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Abstract

In the past decade, small unmanned aerial vehicles have become increas-
ingly popular for remote sensing applications because of their low costs, and
easy and fast deployment. Together with the development of light-weight
imaging sensors, these UAVs have become valuable tools for monitoring and
analyzing large areas from above. In the Netherlands, the development of
agricultural and livestock sectors plays an important role. The use of an
unmanned aerial vehicle allows visualization of the crowns of cultures and
monitoring livestock in a large area, which increases the ability of interpre-
tation and diagnosis from the data collected, thus contributing to increase
agricultural productivity. While quickly collecting large amounts of imagery
data from the UAVs is becoming more straightforward, analyzing these data
is still mostly a laborious demanding manual task. Major issues for object
detection are annotating large amount of training data and finding correct
feature descriptors and classifiers. A general framework for detecting objects
in natural environments using UAVs is developed in this research. The ob-
ject detection method can be bootstrapped with minimal expert annotation
of data that are collected using an affordable commercial UAV. Different
machine learning techniques are analyzed to find which maximize the ob-
ject detection success. The resulting object detector can be trained using
active learning techniques to reduce manual labeling effort, and allows for
harvesting detected objects to increase the output performance.
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Chapter 1

Introduction

In the past decade, the development of small low-cost unmanned aerial vehi-
cles (UAVs) has increased the interest of their use for remote sensing appli-
cations. UAVs have proven to be a valuable alternative to satellite imagery
and helicopter or air plane monitoring due to the low costs, and easy and
fast deployment. They are now used for tasks that before were economically
not profitable because of the high operating costs of traditional aerial vehi-
cles. Together with the development of light-weight imaging sensors, these
UAVs have become valuable tools for monitoring and analyzing large (rural)
areas from above. Figure 1.1 shows some examples of (small) UAVs that
could replace traditional aerial vehicles for different types of tasks.

(a) UAV for arctic used for
research.

(b) Ascending Technolo-
gies Pelican research UAV.

(c) DJI Phantom 2, a
popluar commercial UAV.

Figure 1.1: Several (small) UAVs that are used for various applications like re-
search (left and middle) but also for commercial purposes (right).

There is an increasing number of fields of application where UAV set-
ups are used from crowd control [8] to automatic detection of forest fires
[13]. UAVs can obtain imagery for rangeland monitoring and create or-
thophotos by mosaicking recorded video at near real-time [23]. Together
with remote sensing techniques this can either complement or even replace
ground-based measurements [10]. The application of geospatial techniques
and sensors to identify variations in the field and to deal with them using al-
ternative strategies is called precision agriculture (PA). PA aims to increase
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CHAPTER 1. INTRODUCTION 4

the efficiency and productivity of the agricultural sector. It is becoming
increasingly important for farmers to reduce costs and increase yields [21].
The use of robots, and also UAVs has a key role in the development of PA.
For example, new methods are found for classification of natural vegetation
using UAV imagery which are used to discriminate between weeds of interest
and background objects [7]. Tools like this can be used for selective weed
treatment to reduce for example the use of herbicides [11].

Another application is livestock detection and counting [18]. Farmers
with large herds covering fast amounts of grounds may use these methods to
monitor their livestock at low expenses. A more idealistic application how-
ever is the use of these tools for wildlife monitoring, where different species
of (endangered) animals can cover fast areas of rural territory. Poaching
and other natural changes of environment still endanger wildlife at various
locations is the world. UAVs are therefore becoming a helpful tool for ac-
quiring valuable data in this field [9, 5]. See Figure 1.2 for a visualization
of detecting animals in an image.

Figure 1.2: Detecting animals (surrounded by the red bounding box) can be useful
for counting a population of a herd in remote environments.

In the Netherlands, the development of agricultural and livestock sec-
tors plays an important role. Despite its small area, the Netherlands is
an important producer of flowers, milk (and its derivatives), among other
agricultural products. In fact, it is the second most important country in
exports of agricultural needs in the world 1. The use of an unmanned aerial
vehicle allows visualization of the crowns of cultures and monitoring of a
large area, which increases the ability of interpretation and diagnosis from
the data collected, thus contributing to increase agricultural productivity.

While quickly collecting large amounts of imagery data from the UAVs

1https://www.cbs.nl/nl-nl/publicatie/2016/23/internationaliseringsmonitor-2016-
tweede-kwartaal
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is becoming more straightforward, analyzing these data is still mostly a la-
borious demanding manual task. Efforts have been made to combine human
computing and machine learning to make sense of large (aerial) datasets for
specific tasks like disaster response [14], but some of the major issues for
object detection still are 1) annotating the large amounts of training data,
and 2) finding the correct features and classifiers. The goal of this thesis is to
propose a general framework for detecting and inspecting (natural) objects
in rural environments using UAVs. The object detection method should
be bootstrapped with minimal expert annotation and be able to generalize
over various target objects. The focus will be on monitoring rural areas
due to the significantly increasing role of robots in precision agriculture and
wildlife monitoring [21, 9, 5]. Several studies show how UAVs can be used
in combination with object detection methods to monitor rural areas and
livestock [18, 7].

Most research on detecting objects like animals in a natural scene is based
on a perspective similar to that of humans, i.e. a horizontal perspective.
This means that the majority of the datasets that are available for research
in this field contain images and videos that are made from this perspective.
With the detection of animals on the ground from a UAV in the air, a top-
down perspective is used. This means that datasets traditionally used for
object detection are not adequate. Few datasets are available that use this
top-down perspective, and each of these datasets have their own advantages
and disadvantages. For this research we chose to build a new dataset that
is specific to the needs of this project. In chapter 2 the focus is on the
acquisition of this dataset. With the use of a recent model UAV there are
recordings made from animals in a top-down perspective from a relatively
low altitude. The animals that are used as subjects are typical livestock in
the Netherlands. The UAV that is used is a popular commercially available
and affordable quadcopter. This type of drone is easy to operate without
much prior experience in a flying model aircraft. This means that making
recordings for the dataset will be relatively easy. The dataset acquisition
chapter describes how the dataset is built from the start of recording the
videos to annotating the videos to train and test detectors. Other researchers
should be able to use this as a reference to build their own dataset, or extend
the dataset that is used for this research. The used hardware is described,
as well as the flight method that is used to record the videos. Special focus
is on the labeling method, which is usually a labor-intensive task when it
comes to dataset acquisition. For this purpose the Vatic video annotating
tool [20] is used. This software package allows for collaborate labeling of
videos with minimum effort.

In chapter 3 the methods are described that are used for this research
to detect animals with a UAV using computer vision (CV). The annotated
dataset is used as a starting point to develop a generic framework that al-
lows for the detection of objects in a natural environment. Although for
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specific tasks there are usually specialized solutions that perform the task
optimally, the aim is here to develop a solution that can be translated for
multiple purposes in a generic matter. For example, when detecting animals
in a natural environment one could think of an infra-red sensor that detects
the body-heat of animals which makes them easy to distinguish from the
background [15]. This solution would then not work for detecting natu-
ral objects with the same temperature as the ground, like vegetation. For
this thesis, the example of detecting cows by distinguishing them from the
ground is used with as input (color) video recordings. Several Computer Vi-
sion techniques are compared to explore the framework’s performance with
different detection methods. First several types of features descriptors are
compared for extracting features from the annotated dataset cutouts. One
of the more basic types of features descriptors is the color histogram. With
this method the occurrence of pixel color values in an image cutout is used
to build a histogram. The values of the constructed histogram are used as
a descriptor for the samples that are compared. A more complex feature
descriptor that has become popular for use in object detection problems is
the histogram of oriented gradients (HOG) [3]. This method analyzes local
regions of an image sample and builds a histogram based on the occurrence
of gradient orientations in these regions. Figure 1.3 shows an example of
these orientations in an image. A third feature descriptor is constructed by
combining both the Color Histogram and HOG features. The hypothesis
is that the combination of these exploits both the benefits of using color
information from the Color Histogram, as well as the gradient information
from the (gray-scale) HOG features.

The feature vectors are input for a classifier that is then trained to dis-
tinguish background samples from objects. Several popular algorithms for

2Image taken from http://scikit-image.org/docs/dev/auto_examples/plot_hog.

html

Figure 1.3: Input image (left) and a visualization of the Histogram of Oriented
Gradients (right)2.

http://scikit-image.org/docs/dev/auto_examples/plot_hog.html
http://scikit-image.org/docs/dev/auto_examples/plot_hog.html
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classifiers are compared that have proven to be useful for other object detec-
tion tasks. First the widely used k-Nearest Neighbors (k-NN) algorithm is
used to train a classifier. Later the performance of this classifier is compared
to Support Vector Machines (SVM) with different kernel functions: the lin-
ear function kernel and the radial basis function kernel. When a classifier is
trained to discriminate between different object samples (e.g. background
and foreground samples), a detector can be constructed. The sliding window
approach is used to focus the classifier on portions of a video frame one at
the time, until the frame is completely analyzed. One of the challenges is to
build a detector with decent performance while being trained on a limited
dataset. A harvesting technique is used to retrain the detector on new input
data as soon as more samples are available. This technique requires an extra
step during the detection process where a (human) annotator reviews labels
that are given by the detector.

To compare the different types of feature descriptors and classifiers, ex-
periments are setup as described in Chapter 4. The first experiment is
setup to test the performance on cutout object samples from the dataset.
The goal of this experiment is to test a classifier that is capable of dis-
criminating between animal samples and background samples. For a more
practical application, a second experiment is setup that should give an indi-
cation of how an animal detection system may be developed. Here a trained
detector is used to detect objects in a video stream as would be provided
by a camera mounted under an UAV. An extra experiment is conducted to
show how active learning can help in training a classifier with a minimal
amount of training samples. A final experiment is an improvement where
the harvesting technique is applied to the detector to increase the perfor-
mance of a detector that is trained on minimal training data. The results of
the experiments are provided in Chapter 5. These results give an indication
of the differences in performance of the different types of methods that are
used. Finally in the discussion of Chapter 6 we look back at the work that
has been done in this research. A more critical view is given on the project
results, and how these relate to comparable work. Also there is a focus
on how the results can be used in a practical context like the counting or
tracking of animals.

For this project the following research question is posed: can
a (low-end) UAV automatically detect animals like cows in a nat-
ural environment? As part of this question we ask the following:
which of the popular feature descriptors (color histogram, HOG)
and classifiers (k-NN, SVM) that are used for object detection
maximize the results? Also, how can active learning and harvest-
ing improve the object detection process for this task?



Chapter 2

Animal Dataset Acquisition

Few labeled datasets are available with aerial images or videos of natural
objects like animals in natural environments. Some available datasets are
the Dutch UAS Dataset 001 [19] and the Verschoor Aerial Cow Dataset [18]
with recordings of cows in a meadow made by a UAV.

The Dutch UAS dataset contains video frames with rhinos, zebras, rangers
and cars in a wildlife reservation. The type of animals and the recording
location of the videos makes this a unique dataset. The recordings are shot
from an airplane-type UAV with a camera that allowed for high-resolution
and high-quality videos. The dataset contains annotations where the object
locations in the video frames are marked by a bounding box. The boxes are
however not (yet) labeled with the type of object that is within the bounding
box. Due to the high flight altitude not all animals are easy to recognize.
See Figure 2.1a for an example frame from this dataset.

The Verschoor Aerial Cow dataset contains recordings of cows in a
meadow, made by a quadrotor UAV (an Ascending Technologies Pelican1).
Videos are shot with a GoPro HERO 3 camera attached to the UAV. The
videos are recorded with a bird’s-eye view with an angle to the ground as
shown in Figure 2.1b. This dataset includes labels with the location of the
cows in each video frame. The location of each cow is denoted with the
coordinates of the bounding box surrounding that cow.

The datasets described above each have their own advantages and dis-
advantages for use within this project. The recordings from the Dutch UAS
dataset are interesting because multiple objects and different backgrounds
are present in a frame. The downside is however that the recordings are
shot from such a high altitude that the objects in each frame are pictured
with only a small amount of pixels. The flight altitude in the Verschoor
Aerial Cow dataset is much lower and more representative for the goal of
this project, but the videos are shot with different angles respective to the
ground (bird’s-eye perspective). Therefore, for this research a new dataset

1See http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-pelican/
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(a) Dutch UAS dataset (b) Verschoor Aerial Cow dataset

Figure 2.1: Sample frames from two datasets that are comparable to the dataset
created for this project. The image on the left is from the Dutch UAS dataset, and
the right image is from the Verschoor Aerial Cow dataset.

is recorded with video recordings at a top-down perspective at a relatively
low altitude. This results in higher resolution objects than recorded in most
other UAV datasets. The recordings are manually labeled using a labeling
tool specialized for the task of labeling video recordings. The downside of
building a new dataset is that it takes a lot of time from recording videos
with a UAV to labeling the objects in the recordings. Doing so however
allows us to build a large enough dataset that is specified to our specific
needs for this project. Recordings are made from a top-down perspective at
an altitude that results in objects (animals) with a decent resolution.

2.1 Recording videos with an unmanned aerial ve-
hicle

Building a new dataset requires video recordings made with an (Unmanned)
Aerial Vehicle. The relatively recent popularity of small UAVs with video
capabilities in the last years, and the low amount of research projects done
that required videos similar to those used for this project, required us to
shoot our own recordings. The small UAVs with video capabilities that be-
came more popular the last couple of years are ideal for shooting the record-
ings for this project. Many of these UAVs are relatively cheap compared to
using manned helicopters or airplanes, and lightweight digital cameras that
are attached under the UAVs allow for high-resolution video recordings.

With the increasing popularity of small UAVs in the Netherlands, flight
restrictions have become an increasing issue. As of October 1st 2015 how-
ever, new rules for remotely piloted aircrafts up to 4 kilograms are imple-
mented. With the exception of specific areas such as in controlled airspace
and crowded areas, both commercial as private pilots are allowed to fly their
UAVs without the need of a special certificate.
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2.1.1 Hardware

A DJI Phantom 3 Advanced UAV is used for recording the videos. This
quadrotor UAV can be commercially purchased and is easy to operate for
most people, even those with no experience in flying (model) airplanes. The
drone is controlled manually from the ground using a controller with an
attached mobile device like a tablet or mobile phone (see Figure 2.2). A life
stream of the Phantom’s on-board camera is shown on the mobile device in
real-time. The life stream is established using the built-in Wi-Fi capabilities
of the controller and the UAV and thus does not require an external router
within range. The location of the UAV is also shown on a map on the
mobile device, which therefore requires GPS capabilities and an Internet
service to synchronize the map details. The GPS data together with the
Internet service prevent the UAV to be flown in restricted areas around for
example airports and military locations.

The Phantom is out of the box equipped with an HD-camera that is
capable of recording videos at 60fps with a full-hd resolution (1920 by 1080
pixels). The resolution is important because it allows for flying at a greater
altitude while still having a decent amount of pixels-per-object ratio. Flying
on higher altitudes may be necessary when animals are easily startled from
objects flying over them. The camera is attached to a gimbal with 3-axial
stabilization that keeps the camera steady in most flight conditions, resulting
in stable footage during the flight. The gimbal pitch can be controlled
remotely, allowing the camera to be facing forward, down or any position in
between. For this project the pitch is set to 90◦, meaning that it is facing
down to the ground for a top-down perspective when recording the video.

Figure 2.2: DJI Phantom 3 setup. Left the Phantom including the camera. Right
the controller with the mobile device attached.
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The Phantom 3 has a limited flight time of approximately 20 minutes on
a fully charged battery. This is enough for our purpose to cover at least an
entire meadow with animals. At an open field the range of the UAV, i.e. the
distance between the controller and the quadcopter, is up to 2 kilometers. In
the Netherlands this is usually enough, as most meadows are only a couple
of hundred meters wide. See Table 2.1 for the Phantom 3 specifications.

Table 2.1: DJI Phantom 3 Advanced specifications. See Appendix B for a more
detailed specification list as provided by the manufacturer.

Weight 1280g
Size including propellers 689 mm

Maximum speed up: 5m/s,
down: 3m/s,
horizontal: 16m/s

Hover accuracy vertical: ±10cm,
horizontal: ±1m

Video resolution 1920 x 1080
Video fps 60

Flight time approx. 20 minutes (single charge)
Maximum range 2km (open range)

2.1.2 Flight method

The flight time of the Phantom is long enough to easily record entire mead-
ows and all the animals inside on a single battery charge. During tests it
became clear that different animals behave differently when a UAV flies over.
Young cows for example are more likely to start moving when a UAV flies
over than older cows. Also different types of sheep (Drenthe Heath sheep
versus the Schoonebeker Heath sheep) behave differently. As a result, for
most recordings in the dataset a flight altitude of 30 meters is taken as a
compromise between having a large enough distance from the animals to not
startle them, and having a small enough altitude for video recordings with
a high enough pixel resolution per animal.

During the entire recording time the UAV is operated manually. For
each recording session, the same process of operation is used to reduce the
risk of making mistakes and to ensure a consistent result. The UAV takes of
at a safe distance from any animals that might be around. During the entire
time of flight the operator makes sure that the UAV is within sight. Before
flying close to animals, the operator makes sure that the UAV flies at a
high enough altitude to not disturb the animals. Built-in safety mechanisms
make sure that the UAV will not drop down due to low power: when battery
charge is running low the operator will receive a warning. If the battery runs
critically low, the UAV will fly back home to its home point automatically
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(this is usually the point where it took off at the beginning). In some
circumstances the connection between the UAV and the controller might be
lost. In this case the UAV will also return to its home point automatically.
When returning to its home point, the UAV will first rise to a preset altitude
(e.g. 50 meter) to make sure it will not crash into trees or buildings along
its path.

When making a recording, the operator will try to record most of the
animals in the meadow at least once. Flying in straight lines back and forth
will ensure most of the ground space is covered by the camera with minimal
flight time. Figure 2.3 shows the steps that are taken during this process of
operation.

Figure 2.3: Example flight path for making a dataset recording. 1) Start the
drone and takeoff, 2) Rise to required altitude (30 meters), 3) Fly to start of
recording area, 4) Start camera recording, 5) Fly over recording area until most
present animals are recorded at least once, 6) Stop camera recording, 7) Return to
home.

2.1.3 Recorded videos

During recording the video stream is saved in the SD-card that is inserted
in the Phantom. After recording, the SD-card is taken out to transfer the
videos to a hard-drive so that they can be used for off-line processing. Several
videos are recorded, all with cows in meadows at different locations. Not
all videos are recorded on the same day so that light illumination will vary
among the videos. See section 2.3 for more details.
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2.2 Video labeling

The process of labeling involves marking in the recordings where interesting
objects (animals) are located. The result of labeling a recording is that for
each frame, all the animals in that frame are marked with a surrounding
bounding box. The bounding box can later be used to cutout the object
from the frame it is in. Before labeling the videos undergo a preprocessing
step. During this step the videos are cropped in time: only the parts of the
video are taken where the UAV is flying on the same correct altitude. This
will make sure that the same objects are roughly of the same size. Also
uninteresting parts (without animals) at the beginning and end of the video
are removed as these parts will add little to no valuable information to the
final dataset. A simple script using FFmpeg2 is built for this purpose (see
appendix A).

2.2.1 Labeling with Vatic

Labeling videos for the first time is a manual and time-consuming process
so a good labeling tool is required for this work. Several labeling tools are
available to label video recordings with meta-data and to annotate objects
within the videos. For this project the choice fell on the labeling tool Vatic
[20]. This piece of software is a labeling tool produced at the University
of California, Irvine which provides an interface to manually label video
datasets.

The labeling process using Vatic begins with importing the video record-
ing that the user wishes to label. This video is then preprocessed by Vatic:
if needed the video is rescaled to a different resolution for faster processing,
after which individual frames are extracted. The extracted frames are up-
loaded to a web server. Labelers can then label these frames using a web
interface. This web interface has several advantages:

• Multiple people can access the labeling tool at the same time

• Videos can be labeled by different people

• Labelers can access the tool from anywhere they want

During the labeling process the labeler will draw a bounding box around
each object he (she) finds in the frame. Objects that are partly obstructed
by other objects or that are partly outside the frame can be marked as such.
During the labeling process the labeler scrolls through the video frame by
frame. At the end of the labeling process all the frames in the video are la-
beled. Figure 2.4 shows the Vatic interface with a single labeled frame. One
of the most time-saving features of Vatic however is providing functionality

2http://www.ffmpeg.org
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that requires the labeler to only label certain frames. Frames in between
those labeled frames are automatically labeled by Vatic. This process works
on the assumption that objects in frames move more or less in a predictable
(linear) motion with respect to the frame. For example, for this project
the UAV mostly flies over a field in a straight path. The location of cows
in the video frame will then change in a straight line as well. If a cow is
labeled only in frame xi and frame xi+10, then the location of the cow in
frames xi+1 to xi+9 can be interpreted with reasonable precision. A large
amount of unlabeled frames in between two labeled frames may however re-
sult in an increasingly larger error due to irregular motion of both the UAV
with respect to the ground, as well as (irregular) motion of objects on the
ground. In Vatic the automatically added labels can directly be reviewed
by the labeler, and adjusted when needed.

Figure 2.4: Labeling with Vatic. A bounding box is drawn around each object
(cow). Unique objects receive unique identifications, as denoted by the different
colors in the image.

Unique animals will all receive their own unique identifier such that later
each bounding box can be tracked back to a unique animal. Knowing the
individual animals is important when splitting a dataset into train and test
sets where we want unique animals to appear only in one of these sets (either
test or train). During or after labeling, the labeler can save this process. All
labels are stored to the database on the server where Vatic runs, and the
labeler can continue working on annotating the video later by loading the
saved process.
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2.2.2 Labeling output

After all the frames in a video recording are labeled, the annotated data are
exported to a simple .txt file that can be easily interpreted by scripts. This
output file describes all the labeled objects in the video, with the correct
frame and the coordinates of the bounding box in that frame. Each entry
in the output file contains the following relevant data:

• Object ID (e.g. each unique cow gets its own identifier)

• Coordinates in the frame (Xmin, Ymin, Xmax, Ymax)

• Frame number

• Label (e.g. ’Cow’)

2.3 Recording statistics

Several video recordings are made of cows in different meadows. From most
of the animals that are labeled there are multiple positive samples available
since they usually appear in more than one frame within a video. From
these frames also the negative samples are extracted. Negative examples
can be any part of a frame that contains no (positive) object. All samples
are cutout from the video frames with a fixed cutout size (usually 100 by 100
pixels). Section 3.1 describes in more detail how the cutouts are extracted
from the frames. Figure 2.5 shows some examples of cutouts that are made
based on the manually labeled samples (in the case of positive samples)
and automatically extracted samples (in the case of negative samples). The
statistics are shown in table 2.2.

Table 2.2: Statistics of the recorded and annotated datasets.

Video ID Length (s) Unique objects Pos samples Neg samples

1 DJI 0005 cut 233-244 11 10 37 225
2 DJI 0007 cut 22-65 43 82 475 2094
3 DJI 0081 22 10 50 1100



CHAPTER 2. ANIMAL DATASET ACQUISITION 16

(a) cow (b) cow (c) cow (d) cow

(e) grass (f) mud (g) trees (h) culvert

Figure 2.5: Some examples of positive cutout samples (a-d) and negative cutout
samples (Figure e-h).



Chapter 3

Detecting Animals with a
UAV Using Computer Vision

Objects on the ground are detected by a UAV using the on-board camera
and Computer Vision (CV) algorithms. A framework is built that uses a
video recorded with a UAV as input for a detector that is given the task
to locate the different objects (animals) in the recording. The detector will
run off-line, i.e. after the UAV recorded the videos and landed safely on
the ground. Depending on the practical application however, it might be
required to locate objects in real-time while the UAV is still in the air. For
this project the focus is on building the foundations of a framework that
later might be implemented for on-board processing when that is needed. It
is expected that in the near future the processing capabilities of affordable
UAVs will increase, while it is now still difficult to find UAVs that are capable
of processing CV tasks in real-time on-board. After the recorded videos are
downloaded from the UAV, the analysis process starts. Detecting objects
automatically in the recordings can be done on a commercial grade laptop
on-site, or afterwards on a different location. The detection of animals in
the environment should give an insight on the location and distribution of
animals at a particular location. Further practical uses (not part of the
method in this research) are animal counting and tracking. A requirement
for the detector is that it is trained on a limited labeled dataset.

The limitations on the used hardware, like commercial grade cameras
and laptops, pose limitations to what CV tools can be used in the detection
framework. These limitations are taken into consideration during the design
and implementation of the framework. For example, some machine learning
algorithms require fast amounts of processing power that can not be provided
by a standard laptop. Also the limitations of the camera module of the UAV
(medium resolution images with noise for example) require robust feature
descriptors.

17
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3.1 Animal and background cutouts

Labeling the video recordings with Vatic results in detailed information
about the location of interesting objects (animals) in the frames of these
videos. During the labeling process, all objects in each frame are annotated
with a bounding box around that object. We could think of a separation
between the foreground (the objects) and the background (everything that
is not an object). The bounding box is then a rough estimation of what
is the foreground and what is the background. Naturally, this estimation
comes with an error as the bounding box is always a rectangle, opposed to
the arbitrary shaped animals. The coordinates of the bounding boxes in
each frame is used to cutout the foreground objects. In Vatic, each bound-
ing box is associated with a unique identifier that is used to distinguish
unique animals from each other. This is important when the classifier is
later trained on different animals. During the manual labeling process the
labelers place the bounding box tightly around the object. For the feature
extracting and classification process the sample cutouts are presented with
all the same dimensions. Instead of making a cutout directly based on the
sample bounding box, the bounding box is extended to a predefined size and
aspect ratio which depends on the size of the objects. A fixed aspect ratio of
1:1 is chosen, while size depends on the video resolution and flight altitude.
For example, for the cow dataset recorded at an altitude of 30 meters, the
dimensions of the cutouts are 100x100 pixels.

A classifier is trained on both positive (foreground) and negative (back-
ground) samples. Each sample is a squared image with the size of a typical
object in a video frame. All sample images will be of the same size. Some
noise is present in the form of background pixels in the positive sample
images. In order for the classifier to be trained properly, enough of these
samples need to be extracted. For the positive samples this is a fixed amount
determined by the size of the labeled dataset. There are two factors that
determine the amount of these samples in the dataset:

1. The amount of unique animals that were present in each video record-
ing in the dataset.

2. The amount of samples that are taken from each unique animal. From
each available frame, at most one sample can be taken per animal.

The amount of negative samples will generally be much higher than the
amount of positive samples in order to provide a diverse variety of back-
ground types. Because of the nature of the recorded areas, much of the
background will simply be green land. It is expected that the detector will
have little trouble distinguishing for example cows from green land because
of the large difference in color (usually white and black versus green). The
challenge is to also cope with other types of background like mud, farm
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equipment and other objects that happen to be present. The background in
frames from the dataset are not explicitly labeled in Vatic. This can how-
ever be derived automatically by subtracting the labeled foreground objects.
What results are all the pixels that are not associated with a foreground ob-
ject. Depending on the saturation of foreground objects in the frames, many
more negative samples can be extract than there are positive samples. Algo-
rithm 1 shows the process of extracting the negative samples automatically
given a list of positive samples in each frame. Figure 3.1 visualizes an ex-
ample of what parts of a video frame are cutout for negative and positive
samples.

Algorithm 1 Finding negative samples in a video recording given the lo-
cation of the positive object in the frames.

neg ← [] . List of negative samples
for every n-th frame do

pos← positiveSamplesInFrame(n)
repeat

bb← randomBoundingBoxInFrame(n)
if noOverlapWith(bb, pos) then

neg+ = bb
end if

until enough neg samples
end for

Figure 3.1: Visualization of which portions of a video frame are cutout. The
white bounding boxes show the positive cutouts. The blue bounding boxes are the
negative cutouts that should never overlap with the positive cutouts.
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3.2 Feature extraction

The detector classifier will be trained on features that are extracted from
the positive and negative cutout samples. The quality of these features
determines for a large part the performance of the detector. There are
many different types of feature extractors that can be used for object de-
tection in images. For this thesis two popular feature extractors are com-
pared: the Color Histogram (ColHist) and the histogram of oriented gra-
dients (HOG) [3]. Also a third feature extractor is formed that combines
these two (ColHist-HOG). All of these three extractors transform an input
sample (an image cutout) into a descriptive feature vector that can be used
as input for the classifier. The architecture of the Animal Detection Frame-
work is built to easily adapt to different feature extractors. If one would
like to experiment with different image feature extractors, this can be easily
done in the programming code due to the modular design of the framework.

3.2.1 Color histogram

The color histogram feature extraction method analyzes the pixel color val-
ues from an image. The underlying concept assumes that these color values
provide valuable information about the subject in the image. One clear ex-
ample is the difference between cows as foreground objects, and the grass as
background objects. There will be a clear distinction between the colors of
the cow (usually white and black in this dataset) and the green grass. These
pixel color values can be transformed to a feature vector that can be used
as input for the classifier. For this transformation a histogram is generated.
Each bin in the histogram represents a range of values within a color space
channel.

HSV color space

The choice of color space is important when using the color histogram as a
feature extractor. The color space is a description of a color how humans
can see it to a representation that is useful for computers that handle digital
values. For many applications (outside computer vision) the RGB color
space is used. This color space describes a color based on their red (R),
green (G) and blue (B) color values (see figure 3.2a). The values of each
of these channels taken together specify the final color as humans will see
it. While these values are enough to describe all possible colors, the values
by itself say nothing about the intensity of a color, or its saturation. If
for example the intensity of a color changes, then all the three channels are
updated. This makes it hard to specify specific ranges of values that describe
a color independent from its perceived intensity. As an alternative, the HSV
color space is used (see figure 3.2b). Here colors are described based on their
hue (H), saturation (S) and value (V).
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(a) RBG color space represented by a
cube

(b) HSV color space representad by a
cone

Figure 3.2: Two different color representations: RGB versus HSV1.

For computer vision applications this color space can be more useful as
the value parameter can be observed independently from the other param-
eters. When comparing images with different brightness values, the value
parameter can be isolated while focusing on the hue or saturation. Figure
3.3 gives a visualization of the different channels for a cutout samples as
used in our dataset.

A common method for creating a color histogram is to build a 3D cube
with on each of the axes one of the channels. Color values within a specific
range (around a point inside the cube) are then stacked to build the his-
togram. An alternative method is to build the histogram for each channel
separately. The reduces the size of the resulting feature vector (from bc to bc,
where b is the number of bins and c the number of channels that are used),
at the cost of information that is lost in the process. The latter method is
used here to reduce the processing time for the detector in the experiments.

1Images taken from Wikipedia.org.

(a) original (b) hue (c) saturation (d) value

Figure 3.3: The channels of a colored image (a) in HSV space can be visualized
individually as shown in images b-c. These images show how each of the channels
is affected by the different colors.
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The process of creating a ColHist feature vector from a color image is as
follows:

1. Convert color space of the input image from RGB to HSV if needed.

2. For each channel take the values of each pixel for that channel.

3. Build a histogram for each channel based on these values.

4. Concatenate the histograms for the final feature vector.

Parameters

Two parameters are tuned when experimenting with the color histogram
feature extractor. The first parameter is the size of the bins. The size of
the bins will represent the resolution of the histogram. The smaller the bin
size the higher the obtained resolution of the representation: each bin will
only represent a small range of values. A larger bin size is expected to result
in more generalizing features, while using smaller bins might result in over-
fitting on specific color values. When decreasing the bin size, (accidental)
peaks in the value range will have a larger influence in the model than when a
larger bin size is chosen. When the peaks are flattened out by using a larger
bin size, the influence off these peaks will decrease, and thus generalize the
model.

The second parameter specifies which channels (Hue, Saturation, Value)
are used when generating the feature vector. The choice of the used channels
may affect the performance of the detector. We want the detector to be
robust against different brightness values. Excluding the Value parameter
of the HSV color space ensures features that can be used for a detector will
not look at brightness values.

3.2.2 Histogram of oriented gradients

A feature extractor that has become popular in object detection tasks in
images is the histogram of oriented gradients (HOG) [3]. The HOG feature
descriptor analyzes local regions of an image and builds a histogram based
on the occurrence of gradient orientations in these regions. The method has
been used widely in object detection tasks with good overall performance
[3, 24, 4, 22]. Opposed to the ColHist feature extractor, HOG uses gray-scale
images as input.
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The first step to create features using HOG is thus to transform the
color sample cutouts to a grayscale color space. From the grayscale image
the gradient values are calculated. First the intensity data of the image I
are filtered with two kernels for gradient computation:

Ix = I ∗Kx (3.1)

Iy = I ∗Ky (3.2)

Where:
Kx = [−1, 0, 1] (3.3)

Ky = [−1, 0, 1]T (3.4)

Now the magnitude |G| of the gradient can be calculated:

|G| =
√
I2x + I2y (3.5)

And the orientation θ of the gradient:

θ = arctan
Iy
Ix

(3.6)

The found gradients for each pixel within a cell are gathered in bins, where
each bin accounts for a specific orientation range. The amount of orienta-
tions for the bins to use is one of the parameters that can be tuned. To
increase the robustness of the feature descriptor, it should handle variations
in illumination and contrast within an image sample. Therefore, they are
divided into blocks where each block is described by several cells. The cells
that are used for each block may overlap. The final feature vector is then
generated by concatenating the cell histograms of all the block regions. The
process of transforming an input sample to a final feature vector is finally
as follows:

1. Convert color image to grayscale.

2. Calculate gradients over the pixels values.

3. Bin the oriented gradients within each cell.

4. Group cells together in blocks.

5. Concatenate cell histograms from all the block regions.

Figure 3.4 visualizes the oriented gradients from a grayscale input image
sample of a cow.
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(a) Grayscale input image (b) Visualization of HOG
orientations

Figure 3.4: From the grayscale input image (a), the orientations are calculated.
These orientations can be visualized as shown in image (b).

Parameters

The HOG feature descriptor requires several parameters to be tuned in order
to obtain the best performance:

window size
The size of the window that is used as input. E.g. 100 by 100 pixels.
When detecting objects the size of this window should be roughly the
size of the object that needs to be detected.

orientations
The number of orientations that are analyzed for each cell. E.g. 8
orientations. More orientations mean that each bin will represent a
smaller range in degrees of the gradient.

pixels per cell
The amount of pixels that are in each cell. E.g. 32 by 32 pixels.
Choosing more pixels per cell will reduce the resolution of the feature
descriptor.

cells per block
The number of cells per block. E.g. 2 by 2 cells per block.

3.2.3 Combining features

A combination of the color histogram and histogram of oriented gradients
is used to benefit from both the color features of ColHist and the spatial
features of HOG. First the feature vectors are calculated from the ColHist
and HOG separately. After normalization these feature vectors are concate-
nated into a final feature vector. The parameters that need to be tuned for
this combined feature descriptor are the same as for the individual feature
descriptors.
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3.3 Classifiers

Three classifiers are compared: k-Nearest Neighbors (k-NN), a Support Vec-
tor Machine (SVM) with a linear function kernel (SVM-Linear) and a Sup-
port Vector Machine with a radial basis function kernel (SVM-RBF).

3.3.1 k-nearest neighbors

A basic k-NN classifier is evaluated as an initial detector that should indicate
which kind of performance can be obtained for detecting objects. The k-
NN algorithm is a non-parametric method that can be used for (supervised)
classification. K-NN as a classifier is known to be a simple but powerful
method for classification problems in a wide range of applications. It is
trained on an initial set of samples N , where each sample has its calculated
features x and associated class label c (object or non-object). The output y
of the classifier given a new (unlabeled) sample is the expected class of that
sample. The class y of a new sample, represented by its feature vector ~x, is
determined based on a majority vote among the k closest training samples
Nk(~x) to that sample:

y = f(~x) = arg max
c

∑
~xi∈Nk(~x)

I(yi = c) (3.7)

The distance between two sample feature vectors a and b is determined
using a distance function d(a, b). A popular distance metric which is used
here is the Euclidean distance:

dE(a, b) =

√√√√ N∑
i=1

(ai − bi)2 (3.8)

Parameters

Although k-NN is a non-parametric method, the number of samples k that
every new input sample is compared with, can be tuned for the best perfor-
mance. A larger k will usually result in a more generalizing classifier (at the
potential cost of precision), while a smaller k can lead to higher precision at
the potential cost of overfitting. In the experiments one of the goals will be
to find an optimal setting (k value) for the best performance.

3.3.2 Support vector machine

Support vector machines (SVMs) are supervised learning models that can be
used as non-probabilistic (binary) classifiers. SVMs are used in a wide vari-
ety of classification tasks and are known for having a good performance com-
pared to traditional methods like k-NN. Training an SVM results in a model
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(a) Large C (b) Small C

Figure 3.5: Data points in the feature space with the decision boundary (solid
line) and the margin (dashed lines)2. New data points are classified based on which
side of the decision boundary they appear.

that is built using a training set with samples of two classes (object/non-
object). The samples are represented as points in space (using their re-
spective features), where the model tries to map the points in such a way
that a decision boundary surrounded by a margin can separate the points of
different classes from each other. Samples on the margin are called the sup-
port vectors, hence the name support vector machine. For optimization, the
largest suitable margin is found using the following optimization problem:

min
~w,b

C

m∑
i=1

ξi + ‖~w‖2 (3.9)

s.t. yi(~w~xi + b) > 1− ξi (3.10)

ξi > 0, i = 1, 2, . . . ,m (3.11)

Where ~w is the weight vector of the decision boundary, ξ the slack vari-
able for a sample and b the bias value. If 0 < ξ ≤ 1, then the sample is
between the margin and the correct side of the decision boundary. If ξ > 1,
then the sample is at the wrong side of the decision boundary, and thus
incorrectly classified. The penalty parameter C of the error term is tuned
in the experiments to maximize the performance of the classifier. A small
C results in a large margin while a large C narrows the margin (or makes
it a hard margin when C =∞). This effect is visualized in Figure 3.5.

2Images taken from http://scikit-learn.org/stable/auto_examples/svm/plot_

svm_margin.html

http://scikit-learn.org/stable/auto_examples/svm/plot_svm_margin.html
http://scikit-learn.org/stable/auto_examples/svm/plot_svm_margin.html
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New samples are placed in the model as points, where the location (com-
pared to the decision boundary) of the points determines the assigned class
(object/non-object). The decision rule is:

sign

(
m∑
i=1

αiκ(~x, ~xi)yi + b

)
(3.12)

Here κ(~x, ~x′) is the kernel function as described below. One of the benefits
of an SVM model (compared to k-NN) is that a large training set can be
described with a relatively simple function (representing the decision bound-
ary). New samples only need to be compared with this function, instead of
the entire initial set of samples.

Linear function kernel

An SVM with a basic linear kernel is used, which is represented as

κ(~x, ~x′) = ~xT~x′ (3.13)

Based on the input samples, a hyperplane is computed that separates the two
classes (object/non-object) with the largest possible margin. Typically, with
more complex problems like ours, the input data are not linearly separable.
A soft-margin is therefore used with a loss function that is minimized.

Radial basis function kernel

In addition to the linear function kernel SVM, an SVM with a non-linear
kernel function is tested. The popular radial basis function (RBF) kernel
function is used:

κ(~x, ~x′) = exp

(
−‖~x− ~x

′‖2

2σ2

)
(3.14)

Like with the linear kernel function, a maximum-margin hyperplane is fitted,
but now in a transformed feature space. In addition to the penalty parameter
C, also the kernel coefficient γ is tuned in the experiments. In the formula
above this coefficient is represented using

γ =
1

2σ2
(3.15)

3.4 Sliding window approach

The detectors are trained on features from images with a fixed size (e.g.
100x100 pixels). Each of these images contains either an object (filling that
image) or not. Since objects can be located anywhere in the (much larger)
video frame, the entire frame needs to be inspected by the detector. A
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sliding window is used that moves over the frame step by step. At each
step the cutout from the window is fed to the detector. To cover the entire
frame, the window should move pixel by pixel until all possible locations are
analyzed. Since the detection of each window is computationally expensive,
the window moves with multiple pixels at each step. This reduces the total
time of processing each frame at the cost of precision. An optimal step size
reduces the total time of processing with little loss of the final performance
accuracy.

3.4.1 Suppression of detected objects

Because of the sliding window approach, multiple positive detections may
be found for a single object. As the window moves step by step over the
video frame, at some point an object might be detected, while at the next
step the same object is detected. When the detections are visually analyzed,
it is clear that there are margins around each of the objects when there are
multiple detections for that object. Non-maximum suppression (NMS) is
used to reduce these margins by choosing the detections that are expected
to cover the object the best (i.e. the detection located in the center). This
method has already provided good results in for example human detection
using histograms of oriented gradients [3] and other object detection tasks
[4, 6]. Figure 3.6 shows how the suppression algorithm reduces the amount
of detections that are found by a detector in a single frame.

3.5 Learning while recognizing

When only a limited training set is available, a classifier will be trained with
limited annotated samples. In general, the performance of the classifier will
increase when more training data is available. One method to improve the
results is by adding more samples while recognizing objects at the same
time. This method is called active learning and is widely researched for
use in different applications [2, 12]. Learning while recognizing requires
feedback from an expert (human) annotator. There are several scenarios
for performing active learning: membership query synthesis, stream-based
selective sampling and pool-based sampling [17]. The latter, shown in Figure
3.7, is used in this case: first, a classifier is trained on an initial set of training
samples. This initial set is typically very small. After this, the classifier will
recognize objects in an unlabeled set of samples. From the results of this
step, some of the new samples are sent to a human labeler, that annotates
these samples. The samples that are sent to the labeler are those that are
expected to provide the most valuable information for the classifier. The
classifier is then retrained with the initial training set together with the
new samples. This process of recognizing and retraining on labeled samples
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is repeated until the performance of the classifier is assumed to be good
enough. The complete steps are as follows:

1. Train classifier on an initial dataset

2. Start active learning iteration:

(a) feed unlabeled samples to the classifier

(b) take most valuable samples for the classifier

(c) annotate those samples

(d) retrain the classifier including the new labeled samples

3. repeat the iteration until stop criteria is met.

(a) Detections

(b) Suppressed detections

Figure 3.6: The top image shows the detections as initially provided by the detec-
tor. In the bottom image these detections are shown after applying the suppression
algorithm. Note that the smaller rectangles/squares are the result of overlapping
detections.
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Figure 3.7: The active learning cycle. An object classifier is trained on the
available labeled training set. Each cycle new training samples are added to this
set by means of human annotating.

It is important how the samples are chosen that are likely to be most
valuable for the classifier. The confidence of the classifier for a sample to
be of a certain class is used as an indication. The classifier will return this
confidence based on the probability that the sample belongs to a certain
class. Those samples where the probabilities for the two classes are not far
from each other are expected to be most valuable for the classifier. Since it
is not too uncertain which class the sample belongs to, it can learn from the
human labelers feedback.

3.6 Harvesting detection results

While the object detector tries to find in the video stream the objects, and
the objects only, it is possible that parts of the video frames are recognized
as objects while they are actually part of the background (false positives).
The goal of harvesting is to have a human annotator that verifies detected
objects from the object detector while it is running. After each frame (or
set of frames), the found objects are presented to the human annotator.
This annotator will then verify for each of the found objects whether it is
indeed an object. The feedback can then be used to retrain the detector.
The process is visualized in Figure 3.8.



CHAPTER 3. DETECTING ANIMALS WITH A UAV USING
COMPUTER VISION 31

Figure 3.8: The harvesting method. The classifier of the object detector is trained
on the available labeled training set. Each detection process in a frame results in
detections that are verified by an annotator. The verified detection are passed to
the detector for retraining.

3.7 Framework implementation

For most of the experiments it would have been sufficient to build some
scripts specific for that task. For this research however we have chosen to
build a framework that can be easily used for a wide range of similar tasks
with only minor changes in the code.

Python is chosen as the main programming language. The language
is easy to learn and supports a wide range of modules, some of which are
dedicated to machine learning or computer vision. For most of the image
processing and machine learning the scikit-learn [16] and the OpenCV [1]
modules are used. The major advantages of using these packages is that
they provide optimizations for a wide variety of machine learning and image
processing processes, are widely tested for validity by a large community, and
are easy to use. This will save both computational time (many functions are
implemented in a lower-level language than Python) and implementation
time (no need to reinvent the wheel). The format of data that is parsed
to and returned by components like classifiers and feature descriptors is
standardized when possible. This allows for easy extension of the framework
with other (types of) classifiers and feature descriptors.
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The main functions of the framework are:

• Reading and interpreting labeled data

• Processing videos

• Calculating image features based on labeled data

• Training and testing of classifiers

• Run experiments on existing datasets

• Detecting objects in new datasets



Chapter 4

Animal Detection
Experiments

Several experiments are conducted to explore the capabilities of the con-
structed framework, and to find out how the methods that are used in the
framework perform. Each time the labeled dataset as described in Chapter
2 is used. The first experiment is an exploration on what features and clas-
sifiers work the best for distinguishing objects from the background. The
results are later applied to a streaming detector where objects are found
in a video recording. Next to these experiments, the application of active
learning and harvesting are tested.

4.1 Animal recognition in segmented images

A classifier is trained on the cutouts from the labeled dataset to give an
initial performance indication. The experiment will show how well a trained
classifier can distinguish objects from non-objects. The goal of this exper-
iment is to find the (optimal) performance for different feature descriptors
and classifiers.

• Features descriptors

1. Color histogram

2. Histogram of oriented gradients

3. Combined

• Classifiers

1. k-Nearest Neighbors

2. Support vector machine (linear function kernel)

3. Support vector machine (radial basis function kernel)

33
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4.1.1 Dataset splits

The input for the classifier are the positive and negative sample cutouts from
the dataset. The positive samples are the manually labeled objects from the
dataset, while the negative samples are the automatically generated cutouts
that contain no objects. The dataset is split into a training set and a test
set for performance testing. K-fold cross-validation is used with two test
methods:

1. inter-set splits
Each individual subset is split into folds. There are several subsets
with samples available, each based on a single recording and all with
different individual objects. Every subset is split into folds. The de-
tector is trained on the folds of a single subset, leaving one fold for
testing. The average results over all the subsets is taken as an overall
performance indicator. The goal of this test is to find a base perfor-
mance level of the detector when using training and test data from a
single recording.

2. cross-set splits
Each subset is regarded as a fold. Using this method the detector is
trained on several complete subsets (the folds), while one subset is
used for testing. The goal of this test is to explore the performance
when detecting objects on a completely novel dataset which should
give an indication of how robust the detector is.

4.1.2 Feature descriptor parameters

The first step is to find what parameters work the best for the different
feature descriptors. A default k-NN classifier is used (with k = 5). The per-
formance of this classifier is measured multiple times while using different
feature descriptors with different parameters each time. Different parame-
ters are tested depending on the used feature descriptor.

Color histogram
The following parameters are tested for the color histogram feature
descriptor:

• Which channels are used (Hue, Saturation and/or Value)

• The bin size used for generating the histogram
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Histogram of oriented gradients
For the HOG feature descriptor, the following parameters are tested:

• The amount of orientations used for each cell

• The amount of pixels per cell

• The number of cells per block

Combined feature descriptor
Finally, for the combined feature descriptor the tested parameters are
chosen from the best parameters that were found from the results
of the individual tested feature descriptors. For each of these feature
descriptors there are two optimal sets of parameters found: one for the
test on individual subsets, and one for the test where all subsets are
taken together (see Section 4.1.1). This result in 4 sets of parameters
that are combined to form the tested parameters for the combined
descriptor. This method is used to greatly reduce the amount of to be
tested parameters.

4.1.3 Classifier parameters

Three classifiers are analyzed to find what parameters work best for those
classifiers. Each of them is trained and tested on features that are built
using the different feature descriptors and their optimal parameters that
were found before. Each classifier requires different parameters to be tuned.

k-NN
The number of nearest neighbors k is tuned

SVM (linear function kernel)
The penalty parameter C is tuned

SVM (radial basis function kernel)
Both the penalty parameter C and the kernel coefficient γ are tuned

4.2 Animal detection in video streams

After recognizing objects in segmented image samples, the task of detecting
objects in videos streams is explored. The goal of this experiment is to
demonstrate the usage and performance of the detector in a situation where
objects need to be found from a video stream taken with a UAV.

First the detector is trained using the same method as in the previous
experiment of recognizing animals in segmented images. The best classifier
from that experiment (the SVM with RBF kernel) is used, in conjunction
with the fast but good performing color histogram feature detector. In each
run two subsets are chosen for training, while a third is used for testing.
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This is done to see how the detector performs on unknown video stream
input.

Because of the altitude and flight speed of the UAV, individual animals
are in view for a longer period of time, usually several seconds. It is therefore
not needed to analyze every frame of the video (which is recorded at usually
25 fps) to find every object at least once. Every n-th frame is used, and the
rest of the frames is discarded. n is chosen to be large enough while still
making sure that objects are at least once visible in the stream of chosen
frames.

A sliding window is moved over each chosen frame. The size of the
window is the same as the size that is used to train the detector. The
window moves with a step size at least half of the window size such that
windows overlap each other. Using this technique objects in the frame are
more likely to at least once be completely surrounded by the borders of one
of the sliding windows.

From every window the features are calculated which are then passed
to the trained object detector. The detector outputs whether there is an
object in the frame window or not.

The result is a series of object detections for each frame. A small step
size of the moving window may likely result in multiple detections for each
object. Non-maximum suppression is therefore applied on the detection,
with the goal to eliminate as many unnecessary detections as possible.

The complete steps are as follows:

1. Train detector on an initial dataset

2. Take every n-th frame of the video stream

3. Apply sliding window on each chosen frame

4. Analyze every sliding window image:

(a) extract features from image

(b) feed features to the trained classifier

(c) analyze classifier result: object yes/no

5. Suppression is applied to windows where objects are detected.

4.2.1 Performance measurement

The performance of the object detector is measured by how close the de-
tected objects match with the ground truth. This is done by analyzing how
the pixels from the detections overlap with the pixels of the ground truth.
The first measurement is the overlapping window ratio:

ratio =
O√
DT

(4.1)
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Here the number of overlapping pixels O are compared with the number of
pixels from detections D and the number of pixels from the ground truth T .
With the same variables, the precision and recall as used by [18] for example
can also be computed as follows:

precision =
O

D
(4.2)

recall =
O

T
(4.3)

4.3 Learning while recognizing

The goal of this experiment is to show how the concept of active learning can
be applied to an object classifier to reduce the amount of samples that need
to be manually labeled. The subset with the most unique objects (based
on video DJI 0007 cut 22-65) is used for this experiment. This set contains
enough positive samples to split it into a reasonable amount of batches
for training, opposed to the other subsets that have relatively few positive
objects. In this experiment the labeling of samples in each iteration of the
active learning process is simulated, so there is no real human annotator
needed. The labels from the dataset as described in Chapter 2 are applied
automatically.

The dataset is split such that 10% of the samples are used for testing the
classifier to obtain its score. From the remaining 90%, 10% is used as initial
training set for the classifier, the rest will be the unlabeled pool. First a
classifier is trained on the samples from the initial training set. Then, the
unlabeled pool is fed to to the classifier. For each sample in the unlabeled
pool, the classifier will return a confidence on how certain it is that the
sample is an object or not. The samples that the classifier is the least certain
about are fed to a human annotator and removed from the unlabeled pool.
The amount of samples that are annotated in each iteration is about the
same as the initial training set, which means there are 9 iterations until
the entire unlabeled pool is empty. The annotated samples are then added
to the training set, and the classifier is retrained. The process stops when
there are no more samples left in the unlabeled pool. After each iteration
the classifier is tested against the test set to obtain the classification score.
The results are compared to a classifier that is retrained after each step on
randomly picked samples.

4.4 Harvesting detection results

For harvesting detection results, an extra step is introduced after detecting
objects in video frames. A human annotator is provided with the results of
the detector and verifies samples that are detected by the labeler. In this
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experiment the human annotation process is simulated just like in the active
learning experiment. The goal is to improve the quality of the results from
the detector. False positives (non-objects that are recognized as objects)
pollute the results and should be filtered using this manual step.

The method of object detection is used as in the experiment of animal
detection in video streams. Instead of keeping the object detector running
until all frames are processed, now after each processed frame the results
are presented to the annotator. This annotator verifies the results of the
detector. The classifier of the detector is then retrained on the labeled
samples in addition to the training set that was initially used.



Chapter 5

Results

5.1 Animal recognition in segmented images

In this experiment the feature descriptors and classifiers are analyzed, where
the dataset consists of cutout samples from objects and non-objects. In each
case the score is defined as the mean accuracy given by the classifier unless
otherwise stated. This accuracy is calculated by the percentage of samples
that are correctly labeled by the classifier.

5.1.1 Feature descriptor parameters

First the optimal scores are found for each of the feature descriptors when
used on a default classifier as described in the previous chapter. These are
shown in Figure 5.1. The best results are found in the inter-set split test.
This should not be a surprise as the classifier is here trained and tested on
samples that were extracted from the same video recording. This means
that there is less variation in light conditions for example. For the cross-
set tests the classifier is trained and tested on samples from different video
recordings. The results show that the color histogram as feature descriptor
gives the best results together with the combined feature descriptor.

Table 5.1 shows what are the optimal parameters for each feature descrip-
tor depending on what type of dataset split is used. Although the results
for the histogram of oriented gradients seem quite consistent between the
types of dataset splits, there is some difference in what parameters are the
best for the color histogram.
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Figure 5.1: Scores by feature descriptor and test type. The inter-set test results
are obtained by doing k-fold testing on each subset individually, and then taking
the average. For the cross-set test results each subset is regarded as a fold. The
k-nearest neighbors classifier with k = 5 is used in each test.

Table 5.1: The scores and the found optimal parameters by feature descriptor
and test type. The inter-set test results are obtained by doing k-fold testing on
each subset individually, and then taking the average. For the cross-set test results
each subset is regarded as a fold. A complete overview of the scores for the various
parameters can be found in Appendix C, tables C.1, C.2 and C.3.

Feature descriptor Test type Score Parameters

Color histogram inter-set 0.984 channels: [hue, saturation, value]
bin size: 8

cross-set 0.960 channels: [saturation]
bin size: 32

HOG inter-set 0.952 orientations: 4
pixels-per-cell: 32
cells-per-block: 3

cross-set 0.898 orientations: 4
pixels-per-cell: 32
cells-per-block: 3

Combined inter-set 0.984 orientations: 4
pixels-per-cell: 32
cells-per-block: 2
channels: [hue, saturation, value]
bin size: 8

cross-set 0.955 orientations: 4
pixels-per-cell: 32
cells-per-block: 3
channels: [hue]
bin size: 32
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5.1.2 Classifier parameters

With the optimal parameters for the feature descriptors found, now the
three different types of classifiers are tested. The cross-set test is used for
training and testing the classifiers each time. The score of the best classifiers
are shown in Figure 5.2. In each case the support vector machine with the
radial basis kernel function gives the best scores. Details on the scores and
the used parameters are shown in Table 5.2.

Figure 5.2: Classifier scores when run with the optimal parameters. Each classifier
type is run with the three different types of feature descriptors that are tested using
the cross-set split method.
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Table 5.2: The scores and the found optimal parameters by used classifier and fea-
ture descriptor. Each time the cross-set split method is used. A complete overview
of the scores for the various parameters can be found in Appendix D, tables D.1,
D.2 and C.3.

Classifier Feature descriptor Score Parameters

k-NN ColHist 0.960 k: 3
HOG 0.898 k: 1
Combined 0.961 k: 3

SVM-RBF ColHist 0.965 C: 1
γ: 100

HOG 0.930 C: 3
γ: 1000

Combined 0.965 C: 1
γ: 100

SVM-Lin ColHist 0.955 C: 8192
HOG 0.877 C: 8
Combined 0.945 C: 256

5.2 Animal detection in video streams

The experiment shows that the object detector is able to detect objects in
a video stream. Using the SVM classifier with RBF kernel function and the
color histogram for the feature descriptor, the results are obtained as shown
in Table 5.3.

Table 5.3: Object detection in video streams results. Each time the detector is
trained on two training sets, while a third set is used for testing the performance.
The overlapping window ratio, precision and recall are measured for each run.

Train sets Test set ratio precision recall

1, 2 3 0.080 0.034 0.245
1, 3 2 0.567 0.446 0.742
2, 3 1 0.380 0.248 0.631

The performance varies widely over the different train-test runs. In gen-
eral the recall is higher than the precision, which suggests that although
many objects are indeed detected, there are also many false positives. The
false positives can partly be explained by the fact that windows that con-
tain only parts of an object are also classified as a detection by the detector.
These errors are shown in Figure 5.3.
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Figure 5.3: (Poor) detection in a video frame. The image shows mistakes where
the detector does not recognize a cow (left) or recognizes a patch of grass as a cow
(right). Also it is clear that due to the sliding window approach patches of ground
around the cows are detected.

5.3 Learning while recognizing

Figure 5.4 shows the results of performing active learning in combination
with object recognition. Two methods for training a classifier with a human
labeling step after each iteration are compared. For the first ’active’ method,
the to be labeled samples are chosen by expected value for the classifier.
With the ’random’ method the to be labeled samples are chosen randomly.
The results clearly show that in the active case the classifier obtains a higher
score much faster than in the random case. When using active learning there
are less labeled training samples needed to obtain the same scores.
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Figure 5.4: Scores when training a classifier which is retrained after each iteration
with a larger training set than the previous iteration. Active learning is compared
with random learning. The color histogram feature descriptor is used together with
a support vector machine classifier with an RBF kernel function. The results for
different feature descriptors are available in Appendix E.

5.4 Harvesting detection results

Objects that are found by the object detector are labeled by the annotator.
These are then used to retrain the classifier of the object detector. Since only
the objects that the detector considers ’positive’ are fed to the annotator,
these are the only objects that are harvested. The downside of this method
is that false negatives (objects that are recognized as background) will not
be added to the harvested results. Also for this reason these objects are
then not used for retraining the classifier. Table 5.4 shows the results of
retraining the object detector in harvesting mode compared to the normal
object detecting mode.
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Table 5.4: Performance of the object detector when annotated detections after
each harvest are used for retraining the classifier.

Train sets Test set method ratio precision recall

1, 2 3 normal 0.080 0.034 0.245
1, 2 3 harvest 0.126 0.105 0.175

1, 3 2 normal 0.567 0.446 0.742
1, 3 2 harvest 0.568 0.347 0.938

2, 3 1 normal 0.380 0.248 0.631
2, 3 1 harvest 0.455 0.325 0.649

It is clear the retraining after harvesting can benefit the object detector
performance, depending on what measurement is used. The true value of
the harvesting method is however that detected objects can be verified easily
by a human annotator, which reduces the amount of errors made by the
detector.



Chapter 6

Discussion

This research took the idea that the advance of technology in the last decade
allows us to use unmanned aerial vehicles to detect animals automatically in
natural environments. A framework has been developed that incorporates
the aspect of collecting and annotating data, and using machine learning
and computer vision for detecting animals in natural environments. Instead
of the use of airplanes, helicopters or satellites to obtain ground images,
also UAVs have been used. The UAV used in this thesis is a commercially
affordable vehicle that can be easily operated remotely by most people. The
specifications of the UAV and the used sensors have proven to be sufficient
for the task of retrieving quality imagery for detecting animals (cows) on
the ground.

Several feature descriptors and classifiers are compared and analyzed
for their performance in the task of recognizing animals. The results show
that color features (color histogram) provide valuable information for distin-
guishing cows from their background counterpart samples. It seems natural
that this feature descriptor performs well in the environment that is tested:
black and white cows on green land. In general this color histogram per-
forms better than the HOG. The latter feature descriptor uses the gradients
in (grayscale) images but lacks color information that is available in the orig-
inal images made by the UAV. A combination of the two feature descriptors
is analyzed and showed a minor improvement, at the cost of execution time
(for calculating the features of both feature descriptors). The expectation
was that the use of HOG in combination with the color histogram would
provide the required information to distinguish those samples that are diffi-
cult for the color histogram alone (e.g. mud as background instead of green
grass). From the compared classifiers the support vector machine (SVM)
with the radial basis function kernel shows the best overall results. The
results show however that the k-nearest neighbor classifier (k-NN) achieves
almost comparable results. Comparing the kernel functions for a SVM it
shows that using a radial basis function (RBF) kernel over a linear function
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kernel provides better results in performance. The developed framework
provides the tools that are required to detecting animals in a video record-
ing. The constructed object detector can be used to find for example cows
in a meadow. With some exception most of the cows are detected, but false
positives introduce a significant error. The main cause of this error is due to
the sliding window approach and can be reduced by suppressing detections.
Two concepts that are useful for bringing object detection into practice are
tested: learning while recognizing and harvesting detection results. Learning
while recognizing allows us to bootstrap an animal recognition (and detect-
ing) process with a minimal initial annotated dataset. The results show that
using this active learning technique benefits the training of classifiers such
that they achieve their required performance much faster (with less training
samples) than when randomly selected data are labeled. Harvesting the de-
tection results benefits the object detection process in that it validates data
returned by the object detector, which in its turn can be used to further
train a classifier.

The main research question for this project is: can a (low-end) UAV
automatically detect animals like cows in a natural environment? The re-
sults have shown that we succeeded in doing so. A commercially affordable
(low-end) UAV is used to detect cows in meadows using the video record-
ings that were made with the camera on the UAV. Although with some
error, cows could be distinguished from their background using the devel-
oped framework. As a subquestion we asked: which of the popular feature
descriptors and classifiers that are used for object detection maximize the
results? From the tested feature descriptors (color histogram, HOG and the
combined feature descriptor), the color histogram together with the com-
bined feature descriptor performed the best. From the tested classifiers, the
SVM with RBF kernel outperformed both the SVM with a linear kernel
and the k-NN classifier. A second subquestion was asked: how can active
learning and harvesting improve the object detection process for this task?
The results show that using active learning a classifier can be trained faster
when the correct samples are labelled by an annotator. This makes this tool
useful for object detection as less training data is needed for the same per-
formance. Also harvesting can be used to improve the process of detection,
but is mainly useful for verification of the detected objects from the object
detector.

This research has shown several but not a complete set of computer
vision techniques and machine learning algorithms. A single UAV is used
and a limited set of classifiers and feature descriptors are tested. As future
work different hardware (other UAVs and sensors), feature descriptors and
classifiers could be tested to explore which works best for the task of de-
tecting objects in natural environments. The framework can be tested on
different objects (other animals e.g.) and environments. The framework
that is developed should invite other researchers to build further upon this
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project. One of the major functionalities that would improve the practical
use of detecting ground-based objects from the air is on-board processing.
Software that is now run on a computer after the UAV has landed, may run
on the UAV itself. This makes real-time interaction with the environment
possible. An unmanned aerial system (UAS) can be developed to automat-
ically detect and inspect targets located on the ground. This method can
reduce the time required to act on situations where now the UAV first has
te return to a central point for inspection.
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Appendix A

Cut video script

The following script is used to crop a video to the desired length. This is
useful to remove unwanted parts of the video that are not useful for the
video annotation tool or the object detector.

#!/ bin / sh

# $0 i s the s c r i p t name
# $1 i s the input f i l ename
# $2 i s the output f i l ename
# $3 i s the s t a r t time ARG
# $4 i s the end time

INPUTFILENAME=”$1”
TMPFILENAME=” t m p f i l e .MOV”
OUTPUTFILENAME=”$2”
DURATION=‘expr $4 − $3 ‘

ffmpeg − i $INPUTFILENAME −s s $3 −c copy $TMPFILENAME
ffmpeg − i $TMPFILENAME −t $DURATION −c copy $OUTPUTFILENAME
rm $TMPFILENAME
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Appendix B

DJI Phantom 3 Advanced
specifications

Table B.1: DJI Phantom 3 Advanced specifications

Phantom 3 Advanced

Weight 1280g
Size including propellers 689 mm
Maximum ascent speed 5m/s

Maximum descent speed 3m/s
Maximum horizontal speed 16 m/s

Hover accuracy vertical ±10cm; horizontal ±1m
Operating temperature 0− 40◦C

Camera

Sensor Sony EXMOR 1/2.3”
Effective pixels 12.4M

Lens FOV 94◦ 20mm f/2.8
ISO Range 100-3200 (video) 100-1600 (foto)

Shutter time 8s - 1/8000s
Max photo size 4000 x 3000

Photograph modes Single shot, Burst, time-lapse, Auto Exposure Bracketing:3/5,
Bracketed Frames at 0.7EV Bias.

Video recording modes

UHD 2704x1520p 24/25/30 (29.97)
FHD 1920x1080p 24/25/30/48/50/60

HD 1280x720p 24/25/30/48/50/60
SD card Micro SD with maximum 64 GB (preferable class 10 or UHS-1)

File format FAT32/exFAT; JPEG, DNG, MP4, MOV

Gimbal

Pitch −90◦ − 0◦
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Stabilization 3-axial

Remote controller

Frequency 2.400 GHz - 2.483 GHz
Maximum range 2 kilometer

Video output USB
Battery 6000mAh LiPo 2S

Mobile device holder For smart-phone or tablet
Voltage 1.2 A @7.4V

Battery charger

Voltage 17.4V
Maximum power 57W

Battery

Capacity 4480 mAh
Voltage 15,2 V

Type LiPo 4S
Energy 68Wh

Maximum flight time 23 minutes
Maximum charging power 100W

App/Live View

Mobile app DJI Go
EIRP 100mW

Frequency live view 2.4GHz ISM
Quality live view 720P @ 30fps

Operating system iOS 8.0 or higher; Android 4.1.2 or higher



Appendix C

Feature descriptors
parameter sweep results

Table C.1: Classification results with different parameters for the color histogram
feature descriptor. The tested parameters are the amount of bins in the histogram
per channel and which channels are used: hue (H), saturation (S) and value (V).
The k-nearest neighbors classifier with k = 5 is used for each test. The inter-set
split test results (Set 1, Set 2, Set 3 and their average) are shown with the cross-set
test results.

Channels Binsize Set 1 Set 2 Set 3 Average (inter-set) Cross-set

H, S, V 32 0.962 0.981 0.987 0.977 0.807
H, S, V 16 0.969 0.970 0.985 0.974 0.836
H, S, V 8 0.982 0.985 0.986 0.984 0.885

H, S 32 0.983 0.970 0.981 0.978 0.906
H, S 16 0.982 0.977 0.982 0.980 0.902
H, S 8 0.994 0.959 0.972 0.975 0.897

H 32 0.992 0.954 0.982 0.976 0.916
H 16 0.997 0.958 0.979 0.978 0.937
H 8 0.992 0.927 0.980 0.966 0.931
S 32 0.985 0.966 0.974 0.975 0.960
S 16 0.988 0.958 0.977 0.974 0.959
S 8 0.990 0.951 0.963 0.968 0.950
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Table C.2: Classification results with different parameters for the histogram of
orientation gradients feature descriptor. The tested parameters are the amount of
orientations (Orient.), the amount of pixels per cell (Ppc) and the amount of cells
per block (Cpb). The k-nearest neighbors classifier with k = 5 is used for each test.
The inter-set split test results (Set 1, Set 2, Set 3 and their average) are shown with
the cross-set test results.

Orient. Ppc Cpb Set 1 Set 2 Set 3 Average (inter-set) Cross-set

4 8 1 0.848 0.862 0.957 0.889 0.878
4 8 2 0.843 0.862 0.957 0.888 0.877
4 8 3 0.848 0.862 0.957 0.889 0.877
4 16 1 0.903 0.899 0.961 0.921 0.880
4 16 2 0.913 0.899 0.958 0.923 0.881
4 16 3 0.928 0.899 0.958 0.928 0.882
4 32 1 0.929 0.933 0.960 0.940 0.873
4 32 2 0.963 0.919 0.968 0.950 0.898
4 32 3 0.966 0.922 0.966 0.952 0.886
8 8 1 0.843 0.862 0.957 0.887 0.877
8 8 2 0.836 0.862 0.957 0.885 0.877
8 8 3 0.839 0.862 0.957 0.886 0.877
8 16 1 0.892 0.888 0.957 0.912 0.879
8 16 2 0.904 0.877 0.957 0.913 0.881
8 16 3 0.913 0.888 0.957 0.919 0.882
8 32 1 0.924 0.932 0.957 0.938 0.884
8 32 2 0.961 0.912 0.966 0.947 0.896
8 32 3 0.959 0.911 0.964 0.945 0.884
16 8 1 0.832 0.862 0.957 0.884 0.877
16 8 2 0.832 0.862 0.957 0.884 0.877
16 8 3 0.834 0.862 0.957 0.884 0.877
16 16 1 0.875 0.877 0.957 0.903 0.879
16 16 2 0.887 0.866 0.957 0.903 0.879
16 16 3 0.899 0.870 0.957 0.909 0.881
16 32 1 0.921 0.920 0.959 0.933 0.888
16 32 2 0.956 0.905 0.967 0.943 0.891
16 32 3 0.956 0.908 0.963 0.943 0.884
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Table C.3: Classification results with different parameters for the histogram of orientation gradients (HOG) combined with color
histogram feature descriptor. The tested HOG parameters are the amount of orientations (Orient.), the amount of pixels per cell (Ppc)
and the amount of cells per block (Cpb). The tested color histogram parameters are the amount of bins in the histogram per channel
and which channels are used: hue (H), saturation (S) and value (V). The k-nearest neighbors classifier with k = 5 is used for each test.
The inter-set split test results (Set 1, Set 2, Set 3 and their average) are shown with the cross-set test results.

Orient. Ppc Cpb Channels Binsize Set 1 Set 2 Set 3 Average (inter-set) Cross-set

4 32 2 H, S, V 32 0.971 0.974 0.976 0.974 0.774
4 32 3 H, S, V 32 0.963 0.977 0.980 0.973 0.795
4 32 2 H, S, V 8 0.981 0.989 0.983 0.984 0.879
4 32 3 H, S, V 8 0.981 0.985 0.984 0.983 0.883
4 32 2 S 32 0.988 0.954 0.975 0.972 0.947
4 32 3 S 32 0.986 0.962 0.974 0.974 0.955
4 32 2 S 8 0.991 0.943 0.967 0.967 0.951
4 32 3 S 8 0.990 0.951 0.966 0.969 0.950



Appendix D

Classifier parameter sweep
results

Table D.1: Classification results for k-NN with different k values

Color Hist HOG HOG Color Hist
K mean std mean std mean std
1 0.960 0.010 0.898 0.052 0.957 0.008
2 0.958 0.008 0.891 0.057 0.958 0.009
3 0.960 0.008 0.897 0.056 0.961 0.009
4 0.956 0.007 0.892 0.059 0.957 0.009
5 0.957 0.007 0.893 0.058 0.956 0.007
10 0.953 0.009 0.886 0.061 0.953 0.009
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Table D.2: Classification results for Support Vector Classifier with RBF kernel
with different parameters

Color Hist HOG HOG Color Hist
C gamma mean std mean std mean std
1 0.1 0.863 0.041 0.877 0.059 0.863 0.041
1 1 0.897 0.059 0.877 0.059 0.897 0.059
1 10 0.955 0.006 0.874 0.055 0.955 0.006
1 100 0.965 0.003 0.902 0.058 0.965 0.003
1 1000 0.897 0.056 0.929 0.044 0.885 0.057
2 0.1 0.858 0.036 0.877 0.059 0.858 0.036
2 1 0.898 0.055 0.877 0.059 0.898 0.055
2 10 0.957 0.004 0.870 0.050 0.957 0.004
2 100 0.964 0.005 0.904 0.052 0.964 0.004
2 1000 0.900 0.051 0.929 0.042 0.889 0.056
3 0.1 0.872 0.043 0.877 0.059 0.872 0.043
3 1 0.910 0.043 0.877 0.059 0.910 0.043
3 10 0.957 0.004 0.865 0.044 0.958 0.004
3 100 0.960 0.010 0.907 0.051 0.961 0.007
3 1000 0.900 0.051 0.930 0.042 0.889 0.056
5 0.1 0.881 0.046 0.877 0.059 0.881 0.047
5 1 0.920 0.034 0.877 0.059 0.920 0.034
5 10 0.959 0.005 0.865 0.041 0.958 0.006
5 100 0.962 0.010 0.909 0.051 0.964 0.006
5 1000 0.900 0.051 0.930 0.042 0.889 0.056
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Table D.3: Classification results for Support Vector Classifier with linear kernel
with different parameters

Color Hist HOG HOG Color Hist
C mean std mean std mean std
1 0.880 0.046 0.877 0.059 0.881 0.047
2 0.887 0.051 0.877 0.059 0.888 0.052
4 0.895 0.055 0.877 0.059 0.896 0.055
8 0.905 0.043 0.877 0.059 0.905 0.043
16 0.915 0.036 0.876 0.058 0.917 0.037
32 0.926 0.030 0.870 0.050 0.926 0.029
64 0.935 0.022 0.862 0.042 0.933 0.018
128 0.940 0.013 0.859 0.035 0.943 0.016
256 0.946 0.012 0.858 0.031 0.945 0.009
512 0.945 0.012 0.856 0.030 0.944 0.022
1024 0.948 0.017 0.855 0.028 0.939 0.029
2048 0.950 0.016 0.853 0.028 0.933 0.043
4096 0.953 0.016 0.851 0.030 0.925 0.040
8192 0.955 0.013 0.850 0.036 0.912 0.051
16384 0.953 0.017 0.855 0.034 0.920 0.047
32768 0.947 0.025 0.865 0.032 0.922 0.048
65536 0.942 0.034 0.872 0.025 0.920 0.047
131072 0.948 0.031 0.867 0.032 0.907 0.047
262144 0.951 0.024 0.869 0.041 0.910 0.045
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Active learning results
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(a) color histogram

(b) histogram of oriented gradients

(c) combined

Figure E.1: Scores when training a classifier which is retrained after each iteration
with a larger training set than the previous iteration. Active learning is compared
with random learning. The different graphs show the results when different feature
descriptors are used. In each case the support vector machine with an RBF kernel
function is used.
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