
University of Groningen,

the Netherlands

Master’s Thesis
Artificial Intelligence

Training Deep Neural Networks
with Soft Loss for Strong

Gravitational Lens Detection

Quintin van Lohuizen
s2701782

Internal Supervisor:
Dr. M. Wiering (Artificial Intelligence, University of Groningen)

External Supervisors:
Prof. Dr. L.V.E. Koopmans (Kapteyn Astronomical Institute, University of

Groningen),
Dr. G.A. Verdoes Kleijn (Kapteyn Astronomical Institute, University of

Groningen)

April 13, 2021

Abstract

This thesis explores a binary classification problem using convolutional neural
networks (CNNs) applied to gravitational lensing. We try to find strong grav-
itational lenses in the Kilo-Degree Survey (KiDS) dataset, where we lack large
labelled training sets and have noisy data. It can lack sufficient resolution and
is severely imbalanced. Currently, astronomers spend a significant amount of
time manually labelling images with a large portion of false positives. CNNs
can reduce the strain on astronomers and speed up the process by rejecting
obvious negative cases. This work investigates various loss functions and their
influence on the trade-off between precision and recall. We consider the fol-
lowing loss functions: binary cross-entropy, F1-, F1 double- and Fβ soft loss.
Our results show that binary cross-entropy reaches the highest accuracy, while
Fβ reaches the highest precision and F1 soft loss the highest recall. The loss
function choice can influence how much time an astronomer would need man-
ually labelling false positives. We used simulated lensing features to address a
lack of real-world labelled data and merged them with real luminous red galaxies
(LRGs). Merging lens and source enables us to understand the relation between
misclassification and the lensing parameters’ values. Our findings suggest that
low brightness and size cause most false-negative cases and not other galaxies
in the image’s background. A Grad-CAM visualization algorithm highlights
areas in the image containing evidence favouring a strong gravitational lens,
enabling more insight into misclassifications. Finally, we perform experiments
with a dynamic ensemble of CNNs, each trained on a different loss function. A
separate CNN determines the weights attributed to each member based on the
input image. This study has shown that training an ensemble with six members
and the Nelder-Mead optimization algorithm can improve performance on high
decision thresholds. An exciting prospect would be a newly created high purity
candidate strong lenses set, based on the best performing ensemble with data
from the upcoming Euclid and LSST mission.

I

Acknowledgement

I thank the supervisors Marco Wiering, Leon Koopmans and Gijs Verdoes
Kleijn, for their support throughout the project and for being a great source of
inspiration and knowledge. Next, I would like to thank Carlo Enrico Petrillo for
laying the foundations of this research. A special thanks goes out to Christian
Roest, a good friend and always listening to crazy new ideas and always being
there (on Telegram). I would also like to thank Thijs van der Knaap, Remco
van Buijtenen and Priscilla Mulder for their insights and daily walk in the park,
which were a great relief throughout this endeavour. I also want to acknowl-
edge the importance of the Center for Information Technology of the University
of Groningen to provide access to the Peregrine high performance computing
cluster. Without their resources, these large scale computational experiments
would not be possible. A final thank you goes out to my parents, for providing
motivation and financial support throughout my studies.

II

Contents

1 Introduction 1
1.1 Gravitational Lensing . 2
1.2 Deep Learning . 4
1.3 Research Questions . 4
1.4 Thesis Structure . 5

2 Strong Gravitational Lensing 6
2.1 Background . 6
2.2 Strong Lensing Applications . 7

3 Neural Networks 8
3.1 Convolutional Neural Networks 9
3.2 Residual Neural Networks . 9
3.3 Regularization . 11

3.3.1 Early Stopping . 11
3.4 Loss Functions . 12

3.4.1 Binary Cross-Entropy . 12
3.4.2 F1 Soft Loss . 12
3.4.3 F1 Double Soft Loss . 15
3.4.4 Fβ Soft Loss . 15

3.5 Model Selection . 16
3.5.1 Fβ Metric . 16
3.5.2 Fβ Soft Metric . 17

3.6 Ensemble Learning . 17
3.6.1 Nelder-Mead - Weighted Average Ensemble 18
3.6.2 Input Dependent Ensemble 18

3.7 Gradient-Weighted Class Activation Mapping 18

4 Experimental Setup 20
4.1 The KiDS Survey . 20
4.2 Preprocessing . 21

4.2.1 Data Augmentation . 23
4.3 Network Architecture . 23
4.4 Loss Functions . 24

III

4.5 Grad-CAM . 24
4.6 Ensembles . 25
4.7 Max-Tree Segmentation . 26
4.8 Specifications . 28

4.8.1 Hardware . 28
4.8.2 Software . 28

5 Results 29
5.1 Loss Functions . 29
5.2 Gradient-Weighted Class Activation Mapping 32
5.3 Information Content . 34
5.4 Ensembles . 42
5.5 Max-Tree Segmentation . 46
5.6 Discussion . 47

6 Conclusion 49
6.1 Summary of Results . 49
6.2 Recommendations for Future Research 50

7 Appendix A 57
7.1 Model Predictions . 57
7.2 Gradient-Weighted Class Activation Mapping 57
7.3 Information Content . 57

IV

List of Figures

1.1 Galaxy Morphology Classification Example 1
1.2 Three Known Lenses . 3

2.1 Strong Gravitational Lens Example 7

3.1 CNN Schematic Overview . 10
3.2 Residual Block . 11

4.1 Mock Lens Superimposition . 20
4.2 Lens Contaminants (Negative Examples) 22
4.3 ResNet18 Architecture . 23

5.1 Loss Function Experiment Results 30
5.2 Prediction Distributions . 31
5.3 Grad-CAM True Positive 11 . 33
5.4 Grad-CAM True Negative 5 . 34
5.5 Grad-CAM True Negative 4 . 35
5.6 Grad-CAM False Positive 143 . 36
5.7 Grad-CAM False negative 328 . 37
5.8 Grad-CAM False negative 339 . 38
5.9 Hexbin TPR - Binary Cross-Entropy 39
5.10 TPR vs. Source Information - Binary Cross-Entropy 39
5.11 Hexbin TPR - Fβ Soft Loss . 40
5.12 TPR vs. Source Information - Fβ Soft Loss 40
5.13 Hexbin TPR - F1 Soft Loss . 41
5.14 TPR vs. Source Information - F1 Soft Loss 41
5.15 Fβ Graph for Ensemble NM3 . 43
5.16 Fβ Graph for Ensemble NM6 . 44
5.17 Fβ Graph for Ensemble IDE3 . 44
5.18 Fβ Graph for Ensemble IDE6 . 45
5.19 Max-Tree Segmentation Before and After 46
5.20 Fβ Graph Max-Tree . 47

7.1 Model Predictions Binary Cross Entropy 57
7.2 Model Predictions Fβ metric . 58

V

7.3 Model Predictions Fβ soft loss metric 58
7.4 Model predictions Fβ soft loss as loss function 59
7.5 Model predictions F1 soft loss . 59
7.6 Model predictions F1 double soft loss 60
7.7 Grad-CAM True Positive 17 . 60
7.8 Grad-CAM True Positive 18 . 61
7.9 Grad-CAM True Positive 93 . 62
7.10 Grad-CAM True Negative 11 . 63
7.11 Grad-CAM True Negative 141 . 64
7.12 Grad-CAM True Negative 28 . 65
7.13 Grad-CAM True Negative 51 . 66
7.14 Grad-CAM True Negative 550 . 67
7.15 Grad-CAM False Positive 22 . 68
7.16 Grad-CAM False Positive 313 . 69
7.17 Grad-CAM False Positive 59 . 70
7.18 Grad-CAM False negative 190 . 71
7.19 Grad-CAM False negative 215 . 72
7.20 Grad-CAM False negative 232 . 73
7.21 Grad-CAM False negative 324 . 74
7.22 RMS Above Noise vs Prediction 74
7.23 Model Prediction vs. Einstein Radius - Binary Cross Entropy . . 75
7.24 Model Prediction vs. Einstein Radius vs. Brightness - Binary

Cross Entropy . 75
7.25 RMS Above Noise vs Prediction 76
7.26 Model Prediction vs. Einstein Radius - F1 Soft Loss 76
7.27 Model Prediction vs. Einstein Radius vs. Brightness - F1 Soft Loss 77
7.28 RMS Above Noise vs Prediction 77
7.29 Model Prediction vs. Einstein Radius - Fβ Soft Loss 78
7.30 Model Prediction vs. Einstein Radius vs. Brightness - Fβ Soft Loss 78

VI

List of Tables

3.1 Confusion Matrix . 13

5.1 Loss Function Performance Results 30
5.2 Ensemble Results . 45
5.3 Max-Tree Segmentation Result 46

VII

Chapter 1

Introduction

Gravitational lenses can give us tremendous insight into the geometry and his-
tory of our universe. Traditionally astronomers looked up at the sky with their
telescopes and found objects interesting enough to study. However, Moore’s law
and automated imaging techniques increased the observational data by multiple
orders of magnitude, while the number of astronomers did not keep pace. This
’data avalanche’ and the prospect of future, deep, high-resolution wide surveys
necessitates fast algorithms and image processing techniques to process all of
this data to keep pace. The increased resolution of imaging techniques and
the depth at which observational data can be taken [1] has taken astronomers
down a road where they need help from computer science, computer vision, and
artificial intelligence (AI) to make sense of this ’big data’.

Astronomical imaging techniques mostly aid morphology and spectroscopy
studies [2, 3, 4] of objects of interests, such as planets, stars, galaxies, galaxy
clusters and the overall structure of our universe. In an exciting study [5], a
Convolutional Neural Network (CNN) predicts the class of a galaxy from the
Galaxy Zoo 2 dataset (Fig. 1.1), based on its morphology.

Figure 1.1: Example galaxy images from the Galaxy Zoo 2 dataset (28790
images in total). Each column represents a class. Their respective labels are:
completely round smooth, in-between smooth, cigar-shaped smooth, edge-on
and spiral. These examples illustrate the kind of features that can be captured
from astronomical data and extracted through CNNs.

From studies such as [5, 2, 3, 4], astronomers can infer astrophysical under-

1

standing by classifying each galaxy into a predefined category, later to be used
to model their physics and relate that to their observational morphology and
spectra.

Traditionally astronomers relied upon instruments making specific measure-
ments and constructing features from them. However, the recent developments
in AI can automate feature extraction and construction and apply astronomical
expert knowledge encoded in algorithms in a more automated fashion.

The aforementioned galaxy morphology classification study is an example
of a multi-class classification algorithm in the field of deep learning (DL). DL
is a subfield of machine learning (ML) concerned with a broader topic, where
vastly different algorithms learn from data. DL has experienced rapid advances
in the past years. The invention of CNNs [6, 7] and Residual Neural Net-
works (ResNets) [8] are of particular interest for image-based classification and
morphology-based gravitational lens detection studies. Deployment of such al-
gorithms can aid astronomers in combing through all the deep, high-resolution
wide surveys existing now and those that will come in the future. CNNs are of
great importance for image classification due to their architecture and spatial
feature construction properties.

These deep neural networks (DNNs) have proven to outperform experts in
many domains and raise the bar for algorithms on problem-solving in general
[9], such as object detection [10] and playing games [11].

1.1 Gravitational Lensing

A gravitational lens is a visual effect observed from the Earth if the light from a
distant source is deflected by a high-mass distribution between the source and
observer. From Earth, we observe the source as being distorted and displaced
from its actual location. To understand this effect, we must go back to Einstein,
the theory of General Relativity (GR) [12]. Which essentially states that mass
deforms the fabric of space-time in the vicinity of mass, giving space-time a cur-
vature around high-mass objects. Galaxies or galaxy clusters have a high-mass
distribution, creating an ideal region in space-time to observe these effects if a
source is located behind it. The observed lensing features depend entirely upon
the physical parameters of the source, deflector and observer. Fig. 1.2 depicts
three examples of strong lenses. A significant challenge to find these lenses is
the rarity of the event. We can look at the dataset used by [2], where non-
lenses outnumber lens-galaxies, approximately a thousand to one. This sample
dataset is constructed because the galaxies in this sample are more likely than
other galaxies to be part of a gravitational lensing system. The number is likely
to be higher in other datasets, making it even more challenging to find them.
There are three classes of gravitational lenses: micro-, weak- and strong lensing.
The distinction between the three depends on the source’s relative location, lens,
observer, and mass of the lensing system. In micro lensing, the magnification
can be considerable. However, the event’s angular scale is much smaller than
galaxy-scale lenses, therefore mostly unresolvable by current telescopes. In con-

2

trast, weak lensing distorts the source object slightly, which can be measured
by averaging over many sources. Strong lensing has additional discriminative
features beyond magnification and displacement, such as doubling, quadrupling
and arching effects (Fig. 1.2).

Figure 1.2: These are RGB reconstructed images, from GRI colored image data.
These are three known strong gravitational lenses in the luminous red galaxy
sample dataset. These are 20 by 20 arcsec images.

An essential application of strong lensing is to help put constraints on the
universe’s expansion rate [2]. In [13], lensed quasars were used to measure time
delays between images of the same lensed quasar. Determining an accurate
measurement of the lensing geometry means that an accurate estimation of the
Hubble Constant (H0) is possible. It refers to the speed by which objects seem
to recede away from us, based on their distance from us. Differing methodologies
and assumptions in measurement techniques lead to incompatible estimations
of H0 [14]. In [15], the value of H0 is determined by measuring three lensed
quasars’ geometry. However, all three measurements indicated a different Hub-
ble constant. It might be the case that it may depend on location, time and
the direction we look at in the universe. This study shows the importance of
sufficiently large datasets containing strong lensing systems to decrease model
fitting uncertainties. Strong lensing can aid astronomers in studying very dis-
tant galaxies. They can act as galaxy scale telescopes, enabling astronomers
to peek beyond the current imagery resolution and into a distant past of the
universe [16, 17, 18].

Throughout the years, strong lenses have been found serendipitously or by
visual inspecting surveys [2]. Finding them depends on the specific lensing con-
figurations and situations. The process of confirming a strong lens has been to
follow up a manual visual inspection by spectroscopy. It discerns between the
light of the source and lens by measuring various wavelengths. When finding
strong lenses through a binary classifier, scaling up with more data leads to a
significant portion of unwanted false positives due to the severe data imbalance.
Each positively predicted strong lens needs to be visually inspected by experts
in the field, which hinders finding strong lenses in an automated fashion. Addi-
tionally, some lenses images are hard to visually identify because they are noisy

3

and have a relatively low resolution. A lack of information in the data could
limit the correct classification of strong lenses. A candidate strong lenses set
produced by a ResNet in [3] had its true positives outnumbered by false posi-
tives by a factor of 40. Methods in Deep Learning (DL) could reduce this factor
lower than 40 by taking the severe data imbalance into account.

1.2 Deep Learning

The field of Machine Learning (ML) is concerned with fitting a model onto
data. It has a wide range of algorithms, with one of the most important ones,
the artificial neural network (ANN). It is loosely based on biological neurons
in order to facilitate learning for complex problems. Through successive layers
of linear or non-linear transformations, the input data transforms into various
representations. Many parameters define an ANN: input dimensionality, number
of hidden layers, hidden layer neuron count, output dimensionality, activation
functions, an optimizer, batch size and learning rate. The difference between
ML and DL is the number of intermediate layers in an ANN and the input data’s
complexity. DNNs are typically bigger in order to properly deal with the high-
dimensional input space. They are driven by the backpropagation algorithm
that tries to minimize an objective function through gradient descent [6]. In
most classification problems, the objective function is defined by a differentiable
error rate function. A CNN is a hierarchical feature detector, where features are
constructed based on lower level features detected earlier in the network. Each
layer applies its activation function, which can be linear or non-linear, resulting
in transforming the input.

The field of DL is concerned with complex model fitting onto data to achieve
good generalization error. CNNs are a recent invention [7] aimed at rotational-,
translational- and scale-invariant spatial feature extraction. Successfully train-
ing a DNN consists of hyper-parameter tuning and rigorous testing when train-
ing terminates. Since the discovery of the CNN, many architectures have been
proposed that perform well on a wide range of tasks, such as Residual Neural-
[8], VGG- [19] and Inception networks [20]. CNNs are of particular interest to
strong lens detection due to the data being spatial. CNNs utilize the spatial
characteristics of the features in the data hierarchically for inference. The field
of DL is accelerated by open-source machine- and deep learning libraries, such
as Keras [21], TensorFlow [22], Pytorch [23], and the emergence of Graphics
Processing Unit (GPU).

1.3 Research Questions

In this thesis, we investigate how we can improve detection rates of DNNs
concerning strong gravitational lens detection. Four existing loss functions will
be considered and compared against each other based on the F1 score, Fβ score,
and accuracy. The following research questions are investigated:

4

• Which loss functions perform best with respect to precision
and/or recall? Performance is measured in terms of Fβ score, which can
be used to adjust the importance of precision relative to recall. This per-
formance metric is meaningful in heavily imbalanced classification prob-
lems. The under-representation of strong lenses requires careful tuning of
a models prediction threshold and the resulting true positive-, and false-
positive rate. We will detail the consequences of loss function choice and
selection metric during training, and its implications on dataset purity, if
applied to real data.

• Which lensing parameters explain the performance of the DNNs?
Here we visualize where a DNN looks while making an inference. We use
partially simulated data because there is not enough real data for DL
methods. Therefore we know what kind of data goes into the DNN and
its information content. A simulated source will be merged with a real
lens to create a mock lens. Consequently, we could calculate how much
information the DNNs need to make a reliable inference.

• Does an ensemble of DNNs perform better than individual DNNs,
if members are trained on various loss functions or selected for
different performance metrics? Here we compare the performance
of an ensemble of DNNs to the performance of individual DNNs. Here
we also test the performance of weighted ensemble methods, where each
member has high performance on either accuracy, precision, recall or Fβ
score.

• Does image segmentation result in better classification perfor-
mance? For this question, a Max-Tree image segmentation algorithm is
used and compared to a baseline according to accuracy and training time.

1.4 Thesis Structure

The thesis structure is as follows: Chapter 2 will discuss the theoretical back-
ground of strong gravitational lensing and its applications and prospects. Chap-
ter 3 will explain the theoretical background of neural networks and their ap-
plication to strong gravitational lens detection. Chapter 4 describes the exper-
imental setup and explains the data. Chapter 5 depicts the results followed up
by a discussion. Lastly, Chapter 6 concludes this thesis, presenting a discussion
of the prospects of the new methods applied to the Euclid mission and ending
with a recommendation for future research.

5

Chapter 2

Strong Gravitational
Lensing

2.1 Background

Einstein found out with his theory of General Relativity (GR) that gravity is
not a force, but a deformation of space-time itself, caused by the energy-density
situated in it [12]. This theory changed our perspective of space-time drastically,
from Newtonian physics to GR. In Newtonian physics, space is viewed as a static
object that could be assigned coordinates and where time flows at the same rate
at each of these coordinates [24]. GR tells us that even photons, which consist
of energy with no rest-mass, can affect space-time geometry. Because they can
affect space-time, the inverse holds that space-time affects it. Therefore high
mass objects such as galaxies cause photons to follow a curved space-time around
them. An illustrative example of this is a massive galaxy cluster. Therefore
they deform space-time around it significantly. An approaching photon follows
a straight line; however, this path becomes curved in the vicinity of mass. From
the photon’s perspective, it has always travelled in a straight line and continuous
to do so. However, according to an outside observer, the photon describes a
curved path around the galaxy cluster. The difference in perspective between
the object and the outside observer is essential to understanding GR.

Another example of GR is light deflected by a considerable mass, such as a
giant galaxy or cluster of galaxies. Such a case is called gravitational lensing due
to the visual similarity with optical systems. The deflected light comes from an
entirely different source than the deflector (lens system), for example, another
galaxy. The visual imagery depends on the alignment of the telescope, lensing-,
and source object. Gravitational lensing can produce single, multiple, magnified
and distorted images of the source object (See Fig. 2.1). In this thesis, we will
focus on galaxy-scale strong gravitational lenses only.

6

Figure 2.1: These are two luminous galaxies distorting the light from a distant
blue galaxy, creating extended blue light arcs. This system is called the smiling
lens due, to its similarity to a smiling face. (Image credit: ESA/Hubble &
Nasa).

2.2 Strong Lensing Applications

Finding strong lenses is essential because they are a valuable tool for many sci-
entific objectives. The lensing magnification effect can shed light on otherwise
unobservable structures below the current imagery resolution. Strong lenses
are particularly interesting for studying high redshift galaxies and their sub-
structures. These lenses are used in cosmology, where we try to understand
the universe’s expansion rate. Estimating the value of the cosmological Hub-
ble Constant (H0) is possible through strong lensing studies. They can aid
in H0 estimation by providing multiple images of the same object travelling
through different geometric paths through the universe. It provides a faith-
ful reconstruction of the lensing system, allowing a reasonable estimation of
H0. Another example of the application of strong lenses was illustrated by
[25], where 58 strong lenses were used to estimate the density slope inside one
effective radius of massive early-type galaxies. Finding strong lenses can aid
studies into galaxy formation and studies about galaxy evolution through cos-
mic time. Strong lenses can probe dark-matter substructures of distant galaxies
[26, 27]. Studying dark-matter substructures of high redshift galaxies can aid
our understanding of dark-matter distribution throughout the universe.

Finally, it is common in astronomy to determine the distance of a galaxy
relative to Earth by measuring redshift z. When light travels through an ex-
panding space-time, the wavelength of photons get stretched. If light travels
through space-time for an extended time, the wavelength of light stretches to-
wards redder colours, hence the name redshift. By measuring the redshift, we
can calculate how long the light has travelled and the distance of an object that
we are observing, where a larger redshift also implies a longer look-back time.

7

Chapter 3

Neural Networks

One of the simplest forms of a neural network (NN), which we refer to as a
model, is a multilayer perceptron (MLP). It is an important, feedforward ML
model since it is a standard building block of many modern architectures, such as
Residual Neural Networks (ResNets). To train an MLP in a supervised learning
fashion, we need a labelled dataset, a loss function and an optimizer. The
labelled dataset is run through the MLP in an iterative training process of
stacked non-linear transformations from input data to the predicted output
label. Through this process, the MLP defines a mapping y = f(x;θ), where
θ is the set of all learnable parameters, x the input data and y the output
prediction [28]. An MLP is a universal function approximator due to non-linear
activation functions, such as the Relu and Sigmoid (Eq. 3.1 and Eq. 3.2).

σ(x) = max(0, x) (3.1)

σ(x) =
1

1 + e−x
(3.2)

The forward pass, the computation of the error using the loss function and
the backward pass with backpropagation [29] are three essential training steps.

Input data is transformed at each layer via activation functions, such as Relu
or Sigmoid, during the forward pass. Each layer has its own set of learnable
parameters, referred to as learned features.

The second step needed to complete a training iteration is the computation
of the loss over a given sample or batch. The error for each input sample is
computed according to a loss function, for example, e = y − ŷ, where y is the
label and ŷ the predicted label. However, training a NN is usually done in
batches or mini-batches to ensure better training stability. The loss function
needs to change accordingly, to calculate the loss over a given batch of data,

for example, the Mean Square Error: mse =
√

(1
n)
∑n
i=1(yi − ŷi)2, where n is

the number of samples in the batch. Essential to a loss function is the ability
to be differentiable with respect to θ. Otherwise, the backpropagation step

8

is not possible. There are many types of loss functions, such as binary cross-
entropy, categorical cross-entropy or F1-soft loss, all with their advantages and
disadvantages for various problems.

To conclude one iteration of the training process, we need to perform the
backpropagation step [29]. To learn parameters θ, gradients need to be calcu-
lated for the whole batch. The gradient calculation over a random subset of data
instead of calculating the gradient over the entire dataset makes the algorithm
stochastic and reduces the computational cost. The following equation defines
stochastic gradient descent:

θ = θ − η∇θLn(θ) for i = 1...n (3.3)

The Ln(θ) term refers to the loss function on the weight vector θ, n the num-
ber of batches, η the learning rate. The newly calculated weight vectors for
each layer can now be used for the next training iteration of stochastic gradient
descent. Training NNs can take a long time, and the search for optimal hy-
perparameters can be cumbersome. However, they are an essential part of ML
and DL. The recent developments in GPU training acceleration have helped the
field speed of scientific progress drastically. A GPU can accelerate training by
multiple orders of magnitude compared to using a CPU for training.

3.1 Convolutional Neural Networks

After discovering CNNs, image recognition tasks have considerably higher per-
formance than before [30]. Due to the hierarchical stacking of visual features
in images, complex patterns can be learned and classified. Low-level visual
features such as edge detectors are successively stacked into higher-level fea-
tures. A CNN consists of an input layer equal to the visual data dimensions, a
convolutional base, and a classifier see Fig. 3.1, for a schematic overview.

The convolutional base learns visual features relevant to the classification
problem. These layers usually consist of convolutional layers for feature detec-
tion and max-pooling layers for dimension reduction.

The bottom of a NN is the input, while the top is the output. The last dense
layers on top of the convolutional base are the classifier and resemble a simple
MLP. The top classifier considers all detected features from the convolutional
base and predicts the input data class label based on these features. The MLP
is most related to the problem at hand because the dimensionality of the output
layer directly relates to the number of classes in the classification problem.

3.2 Residual Neural Networks

A ResNet is architecturally similar to a CNN except for skip connections, see
Fig. 3.2. DNNs suffer from the vanishing gradient problem [31, 32], where
lower layers in the network barely receive any gradient updates. The gradient

9

Figure 3.1: There is an input image on the left, with a convolutional base in
the middle that performs features extraction and a top classifier (MLP) on the
right.

decreases iteratively with each layer, reaching the computer’s numerical preci-
sion and effectively becomes zero. A ResNet addresses this problem by having
higher layer activations passed down to lower layers directly, skipping interme-
diate layers. The gradient’s direct flow through a skip connection ensures that
some significant gradient update is passed down to the network’s bottom lay-
ers during backpropagation. Skip connections combat the vanishing gradient
problem because the application of activation functions are skipped. Activation
functions such as the Sigmoid have flat regions in their function curve that con-
tribute to the vanishing gradient problem. In recent years, deeper networks have
reached higher performances than their shallower counterparts due to these skip
connections [8].

Iteratively adding layers to a network has diminishing returns up until the
point where the classifier’s performance saturates and then drops rapidly [8, 33,
34]. Such a network has too much capacity for the problem at hand. It means
that the number of learnable parameters is too great for the problem and the
data volume. Therefore reducing the number of learnable parameters increases
performance. If a network has learned good features in bottom layers and
has too much capacity, it still needs to pass the acquired information through
multiple top layers before a final prediction. These higher layers apply non-
linear transformations to the representations of the bottom layers. However, the
desired learned mapping function should be an identity mapping because the
earlier layers have already learned good representations. Learning the identity
mapping function is non-trivial and reduces a NN’s performance because more
training and data are needed to learn this function. Instead, the correctly
learned representations from bottom layers should be passed through a skip
connection. The identity mapping is inherent in a ResNet’s architecture due to
these skip connections and does not have to be learned by top layers. Adding
layers with skip connections does not hurt performance but can only increase it
with diminishing returns. Diminishing returns refers to each added layer adding
some amount to the performance metric, but each successive layer less than the
previous. In a network with too much capacity and skip connections, the top

10

layers learn to apply the identity mapping via the skip connections without
hurting performance [8].

Figure 3.2: This is a Residual Block, where incoming activations X are passed
through standard weight layers, such as convolutional- or max-pooling layers.
Moreover, X is added to these layers’ output via a skip connection using a vec-
tor/matrix addition. Because of the addition operation, the dimensionality of
activations before and after the skip connection must equal. The activations
running through the skip connection do not pass through any learnable param-
eters. In these networks, a typical downscaling factor is 2. Therefore a stride
of 2 is sufficient to match the dimensions in case of dimension mismatch in a
shortcut connection.

3.3 Regularization

Regularization concerns methods to keep a model from overfitting. If a model
trains on training data too extensively, it will remember specific data instances.
An overfitted model will perform worse on unseen data than a model that does
not. To find a model that does not overfit, first find a model that does overfit.
Once the epoch of overfitting is known, a model should be trained up until that
epoch. An inherent feature of the ResNet architecture is the Batch Normaliza-
tion layer [35], which standardize the inputs to a layer, reducing training time
and aiding overall generalization.

3.3.1 Early Stopping

Before training, one must decide upon a maximum number of epochs needed for
a NN to converge. Usually, one chooses a number too large and stops training
based on the desired error rate or loss value. However, this choice is of less

11

importance due to early stopping, where the algorithm stops trying to fit the
data if the validation- and training-loss start to diverge. The early stopping
parameter is usually called patience and signifies the number of epochs the
algorithm waits until training is brought to a halt.

3.4 Loss Functions

In this section, we will go into more detail regarding loss functions. A loss
function or objective function needs to be differentiable and minimizable. Loss
functions have already been briefly explained at the beginning of Sec. 3. It
defines how the NN will steer itself to a minimum value in weight space during
optimization by measuring its performance. A loss function can be defined in
the following way:

L(D;θ) =
1

n

N∑
i

l(D(i),θ) (3.4)

It is an arbitrary average loss function over some data D, given network param-
eters θ. During training, the loss function is optimized to be as low as possible
on the training dataset. The function l(D(i),θ is the loss over a single data
point.

3.4.1 Binary Cross-Entropy

If faced with a binary classification problem, many would rely on the loss func-
tion, binary cross-entropy. It measures the distance between two probability
distributions, the positive and negative class. The following equation defines
cross-entropy for two classes [36]:

BCE = − 1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (3.5)

The yi is the label of sample i, N the number of samples and p(yi) the probability
of the sample being a positive class member.

3.4.2 F1 Soft Loss

Finding strong gravitational lenses in a real galaxy sample is challenging due
to a heavy data imbalance. Lens-galaxies are usually outnumbered by normal
galaxies by a factor of one to a thousand [2]. The result of this imbalance is that
any real galaxy set will have its false-positive rate (FPR) much greater than its
true positive rate (TPR). A CNN trained in [2] has its sample set dominated by
false positives (FPs) by a factor of ∼ 40 when tested on a subset of KiDS-DR3.
They suggested that it is critical to reducing the number of false positives due
to the need for a manual visual inspection of the output sample set. We will
address this problem by utilizing a different loss function than the standard

12

binary cross-entropy for a binary classification problem. In this section, we will
review a different loss function, namely F1 Soft Loss.

In the field of ML, it is common to talk about the precision of a classifier.
Precision is defined by the percentage of the predicted positives that are true
positives; see Eq. 3.6. Precision is associated with a false alarm rate (false
identification of a strong gravitational lens). The higher the number, the less
’false alarms’ the classifier raises.

Precision =
TP

TP + FP
(3.6)

FP and TP refer to a raw count of FPs and TPs predicted by a classifier on
some data.

The recall of a classifier can be thought of as the percentage of true positives
that were predicted positive, see Eq. 3.7. It signifies the factor of true positives
the classifier could recall from the data. A false negative (FN) is an example
that would be predicted as positive in an ideal case; however, it is classified
as a negative under the current decision-making threshold. Therefore we add
the FN count in the recall formula because the model should have recalled this
example.

Recall =
TP

TP + FN
(3.7)

To determine whether an example is classified correctly, we need to define
a decision-making threshold, also referred to as p-threshold. The value of this
threshold determines the value counts in the confusion matrix; see Tab. 3.1.

Labelled Positive Labelled Negative
Predicted Positive True Positive

(TP)
False Positive

(FP)
Predicted
Negative

False Negative
(FN)

True Negative
(TN)

Table 3.1: This is a Confusion Matrix [37] of a classifier under a decision-
making threshold. The decision-making threshold defines the confusion matrix
and, therefore, the F1-score of a classifier.

Fine-tuning recall and precision is difficult because one must find a balance
between the two metrics. Taking the harmonic mean of the two results in the
following equation:

F1 = 2 · precision · recall

precision + recall
(3.8)

In this equation, precision and recall receive the same amount of importance
because neither is favoured over the other. In an extreme case, where one
would only consider recall to be significant, a classifier could learn to predict
the positive case consistently. The recall formula would result in a value of

13

precisely 1.0 to avoid rejecting any object of interest. This kind of behaviour is
undesirable; therefore, it cannot be used as loss functions.

To incorporate the F1-score as a loss function for a classifier, we need to make
the function differentiable. Instead of adding integer values to the TP count,
we add fractional or also called soft values, using the following definitions:

TP = ŷ · y (3.9)

FP = ŷ · (1− y) (3.10)

FN = (1− ŷ) · y (3.11)

TN = (1− ŷ) · (1− y) (3.12)

y Refers to the label of the example and ŷ to the predicted label by the
classifier. Without these definitions, precision and recall are discrete numbers
and do not have a derivative. These definitions make it possible to construct a
loss function that considers precision and recall as continuous variables.

The difference between hard and soft labels [38] is that hard labels are binary
in how membership to a class is assigned. The data point either belongs to the
positive class or the negative class, either 1 or 0. A soft label assigns a probability
of belonging to a class instead of assigning membership in a binary fashion.

For example, if a positive example gets the prediction 0.4, and the decision-
making threshold is 0.5, the model was only off by 0.1 for correct classification.
If a soft loss function is applied instead of a hard loss function, the model is not
penalized too much for making an almost correct prediction.

The soft F1-score is defined by the following equation [37] obtained by sub-
stituting Eq. 3.6 and Eq. 3.7 into Eq. 3.8 and adding a small fractional value
for numerical stability:

F1Soft =
2TP

2TP + FN + FP + 10−16
(3.13)

10−16 Is added to ensure that division by zero does not occur. In order to obtain
a minimizable function, we need to adjust the F1Soft-score function to a loss
function for the positive class:

F 1
1Soft = 1− (

2TP

2TP + FN + FP + 10−16
) (3.14)

When training NNs, it is common to train on batches or mini-batches. In
such cases, the loss is calculated over a whole batch instead of on a single
example. The batch TP, FP and FN, definitions would change only slightly:

• TP = ŷ · y

• FP = ŷ · (1− y)

14

• FN = (1− ŷ) · y

• TN = (1− ŷ) · (1− y)

Eqs. 3.13 and 3.14 do not change, except that we use vectors instead of scalars.
The resulting soft F1 loss function has been turned into macro soft F1 loss due
to the loss being calculated over a batch instead of a single example.

3.4.3 F1 Double Soft Loss

The Soft-F1 Loss function only considers the loss from the positive class’ per-
spective (being a gravitational lens). The (Macro) Soft-F1 Loss can be modified
to incorporate the negative class’ viewpoint (TN). Modifying Eq. 3.14 in order
to incorporate this consists of replacing the TP with the TN values:

F 0
1Soft = 1− (

2TN

2TN + FN + FP + 10−16
) (3.15)

TNs are negative examples that have been predicted negatively by the classifier.
The following equation defines how to calculate the value of TN in a ’soft’
fashion:

TN = (1− ŷ) · (1− y) (3.16)

Both Eq. 3.14 and Eq. 3.15 need to be combined into one differentiable loss
function to be able to use minimization techniques. It is done by taking the
mean loss value of both equations:

F1DoubleSoft =
F 0
1Soft + F 1

1Soft

2
(3.17)

To obtain one loss value over a batch of examples, we compute the mean Double
Soft-F1 Loss and call it the Macro Double Soft-F1 loss.

3.4.4 Fβ Soft Loss

In order to adjust the importance of recall relative to precision, the following
equation is defined [39]:

Fβ = (1 + β2)
Pr · Re

(β2 · Pr) + Re
(3.18)

In this equation, precision and recall values are calculated with ’soft’ values for
TP, FP, and FN (Eq. 3.9, 3.10 and 3.11). It allows optimizing for precision
more strongly rather than recall if β is lower than 1.0. Due to Eqs. 3.9, 3.10
and 3.11 being continuous, give the function a derivative. In order to make the
function minimizable, we can subtract 1 with the Fβ-score:

Fβ = 1− ((1 + β2)
Pr · Re

(β2 · Pr) + Re
) (3.19)

15

3.5 Model Selection

A DNN is either trained in batches or in mini-batches over which multiple
performance metrics can be calculated. Based on the value of the loss function,
the network parameters are adjusted per batch. At the end of training on
a single batch, one could save the current model parameters based on some
performance metric, such as accuracy, precision, recall, binary cross-entropy,
F1-score, Fβ-score, or some custom made performance metric for the problem
at hand. The formula for accuracy for a binary classifier is defined as:

TP + TN

TP + TN + FP + FN
(3.20)

The current model parameters are selected if the newly calculated performance
metric on a batch of data is better than before. A metric can either be minimized
or maximized during the selection process. For example, the validation loss
needs to be minimized, while the F1-score is a metric that should be maximized.
The process of selecting a model from a set of models is called model selection.

3.5.1 Fβ Metric

It might be a good idea to select models, during the training process, based on
Fβ-score instead of validation binary accuracy or validation loss.

The goodness of a model in terms of Fβ-score can be defined as having a high
area under the curve (AUC). However, this curve is not a continuous function.
Therefore integration over the Fβ function does not work. An approximation or
indicator value of the AUC can be used to assess the performance of a model.

Given a batch of data, the precision and recall change with respect to the
decision threshold p. To approximate the AUC for the Fβ curve, we need to
discretize the p-threshold range to obtain an Fβ-score per decision threshold.
Once this is performed, we can sum over the individual Fβ values for each
decision threshold and divide by the number of decision thresholds. The average
Fβ value of the Fβ curve is an indicator of its AUC; the higher, the better the
model performs concerning Fβ .

The justification of β having the value 0.17 comes from [39]. In this com-
parative study, many different binary classifiers were tested against each other
using the Fβ metric.

Eq. 3.18 must be calculated for each decision threshold, where the number
of thresholds is the number of discrete and equally spaced steps between the
range [0, 1].

The following equation calculates the indicator value of the AUC:

IAUC =
1

S

S∑
i=0

(1 + β2)
Pr · Re

(β2 · Pr) + Re
(3.21)

Precision and recall are calculated for a decision threshold from a linear
range [0, 1] with a step size determined by the value of S. The later can be
interpreted as the parameter giving resolution to the Fβ curve.

16

3.5.2 Fβ Soft Metric

The ’soft’ in Fβ soft metric refers to calculating values of the confusion matrix
(Tab. 3.1, to be calculated similarly to F1 soft loss in Sec. 3.4.2. Consequently,
we calculate TP, FP, and FN according to a class’s probabilities instead of an
absolute count. These formulas are clearly described in Sec. 3.4.2. The soft Fβ
metric is not an indicator value of the AUC of the Fβ curve, as we have seen
in the previous section (Sec. 3.5.1). With the soft equations of TP, FP and FN
(see Eqs. 3.9, 3.10 and 3.11) in mind, we can calculate the precision and recall
on a batch of data in terms of probabilities. This probabilistic approach to TP,
FP and FN does not lead to any changes to Eq. 3.18. The equation for the
soft Fβ metric is the same as the loss function: Eq. 3.19. This model selection
metric results in a model optimized for high Fβ soft values.

3.6 Ensemble Learning

Ensembling methods can be used to obtain state-of-the-art performance for
many classification problems. They pool together individual predictions of mul-
tiple trained models into a single prediction called model ensembling [40]. Their
performance has been tested rigorously, particularly on Kaggle, where huge
ensembles outperform almost all single models trained on the same problem.
Ensembles mostly rely on each member bringing a unique perspective of the
problem into the ensemble. An ensemble has a method of combining these
perspectives into a single inference. Each member has different initial weight
initialization and should look at the data at least slightly different. By pooling
these predictions together, you can get a far more accurate picture of the data,
which reduces the variance of the ensemble relative to the individual models.
The challenging part of model ensembling is, finding a method to combine indi-
vidual predictions into a single prediction. The simplest baseline form of model
ensembling is, using the individual predictions to calculate an average prediction
at inference time. This is not a good baseline if some members are significantly
better than others. However, it does provide a result to compare other methods
with. The key part to correctly apply model ensembling is the diversity in en-
semble members [40]. If all models are trained on the same data and have the
same architecture, none of them provides a unique insight into the problem. To
obtain a strong baseline, we could assign more weight to members that perform
better. This is called a weighted average ensemble, where the weights are opti-
mized on validation data. The following equation defines the final prediction of
the ensemble, according to an ensemble weight vector ~w, where each member
gets their own associated weight for output prediction:

~ypred = X · ~w (3.22)

X refers to the prediction matrix of size N ×M , where N is the number of
samples in the data or batch and M the number of models in the ensemble.
The vector ~w stands for a weight vector of size M .

17

3.6.1 Nelder-Mead - Weighted Average Ensemble

To search for suitable ensemble weights in Eq. 3.22, an optimization algorithm
such as Nelder-Mead (NM) [41] can be used. It is an iterative downhill sim-
plex method commonly applied to numerical, multidimensional data to find a
minimum or maximum value of an objective function. In the case of finding
ensemble weights, the number of members determines the objective function’s
dimensionality. A commonly applied objective function for classification is the
mean squared error (MSE). The NM algorithm shrinks an (M + 1) dimensional
polytope towards a minimum value in an M-dimensional space. When opti-
mization terminates, we have obtained a suitable weight vector ~w that can be
applied to Eq. 3.22 to obtain an ensemble prediction ~ypred on some data X.

3.6.2 Input Dependent Ensemble

We investigate an ensemble method that determines which member is most
likely to make the best prediction based on an input image. Such an ensemble
method will further be referred to as an input dependent ensemble (IDE). An
image from the data will be fed into a separate DNN, with the last layer having
a dimensionality equal to the number of ensemble members (M). Such a DNN
will be referred to as a Dynamic Ensembler (DEm), with size M . During the
training of a DEm, predictions need to be converted into one-hot encoding. One-
hot encoding is a label vector with all values set to 0.0 except for one index,
where it is 1.0. It is used often in multiclass classification problems combined
with a softmax activation function. Training a DEm starts with predicting ŷ for
each member in the ensemble for an input image resulting in a ~ypred vector of size
M . This part of the problem can be interpreted as a multiclass classification
problem, where the DEm has to predict which target class (which member)
performs best on the input image. The resulting softmax output ~ypred vector
is converted to one-hot encoding, based on which member was closest with its
prediction to the target label (ytrue). The resulting one-hot encoding is treated
as the label for the DEm. Determining final inference is calculated via the same
method as a weighted average ensemble. The DEm predicts ~wi in Eq. 3.23 for
each input sample of Xi.

{∀i ∈ |X|
∣∣ ŷi = Xi · wi} (3.23)

3.7 Gradient-Weighted Class Activation Map-
ping

Visual explanations of CNNs can aid users in understanding why it makes the
prediction that it makes. Gradient-weighted Class Activation Mapping (Grad-
CAM) [42] uses the gradients of a target class to create a coarse heat map of the
image regarding the evidence favouring the target class c. Grad-CAM makes
use of the activations of the final convolutional layer concerning c. As stated

18

in [42], it can help users discern a ’stronger’ learner from a ’weaker’ one, even
when both make identical predictions.

CNNs are perfectly suited for visualization techniques because the feature
maps in each layer retain spatial information. Visualizing activations is most
useful and interpretable in the last layer because high-level concepts such as
entire target classes are represented visually [43, 44]. If we can localize the
region in the input image with the target concept, then we can better understand
why the network makes a certain inference. This method can be especially
insightful in misclassification cases, where we can localize regions in the input
image introducing confusion or concepts that interfere with correct predictions.

To get the class discriminative localization map Grad-CAM LcGrad−CAM ∈
Ru×v, where u is width and v is the height for class c, we need to compute
the gradient for class c. We compute yc before the final activation function
concerning the feature maps Ak of a convolutional layer. The backwards flowing
gradients are global-averaged-pooled in order to obtain the neuron importance
weights αck:

αck =
1

Z

∑
i

∑
j

∂yc

∂Akij
(3.24)

The weight αck captures how important the feature map k is with respect to
target class c. The higher the value, the more feature map k contributes to a
prediction of the positive class. Performing a weighted combination of activation
maps and weighted neuron importance and the application of ReLU results in:

LcGrad−CAM = ReLU(
∑
k

αckA
k) (3.25)

The application of ReLU ensures that only feature maps with positive influ-
ence with regards to class c are captured, ”i.e. pixels whose intensity should
be increased in order to increase yc.” [42]. Negative pixels are likely to be-
long to other classes than class c. The heat map dimensions are determined by
the dimensions of the feature maps in the convolutional layer used to obtain
LcGrad−CAM . To aide users in feature localization in the input image for class c,
the input image and the heat map should be superimposed. However, the heat
map needs upscaling to match the input image’s dimensions for superimposition
to work. If the heat map is coarse, then a bicubic interpolation method might
lead to misleading superimposition. It could be interpreted by the user as if
the model is paying the most attention to the brightest parts. However, this is
only an effect of upscaling. Using nearest neighbour as upscaling technique re-
sults in superimposition where the area with the positively contributing features
concerning c is highlighted without attributing weights to individual pixels.

19

Chapter 4

Experimental Setup

4.1 The KiDS Survey

The Kilo-Degree Survey (KiDS) [45] is a publicly available data release designed
to shed light on multiple topics, such as weak lensing shear tomography, large
scale matter distribution in the universe, constraining the equation-of-state of
Dark Energy, galaxy evolution, Milky Way structure, white dwarf detection and
high-redshift quasars detection. KiDS is an ESO public survey carried out by
the VLT Survey Telescope (VST) and OmegaCAM camera. The camera has
imaged 1500 square degrees in four filters (u, g, r, i).

The KiDS has had four data releases over the years. Data release 3 (KiDS-
ESO-DR3) or (DR3) has: ”calibrated, stacked images and their weights, as
well as masks and single-band source lists for 292 survey tiles not previously
released.” This thesis will use DR3 because Petrillo has used it [2] to determine
a candidate set for strong gravitational lenses. Petrillo’s study was followed up
by a manual visual inspection of the lens candidates by four experts in the field
(astronomers), resulting in a positive and negative candidate set. The positives
seem convincing, and the negatives mostly contain images of spiral galaxies and
other contaminants (Fig. 4.2).

Figure 4.1: Lens (left), Source (center) and Mock Lens on the (right)

20

From DR3, we select a sub-sample, being Luminous Red Galaxies (LRGs)
[46]. The likelihood of finding strong lenses among this subset is higher than
average because these galaxies are usually very massive and, therefore, more
likely to show lensing features. In [47], it is stated that the likelihood of a spiral
galaxy showing lensing features is small. Meanwhile, the likelihood of elliptical
galaxies showing these features is much greater. For this reason, LRGs have
been chosen as selection criteria for finding strong gravitational lenses.

4.2 Preprocessing

There are a couple of steps in the preprocessing phase. The first step is to
load all data (.fits files) into random-access memory (RAM). Each image will
be normalized, according to Eq. 4.1.

f(x) =
x−min(x)

max(x)−min(x)
(4.1)

Sources (the artificial lensing features) need to be convolved with a point spread
function (PSF) of the r-band to obtain realistic-looking sources. The PSF of
the r-band for the KiDS data is the same as in [4]. One example of a source
convolved with the PSF of the r-band is depicted in Fig. 4.1. Before we move
to the lens and source merging step, we shuffle all the data.

Due to not having enough real-world positive data (real strong gravitational
lenses) for deep learning, we have to perform experiments with simulated sources
superimposed on lenses, creating mock lenses. To have a representative sample
of source parameter space, we need a sufficiently large sources dataset. An order
of magnitude 105 sources seems a reasonable sample for the sources parameter
space.

The data is split into training-, validation- and test data 80/10/10, respec-
tively. The training data is composed in the following way:

• 4.411 lenses

• 80.000 sources

• 4.867 negatives

If we combined sources with lenses in every possible combination, we would end
up with approximately 353 million mock lenses. However, there are a couple of
reasons not to use all combinations. First of all, the storage requirement would
be huge, in the order of magnitude 104 GBs. Storing this amount of data is
infeasible for the scope of this thesis and not necessary. Lastly, an ANN does
not need every possible combination to learn what entails a strong gravitational
lens. A representative sample covering the parameter space is sufficient.

During the training phase, sources and lenses are merged into mock lenses,
which we refer to as positives. An equally sized set of negatives is added to the
positives set, creating a chunk of data. Preliminary experiments have shown
that a chunk size of 4096 results in stable and fast learning.

21

Mock lenses: Creating a mock lens is carried out by the following pro-
cedure. Firstly, randomly selecting k random samples with replacement from
the lens- and source population, where k is half the chunk size. Furthermore,
we rescale the source’s peak brightness between 2% and 30% of the lens’s peak
brightness. This specific percentage further referred to as α, is drawn from
a uniform distribution and applied to each mock lens. Eq 4.2 shows how a
lens and source are merged into a mock lens [4]. By multiplying the source by
α, we consider that lensing features are typically lower in luminosity than the
lens. Lastly, a square-root stretch is performed in order to give more contrast to
lower-luminosity features. A result of this procedure is depicted in Fig. 4.1. The
lenses could already contain gravitational lensing features. However, it seems
reasonable to assume that most do not due to their rarity in this dataset [4].
See Eq. 4.2 for the synthesis have a mock lens (m) based on the lens (l), source
(s) and α-scaling.

Negatives: A negative sample does not show lensing features, or it depicts
a non-lensing system that has features resembling a strong lens. Some clear
examples of these contaminants are depicted in Fig. 6. This set does not require
much preprocessing except for normalization. It contains 80% contaminants and
20% LRGs [3]. The contaminants show a wide variety of structures that were
classified as being gravitational lenses in [3]. The idea behind this ratio is that
the network should learn what does not constitute a strong gravitational lens.
If we would only use LRGs as negative samples, the network would only pay
attention to any structure near the lensing system’s centre instead of considering
its entire morphology. The negatives also get square-root stretched to emphasize
lower luminosity features, just like the positives.

m = l +
s ·max(l) · α

max(s)
(4.2)

Figure 4.2: Three examples of lens candidates proposed by [2] but labelled as
’negative’ after visual inspection by an expert. The negative set contains various
spirals and other contaminants. Only the r-band is depicted in this figure.

22

4.2.1 Data Augmentation

DNNs have the potential to overfit drastically. Overfitting can be addressed by
regularization of which data augmentation is one. It applies transformations to
the images in order to cover more of the mock lens parameter space. To detect
strong gravitational lenses, we employ the following data augmentations [4]:

• A uniform, random zoom range between 100% and 105%.

• A uniform, random rotation range between 0 and 2π.

• A uniform, random width and height shift of a maximum of 4 pixels.

• A 50% probability of a horizontal flip.

For the first three data augmentation techniques, we use a pixel interpolation
method called nearest neighbour. Data augmentation is performed during
training on the GPU in order to reduce training time. It is a sequence of matrix
operations, which the GPU can calculate quickly.

4.3 Network Architecture

Our experimental setup is built around ResNet18, which is an 18-layered residual
neural network [8] used by [4]. The last layer (fully connected layer) is changed
to one neuron with a sigmoid activation function, which is often the case for
binary classification problems. The input dimensionality is set to (101, 101, 1)
because we only work with the red colour channel. A schematic overview of the
architecture is depicted in Fig. 4.3. More details about ResNets can be found
in Sec. 3.2.

Figure 4.3: Image credit: [48]. The architecture depicts 8 skip connections
and 5 blocks with their own associated feature map depth. The number of
feature maps does not change within these blocks. Downsampling occurs at the
beginning via 2D Max Pooling and strides at the beginning of each block. The
last downsampling is 2D Average Pooling before the fully connected layer at the
top.

23

4.4 Loss Functions

In an attempt to answer the first research question: Which loss functions
perform best with respect to precision and/or recall? We limit ourselves
to the loss functions described in Sec. 3.4. Additionally, we will assess the
performance of models selected for Fβ score and Fβ- soft score.

As a baseline comparison model, we will train ResNet18 with binary cross-
entropy as a loss function, similar to Petrillo’s approach [3]. However, this
loss function does not consider that high false-positive rates are undesirable.
Therefore we train models with F1-, F1 double- and Fβ soft loss as loss functions.
Each model (ResNet18) is trained with the following hyperparameters:

• Number of chunks: 8000

• Chunk size: 4096

• Early stopping (patience: 1200 chunks)

• Batch size: 64

• Learning rate: 0.0001

• Optimizer: Adam [49]

Validation is conducted after training on a chunk of data. The validation chunk
always has the same data and has a size of 1102, with equal positive and nega-
tives.

Model selection is the process of selecting a model during training based on
other functions than its loss function. In our case, a model is selected for Fβ
score or Fβ soft score based on the validation data. If a measured score is better
than a previous score, then the model is stored.

In order to have reproducible and stable results, experiments are performed
in groups of 10. It means that we can assess the accuracy, Fβ score, precision
and recall as a mean of 10 runs with a standard deviation. Each loss function
will be compared against the others based on these performance metrics.

4.5 Grad-CAM

Grad-CAM visualisations can be used to give users insight into classification
decisions made by a DNN. This thesis will look at some TP, FP, FN and TN
case studies for each trained model described in the previous section (Sec. 4.4).
We will not be covering all misclassifications but rather look at interesting cases
that seem like a trend for a given model. It would be interesting to see whether a
DNN looks at noise objects in the image’s background when predicting a FP. It
can also give us a non-quantitative observation of lensing feature clarity, such as
its apparent brightness and size. However, not all strong lenses can be identified
by experts [3].

24

In [42], it is stated that deeper layers differentiate between high-level visual
features for all target classes the most. Less deep layers have a higher chance
of having overlapping features and are therefore less suitable for Grad-CAM
visualisation. However, in a binary classification problem, we have fewer classes
and fewer overlapping features. For this reason, we could visualise gradients
of less deep convolutional layers. We will visualise the layers named addx,
where x is 4, 5, 6 and 7. The benefit of visualising earlier layers is that the
produced heat map has a higher resolution than deeper layers due to having
bigger feature maps. The reason for visualising the ’addition’ layers in ResNet18
is that they capture both gradients of the previous convolutional layer and the
skip connection gradient.

Training based on the red colour channel yields better performance than
training on GRI composite images [3]. Training on the red channel is equivalent
to training on morphology alone. In this thesis, only the red channel is consid-
ered and can be interpreted as greyscale. The created heat map can be viewed
as a different colour and be superimposed with the input image if upscaling is
applied first. As explained in Sec. 3.7, each heat map cell does not have a
unique weight per pixel but equally weighs each pixel in a cell. To visualise
equal weight per pixel, we employ nearest neighbour interpolation on the heat
map and assign it the blue colour channel of an RGB image. The resulting
superimposed image has its red channel assigned to the input image, the blue
channel to the heat map and its green channel left empty.

4.6 Ensembles

To be able to answer the third research question: ”Does an ensemble of
DNNs perform better than individual DNNs if members are trained
on different loss functions or selected for different performance met-
rics?” we compare two distinct ensemble methods, the Nelder-Mead (NM)
method and an Input Dependent Ensemble (IDE) method (Sec. 3.6.2). Find-
ing the appropriate members and ensemble size can be time-consuming if we
would consider each combination. Instead, we will limit ourselves to the best
performing models from Sec. 4.4 on each mentioned performance metric. Addi-
tionally, we will create an ensemble with each loss function and model selection
criteria mentioned in Sec. 3.6. The following models trained on loss functions
or selected for a specific metric are added to the ensemble:

• F1 soft loss

• F1 Double soft loss

• Fβ soft loss

• Binary Cross-Entropy (loss)

• Fβ score metric

• Fβ soft score metric

25

We will consider the following ensembles for the NM ensemble method, NMx

and NM6, where x is the number of best performing models, on each metric,
from Sec. 4.4. The number of models for NMx is not known before the first
research question is answered because in an unlikely case, there could be only
one model that performs best on accuracy, Fβ score, precision and recall at the
same time. We will construct an Fβ score curve and compare it with individual
models relevant to the first research question.

The objective function that NM will minimize is MSE. The algorithm will
start with random weight initialization and iteratively decrease the MSE of the
train data with respect to their label (~ytrue). The algorithm terminates with a
tolerance in the output of 10−6 or when the maximum number of iterations has
been reached. This value is by default set to M ∗ 200, where M is the number
of members in the ensemble.

To train IDEx and IDE6, we need to choose an architecture for the Dynamic
Ensembler (DEm, where m are the number of members in the ensemble). Due
to the input being an image, we need a CNN architecture. The DEm needs a
fine understanding of visual features in the input image. In [3], it was found that
ResNet18 performs well and can capture most discriminative lensing features
present in the input data. For this reason, it seems reasonable for the DEm
to have the same architecture, except for the last layer. The last layer will
be changed into m neurons with a softmax activation function. This model’s
loss function should change accordingly to categorical cross-entropy, often the
case in multiclass classification. Training the DEm proceeds with the following
hyper-parameters:

• Number of chunks: 2000

• Chunk size: 4096

• Learning rate: 0.0001

• Loss function: Categorical Cross Entropy

• Last activation function: Softmax

• Optimizer: Adam

The number of chunks is set to a high value to ensure that the DEm converges.
However, we will use a model checkpoint that keeps track of the best validation
score during training and will only retain the model if the validation score has
increased. The calculation of the DEm targets is explained in Sec. 3.6.2.

4.7 Max-Tree Segmentation

During preliminary research, it was hypothesized that misclassifications could
occur due to unrelated objects in the lens’ field. Since they have no relation to
the lensing system, the classifier should ignore them. To test this hypothesis,
we use a segmentation algorithm that segments the lens and lensing features

26

out of the image, which essentially rids the image of most noise objects in the
background. This research has chosen a Max-Tree (MT) segmentation algorithm
[50] with some additional post-processing.

The MT algorithm [51] is used to find connected components in a greyscale
image and apply binary attribute filters to reconstruct a filtered image. It is a
rooted uni-directed tree encoding set of nested peak components with regards
to grey pixel intensities. A connected component can be computed according
to two possible connectivity rules, 4- or 8- way connectivity on a grid. Each
connected component C has to adhere to the maximality condition, which states:
”there is no other connected set that is a superset of C that adheres to the same
connectivity rules.” [51]. Converting an image to greyscale and integer values
between 0 and 255 is necessary before the MT algorithm can be applied. Each
greyscale level is associated with its own depth h in the MT with the black
background (pixel value 0) as its root. Every node is a set of components
for which exists a unique mapping to the peak component. The leaves of the
tree are regional maxima corresponding to the brightest pixels. If no binary
filters are applied, then the resulting superimposed MT image is identical to
the input image. A binary connected operator or binary filter accesses all pixels
and returns the foreground if the operator returns the connected component it
belongs to or an empty set (background) otherwise. Here are some examples of
binary connected operators: area, rectangularity, compactness and intensity.

To segment the lensing system out of the image, we convert the normalized
input image to 8-bit integer values, after which we apply a 5×5 Gaussian kernel
for smoothing. This problem’s connectivity rule is an 8- way connectivity kernel
due to the circular features in the image. After smoothing, the MT can be
constructed with the defined connectivity kernel, and the following filters can
be applied to each connected component C with a bounding box (BB):

• Discard if surface area (a) < 45

• Discard if BBdx < 3 or BBdx > 60

• Discard if BBdy < 3 or BBdy > 60

• Discard if rectangularity ratio RR < 0.45, where RR is defined as: a
dx∗dy

After the binary connected operators are applied, the MT is superimposed on
itself to get a segmented image. However, this image can still contain segmented
noise objects at the edges of the image that need to be filtered out. We apply an
exponential decay formula on the pixel intensities (I) to get rid of these objects
based on distance from the image’s centre. The following formula is applied to
each pixel:

Inew = I ∗ e−d/α (4.3)

Where d is the Euclidean distance from the centre of the image and α = 20 an
empirically determined slope decay rate. Decreasing this value will result in a
further reduction of pixel intensity while increasing it will result in pixel intensity
retention. After intensity scaling, a flood fill operation with a tolerance of 20

27

is performed to rid the image of faint structures remaining from pixel intensity
scaling. When this process is complete, we should end up with an image where
most distant noise objects are segmented out of the image, while most lensing
features are retained due to filtering in the MT and pixel intensity scaling. Most
lensing features are retained due to their proximity to the centre of the image.

4.8 Specifications

4.8.1 Hardware

Each experiment is performed on hardware from a node of the Peregrine cluster
from the University of Groningen:

• CPU: 1x Intel Xeon Gold 6150 @ 2.70GHz (virtualized)

• GPU: 1x NVIDIA V100 (32GB VRAM)

• RAM: 128GB

Each experiment on loss functions lasted for about 6 to 8 hours. In contrast,
experiments on max-tree segmentation could take between 22 up to 26 hours
each.

4.8.2 Software

Experiments are build in Python 3, using Keras with a Tensorflow 2 back-
end. The code is available on Github at https://github.com/Quintin1995/

Strong_Gravitational_Lens_Detection_2.0

28

https://github.com/Quintin1995/Strong_Gravitational_Lens_Detection_2.0
https://github.com/Quintin1995/Strong_Gravitational_Lens_Detection_2.0

Chapter 5

Results

This chapter will present results that pose to answer the research questions
described in section 1.3. To reiterate, the research questions are:

• Which loss functions perform best with respect to precision
and/or recall?
This question is addressed by the results in Sec. 5.1.

• Which lensing parameters explain the performance of the DNNs?
This question is addressed in Sec. 5.2 and Sec. 5.3.

• Does an ensemble of DNNs perform better than individual DNNs
if members are trained on different loss functions or selected for
different performance metrics?
This question is addressed in Sec. 5.4

• Does image segmentation result in better classification perfor-
mance?
This question is addressed in Sec. 5.5.

5.1 Loss Functions

To assess the performance of different loss functions and model selection meth-
ods on a model, we need a common method for comparing prediction results.
This can be achieved using the equation of Fβ (eq. 3.18). In this equation,
we can give precision relative importance with regards to recall. The average
Fβ curves per loss function or model selection method are depicted in Fig. 5.1.
In Tab. 5.1, the accuracy, Fβ-score, precision and recall are averaged over 10
identical runs (except for random weight initialization).

According to Tab. 5.1, a model with binary cross-entropy has the highest
accuracy but not with a large margin with respect to a model selected for Fβ
or soft Fβ performance metrics.

29

Model Accuracy Fβ-score Precision Recall

Binary Cross Entropy 0.937± 0.005 0.947± 0.006 0.948± 0.007 0.924± 0.016
Fβ metric 0.929± 0.005 0.930± 0.009 0.930± 0.009 0.927± 0.013

Soft Fβ metric 0.935± 0.005 0.947± 0.009 0.948± 0.009 0.921± 0.014
Fβ Soft Loss 0.849± 0.008 0.969± 0.007 0.979± 0.008 0.713± 0.014
F1 Soft loss 0.892± 0.015 0.854± 0.029 0.852± 0.030 0.951± 0.015

F1 Double Soft loss 0.917± 0.008 0.927± 0.012 0.927± 0.012 0.904± 0.013

Table 5.1: All performance metrics are calculated with the decision threshold
set at 0.5. The second and third-row are models selected for the respective
metric (Fβ and Fβ soft). These models are optimized with binary cross-entropy
as the loss function.

Figure 5.1: These curves represent the average Fβ-score per model type. The
average Fβ-score is calculated over 10 runs on a test set with the same hyperpa-
rameters to average out the effect of different initial model weight initialization.
Around each curve, the standard deviation is plotted. The long dashed lines
represent recall, and the short dashed line represents precision. The p-threshold
is the decision threshold of the classifier.

30

From Fig. 5.1, we observe that a model trained with Fβ soft loss, performs
really well on all decision thresholds. However, we can observe from Tab. 5.1
and Fig. 5.1 that the increased Fβ score comes at the cost of a low recall of
approximately 0.72 at a decision threshold of 0.5. On the other hand, this
model’s precision is better (Tab. 5.1) than the other models. High precision
indicates a low false-positive rate, creating a strong lenses candidate set with
high purity. The downside of a low recall is that the number of false negatives
goes up, decreasing overall accuracy.

From Fig. 5.1, we observe that we have to choose different models depending
on the performance metric of interest. If a researcher wants a high purity
dataset, then the model optimized for Fβ soft loss is the best choice. Purity
is defined as a dataset having high TP and TN count, with low FP and FN
count. The result of a low recall and high precision is that we end up with a
model stringent in its prediction due to a high rejection rate. A high rejection
rate for this model can be observed in Fig. 5.2. b on the left side. Relative to
other models, it is far more likely to reject a sample than to accept it. Another
interesting observation is the shape of the prediction distribution. They are
heavily polarized for models trained with soft loss functions. Row a in Fig. 5.2
(also found in App. 7.1) shows that polarized models have a higher count in
the histograms at 0.0 and 1.0 due to predictions between these values barely
occurring.

Models trained with soft loss functions depicted in Fig. 5.1 are relatively flat
because their output predictions are polarized. Changing the decision threshold
does not result in a significant difference in performance concerning precision
and recall. Because the models do not predict values between zero and one, but
rather exactly zero or one (see Fig 5.2).

(a) Binary cross-entropy models. (Left: baseline, binary cross-entropy. Middle: Fβ

metric selection. Right: Soft Fβ metric.)

(b) Left: Fβ soft loss. Middle: F1 soft loss. Right: F1 double soft loss.

Figure 5.2: Prediction distributions on the test set, for 6 different models.

Recall defines the percentage of strong lenses recalled from all strong lenses
in the dataset. If a researcher is interested in a model that returns as many

31

true positives from the dataset as possible (not necessarily a high purity), then
the model trained with F1 soft loss might yield the best results. This can be
observed in Tab. 5.1, where it has the highest recall.

The answer to the research question: ”Which loss functions perform
best with respect to precision and/or recall?” depends on what recall
and precision are required by the research objective you are interested in. If the
interest is a high purity (high precision and Fβ score), then a model trained with
the Fβ soft loss function is the best choice. However, if an application requires
high recall, a model trained with F1 soft loss is a good fit. Lastly, training a
model with binary cross-entropy as a loss function results in a model with the
highest accuracy.

5.2 Gradient-Weighted Class Activation Map-
ping

This section will address the Gradient-weighted Class Activation Mapping (Grad-
CAM) of some models listed in Tab. 5.1. It will try to answer the second re-
search question (Which lensing parameters explain the performance of
the DNNs?).

A Grad-CAM shows where a DNN looks while making inference about a
class. First, we will address the Grad-CAM of a model trained with binary
cross-entropy as the loss function. Next, we will look at Grad-CAMs from a
model trained with Fβ soft loss. However, we will not be looking at Grad-
CAMs for all models listed in Tab. 5.1 because it is reasonable to assume that a
model trained with binary cross-entropy responds the same as a model selected
for Fβ or soft Fβ score. The same holds for models trained with soft loss: Fβ
soft loss, F1 soft loss and F1 double soft loss.

From Fig. 5.3, we can observe that the DNN seems to be looking at the
correct features in the input image. They are the lensing features surrounding
the central galaxy (lens). If the model did not consider the lensing features,
only the central galaxy would probably be highlighted, not the lensing features.
For a model to discriminate between a strong lens and a non-strong lens, the
lensing features should be considered while making an inference. Fig. 5.3 is a
true positive case, and most other true positive cases for this model seem to
follow the same kind of Grad-CAM pattern, where the layers add4 and add5
show the most diversity. Layers add6 and add7 are similar across true positive
cases. The central four regions of the Grad-CAMs are activated significantly and
indicate that the DNN does look at the lensing features present in the input
image. App. 7.2 shows three more true positive cases.

In Fig. 5.4, a Grad-CAM of a true negative is depicted. The model is
clearly not convinced by the luminous sources near the lens because it predicts
this image belongs to the negative class. The Grad-CAM algorithm (Sec. 3.7)
states that it can only visualize evidence favouring the positive class. From Fig.
5.4, we can see this effect (column b) because the Grad-CAMs, do not focus

32

Figure 5.3: This is a true positive Grad-CAM on a test image. (a) Is the input
image. (b) Is the Grad-CAM response of layers add4, add5, add6 and add7,
respectively (top to bottom). (c) are both (a) and (b) superimposed on top of
each other using colour channels.

on any object except the edges of the image and a slight focus on the luminous
object above the right side of the lens.

In Fig. 5.5, we observe empty Grad-CAMs. The interesting observation
about this figure is the fact that the prediction is correct. The superimposed
image’s red colour is due to the Grad-CAMs being empty and assigned a colour
channel. In the discussion section, we will discuss the possibilities, why this
occurs.

Fig. 5.6 illustrates an example of a false positive. The model sees the spiral
arms, around the central galaxy, as lensing features. In the second superimposed
image in Fig. 5.6, a bar-like structure represents evidence for the positive class.
Spiral galaxies take up a significant fraction of the negative class because they
are considered a frequently occurring contaminant in the real world. Spiral
galaxies such as this one are often classified as positive due to the spiral arms’
similarity to lensing features.

A false negative is a member of the positive class, while the model predicts
it is negative. Fig. 5.7 and Fig. 5.8 show examples of FNs, visualized with
Grad-CAMs. We observe from Fig 5.7 that the model does not look at the
middle of the image or its area around it when making an inference. The edges

33

Figure 5.4: This is a true negative Grad-CAM on a test image. (a) Is the input
image. (b) Is the Grad-CAM response of layers add4, add5, add6 and add7,
respectively (top to bottom). (c) are both (a) and (b) superimposed on top of
each other using colour channels.

of the Grad-CAMs have non-zero values, as also observed for true negatives (for
example, Fig. 5.4). Interesting about Fig. 5.7 is the apparent non-brightness
of the lensing features, which could be why the inference is incorrect. Fig.
5.8 presents a lens with multiple noise objects around it (random galaxies in
the background), with one lensing feature on the left side. The second row’s
superimposed image in Fig. 5.8 indicates that the model does see the left side
of the lens as evidence for being a member of the positive class. However, the
prediction (0.175) indicates that the model is not convinced adequately by the
evidence. This fact be seen in the superimposed images of row 3 and 4 in Fig.
5.8. Here the Grad-CAMs are not active and do not overlap the noise galaxies
and lensing feature.

5.3 Information Content

In this section, we will analyse the information content of a mock lens to get
insight into the second research question: ”Which lensing parameters ex-
plain the performance of the DNNs?” Fig. 5.7 from the previous section

34

Figure 5.5: This is a true negative Grad-CAM on a test image. (a) Is the input
image. (b) Is the Grad-CAM response of layers add4, add5, add6 and add7,
respectively (top to bottom). (c) are both (a) and (b) superimposed on top of
each other using colour channels.

(Sec. 5.1) hinted at the lensing features not being bright enough. Additionally,
the random selection of source and lens may result in a mock lens with lens-
ing features overlapping the lens itself. This process could create mock lenses
without visible lensing features.

To address the size of the lensing features and apparent brightness with
respect to true positive rate (TPR) and false-negative rate (FNR), we need
visualisation of performance relative to these features. Fig. 5.9 depicts a hexag-
onal tessellation of source brightness relative to the lens’s peak brightness versus
the source’s Einstein radius. This figure is based on 551 test images of the pos-
itive class. When generating ’fake’ sources, the parameters that make up the
source are stored in its metadata. Therefore, the Einstein radius and some
other parameters are available to us. The negative class does not have sources.
Therefore we cannot create figures like Fig. 5.9 for the negative class. The TPR
determines the colour-magnitude of a hexagon. The brightness scaling of the
source relative to the lens’s peak brightness (α) comes from a uniform distri-
bution between 0.02 and 0.30. We record each α for all positive examples in
the test set. Due to Einstein radii being generated according to an exponential
probability distribution [3], where low Einstein radii are selected more often

35

Figure 5.6: This is a false-positive Grad-CAM on a test image. (a) The input
image. (b) The Grad-CAM response of layers add4, add5, add6 and add7, re-
spectively (top to bottom). (c) are both (a) and (b) superimposed on top of
each other using colour channels.

than high values, a simple figure of Einstein radii versus relative source bright-
ness does not suffice. It would seem like the model makes more mistakes on low
Einstein radii because they are more abundant in our dataset. The hexagonal
tessellation with TPR as colour-magnitude averages this problem out.

Binary cross entropy: From Fig. 5.9, we can observe that the most error
comes from low α values and not necessarily from low Einstein radii. There
seems to be a small effect of Einstein radii on TPR, where low Einstein radii
result in a slight TPR decrease. Empty hexagons indicate that there is no data
available within that data range. Fig. 5.9 depicts a black hexagon (TPR=0.0)
near an Einstein radius of 3 and α between 0.20 and 0.25 because it is an average
over one wrongly classified sample.

To investigate the TPR and FNR further, we can take a look at Fig. 5.10.
This figure clearly illustrates the importance of high α values. This plot shows
FNR and TPR per binned α range. From this figure, we can learn that mistakes
made by a model trained with binary cross-entropy can be avoided if α is higher
than 0.043.

Fig. 7.22 shows the fraction (image area with regards to the whole image
area) of the source image, above two times the Root-Mean-Square (RMS) esti-

36

Figure 5.7: This is a false-negative Grad-CAM on a test image. (a) Is the input
image. (b) Is the Grad-CAM response of layers add4, add5, add6 and add7,
respectively (top to bottom). (c) are both (a) and (b) superimposed on top of
each other using colour channels.

mation of the lens’s noise plotted versus the model prediction. We can observe
that misclassifications only come from low fractions. A low fraction indicates
that there might not be enough information in the mock lens for correct classi-
fication. However, many low fractions are correctly classified by the model. If
we combine information from Fig. 5.10 and Fig. 7.22, we observe that low α
and small Einstein radii are associated with higher misclassification rates.

Fβ Soft Loss: From Fig. 5.11, we observe a different effect than from Fig.
5.9. This effect can be attributed to a low recall (0.651), as is depicted in Tab.
5.1. This model could be perceived as a stringent model that rejects an example
rather than accept it if the α and Einstein radius are low.

From Fig. 5.12, it becomes clear that α must be higher than 0.074 to get
100% TPR without regards for the Einstein radius. The model shows high
TPR for Einstein radii above approximately 2.5 (see Fig. 5.11). From this
figure, we observe a gradient from left to right, where the TPR increases with
the Einstein radius. Keep in mind that these statistics are calculated over a
test set containing positives only. Therefore we cannot say anything from these
figures about the negative class rejection rates.

App. 7.3 has some interesting figures (Fig. 7.28 and Fig. 7.29), which show

37

Figure 5.8: This is a false-negative Grad-CAM on a test image. (a) Is the input
image. (b) Is the Grad-CAM response of layers add4, add5, add6 and add7,
respectively (top to bottom). (c) are both (a) and (b) superimposed on top of
each other using colour channels.

the area fraction of the source above two times the RMS estimation of noise in
the lens. This figure indicates that the model can make mistakes only if the
fraction is below 0.07. From Fig. 7.29, we observe that Einstein radii have less
effect on performance due to mistakes being present along the whole range of
Einstein radii.

If we compare Fig. 7.23 and Fig. 7.29, we see that a model trained with
Fβ soft loss has a much higher rejection rate than a model trained with binary
cross-entropy.

F1 Soft Loss: In Fig. 5.13, most hexagons have a TPR of 1.0, indicating
that misclassifications do not occur regularly regarding the positive class. How-
ever, from Tab. 5.1, we observe that the model trained with F1 soft loss has
the lowest accuracy of all described models. Therefore, most misclassifications
must come from the negative class, where negatives are predicted to be positives
(FPs). From Fig. 5.1, we can observe that in terms of Fβ score, the model does
not perform better than the other models. However, this model performs well
if the desired candidate strong lenses set should have a high TPR and that the
FPR is less important.

The F1 soft loss model is less sensitive to low α values than models trained

38

Figure 5.9: Model: Binary Cross-Entropy. TPR plotted versus Einstein
radius and source brightness on 551 test images. Each hexagon contains a set
of data points, which can express a TPR. The TPR is interpreted as the colour-
magnitude of the hexagon.

Figure 5.10: Model: Binary Cross-Entropy. The fraction of the source image
area above 2x the unnormalised lens’s RMS noise level on 551 test images. Each
bar represents a binned value. If no bar is shown, then there are no data points
within that range.

with binary cross-entropy or Fβ soft loss. In Fig. 5.14, we observe that α
should be above 0.017 for the TPR to be 100%. However, the TPR is not solely

39

Figure 5.11: Model: Fβ Soft Loss. TPR plotted versus Einstein radius and
source brightness. Each hexagon contains a set of data points, which express a
TPR and is interpreted as the colour-magnitude.

Figure 5.12: Model: Fβ Soft Loss. The fraction of the source image area above
2x the RMS noise level of the unnormalised lens. Each bar represents a binned
value. If no bar is shown, then there are no data points within that range.

determined by α but also by Einstein radii, as observed for the other models.
This effect can be seen in Fig. 5.13 to a slight degree for Einstein radii near the
value 1.0.

The answer to the research question: ”Which lensing parameters ex-

40

Figure 5.13: Model: F1 Soft Loss. TPR plotted versus Einstein radius and
source brightness. Each hexagon contains a set of data points, which define a
TPR and is interpreted as the colour-magnitude.

Figure 5.14: Model: F1 Soft Loss. The fraction of the source image area above
2x the RMS noise level of the unnormalised lens. Each bar represents a binned
value. If no bar is shown, then there are no data points within that range.

plain the performance of the DNNs?” depends on the trained model. First
of all, a model’s performance trained with binary cross-entropy is explained by
the source’s brightness relative to the lens’s peak brightness (α) and Einstein
radii. Most errors occur if α is too low, and there must be enough area in the

41

image above the noise level (> 0.05 from Fig. 7.22) representing the lensing
features. Secondly, the Fβ soft loss model is prone to errors if α and Einstein
radius are low. There seems to be a strong correlation between both features
having low values and poor classification results. The most important feature
explaining the model’s performance seems to be the value of α (see Fig. 5.11).
The FPR of this model is low due to the model rejecting many potential posi-
tives. It displays the same behaviour as a model trained on binary cross-entropy
regarding the area of the source above 2x the noise level. Misclassification seems
only to occur if the image’s information content (see Fig. 5.12) is below 0.07.
Lastly, the performance of a model trained with F1 soft loss is explained mostly
by information content and class type. If information content reaches a value
below 0.017, misclassifications start to occur regarding the positive class. The
performance is less correlated with α and Einstein radii than the other mod-
els. Compared to a binary cross-entropy model, this model’s low accuracy can
mostly be ascribed by the performance on the negative class, where many neg-
atives are predicted to belong to the positive class.

5.4 Ensembles

This section will address the third research question: ”Does an ensemble of
DNNs perform better than individual DNNs, if members are trained
on different loss functions or selected for different performance met-
rics?”.

Fig. 5.15 depicts the Fβ score on a range of decision thresholds for the
Nelder-Mead (NM3) ensemble with members trained with the following loss
functions: binary cross-entropy, Fβ- and F1 soft loss. Performance can be as-
sessed through different metrics, which are listed in Tab. 5.2. It has become
apparent that the best loss function for training a model depends on the research
objective. With this in mind, we observe that neither the first nor second en-
semble (see Tab. 5.2) performs better on any metric than models listed in Tab.
5.1 on a decision threshold of 0.5. For each metric defined in Tab. 5.2, there is
a better performing model instance in Tab. 5.1. On the other hand, we observe
an increase in Fβ score for decision thresholds above approximately 0.75, indi-
cating that the ensemble is better than its members if evaluated on this decision
threshold. Comparing ensembles with their members based on Fβ score can be
performed on any value between 0.0 and 1.0. However, it must be noted that if
this threshold had been different (p > 0.75, for example). The conclusion would
be that the ensemble performs better on Fβ score and precision but lower on
recall (see Fig 5.15). The ensemble consists of members relatively insensitive
to the decision threshold and a member that is not. Because we deal with a
weighted average ensemble, it is possible to get an ensemble performing worse
or better than its best performing member, depending on the preferred decision
threshold. From the weight vector of the NM3 ensemble in the caption from
Fig. 5.15, we observe that most weight is attributed to the binary cross-entropy
model, with equal weight for both Fβ- and F1 soft loss models.

42

Figure 5.15: This figure depicts the Fβ-score with standard deviation of the
NM3 ensemble with members trained on the following loss functions: binary
cross-entropy, Fβ- and F1 soft loss, with respective mean model weight vector:
[0.55, 0.22, 0.23], calculated over 10 ensemble runs.

In Fig. 5.16, we observe a similar Fβ curve as in Fig. 5.15. Its shape
seems to follow the same kind of curvature as for models trained with binary
cross-entropy, as shown in Fig. 5.1, except for low and high decision thresholds.
On the low end approximately (Fβ = 0.2), we observe a decrease in Fβ score.
However, on the high end of the decision thresholds (approximately p > 0.75),
we observe an increased Fβ score if we compare it with the NM3 on the same
decision threshold range. If we compare the Fβ score on the high end, we see it
is higher than models trained with binary cross-entropy, F1-, F1 double- and Fβ
soft loss (see Fig. 5.1). The weight vector from the NM6 ensemble (see caption
of Fig. 5.16) has the most weight attributed to the binary cross-entropy model
and models selected for Fβ soft-, and the Fβ metric. This indicates that less
weight is attributed to heavily polarized models that are trained with soft loss
functions. We will detail why both the NM3 and NM6 ensembles have dips in
their Fβ score on low decision thresholds in the discussion section.

Studying Fig. 5.17 and Fig. 5.18 and the IDEx ensembles from Tab. 5.2
results in the observation that these ensembles do not perform better on Fβ score
and precision relative to the NMx ensembles and individual models summarized
in Tab. 5.1 on a decision threshold of 0.5. However, we observe a substantial
effect on ensemble variance between IDE3 and IDE6, where the latter has a
lower standard deviation from the mean Fβ score. Both curves’ general shape
is relatively flat relative to their NMx counterparts. From observing the recall
curves and Tab. 5.2 for both NMx and IDEx, we see that the IDEx ensembles
enjoy a higher overall recall.

43

Figure 5.16: This figure depicts the Fβ-score with standard deviation of the
NM6 ensemble with members trained on the following loss functions or se-
lected for a metric: binary cross-entropy, Fβ-, F1 soft loss, Fβ metric, F1 dou-
ble soft loss and Fβ soft metric with respective mean model weight vector:
[0.20, 0.13, 0.13, 0.20, 0.13, 0.19], calculated over 10 ensemble runs.

Figure 5.17: This figure depicts the Fβ-score with standard deviation of the
IDE3 ensemble with members trained on the following loss functions: binary
cross-entropy, Fβ- and F1 soft loss, calculated over 10 ensemble runs.

44

Figure 5.18: This figure depicts the Fβ-score with standard deviation of the
IDE6 ensemble with members trained on the following loss functions or selected
for a metric: binary cross-entropy, Fβ-, F1 soft loss, Fβ metric, F1 double soft
loss and Fβ soft metric, calculated over 10 ensemble runs.

Model Accuracy Fβ-score Precision Recall

NM3 0.890± 0.043 0.946± 0.005 0.947± 0.006 0.921± 0.014
NM6 0.903± 0.037 0.957± 0.005 0.959± 0.005 0.915± 0.009
IDE6 0.912± 0.014 0.913± 0.010 0.913± 0.011 0.928± 0.008
IDE3 0.904± 0.014 0.898± 0.022 0.897± 0.023 0.935± 0.016

Table 5.2: All metrics are calculated with the decision threshold set at 0.5.
The NM3 and IDE3 ensembles have the following members: binary cross en-
tropy, Fβ- and F1 soft loss. The NM6 and IDE6 ensembles have the following
members: binary cross-entropy, Fβ-, F1-, double F1 soft loss and models se-
lected for Fβ metric and Fβ soft metric. These statistics have been calculated
over 10 ensemble runs.

The third research question can now be answered with respect to the ev-
idence. An ensemble of DNNs can outperform its members on high decision
thresholds based on Fβ score. However, the ensemble does not necessarily
perform better on all thresholds. On high decision thresholds (approximately
p > 0.75) one should prefer an ensemble, however on lower thresholds an indi-
vidual model is preferred.

45

5.5 Max-Tree Segmentation

The final research question: ”Does image segmentation result in better
classification performance?” is assessed through means of a Max-Tree image
segmentation algorithm. During preliminary experiments, it was hypothesized
that error could occur due to random noise objects (other galaxies in the back-
ground) being present in the lens image. This hypothesis’s validity is assessed
by segmenting the lens and lensing features out of the image (see Fig. 5.19).

Figure 5.19: Before Max-Tree image segmentation (left) and after (right).

From Fig. 5.20, we observe a similar Fβ curve as in Fig. 5.1 for models
trained with binary cross-entropy. However, from Tab. 5.3, we can conclude
that using this Max-Tree image segmentation algorithm does not increase perfor-
mance on any aforementioned performance metric. Therefore, the last research
question’s answer is that this specific set of hyper-parameters for the Max-Tree
image segmentation algorithm does not increase performance. The results from
Sec. 5.3 suggests that the problem with performance comes from a lack of infor-
mation content and not from noise objects. A visual inspection of the segmented
image in Fig. 5.19 indicates that the algorithm works well.

Model Accuracy Fβ-score Precision Recall

Max-Tree Seg. 0.898± 0.008 0.918± 0.014 0.919± 0.015 0.874± 0.015

Table 5.3: All metrics are calculated with the decision threshold set at 0.5.
These models are optimized with binary cross-entropy as the loss function.

The last research question, ”Does image segmentation result in better
classification performance?” can be answered. Using Max-Tree image seg-
mentation as preprocessing step does not improve accuracy, Fβ score, precision
and recall, as can be read from Tab. 5.3. Results from Sec. 5.3 also indicate

46

Figure 5.20: This figure depicts the Fβ-score of a model trained with binary
cross-entropy as the loss function. However, the data is preprocessed using
a Max-Tree segmentation algorithm to segment the central galaxy (lens), and
lensing features out of the image.

that misclassification occurs due to other effects than noise objects somewhere
in the image, as was hypothesized earlier.

5.6 Discussion

In this section, we will discuss the findings of Chap. 5.
The heavy polarization of the prediction distribution depicted in the bottom

row of Fig. 5.2 might be attributed to the learner being less hesitant than
its binary cross-entropy counterpart in the top row. All of these models are
associated with soft loss functions. They have learned not to hesitate in output
prediction by predicting either 0.0 or 1.0. If the model would predict any value
between the labels (0.0 or 1.0), then there would always be a loss value. The
model might learn to predict either 0 or 1 because any value in between would
result in a loss. This behaviour can also explain why the shape of the Fβ curve
for models trained on soft loss functions is relatively flat. The Fβ score does
not change significantly when varying the decision threshold p. The advantage
of models trained with soft loss functions is that a search for a suitable decision
threshold p is less critical because performance remains relatively constant for
an arbitrary value of p in 0 < p < 1.

A TN Grad-CAM is depicted in Fig. 5.4, in which the model is not convinced
by the proposed evidence favouring the positive class. The evidence is considered
to be the luminous source above the right side of the lens. This could indicate,

47

that the model does not merely look for any luminous object near the lens but
probably collects evidence from multiple locations around the central lens. Since
no other evidence around the lens has been found, it is reasonable to assume
that the model assigns this example to the negative class.

Fig. 5.5 depicts empty Grad-CAMs. This effect could be due to the aver-
age pooled gradients summing to less than zero because the pooled gradients’
multiplication iteratively sets it to zero. If one feature map of all these feature
maps has an average pooled value of zero, the entire product becomes zero.
Empty Grad-CAMs occur with greater frequency on models trained with soft
loss functions. During the algorithm’s implementation, a slight change to the
algorithm was tried, changing the product into a sum, circumventing the effect
of multiplying by 0. This change did result in non-empty Grad-CAMs indicating
that the change seems to have a positive effect. However, this contrasted the
algorithm’s inner workings and theory and decided that this change will not be
a part of this research.

Interesting to note is the fact that models selected for performance metrics
such as Fβ- or Fβ soft scores perform the same as models trained with bi-
nary cross-entropy as the loss function. During experimentation, these models
seemed to perform better because they showed higher scores on validation data.
However, this increased score was not present when evaluated on a test set.

An interesting effect of using Nelder-Mead weighted average ensembles with
polarised members and members that are not (Fig. 5.15 and Fig. 5.16) is the
bump in performance under two different regions of decision thresholds. The
first bump is located on the lower end of the decision thresholds, at or below
0.2. This effect can be attributed to the use of a weighted average ensemble. It
seems justifiable to assume that on the low end of p, the binary cross-entropy
model does not have enough influence on the average Fβ score. Therefore the
shape of the curve is mainly influenced by the polarized models in these regions.
This can also be supported by the fact that the polarized models do not predict
much values, if any, between 0.0 and 1.0. Models trained on soft loss functions
greatly influence the average weighted Fβ curve on low and high ends of the
curve because their predictions are situated in these regions.

Earlier it was hypothesized that misclassifications could occur due to noise
objects, such as random other galaxies being present in the image’s background.
Thus, it would make sense to segment the lens and lensing features out of the
image and use that as training data. However, the results (see Sec. 5.5) indi-
cated that the Max-Tree image segmentation algorithm and preprocessing steps
did not increase any performance metric. Suppose we combine these findings
with the results from Sec. 5.3, where it was concluded that most misclassifica-
tions occur due to low luminosity of the lensing features and small feature sizes.
In that case, it seems reasonable to assume that other segmentation algorithms
or other values of the hyperparameters will not increase performance. It is likely
that the DNNs could consistently ignore noise objects and that segmentation
algorithms will hurt the training data by being too aggressive in pruning. Addi-
tionally, the computational cost of computing Max-Trees and filtering on them
is severe, making examining them more cumbersome and less interesting.

48

Chapter 6

Conclusion

6.1 Summary of Results

This thesis began by asking four questions regarding the general increase in
strong gravitational lens detection performance through DNNs and how their
performance is explained. The first research questions asks which loss function
to use with regards to precision and/or recall. In this research, we found that
if high performance on accuracy, Fβ-score, precision and recall is needed all at
once, then training a DNN with binary cross-entropy as the loss function is
sufficient. However, it is rarely the case in astronomy that all of these metrics
are of equal importance. For strong gravitational lens detection, where the
problem is severely imbalanced towards the negative class, it is often desirable
to favour precision over recall, which Fβ can express. Hence, it is good to train
a model with Fβ soft loss as the loss function because of its high Fβ score and
precision. On the other hand, if a particular research objective requires high
recall, then training a model with F1 soft loss results in high performance.

The second research question relates to the origin of misclassifications in
the DNNs for this problem. First, we found out by a non-quantitative study
with Grad-CAMs that most error seems to come from lensing features low in
apparent luminosity and small Einstein radii. An exciting finding was that
the DNNs seemed insensitive to noise objects in the background of the images,
indicating that they ignored them during inference. Secondly, we quantitatively
studied the amount of information content in the positive class images using
RMS noise estimation, resulting in the conclusion that a combination of low
lensing feature luminosity and Einstein radii resulted in most misclassifications.
The lensing features’ low brightness was deemed essential for misclassification
due to the DNNs not recognising discriminative features.

The third research question aims to combine the strengths of DNNs trained
on various loss functions into an ensemble. We found that an NM6 ensem-
ble performs better on high decision thresholds than the other ensembles and
better than its members individually for Fβ score and precision. The NM3 en-

49

semble also performs well on high decision thresholds but does not outperform
the NM6 ensemble. If the desired metric is accuracy, then an ensemble does
not outperform a single model trained on binary cross-entropy. If a research
objective requires recall, then a single model trained on F1 soft loss is still a
better choice.

Finally, we can conclude with the answer to the fourth research question re-
garding Max-Tree image segmentation. Here we answer whether we can improve
performance if we segment the lens and lensing features out of the image and use
that as training data. The findings suggest that Max-Tree image segmentation
does not improve performance relative to a model trained on unsegmented data.
The DNNs can ignore most noise objects in the background, therefore rendering
image segmentation ineffective. We can conclude that image segmentation can
hurt performance due to segmenting out parts of the image’s essential lensing
features.

6.2 Recommendations for Future Research

Future research could focus on multiple aspects concerning this research. First
of all, a broader search for ensembling methods and which members to use
could yield an ensemble performing even better than NM6. Adding members
with different DNN architectures or even machine learning algorithms could
be beneficial. Secondly, an interesting topic could be the exploration of Cas-
cade Ensembles, where the ensemble is created incrementally, and the output
of previous members are fed to the inputs of subsequent members. Incremental
ensemble cascade development can halt at a point of diminishing performance
return. This method could yield good performance due to taking decisions from
preceding models into consideration for inference at a later stage in the cascade.
In [3], it was found that using all three colour channels (GRI) resulted in worse
performance than a model trained on just the morphology (red colour channel).
However, the output of models trained on GRI data with various loss functions
could be valuable knowledge for a member later in the cascade. It would also
be interesting to see how the soft loss models and the high performing NM6

ensemble performs on real data (such as data from Euclid and LSST) and the
effect of time spend manually visually inspecting the produced candidate sets.
That research could also study the explanation of misclassifications and com-
pare them with the explanation of this research. It would be an exciting inquiry
because these datasets will have higher spatial resolution and be significantly
larger in size.

50

Bibliography

[1] S. V. W. Beckwith, M. Stiavelli, A. M. Koekemoer, J. A. R. Caldwell,
H. C. Ferguson, R. Hook, R. A. Lucas, L. E. Bergeron, M. Corbin,
S. Jogee, and et al., “The hubble ultra deep field,” The Astronomical
Journal, vol. 132, no. 5, p. 1729–1755, Sep 2006. [Online]. Available:
http://dx.doi.org/10.1086/507302

[2] C. Petrillo, C. Tortora, S. Chatterjee, G. Vernardos, L. Koopmans, G. Ver-
does Kleijn, N. Napolitano, G. Covone, P. Schneider, A. Grado, and J. Mc-
Farland, “Finding strong gravitational lenses in the kilo degree survey with
convolutional neural networks,” Monthly Notices of the Royal Astronomical
Society, vol. 472, 02 2017.

[3] C. Petrillo, C. Tortora, S. Chatterjee, G. Vernardos, L. Koopmans, G. Ver-
does Kleijn, N. Napolitano, G. Covone, L. Kelvin, and A. Hopkins, “Test-
ing convolutional neural networks for finding strong gravitational lenses in
kids,” Monthly Notices of the Royal Astronomical Society, vol. 482, pp.
807–820, 01 2019.

[4] C. E. Petrillo, C. Tortora, G. Vernardos, L. V. E. Koopmans,
G. Verdoes Kleijn, M. Bilicki, N. R. Napolitano, S. Chatterjee, G. Covone,
A. Dvornik, and et al., “Links: discovering galaxy-scale strong lenses
in the kilo-degree survey using convolutional neural networks,” Monthly
Notices of the Royal Astronomical Society, vol. 484, no. 3, p. 3879–3896,
Jan 2019. [Online]. Available: http://dx.doi.org/10.1093/mnras/stz189

[5] X.-P. Zhu, J.-M. Dai, C.-J. Bian, Y. Chen, S. Chen, and C. Hu, “Galaxy
morphology classification with deep convolutional neural networks,” Astro-
physics and Space Science, vol. 364, 04 2019.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Advances in neural infor-
mation processing systems,” Neural Information Processing Systems Foun-
dation, vol. 1269, 2012.

51

http://dx.doi.org/10.1086/507302
http://dx.doi.org/10.1093/mnras/stz189

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[9] A. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin,
A. Ž́ıdek, A. Nelson, A. Bridgland, H. Penedones, S. Petersen, K. Simonyan,
S. Crossan, P. Kohli, D. Jones, D. Silver, K. Kavukcuoglu, and D. Hass-
abis, “Improved protein structure prediction using potentials from deep
learning,” Nature, vol. 577, pp. 1–5, 01 2020.

[10] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition.”
Neural Networks, vol. 32, pp. 323–332, 2012. [Online]. Available:
http://dblp.uni-trier.de/db/journals/nn/nn32.html#StallkampSSI12

[11] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot,
S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lilli-
crap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering
the game of Go with deep neural networks and tree search,” Nature, vol.
529, no. 7587, pp. 484–489, jan 2016.

[12] A. Einstein, “Die Grundlagen der Allgemeinene Relativitätstheorie. (Ger-
man) [The foundations of the Theory of General Relativity],” vol. 354,
no. 7, pp. 769–822, 1916.

[13] V. Bonvin, F. Courbin, S. H. Suyu, P. J. Marshall, C. E. Rusu, D. Sluse,
M. Tewes, K. C. Wong, T. Collett, C. D. Fassnacht, and et al., “H0licow –
v. new cosmograil time delays of he 04351223:h0to 3.8 per cent precision
from strong lensing in a flat cdm model,” Monthly Notices of the Royal
Astronomical Society, vol. 465, no. 4, p. 4914–4930, Nov 2016. [Online].
Available: http://dx.doi.org/10.1093/mnras/stw3006

[14] I. Jee, S. H. Suyu, E. Komatsu, C. D. Fassnacht, S. Hilbert,
and L. V. E. Koopmans, “A measurement of the hubble constant
from angular diameter distances to two gravitational lenses,” Science,
vol. 365, no. 6458, p. 1134–1138, Sep 2019. [Online]. Available:
http://dx.doi.org/10.1126/science.aat7371

[15] G. C.-F. Chen, C. D. Fassnacht, S. H. Suyu, C. E. Rusu, J. H. H.
Chan, K. C. Wong, M. W. Auger, S. Hilbert, V. Bonvin, S. Birrer, and
et al., “A sharp view of h0licow: H0 from three time-delay gravitational
lens systems with adaptive optics imaging,” Monthly Notices of the Royal
Astronomical Society, vol. 490, no. 2, p. 1743–1773, Sep 2019. [Online].
Available: http://dx.doi.org/10.1093/mnras/stz2547

[16] M. Limousin, H. Ebeling, C.-J. Ma, A. M. Swinbank, G. P. Smith,
J. Richard, A. C. Edge, M. Jauzac, J.-P. Kneib, P. Marshall, and
et al., “Macs j1423.8+2404: gravitational lensing by a massive,
relaxed cluster of galaxies atz= 0.54,” Monthly Notices of the

52

http://dblp.uni-trier.de/db/journals/nn/nn32.html#StallkampSSI12
http://dx.doi.org/10.1093/mnras/stw3006
http://dx.doi.org/10.1126/science.aat7371
http://dx.doi.org/10.1093/mnras/stz2547

Royal Astronomical Society, Mar 2010. [Online]. Available: http:
//dx.doi.org/10.1111/j.1365-2966.2010.16518.x

[17] T. Kitching, A. Amara, M. Gill, S. Harmeling, C. Heymans, R. Massey,
B. Rowe, T. Schrabback, L. Voigt, S. Balan, and et al., “Gravitational
lensing accuracy testing 2010 (great10) challenge handbook,” The Annals
of Applied Statistics, vol. 5, no. 3, p. 2231–2263, Sep 2011. [Online].
Available: http://dx.doi.org/10.1214/11-AOAS484

[18] C. A. Mason, T. Treu, K. B. Schmidt, T. E. Collett, M. Trenti, P. J.
Marshall, R. Barone-Nugent, L. D. Bradley, M. Stiavelli, and S. Wyithe,
“Correcting thez 8 galaxy luminosity function for gravitational lensing
magnification bias,” The Astrophysical Journal, vol. 805, no. 1, p. 79, May
2015. [Online]. Available: http://dx.doi.org/10.1088/0004-637X/805/1/79

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014. [Online].
Available: http://arxiv.org/abs/1409.1556

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” CoRR, vol. abs/1409.4842, 2014. [Online]. Available:
http://arxiv.org/abs/1409.4842

[21] F. Chollet et al. (2015) Keras. [Online]. Available: https://github.com/
fchollet/keras

[22] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015, software available from
tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

53

http://dx.doi.org/10.1111/j.1365-2966.2010.16518.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16518.x
http://dx.doi.org/10.1214/11-AOAS484
http://dx.doi.org/10.1088/0004-637X/805/1/79
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.4842
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://www.tensorflow.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[24] I. Newton, “Philosophiae naturalis principia mathematica,” vol. Vol. 1,
1726.

[25] L. V. E. Koopmans, A. Bolton, T. Treu, O. Czoske, M. W. Auger,
M. Barnabè, S. Vegetti, R. Gavazzi, L. A. Moustakas, and S. Burles,
“THE STRUCTURE AND DYNAMICS OF MASSIVE EARLY-
TYPE GALAXIES: ON HOMOLOGY, ISOTHERMALITY, AND
ISOTROPY INSIDE ONE EFFECTIVE RADIUS,” The Astrophysical
Journal, vol. 703, no. 1, pp. L51–L54, sep 2009. [Online]. Available:
https://doi.org/10.1088/0004-637x/703/1/l51

[26] S. Vegetti and M. Vogelsberger, “On the density profile of dark matter
substructure in gravitational lens galaxies,” Monthly Notices of the Royal
Astronomical Society, vol. 442, 06 2014.

[27] A. M. Nierenberg, T. Treu, S. A. Wright, C. D. Fassnacht, and M. W.
Auger, “Detection of substructure with adaptive optics integral field
spectroscopy of the gravitational lens B1422+231,” Monthly Notices of
the Royal Astronomical Society, vol. 442, no. 3, pp. 2434–2445, 06 2014.
[Online]. Available: https://doi.org/10.1093/mnras/stu862

[28] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016, http://www.deeplearningbook.org.

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
Representations by Back-propagating Errors,” Nature, vol. 323, no. 6088,
pp. 533–536, 1986. [Online]. Available: http://www.nature.com/articles/
323533a0

[30] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with
deep convolutional neural networks,” Neural Information Processing Sys-
tems, vol. 25, 01 2012.

[31] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Transactions on Neural Networks,
vol. 5, no. 2, pp. 157–166, 1994.

[32] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in In Proceedings of the International Con-
ference on Artificial Intelligence and Statistics (AISTATS’10). Society for
Artificial Intelligence and Statistics, 2010.

[33] K. He and J. Sun, “Convolutional neural networks at constrained
time cost,” CoRR, vol. abs/1412.1710, 2014. [Online]. Available:
http://arxiv.org/abs/1412.1710

[34] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,”
CoRR, vol. abs/1505.00387, 2015. [Online]. Available: http://arxiv.org/
abs/1505.00387

54

https://doi.org/10.1088/0004-637x/703/1/l51
https://doi.org/10.1093/mnras/stu862
http://www.deeplearningbook.org
http://www.nature.com/articles/323533a0
http://www.nature.com/articles/323533a0
http://arxiv.org/abs/1412.1710
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1505.00387

[35] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” CoRR, vol. abs/1502.03167,
2015. [Online]. Available: http://arxiv.org/abs/1502.03167

[36] B. Amos and D. Yarats, “The differentiable cross-entropy method,”
CoRR, vol. abs/1909.12830, 2019. [Online]. Available: http://arxiv.org/
abs/1909.12830

[37] Z. C. Lipton, C. Elkan, and B. Narayanaswamy, “Thresholding classifiers
to maximize f1 score,” 2014.

[38] A. Galstyan and P. R. Cohen, “Empirical comparison of “hard” and “soft”
label propagation for relational classification,” in Inductive Logic Program-
ming, H. Blockeel, J. Ramon, J. Shavlik, and P. Tadepalli, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 98–111.

[39] R. Metcalf, M. Meneghetti, C. Avestruz, F. Bellagamba, C. Bom, E. Bertin,
R. Cabanac, F. Courbin, A. Davies, E. Decencière, R. Flamary, R. Gavazzi,
M. Geiger, P. Hartley, M. Huertas-Company, N. Jackson, C. Jacobs,
E. Jullo, J. Kneib, L. Koopmans, F. Lanusse, C. Li, Q. Ma, M. Mak-
ler, N. Li, M. Lightman, C. Petrillo, S. Serjeant, C. Schäfer, A. Sonnenfeld,
A. Tagore, C. Tortora, D. Tuccillo, M. Valent́ın, S. Velasco-Forero, G. Ver-
does Kleijn, and G. Vernardos, “The strong gravitational lens finding chal-
lenge,” Astronomy astrophysics, vol. 625, no. May 2019, May 2019.

[40] F. Chollet, Deep Learning with Python. Manning, Nov. 2017.

[41] J. A. Nelder and R. Mead, “A simplex method for function minimization,”
Computer Journal, vol. 7, pp. 308–313, 1965.

[42] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Ba-
tra, “Grad-cam: Visual explanations from deep networks via gradient-
based localization,” in 2017 IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 618–626.

[43] Y. Bengio, A. C. Courville, and P. Vincent, “Unsupervised feature
learning and deep learning: A review and new perspectives,” CoRR, vol.
abs/1206.5538, 2012. [Online]. Available: http://arxiv.org/abs/1206.5538

[44] A. Mahendran and A. Vedaldi, “Visualizing deep convolutional neural
networks using natural pre-images,” CoRR, vol. abs/1512.02017, 2015.
[Online]. Available: http://arxiv.org/abs/1512.02017

[45] J. T. A. de Jong, G. A. V. Kleijn, T. Erben, H. Hildebrandt, K. Kuijken,
G. Sikkema, M. Brescia, M. Bilicki, N. R. Napolitano, V. Amaro, and
et al., “The third data release of the kilo-degree survey and associated
data products,” Astronomy Astrophysics, vol. 604, p. A134, Aug 2017.
[Online]. Available: http://dx.doi.org/10.1051/0004-6361/201730747

55

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1909.12830
http://arxiv.org/abs/1909.12830
http://arxiv.org/abs/1206.5538
http://arxiv.org/abs/1512.02017
http://dx.doi.org/10.1051/0004-6361/201730747

[46] D. J. Eisenstein, J. Annis, J. E. Gunn, A. S. Szalay, A. J. Connolly,
R. C. Nichol, N. A. Bahcall, M. Bernardi, S. Burles, F. J. Castander,
and et al., “Spectroscopic target selection for the sloan digital sky
survey: The luminous red galaxy sample,” The Astronomical Journal,
vol. vol. 122, no. 5, p. 2267–2280, Nov 2001. [Online]. Available:
http://dx.doi.org/10.1086/323717

[47] M. Fukugita, T. Futamase, M. Kasai, and E. L. Turner, “Statistical prop-
erties of gravitational lenses with a nonzero cosmological constant,” Astro-
nomical Journal, vol. vol. 393, pp. 3–21, July 1992.

[48] S. Ghassemi and E. Magli, “Convolutional neural networks for on-board
cloud screening,” Remote Sensing, vol. 11, p. 1417, 06 2019.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, cite arxiv:1412.6980Comment: Published as a conference paper at
the 3rd International Conference for Learning Representations, San Diego,
2015. [Online]. Available: http://arxiv.org/abs/1412.6980

[50] R. Souza, L. Rittner, R. Machado, and R. Lotufo, “iamxt: Max-tree tool-
box for image processing and analysis,” SoftwareX, vol. 6, pp. 81–84, 12
2017.

[51] G. Ouzounis, “The max-tree data structure,” 02 2018.

56

http://dx.doi.org/10.1086/323717
http://arxiv.org/abs/1412.6980

Chapter 7

Appendix A

7.1 Model Predictions

Figure 7.1: Prediction results on test set of model trained with binary cross
entropy as loss function.

7.2 Gradient-Weighted Class Activation Map-
ping

7.3 Information Content

57

Figure 7.2: A model trained with binary cross entropy as loss function, but
selected on the Fβ metric.

Figure 7.3: A model trained with binary cross entropy as loss function, but
selected on Fβ soft loss as metric.

58

Figure 7.4: A model trained with Fβ softloss as loss function.

Figure 7.5: A model trained on the F1 soft loss function.

59

Figure 7.6: A model trained on the F1 double soft loss function.

Figure 7.7: True positive grad-CAM on a test image. (a) Is the input image.
(b) Is the Gradient-weighted Class Activation Mapping response of layers add4,
add5, add6 and add7 respectively (top to bottom). (c) are both (a) and (b)
superimposed on top of each other, by means of using color channels. This is a
model trained with binary cross entropy as loss function.

60

Figure 7.8: True positive grad-CAM on a test image. (a) Is the input image.
(b) Is the Gradient-weighted Class Activation Mapping response of layers add4,
add5, add6 and add7 respectively (top to bottom). (c) are both (a) and (b)
superimposed on top of each other, by means of using color channels. This is a
model trained with binary cross entropy as loss function.

61

Figure 7.9: True positive grad-CAM on a test image. (a) Is the input image.
(b) Is the Gradient-weighted Class Activation Mapping response of layers add4,
add5, add6 and add7 respectively (top to bottom). (c) are both (a) and (b)
superimposed on top of each other, by means of using color channels. This is a
model trained with binary cross entropy as loss function.

62

Figure 7.10: True negative grad-CAM on a test image. (a) Is the input image.
(b) Is the Gradient-weighted Class Activation Mapping response of layers add4,
add5, add6 and add7 respectively (top to bottom). (c) are both (a) and (b)
superimposed on top of each other, by means of using color channels. This is a
model trained with binary cross entropy as loss function.

63

Figure 7.11: True negative grad-CAM on a test image. (a) Is the input image.
(b) Is the Gradient-weighted Class Activation Mapping response of layers add4,
add5, add6 and add7 respectively (top to bottom). (c) are both (a) and (b)
superimposed on top of each other, by means of using color channels. This is a
model trained with binary cross entropy as loss function.

64

Figure 7.12: True negative grad-CAM on a test image. (a) Is the input image.
(b) Is the Gradient-weighted Class Activation Mapping response of layers add4,
add5, add6 and add7 respectively (top to bottom). (c) are both (a) and (b)
superimposed on top of each other, by means of using color channels. This is a
model trained with binary cross entropy as loss function.

65

Figure 7.13: True negative grad-CAM on a test image. (a) Is the input image.
(b) Is the Gradient-weighted Class Activation Mapping response of layers add4,
add5, add6 and add7 respectively (top to bottom). (c) are both (a) and (b)
superimposed on top of each other, by means of using color channels. This is a
model trained with binary cross entropy as loss function.

66

Figure 7.14: True negative grad-CAM on a test image. (a) Is the input image.
(b) Is the Gradient-weighted Class Activation Mapping response of layers add4,
add5, add6 and add7 respectively (top to bottom). (c) are both (a) and (b)
superimposed on top of each other, by means of using color channels. This is a
model trained with binary cross entropy as loss function.

67

Figure 7.15: False positive grad-CAM on a test image. (a) Is the input image.
(b) Is the Gradient-weighted Class Activation Mapping response of layers add4,
add5, add6 and add7 respectively (top to bottom). (c) are both (a) and (b)
superimposed on top of each other, by means of using color channels.

68

Figure 7.16: False positive grad-CAM on a test image. (a) Is the input image.
(b) Is the Gradient-weighted Class Activation Mapping response of layers add4,
add5, add6 and add7 respectively (top to bottom). (c) are both (a) and (b)
superimposed on top of each other, by means of using color channels.

69

Figure 7.17: False positive grad-CAM on a test image. (a) Is the input image.
(b) Is the Gradient-weighted Class Activation Mapping response of layers add4,
add5, add6 and add7 respectively (top to bottom). (c) are both (a) and (b)
superimposed on top of each other, by means of using color channels.

70

Figure 7.18: False negative grad-CAM on a test image. (a) Is the input image.
(b) Is the Gradient-weighted Class Activation Mapping response of layers add4,
add5, add6 and add7 respectively (top to bottom). (c) are both (a) and (b)
superimposed on top of each other, by means of using color channels.

71

Figure 7.19: False negative grad-CAM on a test image. (a) Is the input image.
(b) Is the Gradient-weighted Class Activation Mapping response of layers add4,
add5, add6 and add7 respectively (top to bottom). (c) are both (a) and (b)
superimposed on top of each other, by means of using color channels.

72

Figure 7.20: False negative grad-CAM on a test image. (a) Is the input image.
(b) Is the Gradient-weighted Class Activation Mapping response of layers add4,
add5, add6 and add7 respectively (top to bottom). (c) are both (a) and (b)
superimposed on top of each other, by means of using color channels.

73

Figure 7.21: False negative grad-CAM on a test image. (a) Is the input image.
(b) Is the Gradient-weighted Class Activation Mapping response of layers add4,
add5, add6 and add7 respectively (top to bottom). (c) are both (a) and (b)
superimposed on top of each other, by means of using color channels.

Figure 7.22: Model: Binary Cross Entropy. Root-Mean-Square (RMS) noise
level estimation. The x-axis represents the fraction of the source image above
2x the RMS estimation of the noise. The decision threshold is set to 0.5.

74

Figure 7.23: Model: Binary Cross entropy. Model certainty plotted versus
the Einstein Radius of the Source image.

Figure 7.24: Model: Binary Cross Entropy. Model certainty plotted versus
Einstein Radius and source brightness. Each hexagon contains a set of data
points, which are averaged in order to obtain the color magnitude of the hexagon.

75

Figure 7.25: Model: F1 Soft Loss. Root-Mean-Square (RMS) noise level es-
timation. The x-axis represents the fraction of the source image above 2x the
RMS estimation of the noise. The decision threshold is set to 0.5.

Figure 7.26: Model: F1 Soft Loss. Model certainty plotted versus the Einstein
Radius of the Source image.

76

Figure 7.27: Model: F1 Soft Loss. Model certainty plotted versus Einstein
Radius and source brightness. Each hexagon contains a set of data points,
which are averaged in order to obtain the color magnitude of the hexagon.

Figure 7.28: Model: Fβ Soft Loss. Root-Mean-Square (RMS) noise level
estimation. The x-axis represents the fraction of the source image above 2x
the RMS estimation of the noise. The decision threshold is set to 0.5.

77

Figure 7.29: Model: Fβ Soft Loss. Model certainty plotted versus the Einstein
Radius of the Source image.

Figure 7.30: Model: Fβ Soft Loss. Model certainty plotted versus Einstein
Radius and source brightness. Each hexagon contains a set of data points,
which are averaged in order to obtain the color magnitude of the hexagon.

78

	Introduction
	Gravitational Lensing
	Deep Learning
	Research Questions
	Thesis Structure

	Strong Gravitational Lensing
	Background
	Strong Lensing Applications

	Neural Networks
	Convolutional Neural Networks
	Residual Neural Networks
	Regularization
	Early Stopping

	Loss Functions
	Binary Cross-Entropy
	F1 Soft Loss
	F1 Double Soft Loss
	F Soft Loss

	Model Selection
	F Metric
	F Soft Metric

	Ensemble Learning
	Nelder-Mead - Weighted Average Ensemble
	Input Dependent Ensemble

	Gradient-Weighted Class Activation Mapping

	Experimental Setup
	The KiDS Survey
	Preprocessing
	Data Augmentation

	Network Architecture
	Loss Functions
	Grad-CAM
	Ensembles
	Max-Tree Segmentation
	Specifications
	Hardware
	Software

	Results
	Loss Functions
	Gradient-Weighted Class Activation Mapping
	Information Content
	Ensembles
	Max-Tree Segmentation
	Discussion

	Conclusion
	Summary of Results
	Recommendations for Future Research

	Appendix A
	Model Predictions
	Gradient-Weighted Class Activation Mapping
	Information Content

