance. According to human physiology studies there are similarities between human

gaits and according to [18] the average person’s stride length is approximately 0.8 meter

with a variance of 0.1 meter. This and other knowledge on physical limitations of hu-

man gaits provide further information to define a step counting algorithm. In general,

humans are unlikely to walk any faster than 5 steps per second. Using this and other

information, a step counting algorithm is proposed in Algorithm box 1. The algorithm

presented here closely resembles step counting algorithms presented in [34] and [26].

Both [34] and [26] propose a step counting algorithm based on accelerometer values. In

[34] a sliding window approach is used. For each window the minimum and maximum

values are determined, and based on these minimum and maximum values a dynamic

threshold value is determined. If the currently considered data point exceeds the dy-

namic threshold and is within a specified time window, it is considered as the detection

of a step. An important difference between the algorithm presented here and the one

presented in [34], is that the method here operates on all three axes simultaneously

whereas the method of [34] first determines the axis with highest activity (as this is

considered to contain the most information). By taking into account all three axes si-

multaneously, step detection is made independent of device orientation. The algorithm

presented in [26] closely resembles a peak counter, but is designed for offline usage. In

[26] a control point is used to determine whether a peak has occurred. Every data point

that resembles a peak is counted. For each peak it is also determined whether the peak

lies below or above a time window average. As soon as the end of the dataset is reached,

the total number of steps is determined by subtracting all under average peaks from the

total number of peaks. All three methods have in common that (1) there is in some way

noise cancellation, either directly by setting a parameter, or indirectly by computing a

dynamic threshold value, and (2) successive steps cannot follow within a certain time

window, and (3) step detections are limited by human physiological capabilities.

The algorithm presented here and described in Algorithm box 1 is basically a peak

counter. Activity is generated by the linear accelerometer (See Section 2.2.1). In the

algorithm presented here, ε is a threshold value. Any activity generated below this

threshold is considered to be noise. τ is a minimum step interval (in seconds) based

on limitations of human physiology. In a pilot experiment τ was determined to be

approximately 20ms. δ holds the timestamp at which the last step was detected, and Σ

is the total number of steps counted up to time t. µ is the average activity of the interval

considered at time t, and, depending on the sampling frequency, contains approximately

50 datapoints of the last second (for 50 Hz). atn is the activity at time tn, where

n = {0, . . . ,−3}.

A side note about step counting algorithms is that they are reactive. The algorithm

described in Algorithm box 1 is an example of an odometer (retrospective), which differs
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Algorithm 1 Step counting algorithm

1: ε← activity threshold (in m/s2)
2: ψ ← window size (in s)
3: τ ← minimum step interval (in s)
4: δ ← (current time− τ) (in s)
5: C ← 0
6: while true do
7: if (new sensor data) then
8: t← current time
9: µ← average activity (accelerometer magnitude)

10: atn ← activity at time tn, where n = {0, . . . ,−3}
11: if (at0 > ε) then
12: if (at0 > µ) then
13: if (at0 > at−1 AND at0 > at−2 AND at0 > at−3) then
14: if (δ + τ < t) then
15: δ ← current time
16: C + +;
17: end if
18: end if
19: end if
20: end if
21: end if
22: end while

from prediction based methods (pro-active). This subtle difference is important for

mapping and localization methods because of a timing component. Information on a new

location at time t0 might either be predicted by some probabilistic method (FIR-filter,

function fitting, slow speed decay) or, it might be reactive (peak counter, odometer)

and represent the actual distance travelled. It makes sense to be aware of this because

the bearing sensor presented in the next Section operates in real time, whereas the step

counter presented here does not. If there is a shift in time between the bearing sensor and

step counter (even if the offset is very small), motion sensing would eventually diverge.

By introducing a short delay in the bearing sensor (use the bearing of the previous state

in the current prediction state), the step counter and bearing sensor are always in sync.

The performance of the algorithm presented in Algorithm box 1 is evaluated with several

user tests. The algorithm was implemented in a simple Android application and multiple

experiments have been conducted to test the performance on step counting and distance

predictions. Results of these experiments are presented in Chapter 4.

2.2.5 Bearing measurement

By default Android is provided with an orientation sensor. This sensor indicates the

orientation of the phone with respect to the ground at its current location. The orienta-

tion sensor is extremely useful if we are interested in the walking direction of a user (i.e.
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bearing). The drawback of this default Android sensor is that: (1) it is slow. The maxi-

mum frequency is about 10 Hz, which limits the maximum frequency at which mapping

and localization algorithms can operate, and (2) it is inaccurate. In a pilot experiment it

was noted that compared to actual orientation, the Android orientation sensor is some-

times off by more than 180 degrees, which, obviously, is catastrophic for mapping and

localization methods. And finally (3), it does not take into account measurements from

the gyroscope. The default Android orientation sensor only considers the accelerometer

and magnetic field sensor. These two sensors combined provide sufficient information to

deduce orientation, but it would be beneficial to include the gyroscope into the equation.

Mainly because a gyroscope improves detail and stability compared to the magnetic field

sensor. As discussed before, the sampling rate of the gyroscope is much faster compared

to the magnetic field sensor. Furthermore, SLAM methods are known to be very sensi-

tive for any error in bearing. It is therefore interesting to develop an improved bearing

sensor that combines accelerometer, magnetic field sensor, and gyroscope for a better

and more reliable orientation sensor.

Such an algorithm is proposed in [31]. The algorithm presented in [31] is basically a

sensor fusion algorithm designed for a 9DOF inertial measurement unit. The proposed

algorithm is designed for a specific inertial measurement unit, but in this thesis it is

applied to the set of three-axial mobile phone sensors (accelerometer, gyroscope, and

magnetic field sensor). The method is based on a two-stage Extended Kalman Filter

(EKF). Generally EKF consists of a prediction step and a correction step [37]. However,

in the proposed method, the filter is modified to include two correction steps instead of

one. The two correction steps are called stages, hence the name. At first (the prediction

step), gyroscope values are used to set an orientation estimate of the phone. Next up, in

the first correction stage, the estimated orientation is corrected using the accelerometer.

The accelerometer is used to correct the plane defined by the x and y axes by means

of the gravitational component. The correction component for the z-axis is set to 0 in

this correction stage because the accelerometer does not provide information about the

bearing anyway. In the second correction stage, the phone orientation is corrected using

data from the magnetic field sensor. Performance of this algorithm compared to the

Android orientation sensor is presented in Chapter 4.

It is important to realize that device orientation is not equal to bearing. Having infor-

mation about the orientation of the phone is one thing, but extracting bearing from this

orientation is another. Bearing is related to the force exerted on the phone corrected by

the phone’s orientation. The only information available at this point is the orientation

of the phone in the physical world. Extracting information about bearing, based on an

already unreliable prediction of phone orientation, is left for further research. In this

thesis the user is restricted to point the top of the phone in the direction of movement

with the screen facing towards the user.
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2.3 Environmental sensors

In this Section the properties and suitability of WiFi, Bluetooth, GSM, and GPS will be

discussed. These environmental sensors are interesting because they provide additional

information about the device location. In many situations environmental sensors are

considered to provide redundant information with respect to the motion sensors. For

instance, walking with a phone in your pocket will result in high activity of the motion

sensor, and signal strength of WiFi, Bluetooth, and GSM are expected to change ac-

cordingly. Assuming the uncertainty of motion sensors and environmental sensors are

uncorrelated, exploiting the redundancy can reduce overall localization uncertainty.

2.3.1 WiFi

Mapping and localization methods based on WiFi-signals mostly rely either on Received

Signal Strength Indication (RSSI) or angle-of-arrival. In most of these systems signal

strength is used. Angle-of-arrival is used less often because it requires more sensitive

equipment [21]. A key property to recognize when using RSSI for localization is that of

signal attenuation. All RSSI-based localization methods rely on the observation that a

relation exists between distance between transmitter and receiver and signal strength. In

general signal strength decreases when distance increases. A simplified model known as

the ’path loss model’ describes signal attenuation as a function of antenna characteristics

and environmental properties, and is given by [10, pp. 38-47]:

Pr = Pt + 10log10K − 10γlog10(
d

d0
)− ψ(dBm) (2.3.1)

where

• Pr is the received signal strength indication (RSSI) measured in dBm.

• K is a unitless constant that relates to antenna characteristics. K is completely

determined given d0 and γ and can be computed using the following equation:

K = −20log10(4πd0/γ).

• d0 is a reference distance (i.e. the scope of the transmitter). d0 is assumed to be

1− 10m for indoor applications and 10− 100m outdoors.

• γ is a parameter to describe signal propagation through the environment. γ has

values for office buildings with multiple floors between 2 ≤ γ ≤ 6, and 2 ≤ γ for

more open places.

• Pt is the transmitted power of an access point measured in dBm.

• ψ(dBm) is a Gaussian distributed noise component with mean zero and variance

σ2ψdBm.
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Note that predicates such as ’indoor’ and ’outdoor’ are on a continuous scale. In terms

of signal attenuation there is not really such a thing as ’indoor’ or ’outdoor’, there is

only clutter. A roofed airport terminal would still count as an ’indoor’ environment, but

’outdoor’ values for d0 and γ apply. In general, γ-values increase as clutter increases.

Normally signal attenuation is considered to be a bad thing. For localization purposes

on the other hand signal attenuation is exploited as a feature. The main challenge of

using signal attenuation as a feature is the non-linear aspect. Consider Figure 2.4. Here

a typical signal attenuation curve is depicted for non-residential buildings with values

γ = 4, d0 = 20, and Pt = −40. From this Figure it becomes clear that measurements

at further distances from an access point (AP) are covered by a much smaller range of

dBm values compared to measurements closer to it. Distances from 15 to 45 meters are

covered by a range of only 20 dBm, whereas distances from 0-15 meters are covered by

a much wider range of 70 dBm. This affects the accuracy of distance predictions based

on dBm for larger distances. For predictions based on dBm it holds that small changes

in the lower regions of dBm result in very large distance fluctuations. Because of this

phenomenon distance predictions based on very low dBm values can become unreliable.
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Figure 2.4: A typical signal attenuation model for non-residential buildings, with
parameter settings γ = 4, d0 = 20, and Pt = −40.

2.3.2 Bluetooth

Similar to WiFi, Bluetooth signal attenuation can be used to determine relative dis-

tances. However, the whole idea behind the development of the Bluetooth protocol was

to get rid of wired communication systems in favor of having more mobility. As a result,

Bluetooth observations do not necessarily provide information about location. Even

worse: wearing a mobile Bluetooth headset would cause contradictory results between

motion sensors and environmental sensors. The Bluetooth sensors would hint that the
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user is not moving because the headset is moving along with the user, while at the

same time motion sensors might indicate high activity. In a situation where only sensor

information is available without feedback, there is by no means an option of eliminating

this contradictory information.

Both Bluetooth and WiFi 802.11x operate in the 2.4GHz short-range radio frequency

band. As shown by [38], this unmistakably leads to signal interference, even if preventive

measures such as Adaptive Frequency Hopping (AFM) [22] for Bluetooth technology are

used. Zeng et al. [38] have shown that the use of Bluetooth in combination with 802.11b

WiFi signals can severely degrade the performance of the latter and causes significant

signal attenuation. It might therefore be argued that it is best to prevent the use of

Bluetooth devices at all if we are interested in exploiting WiFi signal attenuation. At

least actively promoting the use of Bluetooth devices should be prevented because of

signal attenuation issues. The trade-off we face in using Bluetooth devices is in whether

considering these devices adds more knowledge (at the cost of WiFi signal attenuation)

than is lost by not using Bluetooth devices for localization and mapping.

Mainly because of the high mobility argument mentioned above, Bluetooth observations

are not considered in this thesis. One more note about Bluetooth is that it comes

in many different protocol versions. A commonly used Bluetooth protocol version in

phones is v3.0 + HS. In combination with Class 2 this protocol has a signal range up

to approximately 10 meters. This is an often used technology for other systems such

as wireless game controllers. In theory, Bluetooth communication can be boosted up

to far larger distance than 10 meters, but this is not feasible using phones because it

requires much more power to transmit messages over larger distances. A more recent

development is the availability of Bluetooth Smart/low energy in Android devices (as

of Android API level 18). Bluetooth low energy is - as the name suggests - less battery

consuming than older versions and can reach up to far larger distances compared to

earlier Bluetooth versions. The already fuzzy relation between distance and RSSI values

becomes even more obfuscated because of these new protocol versions.

2.3.3 GSM towers

A high density of the GSM network is very important for maximum location accuracy

based on GSM towers, but even in urban areas density is often not high enough to

include GSM sensors as a feature. In [21], it is shown that for urban areas the maximum

accuracy for GSM towers is in the order of 10 meters, but only for outdoor applications.

Compared to other techniques such as WiFi and Bluetooth, GSM towers can only assist

in coarse positioning. For instance, in [39], a device is classified as inside or outside a

building. In this study the variance in GSM signal strength is exploited (together with

other sensors) for indoor/outdoor detection. In [39] it was a deliberate decision to leave
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out WiFi scanning in favour of cell tower signal strength. The main reason to opt for

cell tower RSSI over WiFi RSSI is that by default any phone is already scanning for cell

towers, whereas sensors such as WiFi require extra battery consumption. Furthermore,

in many outdoor situations WiFi signals are of poor quality and might not even be

present at all. Continuously scanning for WiFi networks would then only result in

unnecessarily consuming battery power.

For indoor applications a localization error similar to that of GSM errors is unacceptable.

A typical office building has corridors and rooms that would not be classified correctly

with this amount of uncertainty. It would therefore not be very helpful to include

GSM RSSI as a feature for an indoor localization and mapping framework. However, a

common problem in SLAM alike methods is drift. In high density GSM areas it might

be possible to use GSM cell tower RSSI to eliminate large amounts of drift.

2.3.4 GPS

GPS is a commonly used technique for localization and navigation. The technique

depends on satellite measurements and is most frequently used outdoors. Indoor appli-

cations are often not considered possible due to poor accuracy. In indoor applications,

the accuracy highly depends on the building type and quality of the measuring device.

Considering only situations where a GPS fix is possible, meaning that sufficient satellites

are visible for the technique to operate normally, and using an embedded GPS sensor

from a mobile phone, accuracy is approximately 10m in wooden and brick buildings, and

even decreases to more than 10m in shopping malls [17]. In some cases it might take

up to one minute and longer to get a good GPS fix, which is extremely inconvenient for

battery powered devices, and sometimes it is not possible to get a GPS fix at all.

Others have reported slightly better results (6 − 12m) for GPS applications [27]. For

outdoor applications, such as navigation on highways, an accuracy of approximately

10m is most often sufficient, but for indoor applications these results are unacceptable.

GPS may however be included as an additional feature for indoor applications to over-

come drift problems at GPS-friendly locations in the building. GPS could also be used

to situate a SLAM generated map on existing GPS based maps.

2.4 Ambient and other sensors

Unlike what you might expect, ambient sensors can provide valuable information for

localization and mapping purposes. Clever use of ambient sensors is in some cases key

to success. In this Section some interesting ambient and other remaining sensors are

discussed.
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2.4.1 Barometer

Some of the newer phones are equipped with a pressure sensor. The pressure sensor

is basically a barometer that measures ambient pressure in units of Pascal. In [35], a

pressure sensor is used successfully to detect floor changes independent of the environ-

ment (i.e. context-agnostic). Results show that their algorithm can detect any floor

changes with any mode of transportation (elevator or stairs). Their algorithm is based

on relative pressure differences and a user dynamics mode, which consists of walking,

sitting, and moving up/down with an elevator or stairs. Relative pressure differences

can of course equally well be used for mapping purposes.

Methods for mapping and localization in 2-dimensional environments are unlikely to

benefit from a pressure sensor. But for modelling 3-dimensional environments it is

definitely interesting to include pressure sensors. In fact, a pressure sensor together

with the algorithm presented in [35], provide direct insight in one of the state variables.

The focus in this thesis is on 2-dimensional environments and the barometer is therefore

not used.

2.4.2 Camera

Cameras are a common feature in modern phones and camera images can be used in

a variety of solutions. In [11], targeted at mobile phones, a monocular-SLAM solution

is used to estimate a local map and device’s trajectory. A Parallel Tracking and Map-

ping (PTAM) algorithm is used to allow for asynchronous updates of camera pose and

mapping optimization. However, by using a camera to solve SLAM alike problems a

completely different approach is needed. By using a camera to solve the SLAM problem

a couple of new challenges are introduced:

• Obviously visual based methods require the camera to record the environment at

all times. In general people tend to wear their phone inside their pocket/purse

which causes visual based methods to fail. Assumptions must be made on how the

phone is retained for the success of visual based methods. For example, passive

use of a localization and mapping algorithm (with the mobile phone located inside

a pocket/purse) is not feasible.

• Camera images themselves are not very useful for localization. By using a camera

for mapping and localization purposes there is the need of extracting features from

the camera images and identifying a uniqueness property of landmarks. With WiFi

signals this is not so much of an issue because each beacon simultaneously emits

a unique identifier (BSSID). In a visual approach, feature extraction algorithms

are needed to identify a landmark as such. In the full SLAM problem this is also
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known as the ”unknown correspondence problem” [33]. Images require careful

processing and feature extraction before these features can be used in a localiza-

tion framework. Image processing and feature extraction methods are known to

be computationally heavy processes (i.e. methods such as SIFT [24], and FAST

[30]). While mobile devices are getting increasingly powerful in terms of processing

power, it may be a problem to perform heavy computation like image processing.

• Clearly, having the camera turned on at all times and processing images to extract

features is extremely power consuming, which is rather inconvenient for battery

powered devices.

2.4.3 Microphone

Even the phone’s microphone can be used for localization purposes. An interesting tech-

nique is to create an ’acoustic fingerprint’ of the environment. For instance Aloui et al.

[2] have used a microphone in mobile devices for localization. However, their method

assumes pre-installed static microphones and speakers. Furthermore this technique as-

sumes a priori information of the environment such as the location of speakers. To our

knowledge this method is never used in combination with SLAM-based techniques.

Fingerprinting is non-trivial to include in a SLAM-based method. Fingerprinting is

ideally suited to describe a location, but it is unclear how this should aid SLAM-based

methods. The microphone is therefore not considered as an input method for localization

and mapping algorithms in this thesis.

2.5 Summary

Sensors that will be used for localization and mapping include all motion sensors (ac-

celerometers, gyroscopes, and magnetic field sensors). The raw data of these three

sensors are first processed by a step detection algorithm as described in Section 2.2.4

and an improved bearing sensor as described in Section 2.2.5. Furthermore, the WiFi

sensor is used to correct the location prediction made by the motion sensors. A key

notion for exploiting the WiFi sensor for mapping and localization methods is that of

signal attenuation, which is modelled by the signal attenuation model (See Eq. 2.3.1)

described in Section 2.3.1.

Finally, Table 2.1 shows an overview of all relevant Android sensors, units in which

sensor values are measured, and for each motion sensor the coordinate system in which

sensor values are measured.
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Sensor Units Coordinate system

Motion sensors

Accelerometer m/s2 Android
Linear accelerometer m/s2 Android
Gyroscope rad/s Android
Magnetic field µT (micro-Tesla) Earth
Orientation degrees Earth

Environmental sensors

WiFi dBm -
Bluetooth dBm -
GSM dBm -
GPS - -

Ambient sensors

Barometer Pa -
Camera - -
Microphone - -

Table 2.1: Overview of Android sensors, measurement units, and coordinate system
in which sensor values are measured



Chapter 3

Mapping and Localization

Methods

In this Chapter techniques for localization and mapping are presented. Both super-

vised and unsupervised methods are discussed. All supervised methods presented in

this Chapter require some offline training phase and additional training time whereas

unsupervised methods do not require this initial training phase.

The first part of this Chapter, Section 3.1, deals with localization methods based on

motion sensors. In the second part of this Chapter, Section 3.2, localization methods

based on radio signals (WiFi) are discussed. Methods presented in Section 3.2 are

all supervised methods. Finally, in the last part of this Chapter, Section 3.3, hybrid

methods are discussed in which both motion sensors and WiFi sensors are used. This

last Section also covers unsupervised mapping, which is not considered in any other

method presented in this Chapter.

3.1 Inertial navigation methods

An inertial navigation method is a localization method that relies on bearing and cov-

ered distance. The composite of these two enables reconstructing the user’s walking

path. Many versions of Inertial Navigation Systems (INS) exist and have applications

in many fields, but most of these systems all include some form of Inertial Measurement

Unit (IMU) to determine distance/speed and bearing [13]. In an ideal situation where

the frequency is high enough and IMU sensor readings are freed from noise, path recon-

struction resembles vector addition, in which vector magnitudes are given by the user’s

walking speed per time step, and the vector direction by the user’s walking direction.

25
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3.1.1 Pedestrian dead reckoning

Dead reckoning or Pedestrian Dead Reckoning (PDR) is a localization technique based

on estimating a user’s current location by projecting bearing and speed on a previously

known location. It is a widely used positioning technique and has been extensively stud-

ied in the past. PDR methods are based either on shoe-mounted or waist-mounted mea-

surement units. In Kourogi et al. [20] a PDR method is presented using waist-mounted

inertial measurement units. Shoe-mounted approaches exploit so called zero velocity

updates (ZUPTs) which occur when a shoe is touching the ground. Waist-mounted

methods on the other hand are unable to exploit ZUPTs, but have the advantage of eas-

ier detection of body orientations and transitions such as from sitting down and standing

up. In all experiments presented in this thesis, a mobile phone is used as if being an

IMU. Motion sensors of the phone are used to detect steps, speed, and orientation. In

case the user’s mobile phone is located in a waist pocket the mechanics resemble those

of a waist-mounted IMU, but compared to shoe-mounted and waist-mounted devices, it

is much more difficult to detect steps from a hand-held device. The damping effect of

a stretched out arm makes it even harder to detect ZUPTs. To overcome the damping

effect, a step detection algorithm was presented for hand-held devices in Section 2.2.4,

and in Section 2.2.5 an algorithm was presented for bearing detection using hand-held

devices.

A well known problem of PDR is that errors accumulate over time. This problem is

also known as drift. Some applications tend to overcome this problem by regularly

calibrating the system, for instance by using GPS. At times when GPS signals are

unavailable, the dead reckoning system takes control and predicts the user’s location.

At times the GPS signal is reliable enough, the user’s location is reset again using the

GPS device. Indoors, GPS is most often unavailable or unreliable and therefore other

methods are needed for calibration. In the last part of this Chapter, hybrid models will

be discussed to cancel out drift. PDR will then be used as input for these hybrid models.

It is therefore interesting to investigate the boundaries of a mobile phone PDR approach

before plugging the results into hybrid methods. Results of a mobile phone based PDR

approach are presented in Chapter 4.

3.2 RF-localization methods

Localization techniques based on RF signals (e.g. WiFi) can coarsely be divided into two

categories: either with or without signal propagation modelling. Propagation models

aspire to relate signal strength and distance. Localization techniques based on signal

modelling can be tricky because signal propagation is rather easily influenced. Obstacles

of any kind will alter and reflect WiFi signals, which makes it difficult to device a

general propagation formula. One attempt to such a signal propagation model was
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presented in Section 2.3.1. Localization methods that do not require signal modelling

also exist. These models evaluate the signal locally such as in K-nearest neighbours

(see Section 3.2.2). Since any error in the modelling technique propagates to the model

based method, some have argued that locally evaluated methods will be guaranteed to

always outperform modelled methods. An open challenge in both approaches (with or

without signal modelling) is interpreting missing values. Modelling not observing an

Access Point is not trivial as it might just be a glitch in the WiFi signal or it could

indicate where the user is not located.

3.2.1 Fingerprinting

Fingerprinting is a positioning technique based on the idea that a location can be rep-

resented by some unique identifier. Theoretically any measure can be used for finger-

printing. In Section 2.4.3 the phone’s microphone was already hinted as a feature for

fingerprinting, and obviously WiFi signal strength or RSSI can be used likewise. Others

have suggested exploiting local fluctuations in the magnetic field as fingerprinting fea-

tures [36]. The process of fingerprinting is very similar to human fingerprinting, hence

the name, and consists of two phases. The first (offline) phase is creating a lookup table

of RSSI-measurements and locations. For every location, often called reference point

(RP), multiple RSSI-measurements are collected. Multiple measurements are needed to

cancel out noise due to dynamic signal characteristics and to create a reliable fingerprint

of that location. In the second (online) phase, RSSI-measurements are classified using

for instance a K-means classifier1 or a least-square estimator.

The advantage of a fingerprinting approach is that it does not require signal modelling.

Location descriptions are based on local information only, therefore making it unneces-

sary to model signal propagation as is done in eq. 2.3.1. The downside is that a large

amount of training data is needed to create reliable cluster prototypes.

Fingerprinting is most often regarded as manually generating an RSSI-lookup table with

a significant amount of work, while knowing that the list is useless after some time due to

the dynamic characteristics of RF signals [27]. The dynamic characteristic of RF-signals

calls for a different approach in the long run.

3.2.2 K-nearest neighbours

A K-nearest neighbours approach for indoor localization is probably the most straight-

forward method one can adopt. In environments where a dense amount of access points

1In K-means classification a data vector is assigned to the cluster with the smallest Euclidean dis-
tance. In Fingerprinting, clusters represent physical locations (i.e. the reference point locations). The
resemblance with a K-means classifier is the usage of classifying a data vector (in signal space – measured
in dBm) to a cluster prototype which represents a physical location by means of the smallest Euclidean
distance (in signal space).
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are installed, it can have surprisingly good results. The K-nearest neighbours method

(for K = 1) is a localization approach that determines the user’s location as being the

location of the access point with the loudest dBm-values (i.e. the user’s location is de-

termined as the location of the nearest transmitter). K-nearest neighbours localization

is unmistakably based on the idea of signal attenuation. The closer a phone is located

to a transmitter, the better the signal strength and the more likely the phone is at the

location near the transmitter.

The K-nearest neighbours approach is appealing because it does not require signal mod-

elling. Other methods such as circular lateration (see Section 4.2.5) require signal mod-

elling techniques to estimate the distance between access points and the device location.

In a K-nearest neighbours approach, the device location is determined by selecting the K

loudest transmitters (in signal space, dBm values) and averaging between the locations

of these K transmitters (in physical space). The performance of this approach stands

or falls with the density of access points. If only a limited amount of access points is

available in a large area, it is unlikely this method will produce satisfactory results. But

this also applies to other localization methods. More important is the value chosen for

K. If K is chosen too small (e.g. K = 1) performance is directly related to the density

of access points. On the other hand, if K is chosen too large in an environment where

only a limited amount of access points is available, this approach will not have satisfac-

tory results either. Note that if K is equal to the amount of available access points, the

predicted device location, X, is the same in every prediction and can be written as

X =
1

N

N∑
i=1

(xi, yi) (3.2.1)

where N is the amount of available access points, and xi and yi refer to the x and y

coordinates of the ith landmark respectively. Hence, K needs to be chosen carefully.

Optimal values for K and results of a K-nearest neighbours experiment are discussed in

Chapter 4.

3.2.3 Circular lateration

Circular lateration is a deterministic localization method using multiple fixed reference

points (i.e. access points) to determine the location of a mobile device. Circular lat-

eration requires the location of the access points in Cartesian coordinates and distance

measurements (RSSI measurements) from the mobile device to the fixed reference points

in order to determine the location of the mobile device. A signal modelling technique

such as presented in Section 2.3.1 is needed to convert RSSI values into distance mea-

surements. Locating a mobile device in 2-dimensional space using circular lateration

requires at least three reference points, and at least four reference points are needed to

locate a mobile device in a 3-dimensional space. If access point locations are known,
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circular lateration can be regarded as a geometrical problem. The geometrical problem

that needs to be solved is that of finding the intersection of multiple circumferences of

circles which have a diameter proportional to the distance between transmitter (access

point) and receiver (mobile device).

Recall that RF-signal propagation is not symmetrical in all directions (see Section 2.3.1),

and therefore in practice the circumferences might not even overlap, or there might be

a solution area rather than one single solution. There might be situations where some

or all of the circles don’t have overlapping regions, or there might be situations where

one or more circles have overlapping regions. In the latter situation the solution would

be an area rather than one location. In the former, no real solution is available. A

least-squares method can be used to determine the location of the mobile device in case

of (non-)overlapping regions. As stated in [21], the problem can be written in the form

HX = B, (3.2.2)

where X is a vector with the desired device location, and is defined as

X =
[
x y

]T
, (3.2.3)

and the matrices H and B are defined as

H =


x2 − x1 y2 − y1

...
...

xn − x1 yn − y1

 , (3.2.4)

B =
1

2


(r21 − r22) + (x22 + y22)− (x21 + y21)

...

(r21 − r2n) + (x2n + y2n)− (x21 + y21)

 , (3.2.5)

where xi and yi represent the x and y coordinates of the ith landmark respectively, and

ri represents the Euclidean distance to the ith landmark. X can then be obtained as

follows [21]:

X = (HTH)−1HTB (3.2.6)

The pitfall of using least-squares is that it is not robust against RSSI outliers and noise.

Outliers can cause dramatic results because the method can not recognize outliers as

such. Others have therefore proposed to use a probabilistic method instead or methods

such as smallest polygon [27].

Circular lateration is expected to be superior to K-nearest neighbours, since circular lat-

eration is able to locate the device in a continuous space, whereas a K-Nearest Neighbour
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is bounded to a finite number of access points. Also, if the model of signal attenuation

is well defined, circular lateration might outperform fingerprinting methods since fin-

gerprinting can only converge to a known ’fingerprinted’ location, whereas with circular

lateration, the actual location can be approximated more precisely by interpolating in

between fingerprinted locations (i.e. circular lateration has a continuous scale of solu-

tions whereas K-Nearest Neighbour and fingerprinting do not). On the other hand, since

Circular lateration depends on RSSI modelling, the performance of Circular lateration is

confined by the performance of the RSSI modelling technique. An overview of Circular

lateration experiments and corresponding results are presented in Section 4.2.5.

3.3 Hybrid method (SLAM)

Localization methods presented so far rely on one modality at the time (i.e. either

motion sensors of a mobile phone or dBm-values of WiFi access points) and require an

offline training phase. In this Section, a method is presented to merge multiple sensor

modalities into one localization and mapping method without a priori knowledge. The

need for such an approach to localization is twofold: (1) In many applications the

environment is unknown. No map data is available which requires map making at first.

And (2) a priori maps are usually: costly to obtain, inaccurate, incomplete, and out of

date.

A method used in robotics to overcome these problems, is Simultaneous Localization

and Mapping (SLAM). As stated in [7], SLAM is a process by which a mobile robot

can build a map of an environment and at the same time use this map to deduce

its location. SLAM builds a map in which the location of landmarks (access points)

and the mobile device are determined simultaneously. The simultaneous localization

and mapping problem has no closed form solution and is known as a chicken-and-egg

problem. In order to know either the robot location or the map, you need to know the

other. In SLAM no prior knowledge of either the environment or the robot location is

needed. Both are estimated online. The problem has been heavily studied in the past

and nowadays many different approaches have been proposed. All solutions include a

recursive method that consists of two stages, a prediction stage and a correction stage.

In the prediction stage the robot pose is estimated based on motion information and

information from the previous pose. In the correction stage, the predicted position of

the robot and landmarks is corrected using measurements made by the robot. While

moving, the robot can concurrently improve its own pose and landmark locations. This

two-step recursive prediction correction method is the essence of the SLAM algorithm.

The system state in SLAM consists of pose information of the device, and all landmark

locations. Besides the state vector, a covariance matrix is used to maintain the prob-

ability of each of these system state properties. During a time update the new system
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state is predicted based on the previous system state and a motion model. Existing

SLAM methods often use robot odometry for the motion model, see for instance [5]. In

contrast to existing methods, odometry is not available when using a mobile phone for

the motion model. Instead, measurements from the phone’s motion sensors are applied

to the previous state to predict a new system state. Below it will become clear how

exactly the motion sensors are used to create this prediction. In the correction step the

predicted system state is corrected with device measurements. Existing methods have

used a wide variety of measurement types for the correction step, for instance laser range

data [5] or camera images [6]. In case of a mobile phone, measurements from the WiFi

sensor can be used for correcting the predicted state. Below it will become clear how

exactly WiFi measurements are used to correct the predicted system state.

Note that the problem presented here greatly resembles a 2-dimensional Range-Only

SLAM problem (RO-SLAM) [1]. Despite the important applications of RO-SLAM, rel-

atively few research has been addressed to the SLAM problem based on range-only

sensors. The key aspects that make RO-SLAM an extremely challenging problem are

related to the measurements. First of all, there is a high number of outliers in measure-

ments due to the nature of the sensor (RF sensors are known to have a high number of

outliers, as will become clear in Section 4.2.1). Secondly, there is a high ambiguity in

the measurements (only distance information is available from the measurement sensor,

no bearing information is available at all, meaning measurements have a wide range of

conflicting solutions) [3].

A popular and commonly used solution to the SLAM problem is by the use of an

extended Kalman filter [7]. Theory and principles of the extended Kalman filter (EKF)

are a key aspect of the EKF SLAM algorithm and are therefore discussed below in detail

before diving into details of the EKF SLAM algorithm.

3.3.1 Terminology

Commonly used terminology for the (extended) Kalman filter and EKF SLAM is listed

below. Note that state representations at a discrete time step k are written as qk. In

literature xt is often used instead of qk to denote state representations. We prefer using

the latter notion because the use of xt might be confusing in the discussion of locations.

• qk , system state at time k . Here, qk ∈ R3, with xk, yk, and θk to describe the

position and orientation of the robot/measuring device.

• Pk , system covariance matrix. A key component of the EKF SLAM framework

and can intuitively be considered as representing the uncertainty about device pose

and orientation and landmark locations. As the values in this matrix approach

zero, the framework converges to a solution. On the other hand, if this matrix still

contains larger values, there remains larger uncertainty.
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• zk , complete set of (landmark) observations at time k . For instance, z1 refers

to the set of observations at time k = 1 and contains distance observations of n

landmarks. Note that no assumptions are made on the landmark locations. zk is

just a vector with noisy observations at time k .

• uk , the control vector with actions the robot has to perform. This vector is not

always directly observable.

• Ak , n × n matrix that relates the state at the previous time step, k − 1 , with the

state at the current time step, k . n represents the number of dimensions needed

to describe the system state. For localization systems, commonly n ∈ R3 so it can

describe position and orientation. If state transitions remain constant over time,

the subscript k may be left out.

• Bk , n× l matrix that relates the optional control input to the state q, with l being

the number of control inputs. In real life situations Bk and uk are mostly unknown

(we don’t know the intentions of the person operating a mobile phone - it would

be an interesting factor to take into account though).

• k , discretization factor of time.

• Kk , vector called the Kalman Gain. The Kalman Gain is used to ’weight’ residual

values. The simplest way to understand the effect of the Kalman Gain is to think

of it as a weighting function. If the error covariance matrix R approaches zero

it means that the measurements are more reliable and get more weight. If, on

the other hand, the estimated error covariance is large, the measurements are

unreliable and more weight is given to the predicted state. The effect of the

Kalman Gain will become more clear in the following Sections.

• wk , process noise vector. Subscript can be left out if measurement noise remains

constant over time. Usually this is just a fixed number and subscript is left out.

• vk , measurement noise vector. Subscript can be left out if measurement noise

remains constant over time. Usually this is just a fixed number and subscript is

left out.

• mi , a vector of size 2 (with x and y coordinates), describing the i th landmark. m

(without subscript), is a matrix which describes the complete set of all landmarks.

m refers to the set of landmarks that have been initialized and are added to the

EKF state vector and covariance matrix as landmarks. This differs from the set

of observations of landmarks required by the landmark initialization techniques.

3.3.2 Kalman filter and extended Kalman filter

The Kalman filter [14] is one of the first successful implementations of a Bayesian filter

and is used as a state estimation method. A Kalman filter alternates between a prediction
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and a correction step (commonly known as a predictor-corrector structure). In the

prediction step, using the previous system state qk−1 and a control input uk, a prediction

q̄k is made for the next state. In the correction step, the predicted system state q̂k is

corrected using the measurement zk to form the new state qk. By alternating between

the prediction and correction step, an accurate state estimation is achieved.

3.3.2.1 Kalman filter

The idea behind the Kalman filter is to represent an estimation problem using a predictor-

corrector structure. In the time update (prediction) the next system state is estimated

based on the previous known system state and state transition properties. In the mea-

surement update (correction) the predicted values are corrected using weighted obser-

vations. The state equation, qk, and measurement equation, zk, form the basis of the

Kalman filter theory. The state equation qk is modeled as

qk = Aqk−1 +Buk−1 + wk−1 (3.3.1)

where wk−1 is a zero-mean Gaussian noise parameter that is modeled as P (w) = N (0, Q).

A is a matrix that relates the state at time k− 1 to the state at time k. A might change

over time, but most often it remains constant. The matrix B relates the control input

u (e.g. odometry) at time k − 1 to the system state at time k. Measurements zk are

modeled as

zk = Hqk + vk (3.3.2)

where vk is a zero-mean Gaussian noise parameter and is modeled as P (v) = N (0, R).

These equations form the basis of the Kalman filter algorithm. Now let’s use these

equations to make a prediction on the next state estimate q̂k

q̂k = Aqk−1 +Buk−1 (3.3.3)

And predicted error covariance as

P̂k = APk−1A
T +Q (3.3.4)

In the measurement update, the Kalman Gain, Kk, is computed to ’weight’ the mea-

surements zk by multiplying the residual values (zk −Hq̂k) with the Kalman Gain Kk.

The Kalman Gain is computed as

Kk = P̂kH
T (HP̂kH

T +R)−1 (3.3.5)
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Having computed the Kalman Gain, the next state probability is corrected using the

residual values and the Kalman Gain as

q̂k = q̂k +Kk(zk −Hq̂k) (3.3.6)

And the new error covariance matrix is computed as

Pk = (I −KkH)P̂k (3.3.7)

Kalman Gain

A little word on the Kalman Gain. The Gain is important because it ’weights’ the

predicted value q̂k and measurements zk as can be seen in equation 3.3.6. This can be

made clear if the Kalman Gain equation is rewritten in the following form:

Kk =
P̂kH

T

HP̂kHT +R
. (3.3.8)

From this notation it is easy to see that as Pk goes to zero (the predicted error covariance

goes to zero), the Kalman Gain also approaches zero and all ’weight’ is given to the

predicted value qk (See eq. 3.3.6). This seems intuitive because if the predicted values

have little error, they can be trusted more and most of the weight is given to the

predicted values. On the other hand, if the measurement error covariance matrix R

approaches zero, the Kalman Gain approaches H−1. This seems intuitive because if the

measurement error is low, meaning the measurements are more reliable, more weight is

given to the measurements zk.

An overview of the Kalman filter algorithm is given in Algorithm box 2. For a more

detailed derivation of the Kalman filter equations see [37, 33].

Algorithm 2 Kalman filter

1: q̂k = Aqk−1 +Buk−1

2: P̂k = APk−1A
T +Q

3: Kk = P̂kH
T
k (HkP̂kH

T
k +R)−1

4: qk = q̂k +Kk(zk −Hkq̂k)
5: Pk = (I −KkHk)P̂k
6: return qk, Pk

The parameters that enter the KF-algorithm include the system state qk−1 and corre-

sponding covariance matrix Pk−1, and noise parameters R and Q. These noise parame-

ters can be estimated each iteration of the KF, but can also be fixed parameters. In the

case of SLAM using a mobile phone, the noise matrices are kept fixed. At line 1 and

line 2, the prediction q̂k and covariance P̂k are made based on the previous system state

qk−1 and motion input uk−1. At line 3 the Kalman Gain is computed. Finally, on line

4 and line 5 the new system state qk and new covariance matrix Pk are computed using

the previous state and Kalman Gain.
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3.3.2.2 Extended Kalman filter

The main difference between a Kalman filter and an extended Kalman filter is to replace

the prediction and correction function with non-linear equations f(·) and h(·), where

the non-linear function f(·) models the prediction model and the non-linear function

h(·) models the measurement model [33]. See Table 3.1 for an overview.

Kalman filter Extended Kalman filter

state prediction Aqk−1 +Buk−1 f(qk−1, uk−1)

measurement prediction Hq̂k h(q̂k)

Table 3.1: Key differences between the Kalman filter and the extended Kalman filter.

By substituting the EKF equations into the Kalman filter algorithm, the new system

state equation, qk, becomes

qk = f(qk−1, uk−1) + wk (3.3.9)

and the measurement model zk becomes

zk = h(qk) + vk (3.3.10)

This set of non-linear equations forms the essence of the extended Kalman filter. In the

time update (prediction) step, the predicted system state, q̂k, is given as

q̂k = f(qk−1, uk−1) (3.3.11)

and associated error covariance matrix P̂k becomes

P̂k = APk−1A
T +WkQk−1W

T
k (3.3.12)

In the measurement update again the Kalman Gain is computed first after which the

residual values are weighted using this Kalman Gain. The Gain is computed as

Kk = P̂kH
T
k (HP̂kH

T + VkRkV
T
k )−1 (3.3.13)

where Vk is the Jacobian matrix that relates to the measurement noise, and Hk is the

Jacobian of h(q̂k). Next the predicted system state is corrected using the Kalman Gain

Kk and residual values (zk − h(q̂k)) as

qk = q̂k +Kk(zk − h(q̂k)) (3.3.14)

And finally the new error covariance matrix Pk is computed as

Pk = (I −KkHk)P̂k (3.3.15)
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The extended Kalman filter algorithm is described below in Algorithm box 3. For a

detailed derivation of the extended Kalman filter equations, see [37, 33].

Algorithm 3 Extended Kalman filter

1: q̂k = f(qk−1, uk−1)
2: P̂k = APk−1A

T +Q
3: Kk = P̂kH

T
k (HkP̂kH

T
k +R)−1

4: qk = q̂k +Kk(zk − h(q̂k))
5: Pk = (I −KkHk)P̂k
6: return qk, Pk

The EKF algorithm will form the basis of the EKF SLAM solution for the problem

stated earlier. The EKF filter needs to be modified a little before it can be used in

SLAM. In the next Section the details of EKF SLAM will be discussed.

3.3.3 EKF SLAM

In EKF SLAM, the EKF state vector and covariance matrix need to be extended with

landmark locations. That is, landmarks are included in the state vector and covariance

matrix. The size of this combined state vector then becomes 2N + 3, where N is the

number of landmarks. The size of the covariance matrix is a square matrix of similar

dimensions (e.g. R(2N+3)×(2N+3)) . If a 3D-model is used, the device location consists of

three parameters to describe the location x, y, z, and one, θ, to describe the orientation.

For landmarks this becomes x, y, z to describe the locations. Hence, with a 3D-model

and N landmarks, the combined state vector becomes size 3N + 4. But for now, a 2D

model is assumed.

Analogous to the EKF algorithm, EKF SLAM consists of a motion model and an ob-

servation model [7]:

• The motion model describes the probability of a state change given the previous

state and a control input (e.g. motion sensors of the mobile phone). Using the es-

timated device location at a previous time step, qk−1 , and a control input, uk , the

new robot position can be described with probability P (qk |qk−1, uk ). State tran-

sitions are assumed to be Markovian. This means the current state only depends

on the directly preceding state.

• The observation model describes the probability of making an observation given

the robot and landmark locations. Using the estimated device location qk and

landmark locations m, the observation model describes the probability of making

an observation zk , and can be described by the probabilistic form P (zk |qk ,m).

The use of an extended Kalman filter (EKF) is a commonly used solution to the SLAM

problem. Here the system state is described with a vector qk, at discrete time steps
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k, where qk ∈ R3 with xk, yk, and θk for position and orientation. Orientation, θk, is

determined using a sensor fusion algorithm (as described in Section 2.2.5) which relies

on sensory input from gyroscope, magnetic compass and accelerometer. Further details

on individual sensors are described in Chapter 2. Speed (and distance) is determined

using a step counting algorithm described in Section 2.2.4.

By using the stepcounter evaluated distance ∆D as

∆D = numSteps · stepSize (3.3.16)

and using a sensor fusion algorithm for an indication of heading, the EKF equations can

be written as follows. The EKF state equation becomes

f(qk−1, uk−1) =

xk−1 + ∆Dk−1 cos(θk−1)

yk−1 + ∆Dk−1 sin(θk−1)

θk−1

 (3.3.17)

with ∆Dk−1 the traveled distance between the previous system state qk−1 and current

system state qk, and wk the system process noise. The matrix Ak ∈ R3x3 relates the

state qk−1 from the previous time step to the current state qk and can be written as

Ak =
∂f

∂qk−1
=

1 0 −∆Dk−1 sin(θk−1)

0 1 ∆Dk−1 cos(θk−1)

0 0 1

 (3.3.18)

The measurement model (correction) uses the signal attenuation model (Eq. 2.3.1) and

RSSI-values as predicted landmark distances. This is the non-linear Euclidean distance

function dλqk as described in Eq. 3.3.20. The Jacobian Hk of dλqk is given by

Hk =
∂h

∂qk
=

[
xk−xλ√

(xk−xλ)2+(yk−yλ)2+ηs
yk−yλ√

(xk−xλ)2+(yk−yλ)2+ηs
0
]

=
1

dλqk

xk − xλyk − yλ
0


T

(3.3.19)

3.3.4 Landmark initialization

New landmarks need to be added to the state vector and covariance matrix of the EKF

SLAM framework. There are basically two approaches to add new landmarks: either

online (without delay) or with some delay for initialization. The distinction is important

because it can have considerable consequences on the performance of the SLAM method.

The advantage of undelayed initialization of landmarks obviously is that the position

estimation of the device can immediately benefit from this landmark. However, this
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is only possible if the undelayed initialization makes any sense. In case the landmark

location uncertainty is too large, it might be better to use the delayed initialization

method.

A welcome side effect of using APs as landmarks is that they are easy to distinguish using

their BSSID (i.e. MAC-address). Every access point has its own MAC-address which

gives it a unique identifier. Many SLAM implementations face the problem of unknown

correspondences which is the problem of recognizing landmarks by a unique identifier.

This mainly occurs when landmarks have overlapping features. For instance, a yellowish

cone in the left corner of a robot soccer field looks very much like a yellowish cone on

the right corner of a robot soccer field. Additional information is needed to distinguish

between those two landmarks. But fortunately access points are easily distinguishable

using their BSSID. This boils down to using an EKF SLAM framework with known

correspondences [33].

Once access point locations are known, the distance at time k from device location

(xk, yk) to landmark location (xλ, yλ), denoted by dλqk , is given by:

dλqk =
√

(xk − xλ)2 + (yk − yλ)2 + ηs (3.3.20)

where λ refers to the ith landmark, and ηs is a zero-mean Gaussian noise with variance σ2s .

But before landmarks can enter the EKF SLAM framework, an initial location estimate

is needed as well as an estimate on the precision of this estimate. Landmark locations

can be estimated using a technique called trilateration. Trilateration is a technique to

determine a location of an access point by finding the intersection of circumferences

from reference points with a radius as large as the distance to the AP (see Figure 3.1).

Reference points in this context refer to locations on a travelled path where measure-

ments were taken. At least three reference points that do not lie on a straight line are

needed to unequivocally determine the position of the AP, but it is best to use more

observations to cancel out measurement errors. Three (or more) reference points that

lie on a straight line will yield ambiguous results with two optional landmark positions,

one on either side of the line. For instance, if there are observations from P1 and P2

there are two remaining solutions, one marked by the red star on the lower left, and the

other marked by the black star. A third observation P3 is needed to pinpoint the AP

location.

Landmark initialization is even more unreliable if it is the very first observed landmark.

This means that no landmarks have entered the SLAM EKF framework and the mea-

surement update from the SLAM method can’t be used. Feedback (correction) from

the landmark measurements is not yet available. This also implies that reference point

locations are not very reliable because their locations are derived only from motion sen-

sor measurements. In [8] it is shown that trilateration with noisy measurements falls in
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the NP-complete category of problems. Another method for landmark initialization is

discussed below.

r1

r3

r2
P2

P3

P1

Figure 3.1: Trilateration. The black star represents an AP-location. The dashed
blue line is an example path with reference points at P1 , P2 , and P3 with respectively
radius r1 , r2 , and r3 . Starting near P1 , as we reach P2 , there are two possible solutions
remaining, one marked by the red star on the left, the other marked by the black star
in the middle. After taking into account reference point P3 , only one final solution

remains.

3.3.4.1 Gauss-Newton method

The problem of finding the intersection of circumferences can be written as a non-linear

least squares problem and can be solved using the Gauss-Newton method. This method

has the advantage to always converge, however it is not guaranteed to converge to the

global minimum. Non-linear least squares methods solve the problem of minimizing

‖Ax− b‖2 by finding a vector x̂ such that ‖Ax̂− b‖2 ≤ ‖Ax− b‖2 for all x. This problem

has a known solution at x̂ = (ATA)−1AT b. The objective function to minimize is defined

in terms of residual distances. Basically we want to find an x̂ such that the residual

distances to all reference points is lowest. This function is of the form

g(x) =
m∑
i=1

di(x)2 (3.3.21)

where di(x) is the non-linear Euclidean distance function between the landmark (access

point) location and the ith reference point, and is given by

di(x) =
√

(APx − Px,i)2 + (APy − Py,i)2 + ρi (3.3.22)
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APx and APy refer to the location of the access point we are trying to locate, Px,i and Py,i

refer to the ith reference point locations, and ρi is the noise related to the measurements

for the ith reference point.

This model is tested on convergence rate and accuracy. Figure 3.2 shows an example

Gauss-Newton trace. The dashed blue line is an example walking path, the green circles

represent noisy distance measurements at several reference points and the red graph is

a Gauss-Newton trace. A pilot experiment showed that after approximately 6 iterations

the method has sufficiently converged (see Figure 3.3). Furthermore, it was found that

if the residual training distance is below a certain threshold, the landmark location can

be accepted as the true landmark location. If the residual distance measurement is

higher than this threshold value, it is almost certain that the method is stuck in a local

minimum and there exists another solution with the same (or higher) probability of

being the actual access point location. It is therefore wise to re-run the Gauss-Newton

method with a different initialization and converge until a better estimate is available.

In a second experiment the Gauss-Newton method is performed multiple times with a

different initialization. The accepted final solution is the result with the lowest residual

distance.

−10 0 10 20
x−position

Gauss−Newton example

Figure 3.2: Visualization of Gauss-Newton convergence. The red graph indicates
iterations of the algorithm, the blue line is a simulated walking route. Green asterisks
indicates locations at which WiFi measurements were taken along the walking route.
The green circles indicate possible AP-locations based on RSSI measurements at the
green-asterisk locations. The signal attenuation model is used to translate RSSI values

to distances (see Eq. 2.3.1). The yellow asterisk indicates the true AP-location.
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Figure 3.3: Gauss-Newton convergence. Training and test error of Gauss-Newton
method

3.4 Multi-user EKF SLAM

The state vector, qk , and noise matrix, Pk , contain valuable information for future

users. They contain information about the relative landmark (access point) locations

and related uncertainties. Only the first three elements of the state vector contain

information about the device relative to the map. The rest of the state vector is the

map itself. This also holds for the noise matrix: the first three rows and first three

columns store information about uncertainty between the device and landmarks (and

vice versa). All remaining parts of the noise matrix contain map data. In a follow up

study it would be interesting to evaluate the effect of a so called ’multi-user’-approach

where the map-related parts of the state vector and noise matrix are reused.

In Section 4.3 results of a multi-user EKF SLAM experiment are presented in which the

state vector and noise matrix are reused. In these experiments results of dead reckoning

and EKF SLAM will we compared to multi-user EKF SLAM. Theoretically the best

performing method should be the multi-user variant of EKF SLAM, followed by EKF

SLAM and dead reckoning. The advantage of multi-user EKF SLAM over the other two

methods is that it can benefit from earlier determined landmark locations to overcome

drift errors. Furthermore, the multi-user variant is expected to outperform the single-

user method because the single-user variant needs to initialize landmarks before they

can be exploited to reduce drift errors whereas the multi-user variant can reuse map data

(landmark locations) from earlier experiments. Dead reckoning does not take advantage

of WiFi measurement for localization correction and is therefore expected to perform

worst. The assumption made is that by integrating motion sensor measurements and

WiFi measurements, the localization prediction becomes more accurate.





Chapter 4

Results and Discussion

In this Chapter the performance of localization and mapping algorithms is presented.

This Chapter is divided into three parts. In the first Section (see Section 4.1), all results

related to motion-based methods are given and discussed. A noise analysis of motion

sensors is made and the performance of localization algorithms based on motion sensors

are discussed. Performance of the step counter and bearing sensors are also presented in

this Section. In the second Section (see Section 4.2), all results related to WiFi sensors

are presented. In the last Section (see Section 4.3) the performance of (multi-user) EKF

SLAM is discussed, which combines measurements from motion and WiFi sensors. In

Section 4.4 the results presented in this Chapter are briefly summarized.

4.1 Motion-based methods

In this Section results of methods based on the mobile phone’s motion sensors are pre-

sented. Datasets used in this Section are the motion noise dataset (see Appendix A.2) for

evaluating the precision of motion sensors, and the user tracking datasets (see Appendix

A.4) which are used to assess the bearing sensor and dead reckoning.

4.1.1 Noise analysis

All localization and mapping algorithms presented in this thesis receive input from

mobile phone sensors and are confined by the precision of these sensors. Therefore

a noise analysis experiment of motion sensors is discussed below. The data for this

experiment is obtained from a (1) Samsung Galaxy SII, which is the phone model that

was used most frequently for data gathering during this thesis. Other phone models

used to gather data are a (2) HTC One, and a (3) Samsung Galaxy Ace.

43
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Data in this noise analysis experiment was gathered with an Android application built

specifically for this task (see Appendix B.2). The application measures sensor values of

three different sensors (gyroscope, accelerometer and magnetic field sensors) every 50ms

for exactly ten minutes. During the experiment the phone was placed stationary on a

table with the screen facing upwards. A delay of 5 seconds was introduced to prevent

recording noise generated by touching the phone to start the experiment. See Appendix

A.2 for details about the dataset. Results are presented in Table 4.1.

The most interesting results are those from the gyroscope and the linear accelerometer.

Measurements obtained from the accelerometer and compass are more difficult to inter-

pret. Results from the accelerometer should resemble those of the linear accelerometer,

the only difference between those sensors is that the gravity component included in the

accelerometer makes it harder to interpret the results. The same holds for the magnetic

field sensor. Measurements of this sensor directly relate to the orientation of the phone

during the experiment.

SENSOR
MEAN SD

x y z x y z

Accelerometer (m/s2) 0.0283 -0.1209 10.1209 0.0153 0.0231 0.0408
Linear accelerometer (m/s2) -0.0000 0.0010 0.0022 0.0116 0.0182 0.0327
Gyroscope (rad/s) 0.0098 -0.0088 0.0091 0.0027 0.0023 0.0028
Magnetic field (µT ) -33.4681 27.2340 -59.7049 0.8047 0.3012 0.5255

Table 4.1: Noise analysis of motion and orientation sensors.

Table 4.1 shows that when the phone is placed stationary on a table, motion sensors

are quite accurate. The only sensor that has slightly off SD-values is the orientation

sensor. But there is a simple explanation for this effect. Accelerometer and gyroscope

don’t receive input when the phone is stationary on the table, but the magnetic field

detected by the compass is much harder to divert or shut down. Magnetic field sensor

measurements presented here might as well indicate fluctuations in the magnetic field

instead of sensor precision. It might as well indicate fluctuations due to changes in

Earth’s magnetic field or external sources such as loudspeakers, as was discussed in

Section 2.2.3.

4.1.2 Step counter

Other studies have reported performance of stepcounting algorithms as a function of

walking pace (BPM) (see for instance [26]). In a simple step counting experiment the

results of the step counting algorithm was evaluated in the same manner. Figure 4.1

displays the performance of the step counting algorithm by comparing actual steps to

predicted steps. Each asterisk indicates the difference between actual and predicted steps

for a single experiment. The closer to the diagonal the better. For optimal performance,
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where the amount of predicted steps is equal to the amount of actual steps, all results

would lie on the diagonal for all experiments.

Very few studies report on algorithm performance of rejecting false positives (e.g. fake

steps). Most often it is very well possible to trick step counting algorithms into detect-

ing fake steps by making ’step motions’ manually by shaking the phone in a walking

alike motion. A clever method to overcome these tricks is by including geolocation mea-

surements such as WiFi or GPS (if available) to filter such fake motions. On the other

hand, the latter approach would also filter steps made on a treadmill. In the approach

presented here, the only limitation on faking steps is based on human physiological con-

straints. A walking pace of > 20steps/s would for instance be impossible. In [26] a step

counting algorithm is proposed and the performance of commercially available pedome-

ters is reported. Comparing our results to those presented in [26], the performance of

the step counter algorithm presented in this thesis outperforms commercially available

methods and resembles performance reported in [26].
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Figure 4.1: Step counter performance. The asterisks indicate results of individual
experiments. In case of optimal performance, all results would lie on the diagonal line.

4.1.3 Bearing sensor and dead reckoning

In this Section the performance of a 2-stage EKF sensor fusion algorithm (see Section

2.2.5) is compared to the default Android orientation sensor by means of a dead reck-

oning experiment. The 2-stage EKF sensor fusion algorithm was developed to improve

the default Android orientation sensor by incorporating measurements from the phone’s

gyroscope. This algorithm relies on measurements from three motion sensors: (linear)
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accelerometer, gyroscope, and orientation sensor. The only requirement for this algo-

rithm to improve the Android orientation sensor is the presence of a gyroscope in the

mobile phone. Some mobile phone manufacturers choose not to equip their phone mod-

els with a gyroscope which makes this algorithm useless. If the gyroscope is absent,

the performance of this 2-stage EKF sensor fusion algorithm is comparable to the per-

formance of the default orientation sensor in Android. Data for this experiment was

gathered using the Tracking application (see Appendix B.4 for details).
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Figure 4.2: Dead reckoning experiment based on the default Android bearing sensor.
The red marks in the top Figure indicate actual locations, green marks indicate esti-
mated locations. The blue line on the top graph depicts the reconstructed path. The
blue line in the bottom Figure depicts the error of the estimated path (m). Participants
were instructed to walk the route counter clockwise visiting all red marks, starting at

(5, 1).

The result of a dead reckoning experiment based on the default Android orientation

sensor is presented in Figure 4.2. The result of the same experiment, but this time with

the bearing determined by the 2-stage EKF algorithm, is presented in Figure 4.3. In

both Figures, the top graphs display the reconstructed path. The red marks indicate

actual locations, the green marks indicate locations determined by dead reckoning, and

the blue line depicts the reconstructed path of the user. In both Figures, the bottom

graphs shows the error based on the Euclidean distance between the green marks and

corresponding red marks (i.e. localization error).

Consider the results of the Android orientation sensor presented in Figure 4.2. In short,

the Android orientation sensor has really poor performance for this environment. The
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Figure 4.3: Dead reckoning experiment based on a 2-stage EKF sensor fusion algo-
rithm. The red marks in the top Figure indicate actual locations, green marks indicate
estimated locations. The blue line on the top graph depicts the reconstructed path.
The blue line in the bottom Figure depicts the error of the estimated path (m). Par-
ticipants were instructed to walk the route counter clockwise visiting all red marks,

starting at (5, 1).

orientation at the start of the experiment is already off, and it continues to fail through-

out the experiment. Rotations are not detected correctly and overall localization error

increases to approximately 30 − 40m. In multiple pilot experiments it was discovered

that orientation sensors of all tested phone models and brands failed in this environ-

ment. Even a field compass failed to indicate true magnetic North consistently. The

foremost cause of these failures is due to building structure. Walls and support pillars

are made of reinforced concrete which cause orientation sensors to digress into wrong

predictions. This is most likely to occur in other environments also. Therefore, every lo-

calization method based on orientation sensors needs to take into account such possible

environments and requires additional techniques to overcome these deficiencies.

Now let’s consider the results of the same experiment based on the 2-stage EKF filter.

Interesting to note is the development of drift in the 2-stage EKF algorithm displayed

in Figure 4.3. The first approximate 60m of the reconstructed path is dominated by

a steady increase in drift (the path is deviating more and more towards the north).

After a distance of almost 60m the predicted bearing is off by a full 180 degrees. This

steady increase in drift is most likely due to the local disturbances of the magnetic field

and the correction stage of the algorithm which uses the Android orientation sensor for

corrections. Quick changes in bearing are determined by the phone’s gyroscope which
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causes the performance increase compared to the default Android orientation algorithm.

But on the long term the Android orientation sensor is used to align the sensor with the

true magnetic North, which causes it to fail on the long run.

By comparing the results of dead reckoning based on the default Android sensor and the

2-stage EKF algorithm, it becomes immediately clear that, although the performance is

quite poor in general, the 2-stage EKF algorithm outperforms the Android orientation

sensor by far.
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Figure 4.4: Dead reckoning experiment based on a 2-stage EKF sensor fusion algo-
rithm. The red marks in the top Figure indicate actual locations, green marks indicate
estimated locations. The blue line on the top graph depicts the reconstructed path.

The blue line in the bottom Figure depicts the error of the estimated path (m).

4.2 RF-based methods

In this Section results of all methods based on RF-signals are presented. Datasets that

are used in this Section are the fingerprint dataset (see Appendix A.1) for the signal

attenuation model, K-nearest neighbours, circular lateration, and fingerprinting. The

WiFi noise dataset (see Appendix A.3) is used for evaluating WiFi characteristics, and

is discussed next.
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4.2.1 WiFi noise

Data in this experiment was gathered using an Android application that was specifically

designed for this task (see Appendix B.3 for details). Every 30 seconds the application

measures RSSI-values of all visible access points and stores the information in a data

file. The dataset used in this experiment was gathered over the course of multiple days

(just over 80 hours) to account for temporal effects, resulting in a dataset of at most

9600 data points for each individual access point.

Results of this experiment are shown in Figure 4.5, in which the RSSI-values of the 9

individual access points are plotted. Mean and standard deviation for each of these APs

are displayed in Table 4.2. But note that these values are more difficult to interpret.

What cannot be seen from the plotted RSSI-values in Figure 4.5 is that some of the access

points have missing values. It sometimes happens that access points are unobserved

during a WiFi scan. There are multiple explanations for the non-occurrences (e.g. signal

blocked by moving objects, noise in the transmitter, noise in the receiver), but the main

point is that these non-occurrences are not taken into account when the mean and SD

are computed.

AP Mean (dBm) SD (dBm) Missing (%) Distance (m)∗

1 -81.6173 1.5862 15.39 22.47
2 -79.6210 1.2320 1.12 22.00
3 -73.8517 2.4356 12.99 16.00
4 -76.4868 1.0983 6.08 16.12
5 -59.4780 2.3388 1.03 9.43
6 -58.7839 1.9845 1.06 8.00
7 -29.2970 4.5512 0.11 2.00
8 -62.7986 1.8510 0.62 11.31
9 -63.3485 1.2333 0.00 8.00

Table 4.2: WiFi noise. ∗Euclidean distance between transmitter (access point) and
receiver (phone).

4.2.2 Signal attenuation modeling

The signal attenuation model is used to relate physical distance between transmitter

(access point) and receiver (mobile phone) to RSSI measurements (and vice versa).

Except for fingerprinting, K-nearest neighbours, and dead reckoning all localization

methods in this thesis rely on signal modelling. It is therefore important to have a good

understanding of the characteristics of signal modeling and the limitations of the model.

It might be preferred to set a delimiter for the maximum range an access point can cover

based on building characteristics and physical limitations of transmitters (access points)

and receivers (mobile phones). The delimiter could be set to the distance at which it is
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Figure 4.5: RSSI measurements of 9 individual access points. WiFi samples were
taken every 30 seconds for the duration of approximately 80 hours.

absolutely certain that no signal could have been received from the transmitter. Using

brute force testing it was found that the best performance on the attic dataset at Sense

HQ (see Appendix A.1 for details) was achieved when no delimiter is used. The brute

force method optimizes for the standard deviation of the error (e.g. try to fit a smallest as

possible distribution). Also the mean error is then automatically minimized. Parameter

optimization stopped as soon as the mean error started to increase. This resulted in

a normal distribution around a mean prediction error of µ = 0.09, and σ = 4.40 (See

Figure 4.6). The parameter settings γ = 5.2, d0 = 30.0, and Pt = −46.0, without using

a delimiter resulted in the best performance for this particular environment. The model

parameters determined here are also used in further experiments that rely on signal

modelling. Note that these results are location specific. Model parameters presented

here are fitted on this dataset and by no means representative for any other environment,

even though most model parameters resemble default values for this type of environment.

In Figure 4.7, RSSI measurements of the fingerprint dataset are displayed in green, along

with the signal attenuation model displayed as the blue line. Signal attenuation model

parameters are as described above. The signal strength data plotted here illustrate the

main challenge of modeling RF-signal attenuation. RSSI measurements show extremely

high variance as can be seen in Figure 4.7. At a distance of 2m, signal strength varies

between −35dBm and −80dBm, whereas signal strength measurements at a range of

25m are −80dBm on average. That is, if an RSSI measurement of −80dBm is observed,

it might be that the distance between transmitter and receiver is somewhere between
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Figure 4.6: Prediction peformance of the signal attenuation model with parameter
settings µ = 0.09m, σ = 4.40m.

2m and 25m or even more. This huge variance in signal strength measurements makes

it extremely hard to reliably predict distances between transmitter and receiver based

on RF-signals.
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Figure 4.7: Signal attenuation model with parameter settings γ = 5.2, d0 = 30.0, and
Pt = −46.0, is shown in blue. RSSI measurements are depicted in green.
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4.2.3 Fingerprinting

For this fingerprinting experiment, a dataset was created at the attic of Sense HQ. This

environment is approximately 35m long, 7m wide, and 4m high with only minor ob-

structions in the center of the attic. At both ends of the attic, there are two smaller

rooms which are separated by a gypsum block wall. A structure of wooden beams sup-

ports the roof throughout the whole environment (see Appendix A.1 for a schematic

overview). The dataset for this experiment was created using a simple Android appli-

cation which creates data points that consist of WiFi measurements1 and measurement

locations2 (see Appendix B.1 for details about the application). The environment was

divided into 212 squares of 1m2, and 4 measurements were taken at each square. This

resulted in a dataset of 848 data vectors of WiFi signal strength measurements (e.g.

[AP1, AP2, ..., APK ]) divided into 212 clusters. Signal strength in this dataset varied

between −30dBm and −91dBm. Some data vectors contained missing values or non-

observations, meaning that the access points were too far away to detect.

In this fingerprint experiment, data vectors were classified to the cluster which had the

least Euclidean distance between cluster prototype and data vector. The best results

were observed after inserting the lowest observed RSSI value (−91dBm) in data vectors

where non-observations occurred. The experiment showed that only 32.8% of all data

vectors were classified correctly. However, in case of incorrect classification the matching

cluster is often very close to the actual location. The average distance between the actual

cluster and the matched cluster is 2.16m. An overview of classification performance and

error radius is given below in Table 4.3.

Radius Correct (%)

0m 32.78
1m 43.40
2m 56.25
3m 70.17
4m 79.36
5m 88.44
6m 94.10
7m 97.05
8m 98.47
9m 98.82
10m 99.17

Table 4.3: Fingerprint classification accuracy. For an error radius of 10m, 99.17% is
classified correctly.

1A WiFi measurement consists of BSSID (MAC-address), RSSI (received signal strength), SSID
(network name), and Frequency of all visible WiFi access points.

2Users of the Android application need to manually enter the location (e.g. x, and y coordinates) to
create this dataset.
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With a total of 212 clusters, the amount of correct classified clusters definitely outper-

forms random guesses, even at a radius of 0m. In Figure 4.8 this result is visualized

by means of a similarity matrix. The similarity matrix is used as a measure for the

similarity of data points with the clusters they belong to. If all data vectors were to

be classified correctly, the similarity matrix resembles a perfect diagonal. The similar-

ity matrix shown in Figure 4.8 indicates that there are a lot of data vectors classified

incorrectly. However, the distance between the cluster they belong to is often not very

large (e.g. data vectors are classified correctly or close to - in physical space - the correct

cluster).
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Figure 4.8: Similarity matrix of clusters in a Fingerprinting experiment.

These results might also be influenced by the amount of access points that are used

in the data vectors. Intuitively, using a large amount of access points should result in

higher classification performance compared to using a small amount of access points.

Exploiting a large amount of access points increases the discriminability of clusters,

and should therefore achieve higher precision and accuracy. For instance, if only one

access point is used, it is impossible to differentiate in more than one dimension. This

is also reflected in the results. Figure 4.9 shows the classification performance as a

function of distance from the actual location for multiple amounts of access points.

Each individual graph is the result of using a different amount of access points. Each

graph is generated by averaging over 50 individual experiments, where one experiment

consists of randomly selecting a fixed amount of access points out of all available ones

and computing the precision at different distances (0m − 10m). Figure 4.9 shows that

at a radius of approximately 8m, a classification performance of nearly 100% is possible.
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Figure 4.9: Fingerprint accuracy and precision. Each graph displays the accuracy
after using a different amount of access points.

4.2.4 K-nearest neighbour

The K-nearest neighbours experiment reuses the dataset created for fingerprinting (see

Appendix A.1 for details about the dataset). Mean localization error and standard de-

viation of the K-nearest neighbours experiment for K = {1, ..., 9} are presented below

in Figure 4.10. For this type of localization technique, the distribution and density of

the access points and shape of the environment can have a notable effect on the per-

formance of this technique. In the current dataset, K-nearest neighbours is most likely

ineffective because nearly all access points are located on the edge of the environment,

and the environment is shaped in a rectangular way. Meaning that for K > 2, predicted

locations will inevitably result in a location prediction pulled towards the center of the

environment, because the third or fourth ’nearest neighbours’ are almost certainly on

the opposite side of the rectangular environment (see Appendix A.1 for map details).

Locating a device on the edge of the environment will therefore most likely have con-

sistent bad performance for larger values of K. Theoretically, performance can only

degrade for most locations in this map with increasing values of K.

These expectancies are also reflected in the results. Optimal performance is observed for

K = 3, closely followed by K = 2, and K = 4. For K = 3, the average localization error

is µ = 3.75 and σ = 1.94. For K > 4, localization error starts to increase significantly.

The increase in localization error due to larger values of K is visualized in Figure 4.11.

This Figure displays the the performance of K-nearest neighbours for K = {1, ..., 9},
for each location on the map. Colors indicate the localization performance per location.

This Figure clearly shows a positive correlation between larger values of K and increasing
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Figure 4.10: K-Nearest Neighbour performance for K = {1, ..., 9}. Mean and stan-
dard deviation are shown.

localization error for the outer edges. For K = 9, only the center locations are localized

correctly. Note that for larger values of K it is not always possible to construct a

localization error because not all access points are observed. For K > 6, gaps start to

emerge because of missing data.

4.2.5 Circular lateration

In this circular lateration experiment the fingerprint dataset recorded at the attic of

Sense HQ is used, see Appendix A.1 for details. The effect of averaging WiFi measure-

ments over time is also evaluated.

The performance of the circular lateration experiment is presented in Figure 4.12. Re-

sults for default circular lateration are shown in blue and results of a so called ’averaged’

version in which WiFi measurements are averaged over time are displayed in red. In the

averaged version, multiple WiFi measurements recorded at different points in time are

averaged in order to obtain more reliable RSSI values. The assumption is made that

by averaging multiple measurements the arbitrary effects of RF-signals is cancelled out.

Theoretically the averaged version should outperform the default version because the

effect of outliers is cancelled out. Now, for both the default and averaged versions, the

circular lateration performance is shown as a function of the amount of access points.

For lower amounts of access points the nearest – loudest in signal space (dBm) – access

points were selected. For instance, for the situation with 3 access points, the 3 loud-

est or closest access points are used for the experiment. It is always best to select the
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Figure 4.11: K-nearest neighbours performance per location, for K = {1, ..., 9}.
Colors indicate the estimation error (m).

loudest access points because the signal attenuation model is more accurate in the range

closer to the access point compared to predictions that are further away (see Figure 4.7).

A pilot experiment with randomly selecting access points confirmed that performance

dramatically decreases if the selected access points happen to be access points far away

from the device location. Note that RSSI measurements are evaluated in signal space

and are used to estimate the location of a mobile device, but the performance of circular

lateration is reported in Euclidean distance measured in physical space.

In [19] a method is presented to locate mobile devices using RSSI-based circular later-

ation. Results in [19] show that using their method, accuracy is at best 5 meters, and

degrades to as far as 20 meters using less reliable circular lateration methods. Our results

reflect these results for large amount of access points, but never degrade into localization

errors of more than µ = 5.5 and σ = 2.6 (for using 9 access points). Furthermore, the

’averaged version’ outperforms all results presented in [19] regardless of the amount of
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access points. Our results show that the best performance is achieved if 4 or 5 closest

access points are used. The localization error of the averaged version when using 4 access

points is µ = 2.93m and σ = 1.65m. Localization error for the non-averaged version is

µ = 4.09 and σ = 2.91. It must be noted that the density of access points is rather high

for this environment. It might be that the results are influenced in a positive way by

the high density of access points.
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Figure 4.12: Circular Lateration performance. The graphs depict mean, µ, and
standard deviation, σ, for AP = {3, ..., 9}.

Also note that the results presented here are obtained from WiFi measurements where

participants were stationary. It is unclear how moving subjects might influence the

results. Especially the outcome of the averaged version is hard to predict. If multiple

measurements from different locations are averaged, the predicted device location might

very well be ’lagging behind’ the actual location.

4.3 Simultaneous localization and mapping

The extended Kalman filter simultaneous localization and mapping (EKF SLAM) algo-

rithm, as presented in Section 3.3, was first assessed using a simulated dataset on overall

performance and convergence using a simulated environment. The simulated environ-

ment is approximately 50m long and 40m wide. In total the simulation environment

contains 10 landmarks distributed evenly across the area. A schematic 2-dimensional

map of the simulation environment is shown in Figure 4.13. The blue line depicts the

user’s walking route, the red asterisks represent landmark locations. The walking route

is traversed 10 times, so every location is visited 10 times in total. The dataset resulting
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from the simulated environment consists of simulated motion and WiFi measurements

(e.g. simulated steps, bearing, and WiFi observations).
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Figure 4.13: Schematic 2-dimensional map for evaluating the EKF SLAM algorithm
performance. The blue line indicates walking route. Red asterisks indicate landmark

locations.

A graphical user interface (GUI) was developed to assess the performance of the algo-

rithm visually. The GUI can be used to visualize real world data obtained from data

gathering applications or to visualize simulated datasets. Figure 4.14 displays the GUI

after an experiment based on the simulated environment. The final localization error

after 900 prediction-correction steps for the user location is 0.36m, with an uncertainty

boundary of 0.53m in the horizontal direction, and 0.47m in the vertical direction. These

results are very satisfying and provide some insight in the maximum achievable perfor-

mance on real world data. These results might however be somewhat misleading because

the simulated environment and dataset contain an idealized situation (e.g. low amount

of noise).

The mapping and localization algorithm can also be assessed in terms of landmark

location convergence. Results of landmark convergence for the 10 landmarks from the

simulated environment are shown in Figure 4.15. Each graph in this Figure depicts the

convergence of a single landmark. After 900 prediction-correction steps, the average

error of all landmarks is µ = 1.64, with a standard deviation of σ = 1.02. Note that

some landmarks are not initialized correctly and errors increase for some landmarks even

after initializations. This is most likely to happen in real world situations also. In the

simulation environment eventually all landmarks converge to a stable situation.
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Figure 4.14: 2-dimensional GUI used for assessment of the EKF SLAM implemen-
tation. The blue line represents the estimated trajectory of the device. The green
lines indicate state changes of landmarks. The red marks indicated the final estimated
locations of landmarks. The dashed gray lines plotted on the background are used as

a reference grid. The distance between grid lines is 10m.
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Figure 4.15: Landmark convergence for simulated data. Each graph depicts the
localization error over time of an individual landmark. The mean localization error of

all landmarks after 900 iterations is µ = 1.64, and σ = 1.02.

Performance on the simulated dataset looks promising and suitable to apply on real

world data. The algorithm converges to a stable situation for both the device location
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and all landmarks. Below the results of three experiments based on real world data are

discussed. In the experiments below, the performance of dead reckoning is compared to

EKF SLAM and multi-user EKF SLAM. Datasets for these experiments were gathered in

the Bernoulliborg at the University of Groningen using the dataset gatherer application

(see Appendix A.4 for details).

The results of these three experiments are presented in Figures 4.16, 4.17, and 4.18. For

each experiment, the top graph displays the actual path in red and the reconstructed

path is displayed in blue. The asterisks indicate marked locations3 which are used to

determine the localization error. Red asterisks represent actual locations, green asterisks

are the estimated device locations. Participants moved from (0, 0), via (−41, 19), visiting

(−34, 19) twice, towards (−55, 23), and moved back to (0, 0) following the same route in

reverse. In the bottom graph the localization error is displayed by means of Euclidean

distance between actual location (red marks) and reconstructed location (green marks)

for three algorithms: (1) dead reckoning, (2) EKF SLAM, and (3) multi-user EKF

SLAM4.

In all three experiments, multi-user EKF SLAM outperforms the other methods as

expected. Unfortunately the expected reduction of drift by combining motion sensors

and WiFi sensors is far less than hoped for. Figure 4.16 shows the results of the first

localization and mapping experiment. The reconstructed path displayed in the top graph

is determined with multi-user EKF SLAM, which was the best performing method as

can be seen in the bottom graph. Striking about this experiment is the huge increase in

localization error of the EKF SLAM method midway the walking route. The localization

error increases to approximately 30m and drops back to 15m after which the localization

error continues to diminishes even further. Interestingly this steep increase in localization

error is not observed in either dead reckoning or the multi-user variant. Further analysis

showed that the increase in error is due to wrong landmark initializations. Incorrectly

initialized landmarks result in incorrectly predicted device locations as is shown here.

Eventually landmarks converge towards their actual locations and device localization

error is decreased. The convergence of landmark locations is confirmed by the multi-

user experiment. In the multi-user variant the steep increase of localization error is not

observed because this method continues with the map data from the single-user variant

in which landmark locations already converged.

Results of the second experiment are shown in Figure 4.17. Conditions and experimental

setup are equal to those of the first experiment. However, for the second experiment it

must be noted that at the end of the recording of the user’s track, the data gathering

3Participants can mark their location by pressing a button in the Android application during the
recording of their walking path. Visually high recognizable locations were chosen as ’marked locations’.
See Appendix A.4 for details.

4The horizontal axis displayed in the bottom graph is not equal to traveled distances. The horizontal
axis in the bottom graph displays results for subsequently visited marked locations, which is related to
traveled distance, but not the same. The traveled distance is larger because marked locations are more
than 1m apart.
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Figure 4.16: Performance of dead reckoning, EKF SLAM and multi-user EKF SLAM.
The top Figure depicts the reconstructed path (blue line) obtained from multi-user EKF
SLAM and the actual path (red line). The bottom Figure displays the error between
predicted and actual path. Participants walked from (0, 0), via (−41, 19), towards

(−55, 23), and back again to (0, 0).

application failed to measure WiFi samples (i.e. unable to apply the correction step using

WiFi measurements in the (multi-user) EKF SLAM approach). If, for whatever reason,

corrections are unavailable, performance of all three methods is expected to resemble

that of dead reckoning. This effect is clearly visible in the sudden increase in localization

error for all three methods at the end of the route. And similar to the first experiment,

the EKF SLAM approach displays a significant increase in localization error somewhere

midway the walking route due to incorrect landmark initializations. Localization error

increases from approximately 5m to 20m for a short period of time, after which the

localization error diminishes to approximately 10m. The multi-user variant does not

suffer from this large increase in error because it reuses map information. The overall

best performing method in this experiment is multi-user EKF SLAM, of which the

reconstructed path is displayed in the top graph.

Finally, results of the third experiment are shown in Figure 4.18. For this experiment

conditions and setup are again equal to those in the first and second experiment. Out

of all three localization and mapping experiments the results of this third experiment

resulted in the best overall performance for all methods. The localization error varies

between 5m and 10m for the larger part of the experiment. Performance decreases to a

localization error of approximately 15m for both EKF SLAM variants and twice as much

for the dead reckoning approach. The increase in localization error is caused by faulty

measurements of the orientation (motion) sensors. Interestingly the error introduced by
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Figure 4.17: Performance of dead reckoning, EKF SLAM and multi-user EKF SLAM.
The top Figure depicts the reconstructed path (blue line) generated by multi-user EKF
SLAM and the actual path (red line). The bottom Figure displays the error between

predicted and actual path.

faulty motion measurements, can indeed be corrected using WiFi measurements as is

shown in the superior performance of both EKF SLAM methods. Both EKF SLAM and

multi-user EKF SLAM outperform dead reckoning in the last part of this experiment

because the dead reckoning is unable to compensate for erroneous motion measurements

whereas both EKF SLAM methods are able to compensate for the faulty motion mea-

surements using landmark corrections. Although both EKF SLAM and multi-user EKF

SLAM suffer from the erroneous measurements, the reduced increase in error indicates

the effectiveness of correcting localization prediction with WiFi measurements.

4.4 Summary

In this Chapter the performance of localization and mapping methods was evaluated. In

the first part of this Chapter, the performance of motion-based methods was presented

by means of a dead reckoning experiment. In this experiments a 2-stage EKF sensor

fusion algorithm was compared to the default Android orientation sensor. The 2-stage

EKF sensor fusion algorithm showed a considerable performance increase compared to

the default Android orientation sensor. Although the performance of both methods was

quite poor in general, the 2-stage sensor fusion algorithm showed a huge improvement

over the Android sensor.
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Figure 4.18: Performance of dead reckoning, EKF SLAM and multi-user EKF SLAM.
The top Figure depicts the reconstructed path (blue line) generated by multi-user EKF
SLAM and the actual path (red line). The bottom Figure displays the error between

predicted and actual path.

In the second part of this Chapter, results of three RF-based methods were presented: (1)

fingerprinting, (2) K-nearest neighbours, and (3) circular lateration. All of these experi-

ments were conducted on the fingerprint dataset (see Appendix A.1). Out of these three

methods, fingerprinting requires the most labour to configure. For each location, multi-

ple WiFi measurements need to be recorded which can be a tedious job for large amounts

of locations. In order to locate a device, K-nearest neighbours and circular lateration

only require knowledge about access point locations. The best performing method was

circular lateration with an average error of µ = 2.93m and σ = 1.65. Although this

might be considered to be an unfair comparison with the other methods because these

results were obtained after averaging multiple WiFi measurements recorded at different

points in time. Averaging was not applied to the other methods, and is left for future

research. Furthermore, averaging is not always possible, for instance if users are walking

with a fast pace while using circular lateration, the predicted device location might ’lag

behind’ the actual location.

Optimal performance of K-nearest neighbours was observed for K = 3, with an average

localization error of µ = 3.75m and σ = 1.94m. Fingerprinting showed close to 100%

correct classification if an error radius of approximately 8m is used.

Finally, in the third part of this Chapter, the effect of combining motion sensors and

WiFi sensors was evaluated by means of (multi-user) EKF SLAM. Performance of multi-

user EKF SLAM was tested with three individual experiments and compared to dead
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reckoning and EKF SLAM. Note that the problem of localization and mapping is a much

harder problem compared to RF-based methods such as circular lateration and finger-

printing in which map data is constructed offline. In all three experiments the multi-user

EKF SLAM method outperformed dead reckoning and EKF SLAM. Unfortunately the

expected reduction in drift errors by combining motion data and WiFi measurements

is less than expected. The best results were observed in the third experiment where

localization error varied between 5m and 10m for the larger part of the experiment.



Chapter 5

Conclusion and Future Work

5.1 Conclusions

In this thesis methods for indoor-localization and indoor-localization and mapping based

on mobile phone sensors were presented. The goal of this thesis was to accurately locate

mobile devices in indoor situations using only mobile phone sensors, without changing

the environment (ceteris paribus).

This thesis was divided into three categories of methods: (1) indoor-localization meth-

ods, which locate the device based on a priori map information, (2) device tracking

methods, which consists of a model-based approach to track devices, and (3) indoor-

localization and mapping methods, which locate the device and build a map online.

Out of these three categories, the latter is by far the most difficult since no a priori

map information is available and map information must be build online. In all of these

categories, mobile phone motion sensors and WiFi sensors provided the necessary input

for all algorithms. Mobile phone motion sensors were used to track and predict the next

locations (e.g. in tracking experiments). Mobile phone WiFi sensors provided local-

ization information by means of signal attenuation modeling and information on WiFi

access point locations.

For indoor-localization methods (1), fingerprinting, K-nearest neighbours, and circular

lateration, were assessed on their overall performance and maximum accuracy. Fin-

gerprinting requires by far the most effort to configure. All locations that need to be

distinguished, need to be ’fingerprinted’ first, whereas K-nearest neighbours and circular

lateration only require access point locations to operate. Results showed that circular

lateration was the best performing method with the highest accuracy, closely followed by

K-nearest neighbours. The best observed localization performance of circular lateration

was with a localization error of µ = 2.93m and σ = 1.65m. The best performance of

K-nearest neighbours was observed for K = 3, with a localization error of µ = 3.75 and
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σ = 1.94. Fingerprinting showed close to 100% correct classification when using an error

radius of 8 meters.

For device tracking methods (2), dead reckoning, extended Kalman filter simultaneous

localization and mapping (EKF SLAM), and multi-user EKF SLAM were tested. These

three methods were compared and evaluated on their performance of device tracking

and the latter two methods are furthermore assessed on convergence. In three individual

experiments it was found that multi-user EKF SLAM outperforms the other two methods

consistently. Drift errors observed in dead reckoning were successfully corrected using

the multi-user EKF SLAM approach. In two out of three experiments the EKF SLAM

approach showed a temporarily increase in localization error due to incorrectly initialized

landmark locations. However, eventually the EKF SLAM method was able to recover

from this increase in error. Even though multi-user EKF SLAM outperformed dead

reckoning and EKF SLAM on device tracking, localization error varied between 5m −
20m.

Finally, for indoor-localization and mapping methods (3), EKF SLAM and multi-user

EKF SLAM were compared on their overall performance and convergence. In three in-

dividual experiments it was shown that multi-user EKF SLAM consistently outperforms

EKF SLAM on localization and convergence. In all of these experiments the multi-user

variant could benefit from earlier established landmarks which showed an increase in

localization performance compared to the EKF SLAM variant.

Next, the research questions posed in Section 1.2 are answered.

1. How can mobile phone sensors be utilized for (1) indoor-localization and (2) indoor-

localization and mapping?

In this thesis mobile phone sensors were successfully used to locate a mobile phone

in an indoor environment using a priori map information and mobile phone WiFi

sensors. Methods such as K-nearest neighbours and circular lateration showed

localization error of at best µ = 2.93m and σ = 1.65m. Furthermore, mobile phone

motion sensors and WiFi sensors were successfully combined for localization and

mapping. Multi-user EKF SLAM consistently outperformed dead reckoning and

showed localization errors varying between 5m− 20m.

(a) What is the maximum accuracy of the evaluated methods, fingerprinting, K-

nearest neighbours, and circular lateration, on indoor-localization?

The maximum accuracy on indoor-localization was observed for circular lat-

eration after averaging multiple WiFi measurements over time. The average

localization error of circular lateration when using 4 nearest access points is

µ = 2.93m and σ = 1.65m.
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(b) Which of the evaluated methods, dead reckoning, extended Kalman filter si-

multaneous localization and mapping (EKF SLAM), and multi-user EKF

SLAM, performs best on device tracking?

Multi-user EKF SLAM consistently showed to outperform dead reckoning

and EKF SLAM on device tracking. In three individual experiments it was

shown that, multi-user EKF SLAM was able to successfully compensate drift

errors observed in dead reckoning.

(c) Which of the evaluated methods, EKF SLAM, and multi-user EKF SLAM,

performs best on localization and mapping?

Three individual experiments showed that multi-user EKF SLAM consistently

outperformed EKF SLAM on localization performance and convergence. It

was found that multi-user EKF SLAM could successfully benefit from earlier

established and converged landmarks. Although multi-user EKF SLAM out-

performed EKF SLAM, overall localization error varied between 5m− 20m.

5.2 Future work

Some parts in this thesis are left open for future research. The effect of motion on the

performance of RF-based methods such as circular lateration, fingerprinting, and K-

nearest neighbours is unclear. Future studies might focus on assessment of localization

prediction of moving targets. It might very well be that, if not accounted for, predicted

device locations lag behind the actual location of moving targets.

Probably the K-nearest neighbours approach can be improved by applying averaging to

WiFi measurements. Averaging greatly improved results of circular lateration, mainly

due to the inability of circular lateration to deal with outliers. K-nearest neighbours

might benefit from a similar approach.

For future research it would be interesting to evaluate the performance of multi-user EKF

SLAM with hundreds or more participants. Converging map data from a large amount

of users could possibly greatly improve certainty and accuracy of landmark locations.

Signal attenuation modeling is unlikely to improve in the near future, but if landmark

locations are known more accurately it would certainly aid in device localization.
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Appendix A

Datasets

To assess the performance of all localization and mapping methods presented in Chapter

3, multiple datasets were created. A brief overview of all datasets is provided below.

Datasets were generated at two different locations: (1) the attic at Sense HQ, Rotterdam,

and (2) the second floor of the Bernoulliborg, faculty building of mathematics and

natural sciences, University of Groningen.

A.1 Fingerprints

The fingerprint dataset contains signal strength measurements at 212 locations (gray

squares in figure A.1) at the attic of Sense HQ. This dataset is used to determine opti-

mal parameters for the signal attenuation model (see Eq. 2.3.1), and to assess the per-

formance of fingerprinting (see Section 3.2.1), K-nearest neighbours (see Section 3.2.2),

and circular lateration (see Section 4.2.5). Data is gathered using the fingerprinting

application (see Appendix B.1).
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Figure A.1: 2-dimensional schematic floor plan of the attic at Sense HQ. The labelled
red squares indicate installed access point locations (9 in total). The gray areas repre-
sents the fingerprinted area, and the areas marked black are walls or other obstacles.

At each of the 212 location, 4 measurements were recorded. This resulted in a dataset

of 848 data points, where one data point consists of (1) location coordinates (x, y) and
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(2) a WiFi measurement of all visible access points. A WiFi measurement consists of

BSSID (MAC-address), RSSI (received signal strength) measured in dBm, SSID (net-

work name), and frequency.

A.2 Motion noise

The motion noise dataset is a relatively small dataset which was gathered at the Bernoulli-

borg using the motion noise application (see Appendix B.2). This dataset was used to

evaluate the precision of motion sensors. A noise analysis experiment based on this

dataset is performed in Section 4.1.1. The dataset contains measurements of all mobile

phone motion sensors such as gyroscope, (linear) accelerometer, and orientation sen-

sor. Measurements were recorded at a frequency of approximately 20Hz for about 10

minutes.

A.3 WiFi noise

The WiFi noise dataset is gathered at the attic of Sense HQ using the WiFi noise

application (see Appendix B.3), and is used to evaluate the characteristics of WiFi

signal strength (dBm) over time. The dataset contains WiFi measurements recorded

over the course of approximately 80 hours and an interval of 30 seconds. A WiFi noise

analysis was performed with this data and is presented in Section 4.2.1.

A.4 User tracking

The user tracking datasets were gathered (1) at the attic of Sense HQ and (2) at the

second floor of the Bernoulliborg, faculty building of mathematics and natural sciences,

University of Groningen. The datasets were gathered using the dataset gatherer applica-

tion (See Appendix B.4), and were used to compare the performance of dead reckoning

with EKF SLAM, and multi-user EKF SLAM.

The datasets are stored in JSON-format, each datapoint in the dataset contains: a (1)

date, the time stamp at which the data point was created, (2) location time stamp,

a variable used to reconstruct the times at which a user visited a location. Users are

instructed to walk a certain path and click a button in the application once they reach

a marked location. In this manner the user’s path can be reconstructed, (3) (linear)

accelerometer measurements, (4) gyroscope measurements, (5) orientation sensor mea-

surements, (6) bearing measurement based on 2-stage EKF algorithm (see Section 2.2.5),

and finally (7) a list of WiFi measurements. Data points were created with an interval

of approximately 50ms.
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Figure A.2 depicts a 2-dimension map of the Bernoulliborg and the 23 unique marked

locations used for performance assessment. The green large circles are supposed to

be access point locations. In this environment three user tracking experiments were

performed.

Figure A.2: Map of the second floor of the Bernoulliborg, faculty building of mathe-
matics and natural sciences, University of Groningen. Red dots indicate marked loca-

tions.

Figure A.3 displays a schematic 2-dimensional floor plan of the attic at Sense HQ and

an example path participants were instructed to walk depicted in blue. Red squares

indicate access point locations.
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Figure A.3: 2-dimensional schematic floor plan of the attic at Sense HQ. The labelled
red squares indicate installed access point locations (9 in total). The gray areas repre-
sent the fingerprinted area, and the areas marked black are walls or other obstacles.





Appendix B

Android Applications

This Appendix contains a brief overview of Android applications written during this

thesis. The applications were built to (1) analyse noise of sensors, (2) record walking

tracks of users, and (3) to create datasets to evaluate localization algorithms.

B.1 Fingerprinter

The main and only goal of this fingerprinting application is to generate a fingerprint

dataset (see Appendix A.1 for details about the dataset). After pressing a refresh button

the home screen of the application displays a list of all observed access points. For each

list item (access point) the application displays the network name (SSID) and signal

strength (RSSI), as well as an estimated distance to the access point based on the signal

attenuation model. The application also features an option to submit the data to the

common-sense platform. Before submitting the data, an x and y location need to be

entered manually. Data are uploaded to the platform in JSON-format and can easily be

retrieved in the same format as it was submitted. Submitted data contains a lot more

details than is displayed in the application. See Appendix A.1 for detailed information

about the exact data format and resulting fingerprint dataset.

B.2 Motion noise analyser

The noise analyser application is used to evaluate the precision of motion sensors. It is

a simple application that measures the phone’s gyroscope, (linear) accelerometer, and

orientation sensor at a frequency of approximately 20Hz. Data are stored in JSON-

format on the phone. See Appendix A.2 for details about the dataset resulting from this

application.
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B.3 WiFi noise analyser

The WiFi noise analyser application was developed to simplify the measurement of

WiFi signals over the course of a large period of time. The application can run in

the background, but for practical reasons the phone displays a warning screen about a

running experiment. The application records WiFi measurements at a frequency of 2Hz

and can run indefinitely. WiFi measurements consist of BSSID (MAC-address), RSSI

(received signal strength), SSID (network name), and channel frequency.

See Appendix A.3 for the resulting dataset.

B.4 Tracking application

The user tracking application was created to track the walking route of users in multiple

experiments. The application records both motion and WiFi sensors. The motion

sensor operates at a frequency of approximately 20Hz and measures sensor values of

(linear) accelerometer, gyroscope, and orientation sensor. The WiFi sensor operates

at the maximum allowed frequency by the phone model, which in most cases does not

exceed ∼ 0.25Hz. The WiFi sensor records BSSID (MAC-address), RSSI (received

signal strength), SSID (network name), and channel frequency.

This application is designed to gather data for EKF SLAM experiments and dead reck-

oning. Participants need to click a button on every marked location to keep track of their

true location. The main screen of the application displays a large button participants

can click on intersections. The main screen also shows some additional information like

the last time a WiFi scan was received, WiFi scan interval, name of the data file to

which data is written, and a start/stop button to start/stop the recording.

See Appendix A.4 for details about datasets gathered with this application.
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